76
|
Wojczyk B, Shakin-Eshleman SH, Doms RW, Xiang ZQ, Ertl HC, Wunner WH, Spitalnik SL. Stable secretion of a soluble, oligomeric form of rabies virus glycoprotein: influence of N-glycan processing on secretion. Biochemistry 1995; 34:2599-609. [PMID: 7873541 DOI: 10.1021/bi00008a026] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rabies virus glycoprotein (RGP) is a 505 amino acid type I transmembrane glycoprotein that is important in the pathogenesis of rabies virus infection. RGP also stimulates the development of neutralizing antibodies by the host. N-linked glycosylation is required for both cell surface expression and immunogenicity of RGP. In the current study, a soluble form of RGP, constructed by insertion of a stop codon external to the transmembrane domain, was expressed in transfected Chinese hamster ovary cells. The soluble form of RGP was found to be appropriately antigenic and immunogenic. Similar to full-length RGP, the soluble form was assembled into homodimers and homotrimers. Core glycosylation was required for secretion of soluble RGP and cell surface expression of full-length RGP. In addition, initial glucose trimming of the N-glycans was necessary and sufficient for secretion of soluble RGP and cell surface expression of full-length RGP. Further N-glycan processing was not required for secretion or cell surface expression of soluble or full-length RGP, respectively.
Collapse
|
|
30 |
20 |
77
|
Wojczyk BS, Kim N, Bandyopadhyay S, Francis RO, Zimring JC, Hod EA, Spitalnik SL. Macrophages clear refrigerator storage-damaged red blood cells and subsequently secrete cytokines in vivo, but not in vitro, in a murine model. Transfusion 2014; 54:3186-97. [PMID: 25041478 DOI: 10.1111/trf.12755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND In mice, refrigerator-stored red blood cells (RBCs) are cleared by extravascular hemolysis and induce cytokine production. To enhance understanding of this phenomenon, we sought to model it in vitro. STUDY DESIGN AND METHODS Ingestion of refrigerator-stored murine RBCs and subsequent cytokine production were studied using J774A.1 mouse macrophage cells and primary murine splenic macrophages. Wild-type and Ccl2-GFP reporter mice were used for RBC clearance in vivo. RESULTS Although J774A.1 cells and primary macrophages preferentially ingested refrigerator-stored RBCs in vitro, compared to freshly isolated RBCs, neither produced increased cytokines after erythrophagocytosis. In contrast, phagocytosis of refrigerator-stored RBCs in vivo induced increases in circulating monocyte chemoattractant protein-1 (MCP-1) and keratinocyte chemoattractant (KC) and correspondingly increased mRNA levels in mouse spleen and liver. In the spleen, these were predominantly expressed by CD11b+ cells. Using Ccl2-GFP reporter mice, the predominant splenic population responsible for MCP-1 mRNA production was tissue-resident macrophages (i.e., CD45+, CD11b+, F4/80+, Ly6c+, and CD11c(low) cells). CONCLUSION J774A.1 cells and primary macrophages selectively ingested refrigerator-stored RBCs by phagocytosis. Although cytokine expression was not enhanced, this approach could be used to identify the relevant receptor-ligand combination(s). In contrast, cytokine levels increased after phagocytosis of refrigerator-stored RBCs in vivo. These were primarily cleared in the liver and spleen, which demonstrated increased MCP-1 and KC mRNA expression. Finally, in mouse spleen, tissue-resident macrophages were predominantly involved in MCP-1 mRNA production. The differences between cytokine production in vitro and in vivo are not yet well understood.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
20 |
78
|
Bertolone L, Shin HK, Stefanoni D, Baek JH, Gao Y, Morrison EJ, Nemkov T, Thomas T, Francis RO, Hod EA, Zimring JC, Yoshida T, Karafin M, Schwartz J, Hudson KE, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Old World Monkeys and Humans. Front Physiol 2020; 11:593841. [PMID: 33192610 PMCID: PMC7645159 DOI: 10.3389/fphys.2020.593841] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
As part of the ZOOMICS project, we set out to investigate common and diverging metabolic traits in the blood metabolome across various species by taking advantage of recent developments in high-throughput metabolomics. Here we provide the first comparative metabolomics analysis of fresh and stored human (n = 21, 10 males, 11 females), olive baboon (n = 20), and rhesus macaque (n = 20) red blood cells at baseline and upon 42 days of storage under blood bank conditions. The results indicated similarities and differences across species, which ultimately resulted in a differential propensity to undergo morphological alterations and lyse as a function of the duration of refrigerated storage. Focusing on purine oxidation, carboxylic acid, fatty acid, and arginine metabolism further highlighted species-specific metabolic wiring. For example, through a combination of steady state measurements and 13C615N4-arginine tracing experiments, we report an increase in arginine catabolism into ornithine in humans, suggestive of species-specific arginase 1 activity and nitric oxide synthesis—an observation that may impact the translatability of cardiovascular disease studies carried out in non-human primates (NHPs). Finally, we correlated metabolic measurements to storage-induced morphological alterations via scanning electron microscopy and hemolysis, which were significantly lower in human red cells compared to both NHPs.
