76
|
Acker R, Vanholme R, Piens K, Boerjan W. Saccharification Protocol for Small-scale Lignocellulosic Biomass Samples to Test Processing of Cellulose into Glucose. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
77
|
Vargas L, Cesarino I, Vanholme R, Voorend W, de Lyra Soriano Saleme M, Morreel K, Boerjan W. Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:139. [PMID: 27390589 PMCID: PMC4936005 DOI: 10.1186/s13068-016-0551-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/23/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Caffeoyl shikimate esterase (CSE) was recently characterized as an enzyme central to the lignin biosynthetic pathway in Arabidopsis thaliana. The cse-2 loss-of-function mutant shows a typical phenotype of lignin-deficient mutants, including collapsed vessels, reduced lignin content, and lignin compositional shift, in addition to a fourfold increase in cellulose-to-glucose conversion when compared to the wild type. However, this mutant exhibits a substantial developmental arrest, which might outweigh the gains in fermentable sugar yield. To restore its normal growth and further improve its saccharification yield, we investigated a possible cause for the yield penalty of the cse-2 mutant. Furthermore, we evaluated whether CSE expression is under the same multi-leveled transcriptional regulatory network as other lignin biosynthetic genes and analyzed the transcriptional responses of the phenylpropanoid pathway upon disruption of CSE. RESULTS Transactivation analysis demonstrated that only second-level MYB master switches (MYB46 and MYB83) and lignin-specific activators (MYB63 and MYB85), but not top-level NAC master switches or other downstream transcription factors, effectively activate the CSE promoter in our protoplast-based system. The cse-2 mutant exhibited transcriptional repression of genes upstream of CSE, while downstream genes were mainly unaffected, indicating transcriptional feedback of CSE loss-of-function on monolignol biosynthetic genes. In addition, we found that the expression of CSE under the control of the vessel-specific VND7 promoter in the cse-2 background restored the vasculature integrity resulting in improved growth parameters, while the overall lignin content remained relatively low. Thus, by restoring the vascular integrity and biomass parameters of cse-2, we further improved glucose release per plant without pretreatment, with an increase of up to 36 % compared to the cse-2 mutant and up to 154 % compared to the wild type. CONCLUSIONS Our results contribute to a better understanding of how the expression of CSE is regulated by secondary wall-associated transcription factors and how the expression of lignin genes is affected upon CSE loss-of-function in Arabidopsis. Moreover, we found evidence that vasculature collapse is underlying the yield penalty found in the cse-2 mutant. Through a vessel-specific complementation approach, vasculature morphology and final stem weight were restored, leading to an even higher total glucose release per plant.
Collapse
|
78
|
Tsuji Y, Vanholme R, Tobimatsu Y, Ishikawa Y, Foster CE, Kamimura N, Hishiyama S, Hashimoto S, Shino A, Hara H, Sato-Izawa K, Oyarce P, Goeminne G, Morreel K, Kikuchi J, Takano T, Fukuda M, Katayama Y, Boerjan W, Ralph J, Masai E, Kajita S. Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα-dehydrogenase from Sphingobium sp. strain SYK-6. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:821-32. [PMID: 25580543 DOI: 10.1111/pbi.12316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/07/2014] [Accepted: 11/25/2014] [Indexed: 05/19/2023]
Abstract
Bacteria-derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram-negative bacterium Sphingobium sp. SYK-6 possesses a Cα-dehydrogenase (LigD) enzyme that has been shown to oxidize the α-hydroxy functionalities in β-O-4-linked dimers into α-keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β-O-4-linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol-β-coniferyl alcohol ether and syringylglycerol-β-sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon-optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC-MS/MS-based metabolite profiling indicated that levels of oxidized guaiacyl (G) β-O-4-coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1- to 2.8-fold increased level of G-type α-keto-β-O-4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.
Collapse
|
79
|
van Parijs FRD, Ruttink T, Boerjan W, Haesaert G, Byrne SL, Asp T, Roldán-Ruiz I, Muylle H. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:877-92. [PMID: 25683375 DOI: 10.1111/plb.12316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 05/08/2023]
Abstract
In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.
