76
|
Abstract
We analyze the optimal harvesting problem for an ecosystem of species that experience environmental stochasticity. Our work generalizes the current literature significantly by taking into account non-linear interactions between species, state-dependent prices, and species seeding. The key generalization is making it possible to not only harvest, but also 'seed' individuals into the ecosystem. This is motivated by how fisheries and certain endangered species are controlled. The harvesting problem becomes finding the optimal harvesting-seeding strategy that maximizes the expected total income from the harvest minus the lost income from the species seeding. Our analysis shows that new phenomena emerge due to the possibility of species seeding. It is well-known that multidimensional harvesting problems are very hard to tackle. We are able to make progress, by characterizing the value function as a viscosity solution of the associated Hamilton-Jacobi-Bellman equations. Moreover, we provide a verification theorem, which tells us that if a function has certain properties, then it will be the value function. This allows us to show heuristically, as was shown by Lungu and Øksendal (Bernoulli 7(3):527-539, 2001), that it is almost surely never optimal to harvest or seed from more than one population at a time. It is usually impossible to find closed-form solutions for the optimal harvesting-seeding strategy. In order to by-pass this obstacle we approximate the continuous-time systems by Markov chains. We show that the optimal harvesting-seeding strategies of the Markov chain approximations converge to the correct optimal harvesting strategy. This is used to provide numerical approximations to the optimal harvesting-seeding strategies and is a first step towards a full understanding of the intricacies of how one should harvest and seed interacting species. In particular, we look at three examples: one species modeled by a Verhulst-Pearl diffusion, two competing species and a two-species predator-prey system.
Collapse
|
77
|
Braverman E, Ilmer I. On the interplay of harvesting and various diffusion strategies for spatially heterogeneous populations. J Theor Biol 2019; 466:106-118. [PMID: 30690036 DOI: 10.1016/j.jtbi.2019.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 11/18/2022]
Abstract
The paper explores the influence of harvesting (or culling) on the outcome of the competition of two species in a spatially heterogeneous environment. The harvesting effort is assumed to be proportional to the space-dependent intrinsic growth rate. The differences between the two populations are the diffusion strategy and the harvesting intensity. In the absence of harvesting, competing populations may either coexist, or one of them may bring the other to extinction. If the latter is the case, introduction of any level of harvesting to the successful species guarantees survival to its non-harvested competitor. In the former case, there is a strip of "close enough" to each other harvesting rates leading to preservation of the original coexistence. Some estimates are obtained for the relation of the harvesting levels providing either coexistence or competitive exclusion.
Collapse
|
78
|
Panja P. Stability and dynamics of a fractional-order three-species predator-prey model. Theory Biosci 2019; 138:251-259. [PMID: 30895447 DOI: 10.1007/s12064-019-00291-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/04/2019] [Indexed: 11/29/2022]
Abstract
In this paper, a fractional-order predator-prey mathematical model has been developed considering Holling type II functional response. Here, we have investigated the interaction dynamics of prey, middle predator and top predator. We assume that the middle predator consumes only the prey, and the top predator consumes only the middle predator. Here, the logistic growth of prey has been considered. Then, different possible equilibrium points of our proposed system are determined. The stability of our proposed system is investigated around the equilibrium points. Then, some numerical simulations results are presented for better understanding the dynamics of our proposed model. It is found that the fractional-order derivative can improve the stability of our proposed system.
Collapse
|
79
|
Abstract
Cell salvage is an efficient method to reduce the transfusion of homologous banked blood, as documented by several meta-analyses detected in a systematic literature search. Cell salvage is widely used in orthopedics, trauma surgery, cardiovascular and abdominal transplantation surgery. The retransfusion of unwashed shed blood from wounds or drainage is not permitted according to German regulations. Following irradiation of wound blood, salvaged blood can also be used in tumor surgery. Cell salvage makes a valuable contribution to providing sufficient compatible blood for transfusions in cases of massive blood loss. Certain surgical procedures for Jehovah's Witnesses are only possible with the use of cell salvage. Another possible use is the washing of homologous banked blood, e. g. to prevent potassium-induced arrhythmia or sequestration of autologous platelets. Other advantages besides a good compatibility are the high vitality and functionality of the unstored autologous red blood cells. These have been declared a pharmaceutical product by the German transfusion task force in 2014, so that the autologous red blood cells are now under the control of the Pharmaceutical Products Act (AMG). The new hemotherapy guidelines, however, tolerate cell salvage only under strict rules, whereby the production of autologous blood during or after surgery is still possible without additional special permits. The new guidelines now require the introduction of a quality management system for cell salvage and regular quality controls. These quality controls include a control of the product hematocrit for every application, monthly controls of the protein and albumin elimination rates and the erythrocyte recovery rate for each cell salvage device. Testing for infection markers is not required. The application of cell salvage has to be reported to the appropriate authorities.