Collapse
|
Journal Article |
5 |
20 |
79
|
Sherwood JA, Roberts DD, Marsh K, Harvey EB, Spitalnik SL, Miller LH, Howard RJ. Thrombospondin binding by parasitized erythrocyte isolates in falciparum malaria. Am J Trop Med Hyg 1987; 36:228-33. [PMID: 3548449 DOI: 10.4269/ajtmh.1987.36.228] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Toward understanding the pathogenesis of vascular sequestration in falciparum malaria, we investigated binding of Plasmodium falciparum parasitized erythrocyte isolates to thrombospondin and other adhesive proteins. Blood samples with rings from 12 patients with falciparum malaria were cultured 30 hr until parasites were mature trophozoites and schizonts. All parasitized erythrocyte isolates bound to thrombospondin, but not to fibronectin, laminin, vitronectin, or factor VIII/von Willebrand factor. Parasitized erythrocyte binding varied among isolates, ranging from 192 to 6,725 per mm2, average 2,953. There was good correlation between trophozoite plus schizont % parasitemia and thrombospondin binding (r = 0.884, P less than 0.001). In two patients with stupor, 3,642 and 2,864 parasitized erythrocytes bound per mm2, in proportion to parasitemia, suggesting cerebral malaria is not due to increased binding affinity. These results indicate there is a conserved function among isolates from this geographic region, known to be antigenically diverse at the parasitized erythrocyte membrane surface. These results support the hypothesis that specific binding to an endothelial receptor, possibly involving thrombospondin, plays a role in vascular sequestration in falciparum malaria.
Collapse
|
|
38 |
20 |
80
|
Francis RO, Mahajan S, Rapido F, La Carpia F, Soffing M, Divgi C, Yeh R, Mintz A, Leslie L, Agrest I, Karafin MS, Ginzburg Y, Shaz BH, Spitalnik SL, Schwartz J, Thomas T, Fu X, Amireault P, Buffet P, Zimring JC, D'Alessandro A, Hod EA. Reexamination of the chromium-51-labeled posttransfusion red blood cell recovery method. Transfusion 2019; 59:2264-2275. [PMID: 31002399 DOI: 10.1111/trf.15310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The chromium-51-labeled posttransfusion recovery (PTR) study has been the gold-standard test for assessing red blood cell (RBC) quality. Despite guiding RBC storage development for decades, it has several potential sources for error. METHODS Four healthy adult volunteers each donated an autologous, leukoreduced RBC unit, aliquots were radiolabeled with technetium-99m after 1 and 6 weeks of storage, and then infused. Subjects were imaged by single-photon-emission computed tomography immediately and 4 hours after infusion. Additionally, from subjects described in a previously published study, adenosine triphosphate levels in transfusates infused into 52 healthy volunteers randomized to a single autologous, leukoreduced, RBC transfusion after 1, 2, 3, 4, 5, or 6 weeks of storage were correlated with PTR and laboratory parameters of hemolysis. RESULTS Evidence from one subject imaged after infusion of technetium-99m-labeled RBCs suggests that, in some individuals, RBCs may be temporarily sequestered in the liver and spleen immediately following transfusion and then subsequently released back into circulation; this could be one source of error leading to PTR results that may not accurately predict the true quantity of RBCs cleared by intra- and/or extravascular hemolysis. Indeed, adenosine triphosphate levels in the transfusates correlated more robustly with measures of extravascular hemolysis in vivo (e.g., serum iron, indirect bilirubin, non-transferrin-bound iron) than with PTR results or measures of intravascular hemolysis (e.g., plasma free hemoglobin). CONCLUSIONS Sources of measurement error are inherent in the chromium-51 PTR method. Transfusion of an entire unlabeled RBC unit, followed by quantifying extravascular hemolysis markers, may more accurately measure true posttransfusion RBC recovery.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
19 |
81
|
Uchigata Y, Spitalnik SL, Tachiwaki O, Salata KF, Notkins AL. Pancreatic islet cell surface glycoproteins containing Gal beta 1-4GlcNAc-R identified by a cytotoxic monoclonal autoantibody. J Exp Med 1987; 165:124-39. [PMID: 2432147 PMCID: PMC2188266 DOI: 10.1084/jem.165.1.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the autoimmune pathogenesis of spontaneously occurring diabetes mellitus in BB rats, spleen cells of newly diagnosed diabetic BB rats were fused with mouse myeloma cells. Hybridoma supernatants were screened for antibodies by indirect immunofluorescence and by 51Cr-release assays using the RINm5F rat insulinoma cell line. One clone, E5C2, produced an IgM kappa antibody that was cytotoxic for RINm5F cells, but not for other rat cell lines nor for primary rat islet cells. However, treatment of primary rat islet cells with neuraminidase exposed surface antigens and rendered the cells susceptible to complement-mediated lysis by antibody E5C2. Using immunostaining of glycolipids separated by thin-layer chromatography, hapten inhibition assays with defined carbohydrates, and Western blots, the antigens recognized by E5C2 on RINm5F cells were identified as glycoproteins with molecular weights of 60,000 and 68,000. The antibody recognizes a carbohydrate antigen containing the sequence Gal beta 1-4GlcNAc-R, which on RINm5F cells is predominantly hidden by covalently bound sialic acid. These studies raise the possibility that hidden antigenic determinants on islet cells exposed by a variety of means may be the target of autoimmune attack.