Collapse
|
80
|
Baldacci-Cresp F, Moussawi J, Leplé JC, Van Acker R, Kohler A, Candiracci J, Twyffels L, Spokevicius AV, Bossinger G, Laurans F, Brunel N, Vermeersch M, Boerjan W, El Jaziri M, Baucher M. PtaRHE1, a Populus tremula × Populus alba RING-H2 protein of the ATL family, has a regulatory role in secondary phloem fibre development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:978-990. [PMID: 25912812 DOI: 10.1111/tpj.12867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
REALLY INTERESTING NEW GENE (RING) proteins play important roles in the regulation of many processes by recognizing target proteins for ubiquitination. Previously, we have shown that the expression of PtaRHE1, encoding a Populus tremula × Populus alba RING-H2 protein with E3 ubiquitin ligase activity, is associated with tissues undergoing secondary growth. To further elucidate the role of PtaRHE1 in vascular tissues, we have undertaken a reverse genetic analysis in poplar. Within stem secondary vascular tissues, PtaRHE1 and its corresponding protein are expressed predominantly in the phloem. The downregulation of PtaRHE1 in poplar by artificial miRNA triggers alterations in phloem fibre patterning, characterized by an increased portion of secondary phloem fibres that have a reduced cell wall thickness and a change in lignin composition, with lower levels of syringyl units as compared with wild-type plants. Following an RNA-seq analysis, a biological network involving hormone stress signalling, as well as developmental processes, could be delineated. Several candidate genes possibly associated with the altered phloem fibre phenotype observed in amiRPtaRHE1 poplar were identified. Altogether, our data suggest a regulatory role for PtaRHE1 in secondary phloem fibre development.
Collapse
|
81
|
Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA, Zakai UI, Morreel K, Boerjan W, Ralph J. Tricin, a flavonoid monomer in monocot lignification. PLANT PHYSIOLOGY 2015; 167:1284-95. [PMID: 25667313 PMCID: PMC4378158 DOI: 10.1104/pp.114.253757] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tricin was recently discovered in lignin preparations from wheat (Triticum aestivum) straw and subsequently in all monocot samples examined. To provide proof that tricin is involved in lignification and establish the mechanism by which it incorporates into the lignin polymer, the 4'-O-β-coupling products of tricin with the monolignols (p-coumaryl, coniferyl, and sinapyl alcohols) were synthesized along with the trimer that would result from its 4'-O-β-coupling with sinapyl alcohol and then coniferyl alcohol. Tricin was also found to cross couple with monolignols to form tricin-(4'-O-β)-linked dimers in biomimetic oxidations using peroxidase/hydrogen peroxide or silver (I) oxide. Nuclear magnetic resonance characterization of gel permeation chromatography-fractionated acetylated maize (Zea mays) lignin revealed that the tricin moieties are found in even the highest molecular weight fractions, ether linked to lignin units, demonstrating that tricin is indeed incorporated into the lignin polymer. These findings suggest that tricin is fully compatible with lignification reactions, is an authentic lignin monomer, and, because it can only start a lignin chain, functions as a nucleation site for lignification in monocots. This initiation role helps resolve a long-standing dilemma that monocot lignin chains do not appear to be initiated by monolignol homodehydrodimerization as they are in dicots that have similar syringyl-guaiacyl compositions. The term flavonolignin is recommended for the racemic oligomers and polymers of monolignols that start from tricin (or incorporate other flavonoids) in the cell wall, in analogy with the existing term flavonolignan that is used for the low-molecular mass compounds composed of flavonoid and lignan moieties.
Collapse
|
82
|
Dima O, Morreel K, Vanholme B, Kim H, Ralph J, Boerjan W. Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. THE PLANT CELL 2015; 27:695-710. [PMID: 25700483 PMCID: PMC4558659 DOI: 10.1105/tpc.114.134643] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/02/2014] [Accepted: 02/07/2015] [Indexed: 05/17/2023]
Abstract
Lignin is an aromatic polymer derived from the combinatorial coupling of monolignol radicals in the cell wall. Recently, various glycosylated lignin oligomers have been revealed in Arabidopsis thaliana. Given that monolignol oxidation and monolignol radical coupling are known to occur in the apoplast, and glycosylation in the cytoplasm, it raises questions about the subcellular localization of glycosylated lignin oligomer biosynthesis and their storage. By metabolite profiling of Arabidopsis leaf vacuoles, we show that the leaf vacuole stores a large number of these small glycosylated lignin oligomers. Their structural variety and the incorporation of alternative monomers, as observed in Arabidopsis mutants with altered monolignol biosynthesis, indicate that they are all formed by combinatorial radical coupling. In contrast to the common believe that combinatorial coupling is restricted to the apoplast, we hypothesized that the aglycones of these compounds are made within the cell. To investigate this, leaf protoplast cultures were cofed with 13C6-labeled coniferyl alcohol and a 13C4-labeled dimer of coniferyl alcohol. Metabolite profiling of the cofed protoplasts provided strong support for the occurrence of intracellular monolignol coupling. We therefore propose a metabolic pathway involving intracellular combinatorial coupling of monolignol radicals, followed by oligomer glycosylation and vacuolar import, which shares characteristics with both lignin and lignan biosynthesis.