Collapse
|
80
|
Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, Lee SY. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. BIORESOURCE TECHNOLOGY 2019; 272:34-39. [PMID: 30308405 DOI: 10.1016/j.biortech.2018.09.146] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Microalgal bacterial flocs can be a promising approach for microalgae harvesting and wastewater treatment. The present study provides an insight on the bioflocs formation to enhance harvesting of Chlorella vulgaris and the removal of nutrients from seafood wastewater effluent. The results showed that the untreated seafood wastewater was the optimal culture medium for the cultivation and bioflocculation of C. vulgaris, with the flocculating activity of 92.0 ± 6.0%, total suspended solids removal of 93.0 ± 5.5%, and nutrient removal of 88.0 ± 2.2%. The bioflocs collected under this optimal condition contained dry matter of 107.2 ± 5.6 g·L-1 and chlorophyll content of 25.5 ± 0.2 mg·L-1. The results were promising when compared to those obtained from the auto-flocculation process that induced by the addition of calcium chloride and pH adjustment. Additionally, bacteria present in the wastewater aided to promote the formation of bioflocculation process.
Collapse
|
81
|
Sen M, Simha A, Raha S. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System. Acta Biotheor 2018; 66:293-313. [PMID: 29687203 DOI: 10.1007/s10441-018-9323-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/05/2018] [Indexed: 11/27/2022]
Abstract
This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.
Collapse
|
82
|
Giménez JB, Bouzas A, Carrere H, Steyer JP, Ferrer J, Seco A. Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand. BIORESOURCE TECHNOLOGY 2018; 269:188-194. [PMID: 30172182 DOI: 10.1016/j.biortech.2018.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
In the present study, the effect of cross-flow filtration (CFF) on the overall valorization of Chlorella spp. microalgae as biogas was assessed. The effect of CFF on microalgae cell integrity was quantified in terms of viability which was correlated with the anaerobic biodegradability. The viability dropped as the biomass concentration increased, whereas anaerobic biodegradability increased linearly with the viability reduction. It was hypothesized that a stress-induced release and further accumulation of organic polymers during CFF increased the flux resistance which promoted harsher shear-stress conditions. Furthermore, the volume reduction as the concentration increased entailed an increase in the specific energy supply to the biomass. The energy demand was positive in the whole range of concentrations studied, yielding an overall energy efficiency as high as 22.9% for the highest concentration studied. Specifically, heat requirements were lower than electricity requirements only when the biomass concentrations exceeded 10 g COD·L-1.
Collapse
|
83
|
Bertocci I, Blanco A, Franco JN, Fernández-Boo S, Arenas F. Short-term variation of abundance of the purple sea urchin, Paracentrotus lividus (Lamarck, 1816), subject to harvesting in northern Portugal. MARINE ENVIRONMENTAL RESEARCH 2018; 141:247-254. [PMID: 30249457 DOI: 10.1016/j.marenvres.2018.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Paracentrotus lividus is a common and intensely harvested sea urchin at several European locations, including the Mediterranean Sea and the Atlantic coast of the Iberian Peninsula. The increasing human pressure on this resource due to the growing demand and market value of sea urchin gonads as seafood raises concerns on the ecological sustainability of present fisheries, which are showing a technological improvement and an expansion towards previously non-harvested areas. We examined the abundance of P. lividus of both commercial and non-commercial size before, during and after the harvesting season (from October to April) in the rocky shallow subtidal habitat along the northern Portuguese coast. The abundance of commercial (≥50 mm in test diameter) P. lividus individuals increased in the harvesting season, but drastically dropped by about 90% in the after-harvesting period. Such a pattern was consistent among three rocky shores spanning about 65 km of coast. The multivariate population structure and most size classes of non-commercial sea urchins did not differ depending on the period. The only exception was Class 4 (test diameter between 30 and 40 mm), which was more abundant in the harvesting than in the before- and, further, the after-harvesting period, but only at one shore. Very small (Class 1, test diameter below 10 mm) urchins were never found. The present findings suggest that human harvesting may cause considerable reductions in the abundance of target P. lividus, but that such an effect would not be evident concomitantly with harvesting, but in the subsequent period. Even if just under a precautionary principle, protection strategies focused on sea urchin populations and the harvesting period are advisable to contribute to maintain a sustainable local fishery of P. lividus populations that are likely to be negatively affected also by other natural and anthropogenic perturbations.