Collapse
|
research-article |
38 |
18 |
82
|
Gibb DR, Calabro S, Liu D, Tormey CA, Spitalnik SL, Zimring JC, Hendrickson JE, Hod EA, Eisenbarth SC. The Nlrp3 Inflammasome Does Not Regulate Alloimmunization to Transfused Red Blood Cells in Mice. EBioMedicine 2016; 9:77-86. [PMID: 27345021 PMCID: PMC4972549 DOI: 10.1016/j.ebiom.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023] Open
Abstract
Red blood cell (RBC) transfusions are essential for patients with hematological disorders and bone marrow failure syndromes. Despite ABO matching, RBC transfusions can lead to production of alloantibodies against “minor” blood group antigens. Non-ABO alloimmunization is a leading cause of transfusion-associated mortality in the U.S. Despite its clinical importance, little is known about the immunological factors that promote alloimmunization. Prior studies indicate that inflammatory conditions place patients at higher risk for alloimmunization. Additionally, co-exposure to pro-inflammatory pathogen associated molecular patterns (PAMPs) promotes alloimmunization in animal models, suggesting that RBC alloimmunization depends on innate immune cell activation. However, the specific innate immune stimuli and sensors that induce a T cell-dependent alloantibody response to transfused RBCs have not been identified. The NLRP3 inflammasome senses chemically diverse PAMPs and damage associated molecular patterns (DAMPs), including extracellular ATP and iron-containing heme. We hypothesized that activation of the NLRP3 inflammasome by endogenous DAMPs from RBCs promotes the alloimmune response to a sterile RBC transfusion. Using genetically modified mice lacking either NLRP3 or multiple downstream inflammasome response elements, we ruled out a role for the NLRP3 inflammasome or any Caspase-1 or -11 dependent inflammasome in regulating RBC alloantibody production to a model antigen. Transfusion of stored red blood cells (RBCs) induces proinflammatory cytokine production and alloimmunization to an RBC antigen in mice. Transfusion of stored RBCs, regardless of alloantigen expression, activates conventional dendritic cells in the spleen. NOD-like receptor (NLR) inflammasomes, including NLRP3, do not regulate inflammation and alloimmunization induced by stored RBCs.
Following a blood transfusion, the immune system may produce antibodies that have detrimental effects. To understand how the immune system recognizes factors in transfused blood, we examined the immune response of mice lacking important inflammatory molecules, called inflammasomes. The results demonstrate that inflammasomes do not affect the production of potentially harmful antibodies that recognize transfused red blood cells.
Collapse
|
Journal Article |
9 |
18 |
83
|
D'Alessandro A, Howie HL, Hay AM, Dziewulska KH, Brown BC, Wither MJ, Karafin M, Stone EF, Spitalnik SL, Hod EA, Francis RO, Fu X, Thomas T, Zimring JC. Hematologic and systemic metabolic alterations due to Mediterranean class II G6PD deficiency in mice. JCI Insight 2021; 6:e147056. [PMID: 34138756 PMCID: PMC8410095 DOI: 10.1172/jci.insight.147056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/16/2021] [Indexed: 12/01/2022] Open
Abstract
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the single most common enzymopathy, present in approximately 400 million humans (approximately 5%). Its prevalence is hypothesized to be due to conferring resistance to malaria. However, G6PD deficiency also results in hemolytic sequelae from oxidant stress. Moreover, G6PD deficiency is associated with kidney disease, diabetes, pulmonary hypertension, immunological defects, and neurodegenerative diseases. To date, the only available mouse models have decreased levels of WT stable G6PD caused by promoter mutations. However, human G6PD mutations are missense mutations that result in decreased enzymatic stability. As such, this results in very low activity in red blood cells (RBCs) that cannot synthesize new protein. To generate a more accurate model, the human sequence for a severe form of G6PD deficiency, Med(-), was knocked into the murine G6PD locus. As predicted, G6PD levels were extremely low in RBCs, and deficient mice had increased hemolytic sequelae to oxidant stress. Nonerythroid organs had metabolic changes consistent with mild G6PD deficiency, consistent with what has been observed in humans. Juxtaposition of G6PD-deficient and WT mice revealed altered lipid metabolism in multiple organ systems. Together, these findings both establish a mouse model of G6PD deficiency that more accurately reflects human G6PD deficiency and advance our basic understanding of altered metabolism in this setting.
Collapse
|
Journal Article |
4 |
17 |
84
|
Patidar GK, Land KJ, Vrielink H, Rahimi‐Levene N, Dann EJ, Al‐Humaidan H, Spitalnik SL, Dhiman Y, So ‐ Osman C, Hindawi SI. Understanding the role of therapeutic plasma exchange in COVID-19: preliminary guidance and practices. Vox Sang 2021; 116:798-807. [PMID: 33730761 PMCID: PMC8250601 DOI: 10.1111/vox.13067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Cytokine release syndrome in COVID-19 is due to a pathological inflammatory response of raised cytokines. Removal of these cytokines by therapeutic plasma exchange (TPE) prior to end-organ damage may improve clinical outcomes. This manuscript is intended to serve as a preliminary guidance document for application of TPE in patients with severe COVID-19. MATERIAL AND METHODS The available literature pertaining to the role of TPE for treatment of COVID-19 patients was reviewed to guide optimal management. It included indication, contraindication, optimal timing of initiation and termination of TPE, vascular access and anticoagulants, numbers and mode of procedures, outcome measures and adverse events. RESULTS Out of a total of 78 articles, only 65 were directly related to the topic. From these 65, only 32 were acceptable as primary source, while 33 were used as supporting references. TPE in critically ill COVID-19 patients may be classified under ASFA category III grade 2B. The early initiation of TPE for 1-1·5 patient's plasma volume with fresh frozen plasma, or 4-5% albumin or COVID-19 convalescent plasma as replacement fluids before multiorgan failure, has better chances of recovery. The number of procedures can vary from three to nine depending on patient response. CONCLUSION TPE in COVID-19 patients may help by removing toxic cytokines, viral particles and/or by correcting coagulopathy or restoring endothelial membrane. Severity score (SOFA & APACHE II) and cytokine levels (IL-6, C-reactive protein) can be used to execute TPE therapy and to monitor response in COVID-19 patients.
