76
|
Chen X, Krug L, Yang M, Berg G, Cernava T. The Himalayan Onion (Allium wallichii Kunth) Harbors Unique Spatially Organized Bacterial Communities. MICROBIAL ECOLOGY 2021; 82:909-918. [PMID: 33723621 PMCID: PMC8551121 DOI: 10.1007/s00248-021-01728-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plant-associated microorganisms are known to contribute with various beneficial functions to the health and productivity of their hosts, yet the microbiome of most plants remains unexplored. This especially applies to wild relatives of cultivated plants, which might harbor beneficial microorganisms that were lost during intensive breeding. We studied bacterial communities of the Himalayan onion (Allium wallichii Kunth), a wild relative of onion native to mountains in East Asia. The bacterial community structure was assessed in different plant microhabitats (rhizosphere, endosphere, anthosphere) by sequencing of 16S rRNA gene fragment amplicons. Targeted bioinformatic analyses were implemented in order to identify unique features in each habitat and to map the overall community in the first representative of the Amaryllidaceae plant family. The highest bacterial diversity was found for bulk soil (Shannon index, H' 9.3) at the high-altitude sampling location. It was followed by the plant rhizosphere (H' 8.9) while communities colonizing flowers (H' 6.1) and the endosphere (H' 6.5 and 5.6) where less diverse. Interestingly, we observed a non-significant rhizosphere effect. Another specificity of the microbiome was its high evenness in taxonomic distribution, which was so far not observed in plant microbiomes. Pseudomonas was identified among additional 10 bacterial genera as a plant-specific signature. The first insights into the microbiome of a plant in the widespread Allium genus will facilitate upcoming comparisons with its domesticated relatives while additionally providing a detailed microbiome mapping of the plant's microhabitats to facilitate bioresource mining.
Collapse
|
77
|
Guo J, Chen Y, Lu P, Liu M, Sun P, Zhang Z. Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117641. [PMID: 34426384 DOI: 10.1016/j.envpol.2021.117641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 05/11/2023]
Abstract
Salinity is a limiting factor in the growth of plants in coastal wetlands. The interaction of halophytes with salt-tolerant endophytes has been one of the major concerns in this area. However, the mechanism by which endophytes promote halophyte growth remains unclear. The growth and physiological responses of Suaeda salsa inoculated with endophytic bacteria (Sphingomonas prati and Sphingomonas zeicaulis) at 0 ‰ and 20 ‰ NaCl were studied. The results showed that Sphingomonas zeicaulis had stronger positive effects on the growth of Suaeda salsa under 0 ‰ NaCl, and Sphingomonas prati performed better under 20 ‰ NaCl. Sphingomonas prati inoculation increased the mean height, root length, fresh weight and dry weight by 45.43%, 9.91%, 82.00% and 102.25%, respectively, compared with the uninoculated treatment at 20 ‰ NaCl. Sphingomonas prati inoculation decreased MDA content by 23.78%, while the soluble sugar and soluble protein contents increased by 15.08% and 12.57%, respectively, compared to the control, at 20 ‰ NaCl. Increases in SOD and CAT in the Sphingomonas prati inoculation were 1.03 and 1.47-fold greater, respectively, than in the Sphingomonas zeicaulis inoculation, under 20 ‰ NaCl. Moreover, Sphingomonas prati and Sphingomonas zeicaulis had antagonistic interactions in Suaeda salsa according to the results of the "interaction equation" (most G values were negative). PCA, clustering analysis and the PLS model revealed two mechanisms for regulating plant salt tolerance by which Sphingomonas prati enhanced Suaeda salsa growth: (1) Sphingomonas prati improved intracellular osmotic metabolism and (2) Sphingomonas prati promoted the production of CAT in the antioxidant enzyme system and retained permeability. This study provides new insight into the comprehensive understanding and evaluation of endophytic bacteria as biological inoculants in plants under salt stress.
Collapse
|
78
|
Gorai PS, Ghosh R, Mandal S, Ghosh S, Chatterjee S, Gond SK, Mandal NC. Bacillus siamensis CNE6- a multifaceted plant growth promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential. Microbiol Res 2021; 252:126859. [PMID: 34536676 DOI: 10.1016/j.micres.2021.126859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Exploration of endophytic bacteria with multiple plant growth promoting (PGP) attributes is considered as an eco-friendly and cost-effective alternative to agricultural chemicals for increasing crop productivity. In the present endeavor, healthy chickpea plants (Cicer arietinum L.) collected from district Birbhum, West Bengal, India were subjected for the isolation of endophytic bacteria having multifarious PGP properties. One potent endophytic Gram positive bacterial strain CNE6 was isolated from the nodule of chickpea and was identified as Bacillus siamensis based on 16S rDNA sequence homologies. The isolate showed a number of PGP properties like phosphate solubilization, IAA production, nitrogen fixation, hydroxamate type of siderophore production and ACC deaminase activities. The isolate CNE6 produced 33.27 ± 2.16 μg/mL of IAA in the presence of tryptophan. Production of IAA was also confirmed by HPLC analysis and it was found effective for inducing lateral root branching in chickpea. In addition, the isolate displayed significant antagonistic activity against a number of plant pathogenic fungi when tested by dual culture overlay and agar well diffusion assay. 50 % cell free supernatant of CNE6 was found effective for 60-80 % inhibition of radial growth of pathogenic fungi tested. Scanning electron microscopic observation revealed massive degradation of pathogenic fungal mycelia by the antifungal metabolites of CNE6. LC-MS analysis of bacterial lipopeptides suggested the production of antifungal antibiotics like surfactin, fengycin and iturin by the isolate. The presence of genes encoding antifungal lipopeptides was also confirmed by PCR amplification using specific primers. Green fluorescent protein (GFP) tagging of CNE6 using broad host range plasmid vector (pDSK-GFPuv) followed by colonization study indicated very good host colonization potential of the isolate and its probable movement through xylem vessels. Enhanced shoot and root length and chlorophyll content upon treatment with CNE6 as observed in in vivo pot experiments also supported the positive role of the endophytic isolate on overall development and growth of the chickpea plants. This is the first report of Bacillus siamensis as an endophyte of Cicer arietinum L. which can be successfully applied for improving the productivity of this crop plant.