Collapse
|
84
|
Jafari N, Shafiee Alavijeh R, Abdolahnejad A, Farrokhzadeh H, Amin MM, Ebrahimi A. An innovative approach to attached cultivation of Chlorella vulgaris using different materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20097-20105. [PMID: 29748798 DOI: 10.1007/s11356-018-2177-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
This article investigates the innovative attached cultivation of Chlorella vulgaris (C. vulgaris) using different materials as an alternative to high capital techniques of harvesting such as centrifugation, flocculation, and filtration. A simple attached algal cultivation system was proposed that was equipped by 10 submerged supporting materials which can harvest algal cells, efficiently. The effect of operational parameters such as light intensity, the rate of aeration, and auto-harvesting time was investigated. A chip, durable, and abundant cellulosic material (Kaldnes carriers covered by kenafs, KCCKs) was proposed for auto-harvesting C. vulgaris cells. The results revealed that optimum aeration rate, light intensity, and auto-harvesting of microalgal cells were 3.6 vvm, 10,548 W/m2, and 12 days, respectively. Six of these KCCKs had the highest biofilm formation percent up to 33%. In this condition, the rate of cell growth increased to 0.6 mg/cm2. Therefore, this system can be used for appropriate auto-harvesting of microalgae in the attached growth systems. C. vulgaris biomass composition is valuable for biodiesel, bioethanol, and animal protein production.
Collapse
|
85
|
Erickson MC, Liao JY, Webb CC, Habteselassie MY, Cannon JL. Inactivation of Escherichia coli O157:H7 and Salmonella deposited on gloves in a liquid state and subjected to drying conditions. Int J Food Microbiol 2018; 266:200-206. [PMID: 29232632 DOI: 10.1016/j.ijfoodmicro.2017.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/04/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
Abstract
Gloves are worn by workers harvesting ready-to-eat produce as a deterrent for contaminating the produce with enteric pathogens that may reside on their hands. As fields are not sterile environments, the probability for gloves to become contaminated still exists and therefore it is critical to understand the conditions that affect the survival of pathogens on gloves. Both Escherichia coli O157:H7 and Salmonella deposited on glove surfaces in a liquid state survived longer when the pathogen had been suspended in lettuce sap than when suspended in water. Despite this protection, pathogens deposited on clean single-use gloves were more likely to survive during drying than pathogens deposited on dirty gloves (a film of lettuce sap had been applied to the surface prior to pathogen application and soil had been ground into the gloves). Survival of both E. coli O157:H7 and Salmonella was biphasic with the greatest losses occurring during the first hour of drying followed by much slower losses in the ensuing hours. Pathogens grown in rich media (tryptic soy broth) versus minimal media (M9) as well as those cultured on solid agar versus liquid broth were also more likely to be resistant to desiccation when deposited onto gloves. Although survival of E. coli O157:H7 on nitrile gloves was in general greater than it was on latex gloves, the relative survival of Salmonella on the two glove types was inconsistent. Due to these inconsistencies, no one glove type is considered better than another in reducing the risk for contamination with enteric pathogens. In addition, the extended survival of what are generally referred to as stress-resistant pathogens suggests that gloves either be changed frequently during the day or washed in a disinfectant to reduce the risk of glove contamination that could otherwise contaminate product handled with the contaminated gloves.
Collapse
|
86
|
Noh W, Kim J, Lee SJ, Ryu BG, Kang CM. Harvesting and contamination control of microalgae Chlorella ellipsoidea using the bio-polymeric flocculant α-poly-l-lysine. BIORESOURCE TECHNOLOGY 2018; 249:206-211. [PMID: 29045923 DOI: 10.1016/j.biortech.2017.09.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Microalgae have been extensively studied for the production of various products. However, to date, microalgal biomass has not become economically feasible, mainly due to different issues such as contamination from various sources that occurs during downstream processes, and which leads to low quality biomass with limited application. In this study, to overcome contamination by flocculants and other microorganisms, the cationic biopolymer α-Poly-l-lysine (α-PLL) was applied. The cationic amine moiety and polymeric chain of α-PLL rendered microalgal harvesting efficient. With increasing α-PLL chain length, efficient dose- and time-dependent harvesting was achieved. In addition to efficient flocculation performance, biomass harvested using α-PLL showed suppressed biological contamination through the inherent antimicrobial activity of α-PLL. Thus, it is possible to upgrade the quality and storability of produced microalgal biomass using α-PLL-induced flocculation.