Collapse
|
83
|
Verlinden MS, Fichot R, Broeckx LS, Vanholme B, Boerjan W, Ceulemans R. Carbon isotope compositions (δ(13) C) of leaf, wood and holocellulose differ among genotypes of poplar and between previous land uses in a short-rotation biomass plantation. PLANT, CELL & ENVIRONMENT 2015; 38:144-156. [PMID: 24906162 DOI: 10.1111/pce.12383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy-devoted systems. We characterized variations in the carbon isotope composition (δ(13) C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short-rotation plantation. Values of δ(13) Cwood and δ(13) Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79-1.01‰). Leaf phenology was strongly correlated with δ(13) C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ(13) C. Trees growing on former pasture with higher N-availability displayed higher δ(13) C as compared with trees growing on former cropland. The positive relationships between δ(13) Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N-related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ(13) C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE.
Collapse
|
84
|
Sundin L, Vanholme R, Geerinck J, Goeminne G, Höfer R, Kim H, Ralph J, Boerjan W. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification. PLANT PHYSIOLOGY 2014; 166:1956-71. [PMID: 25315601 PMCID: PMC4256863 DOI: 10.1104/pp.114.245548] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 05/17/2023]
Abstract
ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production.
Collapse
|
85
|
Chantreau M, Portelette A, Dauwe R, Kiyoto S, Crônier D, Morreel K, Arribat S, Neutelings G, Chabi M, Boerjan W, Yoshinaga A, Mesnard F, Grec S, Chabbert B, Hawkins S. Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition. THE PLANT CELL 2014; 26:4462-82. [PMID: 25381351 PMCID: PMC4277216 DOI: 10.1105/tpc.114.130443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 10/19/2014] [Indexed: 05/24/2023]
Abstract
Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply.
Collapse
|
86
|
Niculaes C, Morreel K, Kim H, Lu F, McKee LS, Ivens B, Haustraete J, Vanholme B, Rycke RD, Hertzberg M, Fromm J, Bulone V, Polle A, Ralph J, Boerjan W. Phenylcoumaran benzylic ether reductase prevents accumulation of compounds formed under oxidative conditions in poplar xylem. THE PLANT CELL 2014; 26:3775-91. [PMID: 25238751 PMCID: PMC4213149 DOI: 10.1105/tpc.114.125260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phenylcoumaran benzylic ether reductase (PCBER) is one of the most abundant proteins in poplar (Populus spp) xylem, but its biological role has remained obscure. In this work, metabolite profiling of transgenic poplar trees downregulated in PCBER revealed both the in vivo substrate and product of PCBER. Based on mass spectrometry and NMR data, the substrate was identified as a hexosylated 8-5-coupling product between sinapyl alcohol and guaiacylglycerol, and the product was identified as its benzyl-reduced form. This activity was confirmed in vitro using a purified recombinant PCBER expressed in Escherichia coli. Assays performed on 20 synthetic substrate analogs revealed the enzyme specificity. In addition, the xylem of PCBER-downregulated trees accumulated over 2000-fold higher levels of cysteine adducts of monolignol dimers. These compounds could be generated in vitro by simple oxidative coupling assays involving monolignols and cysteine. Altogether, our data suggest that the function of PCBER is to reduce phenylpropanoid dimers in planta to form antioxidants that protect the plant against oxidative damage. In addition to describing the catalytic activity of one of the most abundant enzymes in wood, we provide experimental evidence for the antioxidant role of a phenylpropanoid coupling product in planta.