Collapse
|
79
|
Rodríguez-Rodríguez RM, Guimarães AA, de Castro JL, Siqueira JO, Carneiro MAC, de Souza Moreira FM. Rhizobia and endophytic bacteria isolated from rainforest fragments within an iron ore mining site of the Eastern Brazilian Amazon. Braz J Microbiol 2021; 52:1461-1474. [PMID: 34142357 PMCID: PMC8324639 DOI: 10.1007/s42770-021-00524-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/08/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to isolate and evaluate the diversity of rhizobial and endophytic bacterial strains from undisturbed native rainforests within an iron ore mining site of the Serra Norte de Carajás in the Eastern Brazilian Amazon region to assess their biotechnological utility in reclamation of areas. Experiments were conducted to capture strains from samples of the soil of these forests at the sites Arenito II, Noroeste II, and Sul IV using Macroptilium atropurpureum and Mimosa acutistipula var. ferrea as trap host plants. Only M. atropurpureum nodulated, and the different bacterial strains were isolated from its nodules. There was no difference in the number of nodules among the areas, but the Arenito II bacterial community was the most efficient, indicated by the aboveground biomass production and suitable shoot mass/root mass ratio. Fifty-two (52) bacterial isolates were obtained, distributed in five groups, including nodulating and endophytic bacteria: 32 from Arenito II, 12 from Noroeste II, and 8 from Sul IV. The nodulating Bradyrhizobium genus was common to the three areas, whereas Paraburkholderia was found only in Arenito II. The nodD1 gene was amplified in all the strains of both nodulating genera. Strains of the nodulating genus Methylobacterium were also isolated from the three areas; however, they did not nodulate the host of origin, and their nodD1 gene was not amplified. Endophytic strains were also isolated from the genera Paenibacillus, Pantoea, and Leifsonia in Arenito II, Leifsonia in Noroeste I, and Paenibacillus in Sul IV. The greater nodulation and rhizobial and endophytic bacterial diversity observed in Arenito II were probably due to the more suitable edaphic properties of the area. The isolated strains were incorporated in the collection of the Department of Soil Science of UFLA and will be investigated in relation to their symbiotic characteristics with native host plants, as well as their ability to perform other biological processes.
Collapse
|
80
|
Long J, Yu M, Xu H, Huang S, Wang Z, Zhang XX. Characterization of cadmium biosorption by inactive biomass of two cadmium-tolerant endophytic bacteria Microbacterium sp. D2-2 and Bacillus sp. C9-3. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1419-1428. [PMID: 33620635 DOI: 10.1007/s10646-021-02363-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In this study, two cadmium-tolerant endophytic bacteria (Microbacterium sp. D2-2 and Bacillus sp. C9-3) were employed as biosorbents to remove Cd(II) from aqueous solutions. The influence of initial pH, initial Cd(II) concentration, adsorbent biomass, temperature and contact time on Cd(II) removal were investigated. Results showed that the Langmuir isotherms were found to best fit the equilibrium data, and the maximum biosorption capacities were found to be 222.22 and 163.93 mg/g at a solution pH of 5.0 for Microbacterium sp. D2-2 and Bacillus sp. C9-3, respectively. The biosorption kinetics followed well pseudo-second-order kinetics. Fourier transform infrared spectroscopic analysis suggested that the hydroxyl, carboxyl, carbonyl and amino groups on Microbacterium sp. D2-2 and Bacillus sp. C9-3 biomass were the main binding sites for Cd(II). The results presented in this study showed that Microbacterium sp. D2-2 and Bacillus sp. C9-3 are potential and promising adsorbents for the effective removal of Cd(II) from aqueous solutions.
Collapse
|
81
|
Probiotic Endophytes for More Sustainable Banana Production. Microorganisms 2021; 9:microorganisms9091805. [PMID: 34576701 PMCID: PMC8469954 DOI: 10.3390/microorganisms9091805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Climatic factors and pathogenic fungi threaten global banana production. Moreover, bananas are being cultivated using excessive amendments of nitrogen and pesticides, which shift the microbial diversity in plants and soil. Advances in high-throughput sequencing (HTS) technologies and culture-dependent methods have provided valuable information about microbial diversity and functionality of plant-associated endophytic communities. Under stressful (biotic or abiotic) conditions, plants can recruit sets of microorganisms to alleviate specific potentially detrimental effects, a phenomenon known as “cry for help”. This mechanism is likely initiated in banana plants infected by Fusarium wilt pathogen. Recently, reports demonstrated the synergistic and cumulative effects of synthetic microbial communities (SynComs) on naturally occurring plant microbiomes. Indeed, probiotic SynComs have been shown to increase plant resilience against biotic and abiotic stresses and promote growth. This review focuses on endophytic bacterial diversity and keystone taxa of banana plants. We also discuss the prospects of creating SynComs composed of endophytic bacteria that could enhance the production and sustainability of Cavendish bananas (Musa acuminata AAA), the fourth most important crop for maintaining global food security.