Collapse
|
87
|
Chua ET, Schenk PM. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. BIORESOURCE TECHNOLOGY 2017. [PMID: 28624245 DOI: 10.1016/j.biortech.2017.05.124] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microalgae have been studied as biofactories for almost four decades. Yet, even until today, many aspects of microalgae farming and processing are still considered exploratory because of the uniqueness of each microalgal species. Thus, it is important to develop the entire process of microalgae farming: from culturing to harvesting, and down to extracting the desired high-value products. Based on its rapid growth and high oil productivities, Nannochloropsis sp. is of particular interest to many industries for the production of high-value oil containing omega-3 fatty acids, specifically eicosapentaenoic acid (EPA), but also several other products. This review compares the various techniques for induction, harvesting, and extraction of EPA-rich oil and high-value protein explored by academia and industry to develop a multi-product Nannochloropsis biorefinery. Knowledge gaps and opportunities are discussed for culturing and inducing fatty acid biosynthesis, biomass harvesting, and extracting EPA-rich oil and high-value protein from the biomass of Nannochloropsis sp.
Collapse
|
88
|
Kumar V, Nanda M, Verma M. Application of agar liquid-gel transition in cultivation and harvesting of microalgae for biodiesel production. BIORESOURCE TECHNOLOGY 2017; 243:163-168. [PMID: 28654837 DOI: 10.1016/j.biortech.2017.06.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
In order to increase microalgal biomass productivity efficient cultivation and harvesting methods are needed against the available traditional methods. The present study focuses on the same by harvesting microalgae using agar gel. Agar medium containing bold's basal medium (BBM) undergoes a thermoreversible gel transition. As compared to the traditional protocols, this gel is used to cultivate microalgae without even affecting the total productivity. To develop the gel for microalgae cultivation, agar was boiled in BBM. Then the agar was cooled to 35°C and microalgae culture was added to it. After seeding the microalgae the temperature of the agar was further decreased by 10°C to induce gelation. Instead of isolated cells microalgae were grown in clusters within the agar gel. Microalgal clusters gravimetrically settle at the bottom within 2h. In this method agar can be reused.
Collapse
|
89
|
Kim DY, Lee K, Lee J, Lee YH, Han JI, Park JY, Oh YK. Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. BIORESOURCE TECHNOLOGY 2017; 239:190-196. [PMID: 28521228 DOI: 10.1016/j.biortech.2017.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Chemical flocculation is considered to be an overall low-cost and up-scalable process for harvesting of microalgae. In this study a new flocculation approach utilizing metal coagulant (Fe2(SO4)3) and sulfuric acid (H2SO4) was introduced for harvesting of Chlorella sp. KR-1, which overcome two main issues of contamination and reuse of coagulant. Reduction of pH successfully released precipitates attached to the microalgae, and the remaining acidic solution containing recovered ferric ions could be reused for harvesting up to three times with high, better-than 98% efficiencies. Moreover, the acid-treated microalgal biomass could be directly used for lipid extraction without additional catalyst. High extraction yields of around 32% were achieved with FAME conversion efficiencies of around 90%. The integrated approach devised in the present study is expected to make the best use of the age-old yet effective harvesting means of flocculation, which can be a practical and economical option in microalgal biorefinery.
Collapse
|
90
|
Kuiper JJ, Verhofstad MJJM, Louwers ELM, Bakker ES, Brederveld RJ, van Gerven LPA, Janssen ABG, de Klein JJM, Mooij WM. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys? ENVIRONMENTAL MANAGEMENT 2017; 59:619-634. [PMID: 28044182 PMCID: PMC5339322 DOI: 10.1007/s00267-016-0811-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/19/2016] [Indexed: 05/26/2023]
Abstract
Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo-to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.
