51
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
|
52
|
Sadnicka A, Wiestler T, Butler K, Altenmüller E, Edwards MJ, Ejaz N, Diedrichsen J. Intact finger representation within primary sensorimotor cortex of musician's dystonia. Brain 2023; 146:1511-1522. [PMID: 36170332 PMCID: PMC10115231 DOI: 10.1093/brain/awac356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Musician's dystonia presents with a persistent deterioration of motor control during musical performance. A predominant hypothesis has been that this is underpinned by maladaptive neural changes to the somatotopic organization of finger representations within primary somatosensory cortex. Here, we tested this hypothesis by investigating the finger-specific activity patterns in the primary somatosensory and motor cortex using functional MRI and multivariate pattern analysis in nine musicians with dystonia and nine healthy musicians. A purpose-built keyboard device allowed characterization of activity patterns elicited during passive extension and active finger presses of individual fingers. We analysed the data using both traditional spatial analysis and state-of-the art multivariate analyses. Our analysis reveals that digit representations in musicians were poorly captured by spatial analyses. An optimized spatial metric found clear somatotopy but no difference in the spatial geometry between fingers with dystonia. Representational similarity analysis was confirmed as a more reliable technique than all spatial metrics evaluated. Significantly, the dissimilarity architecture was equivalent for musicians with and without dystonia. No expansion or spatial shift of digit representation maps were found in the symptomatic group. Our results therefore indicate that the neural representation of generic finger maps in primary sensorimotor cortex is intact in musician's dystonia. These results speak against the idea that task-specific dystonia is associated with a distorted hand somatotopy and lend weight to an alternative hypothesis that task-specific dystonia is due to a higher-order disruption of skill encoding. Such a formulation can better explain the task-specific deficit and offers alternative inroads for therapeutic interventions.
Collapse
|
53
|
Frankford SA, O'Flynn LC, Simonyan K. Sensory processing in the auditory and olfactory domains is normal in laryngeal dystonia. J Neurol 2023; 270:2184-2190. [PMID: 36640203 DOI: 10.1007/s00415-023-11562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Abnormal sensory discriminatory processing has been implicated as an endophenotypic marker of isolated dystonia. However, the extent of alterations across the different sensory domains and their commonality in different forms of dystonia are unclear. Based on the previous findings of abnormal temporal but not spatial discrimination in patients with laryngeal dystonia, we investigated sensory processing in the auditory and olfactory domains as potentially additional contributors to the disorder pathophysiology. We tested auditory temporal discrimination and olfactory function, including odor identification, threshold, and discrimination, in 102 laryngeal dystonia patients and 44 healthy controls, using dichotically presented pure tones and the extended Sniffin' Sticks smell test protocol, respectively. Statistical significance was assessed using analysis of variance with non-parametric bootstrapping. Patients had a lower mean auditory temporal discrimination threshold, with abnormal values found in three patients. Hyposmia was found in 64 patients and anosmia in 2 patients. However, there were no statistically significant differences in either auditory temporal discrimination threshold or olfactory identification, threshold, and discrimination between the groups. A significant positive relationship was found between olfactory threshold and disorder severity based on the Burke-Fahn-Marsden dystonia rating scale. Our findings demonstrate that, contrary to altered visual temporal discrimination, auditory temporal discrimination and olfactory function are likely not candidate endophenotypic markers of laryngeal dystonia.
Collapse
|
54
|
Pharmacological and neurosurgical interventions for individuals with cerebral palsy and dystonia: a systematic review update and meta-analysis. Dev Med Child Neurol 2023; 65:e56-e60. [PMID: 36929103 DOI: 10.1111/dmcn.15579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
55
|
Indelicato E, Boesch S, Baumgartner M, Plecko B, Winkelmann J, Zech M. Confirmation of a Causal Role for SHQ1 Variants in Early Infantile-Onset Recessive Dystonia. Mov Disord 2023; 38:355-357. [PMID: 36416405 DOI: 10.1002/mds.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
|
56
|
Yang F, Li H, Dai Y, Zhang R, Zhang JT. IRF2BPL gene variants with dystonia: one new Chinese case report. BMC Neurol 2023; 23:32. [PMID: 36670390 PMCID: PMC9862514 DOI: 10.1186/s12883-023-03077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The carriers of damaging heterozygous variants in interferon regulatory factor 2 binding protein-like (IRF2BPL), encoding a member of the IRF2BP family of transcriptional regulators, may be affected by a variety of neurological symptoms, such as neurodevelopmental regression, language and motor developmental delay, seizures, progressive ataxia and a lack of coordination, and even dystonia. CASE PRESENTATION We report a Chinese boy who presented with dystonia, dysarthria, and normal development due to nonsense IRF2BPL mutation, with intact imaging and EEG findings but without developmental delays or seizures. Whole-exome sequencing revealed a novel nonsense variant IRF2BPL (NM_024496) Exon C.562C > T (p.Arg188*). CONCLUSION This case report presents a Chinese boy with a novel nonsense variant in IRF2BPL, displaying rapid progressive dystonia and dysarthria, without early developmental delay or epilepsy; expands the IRF2BPL phenotypes in the Chinese population; and raises awareness of patients with IRF2BPL.