Collapse
|
82
|
Jakubska-Busse A, Kędziora A, Cieniuch G, Korzeniowska-Kowal A, Bugla-Płoskońska G. Proteomics-based identification of orchid-associated bacteria colonizing the Epipactis albensis, E. helleborine and E. purpurata (Orchidaceae, Neottieae). Saudi J Biol Sci 2021; 28:4029-4038. [PMID: 34220261 PMCID: PMC8241612 DOI: 10.1016/j.sjbs.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Using proteomics-based identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we conducted the first analysis of the composition of endophytic bacteria isolated from different parts of selected Epipactis species, i.e. the buds, the inflorescences and the central part of the shoots, as well as the rhizomes. We identified aerobic and anaerobic bacteria, including such taxa as Bacillus spp., Clostridium spp., Pseudomonas spp. and Stenotrophomonas spp., which may be considered as promoting plant growth. Because most of the indicated bacteria genera belong to spore-producing taxa (spores allow bacterial symbionts to survive adverse conditions), we suggest that these bacteria species contribute to the adaptation of orchids to the environment. We found clear differences in the microbiome between investigated closely related taxa, i.e., Epipactis albensis, E. helleborine, E. purpurata and E. purpurata f. chlorophylla. Some of the analysed orchid species, i.e. E. albensis and E. purpurata co-occur in habitats, and their bacterial microbiomes differ from each other.
Collapse
|
83
|
Li J, Chen Q, Li Q, Zhao C, Feng Y. Influence of plants and environmental variables on the diversity of soil microbial communities in the Yellow River Delta Wetland, China. CHEMOSPHERE 2021; 274:129967. [PMID: 33979943 DOI: 10.1016/j.chemosphere.2021.129967] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/23/2021] [Accepted: 02/09/2021] [Indexed: 05/20/2023]
Abstract
Microorganisms play an important role in the biogeochemical cycle and ecological function regulation of wetlands, have a major impact on global climate change and are critical for maintaining the health of the global ecosystem. In order to investigate the relationships among plants, environmental variables, and microbial communities in coastal wetlands in the Yellow River Delta, we selected soils growing plants such as Suaeda salsa, Tamarix chinensis, Phragmites australis, and cotton etc. The results show that there were differences in microbial diversity among areas with different vegetation cover and the microbial abundance in Phragmites australis and Tamarix chinensis areas was higher than that in mudflat, Suaeda glauca and cotton field, plants increased the diversity of soil microorganisms. The structure and diversity of soil microorganisms were significantly higher than that of endophytes. The Shannon index of soil bacteria was about 4-5.5, while that of endophytes was about 0-4. The soil bacteria were mainly Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria, accounting for more than 90.0% in all samples. The Mn4+, Fe3+ and hydrolytic nitrogen contents in the soil of vegetation covered areas was lower than that of the bare beach, the content of hydrolytic nitrogen in Phragmites australis area was generally higher, and the content of SO42- and NO2- in the area was lowest near oil fields. Redundancy analysis shows that the explanatory rates of environmental factors at the phylum and genus levels were 89.70% and 86.80%, respectively, and K (23.40%), NO2- (11.80%), Mn4+ (9.80%) and Na (8.00%) were the main factors explaining the structural changes and composition of microbial flora at the phylum level. This study provides an ecological perspective for understanding the influence mechanism between wetland microbial diversity and wetland ecosystem function. It is helpful for us to understand the interactions among plants, environmental variables, and microbial communities in the coastal wetland of the Yellow River Delta, and has important guiding significance for the scientific research of soil environmental remediation in the degraded coastal wetland of the Yellow River Delta.
Collapse
|
84
|
Sun B, Jing R, Wang Z, Tian L, Mao F, Liu Y. Diversity and community structure of endophytic Bacillus with antagonistic and antioxidant activity in the fruits of Xisha Wild Noni (Morinda citrifolia L.). Microb Pathog 2021; 158:105065. [PMID: 34175435 DOI: 10.1016/j.micpath.2021.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Noni (Morinda citrifolia L.) is a tropical crop with strong antibacterial, antioxidant and other abilities, and its fruit has a strong potential for adjuvant treatment of diseases. This study aimed to explore the dynamic change of endophytic bacteria in Noni fruit at different stages and the correlation between the antagonistic and antioxidant activity of the Bacillus which was screened and the change of the host's growth stage. In this study, though the high-throughput sequencing technology (HTS), 106 endophytic bacteria species were found in A, B, C, D, E and F stages of Noni fruit, among which the dominant group were Pantoea (0.3%-20.9%), and Candidatus_Uzinura (2.3%-35.2%) etc. The endophytic bacteria were isolated by culture-dependent method. Through their antagonistic experiments on Staphylococcus aureus and Escherichia coli, the results of 16S polyphasic taxonomic identification showed that the 34 antagonistic strains belonged to Bacillus. Five species of these Bacillus were identified by gyrA polyphase taxonomy, including Bacillus subtilis (76% of all Bacillus), Bacillus licheniformis (9%), Bacillus amyloliquefaciens (6%), Bacillus velezensis (6%) and Bacillus mojavensi (3%), and the RAPD showed these Bacillus are no signs of stable passage. In C, D, E and F stages, the average total antioxidant activity of Bacillus endophytic antagonists against Noni was 7.812 U/mL, 8.144 U/mL, 7.817 U/mL and 7.144 U/mL, which was much higher than that of Noni fruit, and antioxidant activity of Noni juice and Bacillus bacterial liquid vary with host's growth period showed the same trend, both rose slowly at first, and reached the highest in period E, then declined slightly in period F, it showed that the antagonistic Bacillus of Noni had synergistic function with Noni fruit. This study clarified the relationship of function between Noni fruit and endophytic bacteria, and laid a foundation for future study on the dynamic change of endophytic flora succession and efficacy.