Collapse
|
91
|
Wong YK, Ho YH, Leung HM, Ho KC, Yau YH, Yung KKL. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9102-9110. [PMID: 28039627 DOI: 10.1007/s11356-016-7856-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
This article explores the potential of using an electro-coagulation-flotation (ECF) harvester to allow flotation of microalgae cells for surface harvesting. A response surface methodology (RSM) model was used to optimize ECF harvesting by adjusting electrode plate material, electrode plate number, charge of the electrodes, electrolyte concentration, and pH value of the culture solution. The result revealed that three aluminum electrode plates (one anode and two cathodes), brine solution (8 g/L), and acidity (pH = 4) of culture solution (optimized ECF harvester) The highest flocculant concentration was measured at 2966 mg/L after 60 min and showed a 79.8 % increase of flocculation concentration. Such results can provide a basis for designing a large-scale microalgae harvester for commercial use in the future.
Collapse
|
92
|
Gerchman Y, Vasker B, Tavasi M, Mishael Y, Kinel-Tahan Y, Yehoshua Y. Effective harvesting of microalgae: Comparison of different polymeric flocculants. BIORESOURCE TECHNOLOGY 2017; 228:141-146. [PMID: 28061396 DOI: 10.1016/j.biortech.2016.12.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 05/06/2023]
Abstract
Microalgae harvesting is a major hurdle in the use of microalgae for oil production. Here we describe the use of a standard cationic polymer used for water treatment, Polydiallyldimethylammonium chloride (PDADMAC), for sedimentation of Chlorella vulgaris and comparison of its flocculation properties with two other polymers, chitosan and Superfloc®. We found PDADMAC to be the most effective flocculant with 90% of the algae flocculating at concentrations as low as 5mg/L within 60min, and good activity even at pH=10. Interestingly, with both PDADMAC and chitosan maximum flocculation was achieved much before zeroing of zeta potential. PDADMAC flocculation was also very effective in enhancing harvest by filtration and somewhat at flocculation and sedimentation of marine algae, Nannochloropsis salina.
Collapse
|
93
|
Úbeda B, Gálvez JÁ, Michel M, Bartual A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. BIORESOURCE TECHNOLOGY 2017; 228:210-217. [PMID: 28064133 DOI: 10.1016/j.biortech.2016.12.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the optimal growth and high value-added production of the microalgae Coelastrum cf. pseudomicroporum Korshikov cultivated in urban wastewater. It was observed that C. cf. pseudomicroporum grew ideally in this medium, acting as an efficient nutrient starver. Additionally, the obtained biomass increased carotenoid cell content after saltwater stress. The effects of light intensity and salt stress on its growth rate were analysed. The results showed that this alga can grow very fast using wastewater as culture medium, reaching maximum growth rates of 1.61±0.05day-1, and tolerating strong irradiances. It was also found that under salt-stress this species could accumulate carotenoids (range 1.73-91.2pgcell-1). Moreover, a good harvesting efficiency (96.84%) was observed using Coelastrum exudates as bioflocculant of Scenedesmus sp., so Coelastrum exudates could act as a potential bioflocculant for other species.
Collapse
|
94
|
Eppink MHM, Olivieri G, Reith H, van den Berg C, Barbosa MJ, Wijffels RH. From Current Algae Products to Future Biorefinery Practices: A Review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:99-123. [PMID: 28265702 DOI: 10.1007/10_2016_64] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are considered to be one of the most promising next generation bio-based/food feedstocks with a unique lipid composition, high protein content, and an almost unlimited amount of other bio-active molecules. High-value components such as the soluble proteins, (poly) unsaturated fatty acids, pigments, and carbohydrates can be used as an important ingredient for several markets, such as the food/feed/chemical/cosmetics and health industries. Although cultivation costs have decreased significantly in the last few decades, large microalgae production processes become economically viable if all complex compounds are optimally valorized in their functional state. To isolate these functional compounds from the biomass, cost-effective, mild, and energy-efficient biorefinery techniques need to be developed and applied. In this review we describe current microalgae biorefinery strategies and the derived products, followed by new technological developments and an outlook toward future products and the biorefinery philosophy.