Collapse
|
research-article |
4 |
16 |
85
|
Czerwinski M, Krop-Watorek A, Siegel DL, Spitalnik SL. A molecular approach for isolating high-affinity Fab fragments that are useful in blood group serology. Transfusion 1999; 39:364-71. [PMID: 10220261 DOI: 10.1046/j.1537-2995.1999.39499235667.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Multiple mouse hybridoma antibodies recognize the antigens of the MNS blood group system. The Fab fragments of several of these antibodies were expressed on bacteriophage and as soluble proteins. The parental N92 anti-N IgG monoclonal antibody (parental N92 MoAb), but not its monovalent, soluble Fab fragment (N92 Fab fragment), agglutinated antigen-positive red cells by an antiglobulin method. Light-chain shuffling was used to isolate mutant N92 Fab fragments with higher affinity that would function by agglutination. STUDY DESIGN AND METHODS Light-chain cDNA libraries, constructed from mice immunized with N-type glycophorin A, were inserted into a recombinant pComb3H vector containing the N92 Fd fragment. The N92 Fd fragment:light-chain libraries were panned on N-type glycophorin A or NN red cells, and antigen-binding clones were isolated. Purified parental N92 MoAb and the Fab fragments were evaluated by enzyme-linked immunosorbent assay and agglutination. RESULTS The novel NNA7, C1, and G11 Fab fragments all bound to N-type glycophorin A with higher affinity than did the N92 Fab fragment. The affinity of the library-derived clones was equivalent to that of the parental N92 MoAb. Although their fine specificity differed slightly from the parental N92 MoAb, the clones functioned equivalently by agglutination using an antiglobulin method. CONCLUSIONS Light-chain shuffling allowed the isolation of bacterially produced, high-affinity, soluble, monovalent recombinant anti-N Fab fragments that functioned well by agglutination. This approach is useful in obtaining inexpensive serologic reagents that may replace conventional MoAbs produced by tissue culture methods.
Collapse
|
|
26 |
15 |
86
|
Wojczyk BS, Stwora-Wojczyk M, Shakin-Eshleman S, Wunner WH, Spitalnik SL. The role of site-specific N-glycosylation in secretion of soluble forms of rabies virus glycoprotein. Glycobiology 1998; 8:121-30. [PMID: 9451021 DOI: 10.1093/glycob/8.2.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rabies virus glycoprotein is important in the biology and pathogenesis of neurotropic rabies virus infection. This transmembrane glycoprotein is the only viral protein on the surface of virus particles, is the viral attachment protein that facilitates virus uptake by the infected cell, and is the target of the host humoral immune response to infection. The extracellular domain of this glycoprotein has N-glycosylation sequons at Asn37, Asn247, and Asn319. Appropriate glycosylation of these sequons is important in the expression of the glycoprotein. Soluble forms of rabies virus glycoprotein were constructed by insertion of a stop codon just external to the transmembrane domain. Using site-directed mutagenesis and expression in transfected eukaryotic cells, it was possible to compare the effects of site-specific glycosylation on the cell-surface expression and secretion of transmembrane and soluble forms, respectively, of the same glycoprotein. These studies yielded the surprising finding that although any of the three sequons permitted cell surface expression of full-length rabies virus glycoprotein, only the N-glycan at Asn319 permitted secretion of soluble rabies virus glycoprotein. Despite its biological and medical importance, it has not yet been possible to determine the crystal structure of the full-length transmembrane form of rabies virus glycoprotein which contains heterogeneous oligosaccharides. The current studies demonstrate that a soluble form of rabies virus glycoprotein containing only one sequon at Asn319 is efficiently secreted in the presence of the N-glycan processing inhibitor 1-deoxymannojirimycin. Thus, it is possible to purify a conformationally relevant form of rabies virus glycoprotein that contains only one N-glycan with a substantial reduction in its microheterogeneity. This form of the glycoprotein may be particularly useful for future studies aimed at elucidating the three-dimensional structure of this important glycoprotein.
Collapse
|
|
27 |
15 |
87
|
Pegoraro V, Urbinati D, Visser GHA, Di Renzo GC, Zipursky A, Stotler BA, Spitalnik SL. Hemolytic disease of the fetus and newborn due to Rh(D) incompatibility: A preventable disease that still produces significant morbidity and mortality in children. PLoS One 2020; 15:e0235807. [PMID: 32687543 PMCID: PMC7371205 DOI: 10.1371/journal.pone.0235807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2020] [Indexed: 11/29/2022] Open
Abstract
In the mid-20th century, Hemolytic Disease of the Fetus and Newborn, caused by maternal alloimmunization to the Rh(D) blood group antigen expressed by fetal red blood cells (i.e., "Rh disease"), was a major cause of fetal and neonatal morbidity and mortality. However, with the regulatory approval, in 1968, of IgG anti-Rh(D) immunoprophylaxis to prevent maternal sensitization, the prospect of eradicating Rh disease was at hand. Indeed, the combination of antenatal and post-partum immunoprophylaxis is ~99% effective at preventing maternal sensitization to Rh(D). To investigate global compliance with this therapeutic intervention, we used an epidemiological approach to estimate the current annual number of pregnancies worldwide involving an Rh(D)-negative mother and an Rh(D)-positive fetus. The annual number of doses of anti-Rh(D) IgG required for successful immunoprophylaxis for these cases was then calculated and compared with an estimate of the annual number of doses of anti-Rh(D) produced and provided worldwide. Our results suggest that ~50% of the women around the world who require this type of immunoprophylaxis do not receive it, presumably due to a lack of awareness, availability, and/or affordability, thereby putting hundreds of thousands of fetuses and neonates at risk for Rh disease each year. The global failure to provide this generally acknowledged standard-of-care to prevent Rh disease, even 50 years after its availability, contributes to an enormous, continuing burden of fetal and neonatal disease and provides a critically important challenge to the international health care system.