Collapse
|
85
|
Wang Z, Zhu Y, Li N, Liu H, Zheng H, Wang W, Liu Y. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of saline-alkali tolerant rice. Microbiol Res 2021; 250:126794. [PMID: 34062342 DOI: 10.1016/j.micres.2021.126794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
The study of endophytic bacteria in saline-alkali tolerant rice seeds is of great help to the follow-up study of saline-alkali tolerant mechanism and the exploitation of saline-alkali tolerant microbial resources. In this study, high-throughput sequencing technology based on the Illumina Miseq platform was used to reveal the "core microbiota" by examining the diversity and community structures of seed endophytic bacteria in saline-alkali tolerant rice grown under different salt concentrations and explore the effect of salt concentration on its endophytic bacteria. Here, 49 endophytic OTUs were found to coexist in all samples. At the phylum level, the dominant phyla were Proteobacteria (83.90 %-99.87 %). At the genus level, Pantoea (44.65-94.76 %) which represents the core microbiota in saline-alkali tolerant rice seeds, served as the dominant genus that coexisted in all samples tested. Through further analysis, we found that the abundance of Pantoea in saline-alkali tolerant rice seeds was positively proportional to the level of salt concentration. Overall, this study showed that the core microbiota of saline-alkali tolerant rice seeds is Pantoea, and the change of salt concentration is a key factor in the formation of endophytic bacteria in saline-alkali tolerant rice seeds.
Collapse
|
86
|
Antunes VDC, Freitag D, Serrato RV. Differential exopolysaccharide production and composition by Herbaspirillum strains from diverse ecological environments. Arch Microbiol 2021; 203:3883-3892. [PMID: 34009446 DOI: 10.1007/s00203-021-02371-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the genus Herbaspirillum are found in many different ecological niches. Some species are typically endophytic, while others were reported as free-living organisms that occupy various environments. Also, opportunistic herbaspirilli have been found infecting humans affected by several diseases. We have analyzed the production of exopolysaccharides (EPS) by Herbaspirillum strains isolated from different sources and with distinct ecological characteristics. The monosaccharide composition was determined for the EPS obtained for selected strains including free-living, plant-associated and clinical isolates, and the relationship with the ecological niches occupied by Herbaspirillum spp. is proposed.
Collapse
|
87
|
Zhou T, Yu S, Hu Y, Zhang Y, Song Y, Chu J, Liu C, Rao Y. Enhanced cercosporin production by co-culturing Cercospora sp. JNU001 with leaf-spot-disease-related endophytic bacteria. Microb Cell Fact 2021; 20:100. [PMID: 33992112 PMCID: PMC8126151 DOI: 10.1186/s12934-021-01587-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Owing to the excellent properties of photosensitization, cercosporin, one of naturally occurring perylenequinonoid pigments, has been widely used in photodynamic therapy, or as an antimicrobial agent and an organophotocatalyst. However, because of low efficiency of total chemical synthesis and low yield of current microbial fermentation, the limited production restricts its broad applications. Thus, the strategies to improve the production of cercosporin were highly desired. Besides traditional optimization methods, here we screened leaf-spot-disease-related endophytic bacteria to co-culture with our previous identified Cercospora sp. JNU001 to increase cercosporin production. RESULTS Bacillus velezensis B04 and Lysinibacillus sp. B15 isolated from leaves with leaf spot diseases were found to facilitate cercosporin secretion into the broth and then enhance the production of cercosporin. After 4 days of co-culture, Bacillus velezensis B04 allowed to increase the production of cercosporin from 128.2 mg/L to 984.4 mg/L, which was 7.68-fold of the previously reported one. Lysinibacillus sp. B15 could also enhance the production of cercosporin with a yield of 626.3 mg/L, which was 4.89-fold higher than the starting condition. More importantly, we found that bacteria B04 and B15 employed two different mechanisms to improve the production of cercosporin, in which B04 facilitated cercosporin secretion into the broth by loosening and damaging the hyphae surface of Cercospora sp. JNU001 while B15 could adsorb cercosporin to improve its secretion. CONCLUSIONS We here established a novel and effective co-culture method to improve the production of cercosporin by increasing its secretion ability from Cercospora sp. JNU001, allowing to develop more potential applications of cercosporin.