Collapse
|
95
|
Espinosa F, Rivera-Ingraham GA. Biological Conservation of Giant Limpets: The Implications of Large Size. ADVANCES IN MARINE BIOLOGY 2016; 76:105-155. [PMID: 28065294 DOI: 10.1016/bs.amb.2016.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Patellogastropods, also known as true limpets, are distributed throughout the world and constitute key species in coastal ecosystems. Some limpet species achieve remarkable sizes, which in the most extreme cases can surpass 35cm in shell length. In this review, we focus on giant limpets, which are defined as those with a maximum shell size surpassing 10cm. According to the scientific literature, there are a total of 14 species across five genera that reach these larger sizes. Four of these species are threatened or in danger of extinction. Inhabiting the intertidal zones, limpets are frequently affected by anthropogenic impacts, namely collection by humans, pollution and habitat fragmentation. In the case of larger species, their conspicuous size has made them especially prone to human collection since prehistoric times. Size is not phylogeny-dependent among giant limpets, but is instead related to behavioural traits instead. Larger-sized species tend to be nonmigratory and territorial compared to those that are smaller. Collection by humans has been cited as the main cause behind the decline and/or extinction of giant limpet populations. Their conspicuously large size makes them the preferred target of human collection. Because they are protandric species, selectively eliminating larger specimens of a given population seriously compromises their viability and has led to local extinction events in some cases. Additionally, sustained collection over time may lead to microevolutionary responses that result in genetic changes. The growing presence of artificial structures in coastal ecosystems may cause population fragmentation and isolation, limiting the genetic flow and dispersion capacity of many limpet species. However, when they are necessitated, artificial structures could be managed to establish marine artificial microreserves and contribute to the conservation of giant limpet species that naturally settle on them.
Collapse
|
96
|
Simons K, Buyl R, Van Nieuwenhuyse A, Coomans D. Simulation enhanced distributed lag models for mortality displacement. SPRINGERPLUS 2016; 5:1951. [PMID: 27933234 PMCID: PMC5104706 DOI: 10.1186/s40064-016-3566-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022]
Abstract
Distributed lag models (DLM) are attractive methods for dealing with mortality displacement, however their estimates can have substantial bias when the data is generated by a multi-state model. In particular DLMs are not valid for mortality displacement. Alternative methods are scarce and lack feasibility and validation. We investigate the breakdown of DLM in three state models by means of simulation and propose simulation enhanced distributed lag models (SEDLM) to overcome the defects. The new method provides simultaneous estimates of the net effect (entry) and the displacement effect (exit). These have improved performance over the singular estimate from a regular DLM. SEDLM entry estimates have negligible bias and their variance is reduced. The exit estimates are unbiased and their variance is one order of magnitude lower with respect to the entry estimates. Applying SEDLM to the original Chicago data, the 95% highest posterior density intervals for both entry and exit contain 0, providing neither evidence for a ‘displacement effect’ nor for a ‘net effect’.
Collapse
|
97
|
Gutiérrez R, Ferrer I, González-Molina A, Salvadó H, García J, Uggetti E. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds. WATER RESEARCH 2016; 106:539-549. [PMID: 27771604 DOI: 10.1016/j.watres.2016.10.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Microalgal biomass harvesting by inducing spontaneous flocculation (bioflocculation) sets an attractive approach, since neither chemicals nor energy are needed. Indeed, bioflocculation may be promoted by recycling part of the harvested microalgal biomass to the photobioreactor in order to increase the predominance of rapidly settling microalgae species. The aim of the present study was to improve the recovery of microalgal biomass produced in wastewater treatment high rate algal ponds (HRAPs) by recycling part of the harvested microalgal biomass. The recirculation of 2% and 10% (dry weight) of the HRAPs microalgal biomass was tested over one year in an experimental HRAP treating real urban wastewater. Results indicated that biomass recycling had a positive effect on the harvesting efficiency, obtaining higher biomass recovery in the HRAP with recycling (R-HRAP) (92-94%) than in the control HRAP without recycling (C-HRAP) (75-89%). Microalgal biomass production was similar in both systems, ranging between 3.3 and 25.8 g TSS/m2d, depending on the weather conditions. Concerning the microalgae species, Chlorella sp. was dominant overall the experimental period in both HRAPs (abundance >60%). However, when the recycling rate was increased to 10%, Chlorella sp. dominance decreased from 97.6 to 88.1%; while increasing the abundance of rapidly settling species such as Stigeoclonium sp. (16.8%, only present in the HRAP with biomass recycling) and diatoms (from 0.7 to 7.3%). Concerning the secondary treatment of the HRAPs, high removals of COD (80%) and N-NH4+ (97%) were found in both HRAPs. Moreover, by increasing the biomass recovery in the R-HRAP the effluent total suspended solids (TSS) concentration was decreased to less than 35 mg/L, meeting effluent quality requirements for discharge. This study shows that microalgal biomass recycling (10% dry weight) increases biomass recovery up to 94% by selecting the most rapidly settling microalgae species without compromising the biomass production and improving the wastewater treatment in terms of TSS removal.