Collapse
|
87
|
Ruprecht C, Tohge T, Fernie A, Mortimer CL, Kozlo A, Fraser PD, Funke N, Cesarino I, Vanholme R, Boerjan W, Morreel K, Burgert I, Gierlinger N, Bulone V, Schneider V, Stockero A, Navarro-Aviñó J, Pudel F, Tambuyser B, Hygate J, Bumstead J, Notley L, Persson S. Transcript and metabolite profiling for the evaluation of tobacco tree and poplar as feedstock for the bio-based industry. J Vis Exp 2014:51393. [PMID: 24894952 PMCID: PMC4189316 DOI: 10.3791/51393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Collapse
|
88
|
Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S, Jin X, Renou JP, Thibaud JB, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun 2014; 4:2625. [PMID: 24129639 PMCID: PMC3826630 DOI: 10.1038/ncomms3625] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/17/2013] [Indexed: 01/24/2023] Open
Abstract
The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report the discovery and the functional characterization of the first vacuolar auxin transporter. We demonstrate that WALLS ARE THIN1 (WAT1), a plant-specific protein that dictates secondary cell wall thickness of wood fibres, facilitates auxin export from isolated Arabidopsis vacuoles in yeast and in Xenopus oocytes. We unambiguously identify IAA and related metabolites in isolated Arabidopsis vacuoles, suggesting a key role for the vacuole in intracellular auxin homoeostasis. Moreover, local auxin application onto wat1 mutant stems restores fibre cell wall thickness. Our study provides new insight into the complexity of auxin transport in plants and a means to dissect auxin function during fibre differentiation.
Collapse
|
89
|
Vanholme B, Vanholme R, Turumtay H, Goeminne G, Cesarino I, Goubet F, Morreel K, Rencoret J, Bulone V, Hooijmaijers C, De Rycke R, Gheysen G, Ralph J, De Block M, Meulewaeter F, Boerjan W. Accumulation of N-acetylglucosamine oligomers in the plant cell wall affects plant architecture in a dose-dependent and conditional manner. PLANT PHYSIOLOGY 2014; 165:290-308. [PMID: 24664205 PMCID: PMC4012587 DOI: 10.1104/pp.113.233742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane.
Collapse
|
90
|
Morreel K, Saeys Y, Dima O, Lu F, Van de Peer Y, Vanholme R, Ralph J, Vanholme B, Boerjan W. Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks. THE PLANT CELL 2014; 26:929-45. [PMID: 24685999 PMCID: PMC4001402 DOI: 10.1105/tpc.113.122242] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 03/11/2014] [Indexed: 05/17/2023]
Abstract
Plant metabolomics is increasingly used for pathway discovery and to elucidate gene function. However, the main bottleneck is the identification of the detected compounds. This is more pronounced for secondary metabolites as many of their pathways are still underexplored. Here, an algorithm is presented in which liquid chromatography-mass spectrometry profiles are searched for pairs of peaks that have mass and retention time differences corresponding with those of substrates and products from well-known enzymatic reactions. Concatenating the latter peak pairs, called candidate substrate-product pairs (CSPP), into a network displays tentative (bio)synthetic routes. Starting from known peaks, propagating the network along these routes allows the characterization of adjacent peaks leading to their structure prediction. As a proof-of-principle, this high-throughput cheminformatics procedure was applied to the Arabidopsis thaliana leaf metabolome where it allowed the characterization of the structures of 60% of the profiled compounds. Moreover, based on searches in the Chemical Abstract Service database, the algorithm led to the characterization of 61 compounds that had never been described in plants before. The CSPP-based annotation was confirmed by independent MS(n) experiments. In addition to being high throughput, this method allows the annotation of low-abundance compounds that are otherwise not amenable to isolation and purification. This method will greatly advance the value of metabolomics in systems biology.
Collapse
|
91
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
|
92
|
Tobimatsu Y, Wouwer DVD, Allen E, Kumpf R, Vanholme B, Boerjan W, Ralph J. A click chemistry strategy for visualization of plant cell wall lignification. Chem Commun (Camb) 2014; 50:12262-5. [DOI: 10.1039/c4cc04692g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monolignol mimics bearing chemical reporter tags and bioorthogonal click chemistry were commissioned to visualize plant cell wall lignins in vivo.