Collapse
|
88
|
LC-MS/MS-based profiling of bioactive metabolites of endophytic bacteria from Cannabis sativa and their anti-Phytophthora activity. Antonie van Leeuwenhoek 2021; 114:1165-1179. [PMID: 33945066 DOI: 10.1007/s10482-021-01586-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Protection of crop plants from phytopathogens through endophytic bacteria is a newly emerged area of biocontrol. In this study, endophytic bacteria were isolated from the rhizosphere of Cannabis sativa. Based on initial antimicrobial screening, three (03) bacteria Serratia marcescens MOSEL-w2, Enterobacter cloacae MOSEL-w7, and Paenibacillus MOSEL-w13 were selected. Antimicrobial assays of these selected bacteria against Phytophthora parasitica revealed that E. cloacae MOSEL-w7 and Paenibacillus sp. MOSEL-w13 possessed strong activity against P. parasitica. All these bacterial extracts showed strong inhibition against P. parasitica at different concentrations (4-400 µg mL-1). P. parasitica hyphae treated with ethyl acetate extract of E. cloacae MOSEL-w7 resulted in severe growth abnormalities compared to control. The extracts were further evaluated for in vivo detached-leaf assay against P. parasitica on the wild type tobacco. Application of 1% ethyl acetate bacterial extract of S. marcescens MOSEL-w2, E. cloacae MOSEL-w7, and Paenibacillus sp. MOSEL-w13 reduced P. parasitica induced lesion sizes and lesion frequencies by 60-80%. HPLC based fractions of each extract also showed bioactivity against P. parasitica. A total of 24 compounds were found in the S. marcescens MOSEL-w2, 15 compounds in E. cloacae MOSEL-w7 and 20 compounds found in Paenibacillus sp. MOSEL-w13. LC-MS/MS analyses showed different bioactive compounds in the bacterial extracts such as Cotinine (alkylpyrrolidine), L-tryptophan, L-lysine, L-Dopa, and L-ornithine. These results suggest that S. marcescens MOSEL-w2, E. cloacae MOSEL-w7, and Paenibacillus MOSEL-w13 are a source of bioactive metabolites and could be used in combination with other biocontrol agents, with other modes of action for controlling diseases caused by Phytophthora in crops. They could be a clue for the broad-spectrum biopesticides for agriculturally significant crops.
Collapse
|
89
|
Rat A, Naranjo HD, Lebbe L, Cnockaert M, Krigas N, Grigoriadou K, Maloupa E, Willems A. Roseomonas hellenica sp. nov., isolated from roots of wild-growing Alkanna tinctoria. Syst Appl Microbiol 2021; 44:126206. [PMID: 33945925 DOI: 10.1016/j.syapm.2021.126206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022]
Abstract
Two Gram-negative, aerobic, rod-shaped and yellow-orange pigmented bacterial strains (LMG 31523T and LMG 31524) were isolated from roots of wild-growing Alkanna tinctoria plants collected near Thessaloniki, Greece. Analysis of their 16S rRNA gene sequences revealed that they form a separate cluster related to the genus Roseomonas. A comparative whole genome analysis of the two strains and the type strains of related Roseomonas species revealed average nucleotide identity values from 78.84 and 80.32%. The G + C contents of the genomic DNA of strains LMG 31523T and LMG 31524 were 69.69% and 69.74%, respectively. Combined data from phenotypic, phylogenetic and chemotaxonomic studies indicated that the strains LMG 31523T and LMG 31524 represent a novel species of the genus Roseomonas. Genome analysis of the new strains showed a number of genes involved in survival in the rhizosphere environment and in plant colonization and confirmed the endophytic characteristics of LMG 31523T and LMG 31524. Since the strains LMG 31523T and LMG 31524 were isolated from a plant collected in Greece the name Roseomonas hellenica sp. nov. is proposed. The type strain is LMG 31523T (=CECT 30032T).
Collapse
|
90
|
Al-Amri SM. Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi J Biol Sci 2021; 28:3901-3908. [PMID: 34220246 PMCID: PMC8241702 DOI: 10.1016/j.sjbs.2021.03.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/05/2022] Open
Abstract
This study was planned to enhance the growth and productivity of common bean plants (Phaseolus vulgaris L.) grown under different water stress level by using different microorganisms as bio-fertilizer agents. Water stress is a international problem that effects on morphological, functional and chemical processes of plants occasioning in altering growth, yield and water relations of economic plants like common bean plants. The interaction effect between water stress (WW as recommended irrigation after 6 days, WS1 after 12 days and WS2 after 18 days) and inoculation with different microorganisms [AMF (Glomus mosseae) and endophytic bacteria, (Bacillus amyloliquefaciens)] used alone or in mixed was examined on the development and productivity of common bean plants. Mutual application of AMF and endophytic bacteria significantly increased the average values of most of growth, water relations (photosynthetic rate, transpiration rate and stomatal conductance) and yield parameters of common bean plants grown at WS1 and WS2 comparing with non-colonized plants. In this connection, colonization with AMF and endophytic bacteria with WS1 are the greater pods number, pod length, pods weight, 100 seeds weight, Yield by ton /Fed and water-use efficiency (WUE) by ton/ m3 than other treatments. Common bean yielded seeds had significantly increased nutrients content (nitrogen, potassium, phosphorus, magnesium and calcium), vitamin B1, Folic acid, crude protein and crude fibers at AMF + endophytic bacteria under second water stress (WS1) when compared to other treatments.
Collapse
|
91
|
Ribeiro IDA, Bach E, da Silva Moreira F, Müller AR, Rangel CP, Wilhelm CM, Barth AL, Passaglia LMP. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Microbiol Res 2021; 248:126754. [PMID: 33848783 DOI: 10.1016/j.micres.2021.126754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/28/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Endophytic bacteria show important abilities in promoting plant growth and suppressing phytopathogens, being largely explored in agriculture as biofertilizers or biocontrol agents. Bacteria from canola roots were isolated and screened for different plant growth promotion (PGP) traits and biocontrol of Sclerotinia sclerotiorum. Thirty isolates belonging to Bacillus, Paenibacillus, Lysinibacillus, and Microbacterium genera were obtained. Several isolates produced auxin, siderophores, hydrolytic enzymes, fixed nitrogen and solubilized phosphate. Five isolates presented antifungal activity against S. sclerotiorum by the dual culture assay and four of them also inhibited fungal growth by volatile organic compounds production. All antagonistic isolates belonged to the Bacillus genus, and had their genomes sequenced for the search of biosynthetic gene clusters (BGC) related to antimicrobial metabolites. These isolates were identified as Bacillus safensis (3), Bacillus pumilus (1), and Bacillus megaterium (1), using the genomic metrics ANI and dDDH. Most strains showed several common BGCs, including bacteriocin, polyketide synthase (PKS), and non-ribosomal peptide synthetase (NRPS), related to pumilacidin, bacillibactin, bacilysin, and other antimicrobial compounds. Pumilacidin-related mass peaks were detected in acid precipitation extracts through MALDI-TOF analysis. The genomic features demonstrated the potential of these isolates in the suppression of plant pathogens; however, some aspects of plant-bacterial interactions remain to be elucidated.