Collapse
|
research-article |
5 |
15 |
88
|
Czerwinski M, Blackall DP, Abrams WR, Rubocki RJ, Spitalnik SL. Restricted VH gene usage by murine hybridomas directed against the human N, but not M, blood group antigen. Mol Immunol 1994; 31:279-88. [PMID: 8139582 DOI: 10.1016/0161-5890(94)90125-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The M and N human blood group antigens are complex glycopeptide determinants at the amino terminus of the red blood cell membrane glycoprotein, glycophorin A. The heavy and light chain variable region cDNA sequences were determined for seven murine monoclonal antibodies recognizing glycophorin A. Three of the antibodies were anti-M and four were anti-N. Each of the anti-M antibodies was composed of VH and VL regions derived from distinct germline gene families (VH1 (J558), VH4 (X24), VH5 (7183), VK5, VK8, and VK19). In contrast, all four anti-N heavy chains were composed of VH regions derived from the VH2 (Q52) germline gene family and all used the same J4 gene segment. In addition, two of the anti-N light chains were composed of VK regions from the VK8 germline gene family and used the J1 gene segment. Since each anti-N hybridoma was derived from different mice immunized by different protocols, these results suggest that the murine immune response to the N, but not the M, human blood group antigen is restricted.
Collapse
|
Comparative Study |
31 |
15 |
89
|
Påhlsson P, Blackall DP, Ugorski M, Czerwinski M, Spitalnik SL. Biochemical characterization of the O-glycans on recombinant glycophorin A expressed in Chinese hamster ovary cells. Glycoconj J 1994; 11:43-50. [PMID: 8193553 DOI: 10.1007/bf00732431] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alterations in N- and O-linked glycosylation affect cell surface expression and antigenicity of recombinant glycophorin A expressed in transfected Chinese hamster ovary (CHO) cells. To understand these effects further, glycophorin A was purified by immunoaffinity chromatography from transfected wild type and glycosylation deficient CHO cells. The O-glycans were characterized both biochemically, using gel filtration and high performance anion exchange chromatography, and immunologically, using carbohydrate specific monoclonal antibodies to probe Western blots. The O-glycans of human erythrocyte glycophorin A consist mainly of short oligosaccharides with one, two, or three sialic acid residues linked to a common disaccharide core, Gal beta 1-3GalNAc alpha 1-Ser/Thr, with the disialylated structure being the most abundant. With the exception of the trisialylated derivative, the same structures were found on recombinant glycophorin A expressed by wild type CHO cells. However, in contrast to human erythrocyte glycophorin A, the monosialylated oligosaccharide was the most abundant structure on the recombinant protein. Furthermore, recombinant glycophorin A was shown to express a small amount of the Tn antigen (GalNAc alpha 1-Ser/Thr). Recombinant glycophorin A had the same O-glycan composition, whether purified from clones expressing high or moderate levels of the recombinant glycoprotein. This indicates that the level of expression of the transfected glycoprotein did not affect its O-glycan composition. Deletion of the N-linked glycosylation site at Asn26, by introducing the Mi.I mutation (Thr28-->Met) by site-directed mutagenesis, did not markedly affect the O-glycan composition of the resulting recombinant glycoprotein expressed in wild type CHO cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
31 |
14 |
90
|
Spitalnik PF, Danley JM, Burger SR, Spitalnik SL. The glycosphingolipid composition of the human hepatoma cell line,Hep-G2. Arch Biochem Biophys 1989; 273:578-91. [PMID: 2549875 DOI: 10.1016/0003-9861(89)90518-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The origin of plasma glycosphingolipids in normal individuals and the mechanisms by which tumor-associated glycosphingolipid antigens enter the plasma in patients with cancer are largely unknown. The Hep-G2 human hepatoma cell line retains many of the characteristics of differentiated hepatocytes including the ability to synthesize and secrete lipoproteins. Preliminary results indicated that newly synthesized Hep-G2 cell glycosphingolipids are coupled to the secreted lipoproteins. This suggests that this cell line may offer an interesting model for studying glycosphingolipid secretion, transfer, and shedding. We now report on the chemical and immunological characterization of Hep-G2 cell glycosphingolipids. Five major glycosphingolipids were purified and biochemically characterized: glycosylceramide, lactosyl ceramide, ceramide trihexoside, ganglioside GM3, and lactosyl sulfatide. Four additional minor components (3-fucosyl-lactosamine containing glycolipids, asialo GM2, galactosylgloboside, and ganglioside GM1) were identified using a combination of exoglycosidase digestion and immunostaining of thin-layer chromatography plates with specific carbohydrate binding proteins. This demonstrates that although this cell line synthesizes a limited number of major glycosphingolipids, it retains the ability to produce at least small amounts of structures in the lactoneo, globo, and ganglio series of glycosphingolipids. These studies show that it will be possible to investigate the mechanisms of secretion by Hep-G2 cells of different classes of these molecules such as neutral glycosphingolipids, gangliosides, and sulfatides.