Collapse
|
57
|
Safarpour D, Jabbari B. Botulinum toxin for motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:539-555. [PMID: 37620089 DOI: 10.1016/b978-0-323-98817-9.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Botulinum neurotoxins are a group of biological toxins produced by the gram-negative bacteria Clostridium botulinum. After intramuscular injection, they produce dose-related muscle relaxation, which has proven useful in the treatment of a large number of motor and movement disorders. In this chapter, we discuss the utility of botulinum toxin treatment in three major and common medical conditions related to the dysfunction of the motor system, namely dystonia, tremor, and spasticity. A summary of the existing literature is provided along with different techniques of injection including those recommended by the authors.
Collapse
|
58
|
Shah-Zamora D, Bowyer S, Zillgitt A, Sidiropoulos C, Mahajan A. Brain Connectivity in Dystonia: Evidence from Magnetoencephalography. ADVANCES IN NEUROBIOLOGY 2023; 31:141-155. [PMID: 37338700 DOI: 10.1007/978-3-031-26220-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Magnetoencephalography (MEG) detects synchronized activity within a neuronal network by measuring the magnetic field changes generated by intracellular current flow. Using MEG data, we can quantify brain region networks with similar frequency, phase, or amplitude of activity and thereby identify patterns of functional connectivity seen with specific disorders or disease states. In this review, we examine and summarize MEG-based literature on functional networks in dystonias. Specifically, we inspect literature evaluating the pathogenesis of focal hand dystonia, cervical dystonia, embouchure dystonia, the effects of sensory tricks, treatment with botulinum toxin and deep brain stimulation, and rehabilitation approaches. This review additionally highlights how MEG has potential for application to clinical care of patients with dystonia.
Collapse
|
59
|
Ueda K, Aravamuthan BR, Pearson TS. Dystonia in individuals with spastic cerebral palsy and isolated periventricular leukomalacia. Dev Med Child Neurol 2023; 65:94-99. [PMID: 35661146 PMCID: PMC10392705 DOI: 10.1111/dmcn.15300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
AIM To determine the prevalence of dystonia in individuals with periventricular leukomalacia (PVL) and spastic cerebral palsy (CP), but without basal ganglia and thalamic injury (BGTI) on brain magnetic resonance imaging (MRI). METHOD This was a retrospective study of individuals with spastic CP and PVL on MRI evaluated between 2005 and 2018 in a CP center. Individuals with non-PVL brain lesions on MRI, including BGTI, were excluded. Dystonia was assessed via blinded review of neurological exam videos by pediatric movement disorders specialists. RESULTS Eighty-five participants (45 males, 40 females; mean age at videotaping 12 years [standard deviation 5 years 6 months], range 4-26 years) met inclusion and exclusion criteria. Of these participants, 50 (59%) displayed dystonia in their exam videos. The most common locations of dystonia were the fingers and hip adductors. The prevalence of dystonia was unaffected by the gestational age or severity of PVL, and was affected by Gross Motor Function Classification System level. INTERPRETATION Dystonia is common in individuals with spastic CP and PVL, even without BGTI on MRI. Our findings suggest vigilance for dystonia in individuals with spastic CP should remain high, even without MRI evidence of BGTI. WHAT THIS PAPER ADDS Individuals with spastic cerebral palsy and isolated periventricular leukomalacia on magnetic resonance imaging commonly display dystonia. Common sites of dystonia are in the fingers and hip adductors.
Collapse
|
60
|
El Atiallah I, Bonsi P, Tassone A, Martella G, Biella G, Castagno AN, Pisani A, Ponterio G. Synaptic Dysfunction in Dystonia: Update From Experimental Models. Curr Neuropharmacol 2023; 21:2310-2322. [PMID: 37464831 PMCID: PMC10556390 DOI: 10.2174/1570159x21666230718100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023] Open
Abstract
Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.