Collapse
|
92
|
Cardinale M, Viola M, Miceli E, Faddetta T, Puglia AM, Maggini V, Tani C, Firenzuoli F, Schiff S, Bogani P, Fani R, Papini A. The cypsela (achene) of Echinacea purpurea as a diffusion unit of a community of microorganisms. Appl Microbiol Biotechnol 2021; 105:2951-2965. [PMID: 33687502 PMCID: PMC8007504 DOI: 10.1007/s00253-021-11212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 11/30/2022]
Abstract
Echinacea purpurea is a plant cultivated worldwide for its pharmaceutical properties, mainly related to the stimulation of the immune system in the treatment of respiratory infections. The cypselas (fruits) of E. purpurea were examined in order to investigate the presence, localization and potential function(s) of endophytic microorganisms. Electron and confocal microscopy observations showed that three different components of microorganisms were associated to cypselas of E. purpurea: (i) one endocellular bacterial component in the cotyledons, enclosed within the host membrane; (ii) another more generic bacterial component adhering to the external side of the perianth; and (iii) a fungal component inside the porous layer of the perianth, the woody and porous modified residual of the flower, in the form of numerous hyphae able to cross the wall between adjacent cells. Isolated bacteria were affiliated to the genera Paenibacillus, Pantoea, and Sanguibacter. Plate tests showed a general resistance to six different antibiotics and also to an antimicrobial-producing Rheinheimera sp. test strain. Finally, microbiome-deprived E. purpurea seeds showed a reduced ability to germinate, suggesting an active role of the microbiome in the plant vitality. Our results suggest that the endophytic bacterial community of E. purpurea, previously found in roots and stem/leaves, might be already carried at the seed stage, hosted by the cotyledons. A further microbial fungal component is transported together with the seed in the perianth of the cypsela, whose remarkable structure may be considered as an adaptation for fungal transportation, and could influence the capability of the seed to germinate in the soil.Key Points• The fruit of Echinacea purpurea contains fungi not causing any damage to the plant.• The seed cotyledons contain endocellular bacteria.• Seed/fruit deprived of the microbiome showed a reduced ability to germinate.
Collapse
|
93
|
Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Microbiol Res 2021; 248:126751. [PMID: 33839507 DOI: 10.1016/j.micres.2021.126751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
In this study, the seed endosphere of a bacterial wilt tolerant chilli cv. Firingi Jolokia was explored in order to find effective agents for bacterial wilt disease biocontrol. A total of 32 endophytic bacteria were isolated from freshly collected seeds and six isolates were selected based on R. solanacearum inhibition assay. These isolates were identified as Bacillus subtilis (KJ-2), Bacillus velezensis (KJ-4), Leuconostoc mesenteroides (KP-1), Lactococcus lactis (LB-3), Bacillus amyloliquefaciens (WK-2), and Bacillus subtilis (WK-3) by 16S rRNA gene sequencing. In the in planta R. solanacearum inhibition assay carried out by seedling root bacterization method, Bacillus subtilis (KJ-2) exhibited highest biocontrol efficacy of 86.6 % on 7th day post R. solanacearum inoculation and a minimum biocontrol efficacy of 52.9 % was noted for Leuconostoc mesenteroides (KP-1). GC-HRMS analysis detected several known antimicrobial compounds in the extract of the culture supernatant of Bacillus subtilis (KJ-2); which may contribute to inhibition of R. solanacearum. In the growth promotion assay conducted using these isolates, only two of them namely Bacillus subtilis (KJ-2) and Bacillus amyloliquefaciens (WK-2) showed growth promotion in true leafed tomato plants. All the selected seed endophytic isolates were able to control bacterial wilt of tomato at the seedling stage and Bacillus subtilis (KJ-2) was found to be most effective in controlling the disease. The results of the present study highlighted that seed endosphere of bacterial wilt tolerant cultivar is a rich source of R. solanacearum antagonizing bacterial isolates.
Collapse
|
94
|
Root-Associated Endophytic Bacterial Community Composition of Asparagus officinalis of Three Different Varieties. Indian J Microbiol 2021; 61:160-169. [PMID: 33927457 DOI: 10.1007/s12088-021-00926-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/11/2021] [Indexed: 10/21/2022] Open
Abstract
Asparagus (Asparagus officinalis L) is an economically important crop, rich in nutrients, and is also conducive to solving ecological and environmental problems. Plants may acquire benefits from root-associated endophytic bacteria. However, the composition of the endophytic bacterial community associated with the roots of asparagus is poorly elucidated. In this study, the nine root samples of asparagus from three different varieties including Asparagus officinalis var. Grande (GLD), A. officinalis var. Jinglvlu3 (JL3) and A. officinalis var. Jingzilu2 (JZL) were investigated by high-throughput sequencing technology of the 16S rDNA V5-V7 hypervariable region of endophytic bacteria. A total of 16 phyla, 29 classes, 90 orders, 171 families, and 312 genera were identified. Endophytic bacteria diversity and bacteria structure was different among the three varieties and was influenced by rhizosphere soil properties and varieties. In the GLD variety, the main phyla were Proteobacteria, Actinobacteria, and Firmicutes. The main phylum in JL3 and JZL varieties was Proteobacteria. The observations showed that GLD had the highest diversity of endophytes as indicated by the Shannon index (GLD > JZL > JL3). The order of the endophytes richness was GLD > JL3 > JZL. The PCA and PCoA analysis revealed the microbial communities were different between three different asparagus varieties, and the microbial composition of GLD and JZL was more similar. This report provides an important reference for the study of endophytic microorganisms of asparagus. Supplementary information The online version contains supplementary material available at (10.1007/s12088-021-00926-6) contains supplementary material, which is available to authorized users.