Collapse
|
|
36 |
14 |
91
|
Silberstein LE, Goldman J, Kant JA, Spitalnik SL. Comparative biochemical and genetic characterization of clonally related human B-cell lines secreting pathogenic anti-Pr2 cold agglutinins. Arch Biochem Biophys 1988; 264:244-52. [PMID: 2840027 DOI: 10.1016/0003-9861(88)90591-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To study the biology of cold autoimmune hemolytic anemia, Epstein-Barr virus (EBV)-transformed B-cell clones were established from a patient with splenic lymphoma associated with immune hemolysis due to an anti-Pr2 cold autoantibody. Studies were performed comparing the cold autoantibody present in culture supernatants of these cell lines to the pathogenic cold autoantibodies present in the patient's plasma. Cytogenetic studies of splenic lymphocytes demonstrated an abnormal karyotype (51XX, +3, +9, +12, +13, +18). After EBV transformation, eight clones secreting IgM, kappa anti-Pr were isolated; each clone had the same abnormal karyotype as above. DNA isolated from the clones and spleen was analyzed by Southern blot hybridization with JH, C mu, and C kappa probes; identical gene rearrangements were seen in each case. Anti-Pr antibodies, isolated from culture supernatant and serum were compared by isoelectric focusing (IEF) and demonstrated similar banding patterns. Distinctive binding patterns, however, were observed in 2/8 clones, suggesting structural differences. Adsorption studies with red blood cells further showed that the observed IEF banding patterns were solely due to anti-Pr cold autoantibody. With a thin-layer chromatography method, the biochemical determinants recognized by the cold autoantibodies were defined as glycolipids containing Neu Ac alpha 2-3Gal beta 1-4Glc sequences. The data demonstrate that the autoantibodies of the EBV-transformed B-cell lines were similar to the pathogenic monoclonal serum autoantibody in both structure and specificity. These clonal cell lines may thus serve to further study the biology of human B-cell lymphomas with defined autoantibody specificity.
Collapse
|
Comparative Study |
37 |
13 |
92
|
Rennert H, Golde T, Wilson RB, Spitalnik SL, Van Deerlin VM, Leonard DG. A novel, non-nested reverse-transcriptase polymerase chain reaction (RT-PCR) test for the detection of the t(15;17) translocation: a comparative study of RT-PCR cytogenetics, and fluorescence In situ hybridization. MOLECULAR DIAGNOSIS : A JOURNAL DEVOTED TO THE UNDERSTANDING OF HUMAN DISEASE THROUGH THE CLINICAL APPLICATION OF MOLECULAR BIOLOGY 1999; 4:195-209. [PMID: 10553020 DOI: 10.1016/s1084-8592(99)80023-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The development of a rapid and simple reverse-transcription polymerase chain reaction (RT-PCR) assay is described that identifies the promyelocytic leukemia- retinoic acid receptor alpha (PML-RARa) hybrid messenger RNA (mRNA), a characteristic feature of acute promyelocytic leukemia (APL). METHODS AND RESULTS Randomly primed complementary (cDNA) is synthesized from leukocyte RNA and amplified in the presence of Taq Gold in 2 separate reaction tubes containing primer pairs specific for intron 3 (bcr 3, long [L] form mRNA transcript) and intron 6 (bcr 1, short [S] form)/exon 6 (bcr 2, variant [V] form) breakpoints in PML, respectively. The different sized products generated from each RNA transcript (S, L, or V forms) are readily and unambiguously distinguishable after agarose gel electrophoresis without the need for either nested PCR or hybridization. The sensitivity of the assay is 1 in 10,000 to 1 in 100,000. The separate amplification of a b2-microglobulin transcript controls for adequate RNA and cDNA preparation. The newly developed assay was used clinically for the evaluation of 78 patients with APL. It was rapid and more sensitive than cytogenetic karyotyping, both for the diagnosis of APL and the assessment of minimal residual disease (MRD) after therapy. RT-PCR detected PML-RARa mRNA in all cases positive for the t(15;17) translocation by cytogenetics. However, as many as 50% and 80% of the diagnostic specimens and the specimens for MRD assessment, respectively, that were positive by RT-PCR were negative by cytogenetics. The ratio of cases with L-form to S-form PML-RARa fusion transcript was 2:1, whereas 3 cases (10%) had fusion sites in exon 6 of the PML gene (V forms). In addition, approximately 50% of the patients were diagnosed morphologically with microgranular M3V-type leukemia, but no significant correlation with PML breakpoints was found. CONCLUSION The current assay is rapid, sensitive, and specific without using nested PCR or hybridization.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Bone Marrow Examination
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 15/ultrastructure
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 17/ultrastructure
- Exons/genetics
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Male
- Moloney murine leukemia virus/enzymology
- Neoplasm Proteins/genetics
- Neoplasm, Residual
- Neoplastic Cells, Circulating
- Oncogene Proteins, Fusion/genetics
- RNA, Messenger/analysis
- RNA, Neoplasm/analysis
- RNA-Directed DNA Polymerase/metabolism
- Retroviridae Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sensitivity and Specificity
- Time Factors
- Translocation, Genetic
Collapse
|
Comparative Study |
26 |
13 |
93
|
Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, Francis RO, Hudson KE, Buehler PW, Zimring JC, Hod EA, Hansen KC, Spitalnik SL, D'Alessandro A. Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32637980 DOI: 10.1101/2020.06.29.20142703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly-diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, especially short and medium chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, and mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading, RBCs from COVID-19 patients may be incapable of responding to environmental variations in hemoglobin oxygen saturation when traveling from the lungs to peripheral capillaries and, as such, may have a compromised capacity to transport and deliver oxygen.