Collapse
|
93
|
Littlewood J, Guo M, Boerjan W, Murphy RJ. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:113. [PMID: 25788978 PMCID: PMC4364105 DOI: 10.1186/1754-6834-7-113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 07/09/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND The European Union has made it a strategic objective to develop its biofuels market in order to minimize greenhouse gas (GHG) emissions, to help mitigate climate change and to address energy insecurity within the transport sector. Despite targets set at national and supranational levels, lignocellulosic bioethanol production has yet to be widely commercialized in the European Union. Here, we use techno-economic modeling to compare the price of bioethanol produced from short rotation coppice (SRC) poplar feedstocks under two leading processing technologies in five European countries. RESULTS Our evaluation shows that the type of processing technology and varying national costs between countries results in a wide range of bioethanol production prices (€0.275 to 0.727/l). The lowest production prices for bioethanol were found in countries that had cheap feedstock costs and high prices for renewable electricity. Taxes and other costs had a significant influence on fuel prices at the petrol station, and therefore the presence and amount of government support for bioethanol was a major factor determining the competitiveness of bioethanol with conventional fuel. In a forward-looking scenario, genetically engineering poplar with a reduced lignin content showed potential to enhance the competitiveness of bioethanol with conventional fuel by reducing overall costs by approximately 41% in four out of the five countries modeled. However, the possible wider phenotypic traits of advanced poplars needs to be fully investigated to ensure that these do not unintentionally negate the cost savings indicated. CONCLUSIONS Through these evaluations, we highlight the key bottlenecks within the bioethanol supply chain from the standpoint of various stakeholders. For producers, technologies that are best suited to the specific feedstock composition and national policies should be optimized. For policymakers, support schemes that benefit emerging bioethanol producers and allow renewable fuel to be economically competitive with petrol should be established. Finally, for researchers, better control over plant genetic engineering and advanced breeding and its consequential economic impact would bring valuable contributions towards developing an economically sustainable bioethanol market within the European Union.
Collapse
|
94
|
Bottcher A, Cesarino I, Santos ABD, Vicentini R, Mayer JLS, Vanholme R, Morreel K, Goeminne G, Moura JCMS, Nobile PM, Carmello-Guerreiro SM, Anjos IAD, Creste S, Boerjan W, Landell MGDA, Mazzafera P. Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. PLANT PHYSIOLOGY 2013; 163:1539-57. [PMID: 24144790 PMCID: PMC3850185 DOI: 10.1104/pp.113.225250] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes.
Collapse
|
95
|
Tobimatsu Y, Wagner A, Donaldson L, Mitra P, Niculaes C, Dima O, Kim JI, Anderson N, Loque D, Boerjan W, Chapple C, Ralph J. Visualization of plant cell wall lignification using fluorescence-tagged monolignols. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:357-66. [PMID: 23889038 PMCID: PMC4238399 DOI: 10.1111/tpj.12299] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/19/2013] [Accepted: 07/18/2013] [Indexed: 05/15/2023]
Abstract
Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.
Collapse
|
96
|
Nodzynski T, Feraru MI, Hirsch S, De Rycke R, Niculaes C, Boerjan W, Van Leene J, De Jaeger G, Vanneste S, Friml J. Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. MOLECULAR PLANT 2013; 6:1849-62. [PMID: 23770835 DOI: 10.1093/mp/sst044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based forward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFP. While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compartments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lytic vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting.
Collapse
|
97
|
Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 2013; 341:1103-6. [PMID: 23950498 DOI: 10.1126/science.1241602] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.
Collapse
|
98
|
Vanholme B, Desmet T, Ronsse F, Rabaey K, Breusegem FV, Mey MD, Soetaert W, Boerjan W. Towards a carbon-negative sustainable bio-based economy. FRONTIERS IN PLANT SCIENCE 2013; 4:174. [PMID: 23761802 PMCID: PMC3669761 DOI: 10.3389/fpls.2013.00174] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/16/2013] [Indexed: 05/17/2023]
Abstract
The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.