Collapse
|
95
|
Wang Y, Wang X, Lan W, Wei Y, Xu F, Xu H. Impacts and tolerance responses of Coprinus comatus and Pleurotus cornucopiae on cadmium contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111929. [PMID: 33472107 DOI: 10.1016/j.ecoenv.2021.111929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of cadmium (Cd) have been discharged into soil with the rapid development of industry. In this study, we revealed the impacts of Coprinus comatus (C. comatus) and Pleurotus cornucopiae (P. cornucopiae) on soil and the tolerance responses of macrofungi in the presence of Cd by the analysis of soil biochemical properties and macrofungi growth indexes. Results showed that with the cultivation of C. comatus and P. cornucopiae, the HOAc-extractable Cd in soil individually reduced by 9.53% and 11.35%, the activities of soil urease, acid phosphatase, dehydrogenase, and Fluorescein diacetate (FDA) hydrolysis increased by 18.11-101.45%, 8.39-18.24%, 9.37-55.50% and 28.94-41.92%, respectively. Meanwhile, different soil bacterial communities were observed with various macrofungi cultivations. Also, Cd accumulation significantly enhanced the macrofungi antioxidant enzyme activities, which increased by 24.10-45.43%, 30.11-61.53% and 7.03-26.81% for catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities in the macrofungi, respectively. Moreover, the enhanced macrofungi endophytic bacterial diversities with Cd existence was firstly observed in the present experiment. These findings revealed the possible Cd resistance mechanisms in macrofungi, suggesting C. comatus and P. cornucopiae were promising ameliorators for Cd contaminated soil.
Collapse
|
96
|
Iqrar I, Shinwari ZK, El-Sayed ASAF, Ali GS. Exploration of microbiome of medicinally important plants as biocontrol agents against Phytophthora parasitica. Arch Microbiol 2021; 203:2475-2489. [PMID: 33675371 DOI: 10.1007/s00203-021-02237-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023]
Abstract
In a preliminary plant-based microbiome study, diverse bacterial taxa were identified from different medicinal plants using 16S rRNA gene sequencing. Based on initial antimicrobial screening, eight (8) bacterial endophytes in six (6) different genera, Streptomyces, Pseudomonas, Enterobacter, Bacillus, Arthrobacter, and Delftia, from four important medicinal plants Dodonaea viscosa, Fagonia indica, Caralluma tuberculata, and Calendula arvensis were selected for further analyses. Antimicrobial assays revealed that Pseudomonas taiwanensis MOSEL-RD23 has strong anti-Phytophthora activity. Volatiles produced by P. taiwanensis MOSEL-RD23and Bacillus flexus MOSEL-MIC5 inhibited the growth of Phytophthora parasitica by more than 80%. Ethyl acetate extracts of Streptomyces alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, Enterobacter hormaechei MOSEL-FLS1, and Bacillus tequilensis MOSEL-FLS3, and Delftia lacustris MB322 displayed high potency against P. parasitica. All these bacterial extracts showed strong inhibition of more than 80% inhibition in vitro against P. parasitica at different concentrations (4-400 µg/mL). Bacterial extracts showing strong antimicrobial activity were selected for bioactivity-driven fractionation and showed anti-Phytophthoral activity in multiple fractions and different peaks observed in UV-Vis spectroscopy. In the detached-leaf assay against P. parasitica on tobacco, 1% ethyl acetate bacterial extract of S. alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, E. hormaechei MOSEL-FLS1, B. tequilensis MOSEL-FLS3, and D. lacustris MB322 reduced lesion sizes and lesion frequencies caused by P. parasitica by 68 to 81%. Overall, P. taiwanensis MOSEL-RD23 showed positive activities for all the assays. Analyzing the potential of bacterial endophytes as biological control agents can potentially lead to the formulation of broad-spectrum biopesticides for the sustainable production of crops.
Collapse
|
97
|
Volatile organic compounds profile synthesized and released by endophytes of tomato (Solanum lycopersici L.) and their antagonistic role. Arch Microbiol 2021; 203:1383-1397. [PMID: 33386869 DOI: 10.1007/s00203-020-02136-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
The endophytic microbiome uses mechanisms such as the secretion of diffusible antibiotic molecules, synthesis and release of volatile organic compounds, and/or toxins to protect plants. The aim of this research was to study the volatile organic compounds (VOCs) profile as well as the diffusible secondary metabolites produced and released by endophytic bacteria isolated from tomato plants that in in-vitro assays prevented growth of pathogenic fungi. Bacteria belonging to seven genera (Acinetobacter, Arthrobacter, Bacillus, Microbacterium, Pantoea, Pseudomonas, and Stenotrophomonas) were isolated from different tissues of tomato plants with and without symptoms of Gray leaf spot, a disease provoked by Stemphylium lycopersici. In vitro, antagonistic assays were performed and the effect of volatile and soluble compounds released by endophytic bacteria on the growth of pathogenic fungi was determined. The VOCs synthesized by the endophytes were extracted, identified and quantified. These isolates representatives of seven bacterial genera inhibited the growth of three fungal pathogens of tomato S. lycopersici, Alternaria alternata and Corynespora cassiicola, which was related to the synthesis of soluble compounds as well as VOCs. Endophytes synthesize and release different VOCs, probably due to the different type of interaction that each bacterium establishes with the fungus, presenting a range of fungal growth inhibition.