Collapse
|
Preprint |
5 |
12 |
94
|
Zimring JC, Spitalnik SL. On the appropriate use and interpretation of animal models in transfusion medicine research. Transfusion 2013; 53:2334-9. [PMID: 23441757 DOI: 10.1111/trf.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/02/2012] [Accepted: 12/04/2012] [Indexed: 01/20/2023]
|
Journal Article |
12 |
12 |
95
|
Eshleman JR, Shakin-Eshleman SH, Church A, Kant JA, Spitalnik SL. DNA typing of the human MN and Ss blood group antigens in amniotic fluid and following massive transfusion. Am J Clin Pathol 1995; 103:353-7. [PMID: 7872260 DOI: 10.1093/ajcp/103.3.353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although red blood cell (RBC) antigen typing by agglutination is generally useful, several situations exist where this approach is difficult or impossible. For example, following a massive transfusion, a patient's residual RBCs are mixed with transfused normal donor RBCs. In this case, typing by hemagglutination primarily detects the antigens on the heterogeneous population of transfused RBCs. Agglutination testing is also of limited use for determining the phenotype of a fetus at risk for hemolytic disease of the newborn because fetal RBCs must be obtained by periumbilical blood sampling. Determining the genotype of an individual by analyzing genomic DNA isolated from peripheral blood nucleated cells or amniocytes is an alternative approach for determining the RBC antigen type. In this report, the allele specific polymerase chain reaction (AS-PCR) was used to identify the alleles at the MN and Ss loci that encode the corresponding antigens on glycophorin A (GPA) and glycophorin B (GPB), respectively. This method was used to type these alleles in peripheral blood samples obtained from normal individuals and from patients following massive transfusion. Of 23 peripheral blood specimens analyzed, all were correctly typed by this method. The allele specific polymerase chain reaction was also used to determine these alleles using amniotic fluid samples. Of 11 amniotic fluid specimens analyzed, 8 were correctly typed at both loci. Mistyping of three amniotic fluid specimens was explained by possible maternal blood contamination.
Collapse
|
|
30 |
12 |
96
|
Kahn SN, Stanton NL, Sumner AJ, Brown MJ, Spitalnik SL, Morein B. Analysis of the feline immune response to human myelin-associated glycoprotein. J Neurol Sci 1989; 89:141-8. [PMID: 2466957 DOI: 10.1016/0022-510x(89)90015-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Elucidation of the pathogenesis of demyelinating peripheral neuropathy associated with myelin-associated glycoprotein (MAG) binding IgM paraproteins requires an in vivo animal model of the syndrome. Multiple immunizations of cats with MAG in Freund's adjuvant did not produce an antibody response but four immunizations with MAG-iscom (Morein, B. et al. (1984) Nature, 308: 457-460) did induce IgM antibodies which bound to human MAG and cat peripheral nerve myelin. Despite the presence of antibody for a 13-month period, no neuropathy developed. At necropsy, the peripheral nerves were ultrastructurally normal and no antibody was detectable in the endoneurium. A competitive ELISA indicated that the cat and human IgM antibodies recognized different epitopes.
Collapse
|
|
36 |
12 |
97
|
Sherwood JA, Spitalnik SL, Aley SB, Quakyi IA, Howard RJ. Plasmodium falciparum and P. knowlesi: initial identification and characterization of malaria synthesized glycolipids. Exp Parasitol 1986; 62:127-41. [PMID: 3522260 DOI: 10.1016/0014-4894(86)90016-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This is the first report establishing the existence of glycolipids synthesized by plasmodia, in particular Plasmodium falciparum. Trophozoites, schizonts, gametocytes, and gametes were metabolically labeled in vitro with [3H]glucosamine, [3H]galactose, [3H]glucose, [3H]mannose, [3H]fucose, [32P]inorganic phosphate, or [35S]sulfate, and total lipid extracts analyzed by high-performance thin-layer chromatography and autoradiography or fluorography. Parasites incorporated [3H]monosaccharides into distinctly different series of molecules previously undescribed. Three properties of [3H]glucosamine labeled molecules indicate they are glycolipids. First, labeled molecules have lipid solubility properties. Second, mobility on thin-layer chromatography was characteristic of glycolipids. Third, following acid hydrolysis, [3H]glucosamine was recovered from a total lipid extract of labeled parasites demonstrating that glucosamine is a constituent of some of these lipid molecules. Most of these glycolipids are neutral and alkali labile. The majority of these glycolipids differs from several synthesized phospholipids. None of these glycolipids was sulfated. Plasmodial glycolipid synthesis occurs concomitantly with glycoprotein synthesis, and both increase during schizogony. Many of these glycolipids appear to be identical among three strains of P. falciparum and between two species, P. falciparum and P. knowlesi. In contrast, there are stage specific differences in glycolipid synthesis among rings, schizonts, gametocytes, and a mixture of gametes plus zygotes of P. falciparum, examples of both erythrocytic and vector forms of the parasite.