Collapse
|
98
|
Huang WC, Kim JD. Nickel oxide nanoparticle-based method for simultaneous harvesting and disruption of microalgal cells. BIORESOURCE TECHNOLOGY 2016; 218:1290-3. [PMID: 27481468 DOI: 10.1016/j.biortech.2016.07.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 05/21/2023]
Abstract
Microalgae biodiesel is considered one of the most promising renewable fuels. However, the high cost of the downstream process is a major barrier to large-scale microalgal lipid production. In this study, a novel approach based on nickel oxide nanoparticles (NiO NPs) was developed and its effectiveness for simultaneous harvesting and cell disruption in microalgal lipid production was determined. NiO NPs exhibited a microalgal harvesting efficiency of 98.75% in 1min at pH 7. Moreover, after treating with NiO NPs for 96h, the lipid extraction efficiency of microalgae (with 80% water content) reached 91.08% and was 208.37% compared to that without NiO treatment. This approach is simple and does not necessitate drying; furthermore, no equipment with high energy consumption was required.
Collapse
|
99
|
Lipids rich in ω-3 polyunsaturated fatty acids from microalgae. Appl Microbiol Biotechnol 2016; 100:8667-84. [PMID: 27649964 DOI: 10.1007/s00253-016-7818-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Despite microalgae recently receiving enormous attention as a potential source of biodiesel, their use is still not feasible as an alternative to fossil fuels. Recently, interest in microalgae has focused on the production of bioactive compounds such as polyunsaturated fatty acids (PUFA), which provide microalgae a high added value. Several considerations need to be assessed for optimizing PUFA production from microalgae. Firstly, a microalgae species that produces high PUFA concentrations should be selected, such as Nannochloropsis gaditana, Isochrysis galbana, Phaeodactylum tricornutum, and Crypthecodinium cohnii, with marine species gaining more attention than do freshwater species. Closed cultivation processes, e.g., photobioreactors, are the most appropriate since temperature, pH, and nutrients can be controlled. An airlift column with LEDs or optical fibers to distribute photons into the culture media can be used at small scale to produce inoculum, while tubular and flat panels are used at commercial scale. Depending on the microalgae, a temperature range from 15 to 28 °C and a pH from 7 to 8 can be employed. Relevant conditions for PUFA production are medium light irradiances (50-300 μmol photons m(-2) s(-1)), air enriched with (0-1 % (v/v) CO2, as well as nitrogen and phosphorous limitation. For research purposes, the most appropriate medium for PUFA production is Bold's Basal, whereas mixotrophic cultivation using sucrose or glucose as the carbon source has been reported for industrial processes. For cell harvesting, the use of tangential flow membrane filtration or disk stack centrifugation is advisable at commercial scale. Current researches on PUFA extraction have focused on the use of organic solvents assisted with ultrasound or microwaves, supercritical fluids, and electroporation or are enzyme assisted. Commercial-scale extraction involves mainly physical methods such as bead mills and expeller presses. All these factors should be taken into account when choosing a PUFA production system, as discussed in this review.
Collapse
|
100
|
Das P, Thaher MI, Abdul Hakim MAQM, Al-Jabri HMSJ, Alghasal GSHS. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. BIORESOURCE TECHNOLOGY 2016; 216:824-829. [PMID: 27318160 DOI: 10.1016/j.biortech.2016.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Coagulation-flocculation can be considered as one of the least energy intensive microalgae biomass harvesting processes. However, cost of the coagulant and biomass contamination are two critical issues that need to be considered. In this study, ferric chloride (72-96mg/L) was used to effectively harvest Scenedesmus sp. (530mg/L) - grown in BG-11 media and wastewater. Reducing the culture pH below 6.5, greatly improved the harvesting efficiency. Acidic solution (pH 1.0) was very effective to recover (almost 90%) the associated iron from the harvested biomass. Scenedesmus sp. was able to grow in the supernatant and utilize the residual iron in it. Iron extracted solution, with a supplementation of 9.8mg/L ferric chloride, was able to achieve similar harvesting efficiency. The potential recovery of iron from the harvested biomass and its reuse in the harvesting can improve the biomass quality for subsequent downstream processing while reducing the cost.
Collapse
|