Collapse
|
61
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
|
62
|
McClelland VM, Lin JP. Dystonia in Childhood: How Insights from Paediatric Research Enrich the Network Theory of Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:1-22. [PMID: 37338693 DOI: 10.1007/978-3-031-26220-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is now widely accepted as a network disorder, with multiple brain regions and their interconnections playing a potential role in the pathophysiology. This model reconciles what could previously have been viewed as conflicting findings regarding the neuroanatomical and neurophysiological characteristics of the disorder, but there are still significant gaps in scientific understanding of the underlying pathophysiology. One of the greatest unmet challenges is to understand the network model of dystonia in the context of the developing brain. This article outlines how research in childhood dystonia supports and contributes to the network theory and highlights aspects where data from paediatric studies has revealed novel and unique physiological insights, with important implications for understanding dystonia across the lifespan.
Collapse
|
63
|
Wu S, Nordli DR. Motor seizure semiology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:295-304. [PMID: 37620075 DOI: 10.1016/b978-0-323-98817-9.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Motor semiology is a major component of epilepsy evaluation, which provides essential information on seizure classification and helps in seizure localization. The typical motor seizures include tonic, clonic, tonic-clonic, myoclonic, atonic, epileptic spasms, automatisms, and hyperkinetic seizures. Compared to the "positive" motor signs, negative motor phenomena, for example, atonic seizures and Todd's paralysis are also crucial in seizure analysis. Several motor signs, for example, version, unilateral dystonia, figure 4 sign, M2e sign, and asymmetric clonic ending, are commonly observed and have significant clinical value in seizure localization. The purpose of this chapter is to review the localization value and pathophysiology associated with the well-defined motor seizure semiology using updated knowledge from intracranial electroencephalographic recordings, particularly stereoelectroencephalography.
Collapse
|
64
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
|
65
|
Defazio G, Gigante AF, Hallett M, Berardelli A, Perlmutter JS, Berman BD, Jankovic J, Bäumer T, Comella C, Ercoli T, Ferrazzano G, Fox SH, Kim HJ, Moukheiber ES, Richardson SP, Weissbach A, Jinnah HA. Motor and psychiatric features in idiopathic blepharospasm: A data-driven cluster analysis. Parkinsonism Relat Disord 2022; 104:94-98. [PMID: 36306537 PMCID: PMC11187571 DOI: 10.1016/j.parkreldis.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Idiopathic blepharospasm is a clinically heterogeneous dystonia also characterized by non motor symptoms. METHODS We used a k-means cluster analysis to assess 188 patients with idiopathic blepharospasm in order to identify relatively homogeneous subpopulations of patients, using a set of motor and psychiatric variables to generate the cluster solution. RESULTS Blepharospasm patients reached higher scores on scales assessing depressive- and anxiety-related disorders than healthy/disease controls. Cluster analysis suggested the existence of three groups of patients that differed by type of spasms, overall motor severity, and presence/severity of psychiatric problems. The greater severity of motor symptoms was observed in Group 1, the least severity in Group 3, while the severity of blepharospasm in Group 2 was between that observed in Groups 1 and 3. The three motor subtypes also differed by psychiatric features: the lowest severity of psychiatric symptoms was observed in the group with least severe motor symptoms (group 3), while the highest psychiatric severity scores were observed in group 2 that carried intermediate motor severity rather than in the group with more severe motor symptoms (group 1). The three groups did not differ by disease duration, age of onset, sex or other clinical features. CONCLUSIONS The present study suggests that blepharospasm patients may be classified in different subtypes according to the type of spasms, overall motor severity and presence/severity of depressive symptoms and anxiety.
Collapse
|
66
|
Skarmeta NP, Katzmann GC, Valdés C, Gaedechens D, Montini FC. Tardive Oromandibular Dystonia Induced by Trazodone: A Clinical Case and Management from the Perspective of the Dental Specialist. Toxins (Basel) 2022; 14:toxins14100680. [PMID: 36287949 PMCID: PMC9607571 DOI: 10.3390/toxins14100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tardive Oromandibular Dystonia is an iatrogenic drug-induced movement form of extrapyramidal symptoms associated primarily with chronic consumption of dopamine receptor blocking agents. Tardive symptoms attributable to selective serotonin reuptake inhibitors antidepressants are far less prevalent. CLINICAL CASE The authors will present a clinical case and management, from the dental specialist perspective, of a 55-year-old female patient who developed tardive oromandibular dystonia induced by Trazodone prescribed for sleep insomnia. CONCLUSIONS Trazodone-induced oromandibular dystonia is extremely rare. Early identification and assessment of tardive symptoms are imperative for successful treatment. Trazodone should be prescribed with caution in patients taking other medications with the potential to cause tardive syndromes.