Collapse
|
|
39 |
12 |
98
|
McCaig WD, Hodges AL, Deragon MA, Haluska RJ, Bandyopadhyay S, Ratner AJ, Spitalnik SL, Hod EA, LaRocca TJ. Storage Primes Erythrocytes for Necroptosis and Clearance. Cell Physiol Biochem 2019; 53:496-507. [PMID: 31486324 PMCID: PMC9897227 DOI: 10.33594/000000153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Like nucleated cells, erythrocytes (red blood cells, RBCs) are capable of executing programmed cell death pathways. RBCs undergo necroptosis in response to CD59-specific pore-forming toxins (PFTs). The relationship between blood bank storage and RBC necroptosis was explored in this study. METHODS Human RBCs were stored in standard blood bank additive solutions (AS-1, AS-3, or AS-5) for 1 week and hemolysis was evaluated in the context of necroptosis inhibitors and reactive oxygen species (ROS) scavengers. Activation of key factors including RIP1, RIP3, and MLKL was determined using immunoprecipitations and western blot. RBC vesiculation and formation of echinocytes was determined using phase-contrast microscopy. The effect of necroptosis and storage on RBC clearance was determined using a murine transfusion model. RESULTS Necroptosis is associated with increased RBC clearance post-transfusion. Moreover, storage in AS-1, AS-3, or AS-5 sensitizes RBCs for necroptosis. Importantly, storage-sensitized RBCs undergo necroptosis in response to multiple PFTs, regardless of specificity for CD59. Storage-sensitized RBCs undergo necroptosis via NADPH oxidase-generated ROS. RBC storage led to RIP1 phosphorylation and necrosome formation in an NADPH oxidase-dependent manner suggesting the basis for this sensitization. In addition, storage led to increased RBC clearance post-transfusion. Clearance of these RBCs was due to Syk-dependent echinocyte formation. CONCLUSION Storage-induced sensitization to RBC necroptosis and clearance is important as it may be relevant to hemolytic transfusion reactions.
Collapse
|
research-article |
6 |
11 |
99
|
Hay AM, Howie HL, Gorham JD, D'Alessandro A, Spitalnik SL, Hudson KE, Zimring JC. Mouse background genetics in biomedical research: The devil's in the details. Transfusion 2021; 61:3017-3025. [PMID: 34480352 DOI: 10.1111/trf.16628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetically modified mice are used widely to explore mechanisms in most biomedical fields-including transfusion. Concluding that a gene modification is responsible for a phenotypic change assumes no other differences between the gene-modified and wild-type mice besides the targetted gene. STUDY DESIGN AND METHODS To test the hypothesis that the N-terminus of Band3, which regulates metabolism, affects RBC storage biology, RBCs from mice with a modified N-terminus of Band3 were stored under simulated blood bank conditions. All strains of mice were generated with the same initial embryonic stem cells from 129 mice and each strain was backcrossed with C57BL/6 (B6) mice. Both 24-h recoveries post-transfusion and metabolomics were determined for stored RBCs. Genetic profiles of mice were assessed by a high-resolution SNP array. RESULTS RBCs from mice with a mutated Band3 N-terminus had increased lipid oxidation and worse 24-h recoveries, "demonstrating" that Band3 regulates oxidative injury during RBC storage. However, SNP analysis demonstrated variable inheritance of 129 genetic elements between strains. Controlled interbreeding experiments demonstrated that the changes in lipid oxidation and some of the decreased 24-hr recovery were caused by inheritance of a region of chromosome 1 of 129 origin, and not due to the modification of Band 3. SNP genotyping of a panel of commonly used commercially available KO mice showed considerable 129 contamination, despite wild-type B6 mice being listed as the correct control. DISCUSSION Thousands of articles published each year use gene-modified mice, yet genetic background issues are rarely considered. Assessment of such issues are not, but should become, routine norms of murine experimentation.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
11 |
100
|
Xu JZ, Francis RO, Lerebours Nadal LE, Shirazi M, Jobanputra V, Hod EA, Jhang JS, Stotler BA, Spitalnik SL, Nicholas SW. G6PD Deficiency in an HIV Clinic Setting in the Dominican Republic. Am J Trop Med Hyg 2015; 93:722-9. [PMID: 26240158 DOI: 10.4269/ajtmh.14-0295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/04/2015] [Indexed: 11/07/2022] Open
Abstract
Because human immunodeficiency virus (HIV)-infected patients receive prophylaxis with oxidative drugs, those with glucose-6-phosphate dehydrogenase (G6PD) deficiency may experience hemolysis. However, G6PD deficiency has not been studied in the Dominican Republic, where many individuals have African ancestry. Our objective was to determine the prevalence of G6PD deficiency in Dominican HIV-infected patients and to attempt to develop a cost-effective algorithm for identifying such individuals. To this end, histories, chart reviews, and G6PD testing were performed for 238 consecutive HIV-infected adult clinic patients. The overall prevalence of G6PD deficiency (8.8%) was similar in males (9.3%) and females (8.5%), and higher in Haitians (18%) than Dominicans (6.4%; P = 0.01). By logistic regression, three clinical variables predicted G6PD status: maternal country of birth (P = 0.01) and a history of hemolysis (P = 0.01) or severe anemia (P = 0.03). Using these criteria, an algorithm was developed, in which a patient subset was identified that would benefit most from G6PD screening, yielding a sensitivity of 94.7% and a specificity of 97.2%, increasing the pretest probability (8.8-15.1%), and halving the number of patients needing testing. This algorithm may provide a cost-effective strategy for improving care in resource-limited settings.
Collapse
|
Journal Article |
10 |
11 |