Collapse
|
99
|
Vanholme B, Cesarino I, Goeminne G, Kim H, Marroni F, Van Acker R, Vanholme R, Morreel K, Ivens B, Pinosio S, Morgante M, Ralph J, Bastien C, Boerjan W. Breeding with rare defective alleles (BRDA): a natural Populus nigra HCT mutant with modified lignin as a case study. THE NEW PHYTOLOGIST 2013; 198:765-776. [PMID: 23432219 DOI: 10.1111/nph.12179] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/02/2013] [Indexed: 05/18/2023]
Abstract
Next-generation (NG) sequencing in a natural population of Populus nigra revealed a mutant with a premature stop codon in the gene encoding hydroxycinnamoyl-CoA : shikimate hydroxycinnamoyl transferase1 (HCT1), an essential enzyme in lignin biosynthesis. The lignin composition of P. nigra trees homozygous for the defective allele was compared with that of heterozygous trees and trees without the defective allele. The lignin was characterized by phenolic profiling, lignin oligomer sequencing, thioacidolysis and NMR. In addition, HCT1 was heterologously expressed for activity assays and crosses were made to introduce the mutation in different genetic backgrounds. HCT1 converts p-coumaroyl-CoA into p-coumaroyl shikimate. The mutant allele, PnHCT1-Δ73, encodes a truncated protein, and trees homozygous for this recessive allele have a modified lignin composition characterized by a 17-fold increase in p-hydroxyphenyl units. Using the lignin pathway as proof of concept, we illustrated that the capture of rare defective alleles is a straightforward approach to initiate reverse genetics and accelerate tree breeding. The proposed breeding strategy, called 'breeding with rare defective alleles' (BRDA), should be widely applicable, independent of the target gene or the species.
Collapse
|
100
|
Chylla RA, Van Acker R, Kim H, Azapira A, Mukerjee P, Markley JL, Storme V, Boerjan W, Ralph J. Plant cell wall profiling by fast maximum likelihood reconstruction (FMLR) and region-of-interest (ROI) segmentation of solution-state 2D 1H-13C NMR spectra. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:45. [PMID: 23622232 PMCID: PMC3681564 DOI: 10.1186/1754-6834-6-45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/20/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND Interest in the detailed lignin and polysaccharide composition of plant cell walls has surged within the past decade partly as a result of biotechnology research aimed at converting biomass to biofuels. High-resolution, solution-state 2D 1H-13C HSQC NMR spectroscopy has proven to be an effective tool for rapid and reproducible fingerprinting of the numerous polysaccharides and lignin components in unfractionated plant cell wall materials, and is therefore a powerful tool for cell wall profiling based on our ability to simultaneously identify and comparatively quantify numerous components within spectra generated in a relatively short time. However, assigning peaks in new spectra, integrating them to provide relative component distributions, and producing color-assigned spectra, are all current bottlenecks to the routine use of such NMR profiling methods. RESULTS We have assembled a high-throughput software platform for plant cell wall profiling that uses spectral deconvolution by Fast Maximum Likelihood Reconstruction (FMLR) to construct a mathematical model of the signals present in a set of related NMR spectra. Combined with a simple region of interest (ROI) table that maps spectral regions to NMR chemical shift assignments of chemical entities, the reconstructions can provide rapid and reproducible fingerprinting of numerous polysaccharide and lignin components in unfractionated cell wall material, including derivation of lignin monomer unit (S:G:H) ratios or the so-called SGH profile. Evidence is presented that ROI-based amplitudes derived from FMLR provide a robust feature set for subsequent multivariate analysis. The utility of this approach is demonstrated on a large transgenic study of Arabidopsis requiring concerted analysis of 91 ROIs (including both assigned and unassigned regions) in the lignin and polysaccharide regions of almost 100 related 2D 1H-13C HSQC spectra. CONCLUSIONS We show that when a suitable number of replicates are obtained per sample group, the correlated patterns of enriched and depleted cell wall components can be reliably and objectively detected even prior to multivariate analysis. The analysis methodology has been implemented in a publicly-available, cross-platform (Windows/Mac/Linux), web-enabled software application that enables researchers to view and publish detailed annotated spectra in addition to summary reports in simple spreadsheet data formats. The analysis methodology is not limited to studies of plant cell walls but is amenable to any NMR study where ROI segmentation techniques generate meaningful results.Please see Research Article: http://www.biotechnologyforbiofuels.com/content/6/1/46/.
Collapse
|