Collapse
|
67
|
Borngräber F, Hoffmann M, Paulus T, Junker J, Bäumer T, Altenmüller E, Kühn AA, Schmidt A. Characterizing the temporal discrimination threshold in musician's dystonia. Sci Rep 2022; 12:14939. [PMID: 36056047 PMCID: PMC9440005 DOI: 10.1038/s41598-022-18739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
The temporal discrimination threshold (TDT) has been established as a biomarker of impaired temporal processing and endophenotype in various forms of focal dystonia patients, such as cervical dystonia, writer's cramp or blepharospasm. The role of TDT in musician's dystonia (MD) in contrast is less clear with preceding studies reporting inconclusive results. We therefore compared TDT between MD patients, healthy musicians and non-musician controls using a previously described visual, tactile, and visual-tactile paradigm. Additionally, we compared TDT of the dystonic and non-dystonic hand and fingers in MD patients and further characterized the biomarker regarding its potential influencing factors, i.e. musical activity, disease variables, and personality profiles. Repeated measures ANOVA and additional Bayesian analyses revealed lower TDT in healthy musicians compared to non-musicians. However, TDTs in MD patients did not differ from both healthy musicians and non-musicians, although pairwise Bayesian t-tests indicated weak evidence for group differences in both comparisons. Analyses of dystonic and non-dystonic hands and fingers revealed no differences. While in healthy musicians, age of first instrumental practice negatively correlated with visual-tactile TDTs, TDTs in MD patients did not correlate with measures of musical activity, disease variables or personality profiles. In conclusion, TDTs in MD patients cannot reliably be distinguished from healthy musicians and non-musicians and are neither influenced by dystonic manifestation, musical activity, disease variables nor personality profiles. Unlike other isolated focal dystonias, TDT seems not to be a reliable biomarker in MD.
Collapse
|
68
|
Détári A, Egermann H. Musicians Focal Dystonia: The Practitioner's Perspective on Psychological, Psychosocial, and Behavioural Risk Factors and Non-motor Symptoms. MEDICAL PROBLEMS OF PERFORMING ARTISTS 2022; 37:200-206. [PMID: 36053497 DOI: 10.21091/mppa.2022.3023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Musician's focal dystonia (MFD) is a painless, task-specific neurological movement disorder that impairs fine motor control when playing an instrument. The pathophysiology is not fully understood, and while the available treatment strategies can help with improving motor control, they are rarely able to fully and reliably rehabilitate playing skills. Recent studies suggest that apart from genetic factors, maladaptive neuroplasticity, and the repetitive nature of the instrumental technique, psychosocial, psychological, and behavioural factors might also play a role in the onset of MFD. However, the presence of some of these risk factors is supported primarily by anecdotal evidence, with only a few aspects examined empirically. To explore this area further, 14 semi-structured interviews were conducted with a convenience sample of practitioners (8 medical professionals and 6 musician-coaches) who frequently treated MFD sufferers. Throughout their career, these participants are estimated to have interacted with more than 2,000 musicians with MFD, creating a large, indirect sample. A detailed patient profile emerged from the data with three main components: 1) the negative impact of social environments, including traumatic experiences and low quality of instrumental teaching; 2) a perfectionist, anxious, overly sensitive, and acquiescent personality type; and 3) obsessive, controlling, and inadequate practice behaviours. Participants stated MFD needs to be treated holistically and that neglecting these aspects during treatment could jeopardise rehabilitation. Further objective, controlled research trials are needed to describe these factors in detail, quantify their potential impact as risk factors, and understand how they might hinder therapy.