Collapse
|
98
|
Dos Santos TC, Leandro MR, Maia CY, Rangel P, Soares FS, Reis R, Passamani L, Silveira V, de Souza Filho GA. Arabidopsis thaliana exudates induce growth and proteomic changes in Gluconacetobacter diazotrophicus. PeerJ 2020; 8:e9600. [PMID: 33240578 PMCID: PMC7676354 DOI: 10.7717/peerj.9600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Background Plants interact with a variety of microorganisms during their life cycle, among which beneficial bacteria deserve special attention. Gluconacetobacter diazotrophicus is a beneficial bacterium able to fix nitrogen and promote plant growth. Despite its biotechnological potential, the mechanisms regulating the interaction between G. diazotrophicus and host plants remain unclear. Methods We analyzed the response of G. diazotrophicus to cocultivation with Arabidopsis thaliana seedlings. Bacterial growth in response to cocultivation and plant exudates was analyzed. Through comparative proteomic analysis, G. diazotrophicus proteins regulated during cocultivation were investigated. Finally, the role of some up-accumulated proteins in the response G. diazotrophicus to cocultivation was analyzed by reverse genetics, using insertion mutants. Results Our results revealed the induction of bacterial growth in response to cocultivation. Comparative proteomic analysis identified 450 bacterial proteins, with 39 up-accumulated, and 12 down-accumulated in response to cocultivation. Among the up-accumulated pathways, the metabolism of pentoses and protein synthesis were highlighted. Proteins potentially relevant to bacterial growth response such as ABC-F-Etta, ClpX, Zwf, MetE, AcnA, IlvC, and AccC were also increased. Reverse genetics analysis, using insertion mutants, revealed that the lack of ABC-F-Etta and AccC proteins severely affects G. diazotrophicus response to cocultivation. Our data demonstrated that specific mechanisms are activated in the bacterial response to plant exudates, indicating the essential role of “ribosomal activity” and “fatty acid biosynthesis” in such a process. This is the first study to demonstrate the participation of EttA and AccC proteins in plant-bacteria interactions, and open new perspectives for understanding the initial steps of such associations.
Collapse
|
99
|
Yao H, Sun X, He C, Li XC, Guo LD. Host identity is more important in structuring bacterial epiphytes than endophytes in a tropical mangrove forest. FEMS Microbiol Ecol 2020; 96:5800982. [PMID: 32149339 DOI: 10.1093/femsec/fiaa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
Interactions between plants and microbes are involved in biodiversity maintenance, community stability and ecosystem functioning. However, differences in the community and network structures between phyllosphere epiphytic and endophytic bacteria have rarely been investigated. Here, we examined phyllosphere epiphytic and endophytic bacterial communities of six mangrove species using Illumina MiSeq sequencing of the 16S rRNA gene. The results revealed that the community structure of epiphytic and endophytic bacteria was different. Plant identity significantly affected the diversity and community structure of both epiphytic and endophytic bacteria, with a greater effect on the community structure of the former than the latter. Network analysis showed that both plant-epiphytic and plant-endophytic bacterial network structures were characterized by significantly highly specialized and modular but lowly connected and anti-nested properties. Furthermore, the epiphytic bacterial network was more highly specialized and modular but less connected and more strongly anti-nested than the endophytic bacterial network. This study reveals that the phyllosphere epiphytic and endophytic bacterial community structures differ and plant identity has a greater effect on the epiphytic than on the endophytic bacteria, which may provide a comprehensive insight into the role of plant identity in driving the phyllosphere epiphytic and endophytic microbial community structures in mangrove ecosystems.
Collapse
|
100
|
Li FZ, Zeng YJ, Zong MH, Yang JG, Lou WY. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: Production of three groups of lipopeptides and the inhibition against food spoilage microorganisms. J Biotechnol 2020; 323:42-53. [PMID: 32739396 DOI: 10.1016/j.jbiotec.2020.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Food contamination caused by microorganisms has become a threat to consumers' health. Exploring antagonistic endophytes from plants of food raw-material and applying bioactive metabolites to inhibit the contamination has been an alternative and safer solution. In this study, we isolated and screened potential antagonistic endophytes from fresh Camellia assamica leaves, which were widely used in tea beverage production. We focused on a strain that showed visible inhibitory activity to Gram-positive bacteria, Gram-negative bacteria, and fungi. It was identified as a member of Bacillus velezensis and named FZ06. The results of genome analysis showed the strain FZ06 had 167 single-copy specific genes, much higher than those of most related strains. Also, 11 potential gene clusters of antimicrobial metabolites were found. Three groups of lipopeptides (surfactin, iturin, and fengycin) were identified by UPLC-MS/MS in purified antimicrobial methanol fraction of strain FZ06. The results of minimum inhibitory concentration (MIC) test proved the lipopeptide extract showed significant inhibitory effect on food spoilage bacteria (MIC 512-2048 μg/mL) and toxigenic fungi (MIC 128-256 μg/mL). In conclusion, this study suggests that the endophytic B. velezensis FZ06 and its lipopeptide extract hold great potential applications in the inhibition of food spoilage bacteria and toxic fungi in food industry.
Collapse
|