Collapse
|
69
|
Poupon-Bejuit L, Hughes MP, Liu W, Geard A, Faour-Slika N, Whaler S, Massaro G, Rahim AA. A GLP1 receptor agonist diabetes drug ameliorates neurodegeneration in a mouse model of infantile neurometabolic disease. Sci Rep 2022; 12:13825. [PMID: 35970890 PMCID: PMC9378686 DOI: 10.1038/s41598-022-17338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare paediatric neurodegenerative condition caused by mutations in the PLA2G6 gene, which is also the causative gene for PARK14-linked young adult-onset dystonia parkinsonism. INAD patients usually die within their first decade of life, and there are currently no effective treatments available. GLP1 receptor (GLP-1R) agonists are licensed for treating type 2 diabetes mellitus but have also demonstrated neuroprotective properties in a clinical trial for Parkinson's disease. Therefore, we evaluated the therapeutic efficacy of a new recently licensed GLP-1R agonist diabetes drug in a mouse model of INAD. Systemically administered high-dose semaglutide delivered weekly to juvenile INAD mice improved locomotor function and extended the lifespan. An investigation into the mechanisms underlying these therapeutic effects revealed that semaglutide significantly increased levels of key neuroprotective molecules while decreasing those involved in pro-neurodegenerative pathways. The expression of mediators in both the apoptotic and necroptotic pathways were also significantly reduced in semaglutide treated mice. A reduction of neuronal loss and neuroinflammation was observed. Finally, there was no obvious inflammatory response in wild-type mice associated with the repeated high doses of semaglutide used in this study.
Collapse
|
70
|
Arabia G, De Martino A, Moro E. Sex and gender differences in movement disorders: Parkinson's disease, essential tremor, dystonia and chorea. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:101-128. [PMID: 36038202 DOI: 10.1016/bs.irn.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sex and gender-based differences in epidemiology, clinical features and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. In this chapter, we summarize the most relevant evidence concerning these differences in Parkinson's disease, essential tremor, dystonia and chorea. Indeed, both sex-related biological (hormonal levels fluctuations) and gender-related variables (socio-cultural and environmental factors) may differently impact symptoms manifestation and severity, phenotype and disease progression of movement disorders on men and women. Moreover, sex differences in treatment responses should be taken into account in any therapeutical planning. Physicians need to be aware of these major differences between men and women that will eventually have a major impact on better tailoring prevention, treatment, or even delaying progression of the most common movement disorders.
Collapse
|
71
|
Scuteri D, Hamamura K, Watanabe C, Tonin P, Bagetta G, Corasaniti MT. Transgenic Mice for the Translational Study of Neuropathic Pain and Dystonia. Int J Mol Sci 2022; 23:ijms23158580. [PMID: 35955710 PMCID: PMC9368787 DOI: 10.3390/ijms23158580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/25/2023] Open
Abstract
Murine models are fundamental in the study of clinical conditions and the development of new drugs and treatments. Transgenic technology has started to offer advantages in oncology, encompassing all research fields related to the study of painful syndromes. Knockout mice or mice overexpressing genes encoding for proteins linked to pain development and maintenance can be produced and pain models can be applied to transgenic mice to model the most disabling neurological conditions. Due to the association of movement disorders with sensitivity and pain processing, our group focused for the first time on the role of the torsinA gene GAG deletion—responsible for DYT1 dystonia—in baseline sensitivity and neuropathic responses. The aim of the present report are to review the complex network that exists between the chaperonine-like protein torsinA and the baseline sensitivity pattern—which are fundamental in neuropathic pain—and to point at its possible role in neurodegenerative diseases.
Collapse
|
72
|
Ghadery CM, Kalia LV, Connolly BS. Movement disorders of the mouth: a review of the common phenomenologies. J Neurol 2022; 269:5812-5830. [PMID: 35904592 DOI: 10.1007/s00415-022-11299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Movement disorders of the mouth encompass a spectrum of hyperactive movements involving the muscles of the orofacial complex. They are rare conditions and are described in the literature primarily in case reports originating from neurologists, psychiatrists, and the dental community. The focus of this review is to provide a phenomenological description of different oral motor disorders including oromandibular dystonia, orofacial dyskinesia and orolingual tremor, and to offer management strategies for optimal treatment based on the current literature. A literature search of full text studies using PubMed/Medline and Cochrane library combined with a manual search of the reference lists was conducted until June 2021. Results from this search included meta-analyses, systematic reviews, reviews, clinical studies, case series, and case reports published by neurologists, psychiatrists, dentists and oral and maxillofacial surgeons. Data garnered from these sources were used to provide an overview of most commonly encountered movement disorders of the mouth, aiding physicians in recognizing these rare conditions and in initiating appropriate therapy.
Collapse
|
73
|
den Hartog D, van der Krogt MM, van der Burg S, Aleo I, Gijsbers J, Bonouvrié LA, Harlaar J, Buizer AI, Haberfehlner H. Home-Based Measurements of Dystonia in Cerebral Palsy Using Smartphone-Coupled Inertial Sensor Technology and Machine Learning: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:4386. [PMID: 35746168 PMCID: PMC9231145 DOI: 10.3390/s22124386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023]
Abstract
Accurate and reliable measurement of the severity of dystonia is essential for the indication, evaluation, monitoring and fine-tuning of treatments. Assessment of dystonia in children and adolescents with dyskinetic cerebral palsy (CP) is now commonly performed by visual evaluation either directly in the doctor's office or from video recordings using standardized scales. Both methods lack objectivity and require much time and effort of clinical experts. Only a snapshot of the severity of dyskinetic movements (i.e., choreoathetosis and dystonia) is captured, and they are known to fluctuate over time and can increase with fatigue, pain, stress or emotions, which likely happens in a clinical environment. The goal of this study was to investigate whether it is feasible to use home-based measurements to assess and evaluate the severity of dystonia using smartphone-coupled inertial sensors and machine learning. Video and sensor data during both active and rest situations from 12 patients were collected outside a clinical setting. Three clinicians analyzed the videos and clinically scored the dystonia of the extremities on a 0-4 scale, following the definition of amplitude of the Dyskinesia Impairment Scale. The clinical scores and the sensor data were coupled to train different machine learning models using cross-validation. The average F1 scores (0.67 ± 0.19 for lower extremities and 0.68 ± 0.14 for upper extremities) in independent test datasets indicate that it is possible to detected dystonia automatically using individually trained models. The predictions could complement standard dyskinetic CP measures by providing frequent, objective, real-world assessments that could enhance clinical care. A generalized model, trained with data from other subjects, shows lower F1 scores (0.45 for lower extremities and 0.34 for upper extremities), likely due to a lack of training data and dissimilarities between subjects. However, the generalized model is reasonably able to distinguish between high and lower scores. Future research should focus on gathering more high-quality data and study how the models perform over the whole day.
Collapse
|
74
|
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 2022; 355:114140. [PMID: 35690132 DOI: 10.1016/j.expneurol.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Intracerebral recordings from movement disorders patients undergoing deep brain stimulation have allowed the identification of pathophysiological patterns in oscillatory activity that correlate with symptom severity. Changes in oscillatory synchrony occur within and across brain areas, matching the classification of movement disorders as network disorders. However, the underlying mechanisms of oscillatory changes are difficult to assess in patients, as experimental interventions are technically limited and ethically problematic. This is why animal models play an important role in neurophysiological research of movement disorders. In this review, we highlight the contributions of translational research to the mechanistic understanding of pathological changes in oscillatory activity, with a focus on parkinsonism and dystonia, while addressing the limitations of current findings and proposing possible future directions.
Collapse
|
75
|
Park JE, Mathew P, Sackett J, Wu T, Villegas M, Hallett M. Investigation of the posterior parietal cortex to ventral premotor connection in writer's cramp using transcranial magnetic stimulation. Exp Brain Res 2022; 240:1757-1763. [PMID: 35484336 PMCID: PMC11418400 DOI: 10.1007/s00221-022-06374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
The posterior parietal, premotor and motor cortices are brain regions relevant in the planning of movement. Previous transcranial magnetic stimulation (TMS) studies have shown ipsilateral premotor-to-motor inhibition in healthy subjects at rest. This premotor-to-motor inhibition has been found to be altered in patients with writer's cramp (WC), a common type of focal hand dystonia. We aimed to investigate the influence of the posterior parietal cortex on the ipsilateral ventral premotor cortex using a three single-pulse TMS paradigm. Nineteen right-handed subjects (eleven healthy volunteers and eight WC patients) completed the study. A three single-pulse TMS paradigm (preconditioning, conditioning, and test stimuli) was used to sequentially stimulate the left posterior parietal, ventral premotor, and primary motor cortices. We found that in both healthy subjects and patients, stimulating the ipsilateral posterior parietal cortex resulted in reversal of the resting premotor-to-motor inhibition. Resting premotor-to-motor inhibition was also found, with no statistically significant group difference. Furthermore, a facilitatory effect of the posterior parietal cortex on the primary motor cortex was found in both groups. Our results suggest that in the resting state, the inhibitory effect of the left posterior parietal cortex on the ipsilateral ventral premotor cortex found in healthy subjects is also intact in WC patients. While we are unable to identify any parietal-to-premotor connectivity abnormality in the resting state, an abnormality during a specific task cannot be excluded. Previously reported conductivity abnormalities in resting fMRI do not appear to translate into a TMS physiological abnormality.
Collapse
|