76
|
Reddy NV, Srujana P, Daneswari V, Konyala HR, Mareddy AR, Mohammad N. Sealing Ability of MTA vs Portland Cement in the Repair of Furcal Perforations of Primary Molars: A Dye Extraction Leakage Model-An In Vitro Study. Int J Clin Pediatr Dent 2019; 12:83-87. [PMID: 31571776 PMCID: PMC6749871 DOI: 10.5005/jp-journals-10005-1597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM The purpose of this present study is to compare the ability of MTA and Portland cement to seal furcal perforations in extracted primary molars using the dye extraction leakage model. MATERIALS AND METHODS Sixty primary molars were selected and randomly divided into four groups after access openings and furcal perforations were created in the pulp chamber floor. Group I (n = 20) in which perforations were repaired with MTA (ProRoot MTA, MTA-Angelus), group II (n = 20) in which perforations were repaired with the Portland cement, group III (n = 10) in which perforations were left unsealed (positive control), and group IV (n = 10) without perforations (negative control). All samples were subjected to 1% of basic fuchsin dye challenge followed by dye extraction with 65 wt% of nitric acid. Samples were analyzed using the automatic microplate spectrophotometer 545 nm and the readings were statistically analyzed. RESULTS There was no statistically significant difference in the microleakage between MTA and Portland cement repair groups. CONCLUSION Portland cement provides an effective seal for primary teeth furcal perforations and can be considered a more economic substitute for MTA as a repair material enhancing the prognosis of perforated primary teeth that would otherwise be extracted. HOW TO CITE THIS ARTICLE Reddy NV, Srujana P, et al. Sealing Ability of MTA vs Portland Cement in the Repair of Furcal Perforations of Primary Molars: A Dye Extraction Leakage Model-An In Vitro Study. Int J Clin Pediatr Dent 2019;12(2):83-87.
Collapse
|
77
|
Mbelambela EP, Eitoku M, Muchanga SMJ, Villanueva AF, Hirota R, Pulphus TY, Sokolo GJ, Yasumitsu-Lovell K, Komori K, Suganuma N. Prevalence of chronic obstructive pulmonary disease (COPD) among Congolese cement workers exposed to cement dust, in Kongo Central Province. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35074-35083. [PMID: 30328036 DOI: 10.1007/s11356-018-3401-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Chronic exposure to cement dust may induce adverse health effects, including a significant decrease in lung function. The study investigated whether the prevalence of COPD and respiratory symptoms was associated with working at different tasks exposed to varying levels of cement dust. The cross-sectional study was carried out among 223 exposed and 156 less exposed workers from two cement factories from November 20 to December 15, 2016 in DRC. Workers completed a questionnaire and spirometry was performed. Multivariate analysis was performed to evaluate the association between occupation exposed to cement dust, COPD, and respiratory symptoms, after adjustment for confounders. Morning cough and cough on most days for as much as 3 months each year were significantly higher in the exposed group (p < 0.05) (p = 0.001) than in the less exposed group. As compared to the less exposed group, the prevalence of COPD was higher among the exposed group, 28.2 and 9.6% respectively (p < 0.001). A significant association with COPD, aOR 14.49 (5.33; 39.40), aOR 3.37 (1.44; 7.89), and aOR 3.09 (1.58; 6.05) was found among cleaning, transportation, and production workers, respectively. Working at certain tasks exposed to cement dust is associated with the higher prevalence of COPD and respiratory symptoms. A greater risk is being among cleaning, transportation, and production workers. This suggests the necessity to prioritize the quality of preventive measures in each work area.
Collapse
|
78
|
Seo JH, Amr IT, Park SM, Bamagain RA, Fadhel BA, Kim GM, Hunaidy AS, Lee HK. CO₂ Uptake of Carbonation-Cured Cement Blended with Ground Volcanic Ash. MATERIALS 2018; 11:ma11112187. [PMID: 30400598 PMCID: PMC6267352 DOI: 10.3390/ma11112187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022]
Abstract
Accelerated carbonation curing (ACC) as well as partial replacement of cement with natural minerals are examples of many previous approaches, which aimed to produce cementitious products with better properties and environmental amicabilities. In this regard, the present study investigates CO2 uptake of carbonation-cured cement blended with ground Saudi Arabian volcanic ash (VA). Paste samples with cement replacement of 20%, 30%, 40%, and 50% by mass were prepared and carbonation-cured after initial curing of 24 h. A compressive strength test, X-ray diffractometry (XRD), and thermogravimetry were performed. Although pozzolanic reaction of VA hardly occurred, unlike other pozzolana in blended cement, the results revealed that incorporation of VA as a supplementary cementitious material significantly enhanced the compressive strength and diffusion of CO2 in the matrix. This increased the CO2 uptake capacity of cement, reducing the net CO2 emission upon carbonation curing.
Collapse
|
79
|
Coppola L, Bellezze T, Belli A, Bignozzi MC, Bolzoni F, Brenna A, Cabrini M, Candamano S, Cappai M, Caputo D, Carsana M, Casnedi L, Cioffi R, Cocco O, Coffetti D, Colangelo F, Coppola B, Corinaldesi V, Crea F, Crotti E, Daniele V, De Gisi S, Delogu F, Diamanti MV, Di Maio L, Di Mundo R, Di Palma L, Donnini J, Farina I, Ferone C, Frontera P, Gastaldi M, Giosuè C, Incarnato L, Liguori B, Lollini F, Lorenzi S, Manzi S, Marino O, Marroccoli M, Mascolo MC, Mavilia L, Mazzoli A, Medici F, Meloni P, Merlonetti G, Mobili A, Notarnicola M, Ormellese M, Pastore T, Pedeferri MP, Petrella A, Pia G, Redaelli E, Roviello G, Scarfato P, Scoccia G, Taglieri G, Telesca A, Tittarelli F, Todaro F, Vilardi G, Yang F. Binders alternative to Portland cement and waste management for sustainable construction-part 1. J Appl Biomater Funct Mater 2018; 16:186-202. [PMID: 29996741 DOI: 10.1177/2280800018782845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.
Collapse
|
80
|
Llanes MC, González MJG, Moreno SMP, Raya JPB. Recovery of ilmenite mud as an additive in commercial Portland cements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24695-24703. [PMID: 29916151 DOI: 10.1007/s11356-018-2498-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
This work is focused on the manufacture of commercial cement using as additive ilmenite mud, a waste generated during TiO2 pigment production. The cements were produced by adding different proportions of mud (2.5, 5 and 10 wt%) to ordinary Portland cement (OPC). The ilmenite mud and the ilmenite mud cements (IMCs) were characterised physico-chemically by X-ray fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS) and X-ray diffraction (XRD). Moreover, the technological properties of the IMCs were evaluated and compared with a reference material (OPC). Since waste from the TiO2 industry is classified as a NORM (naturally occurring radioactive material), the concentrations of radionuclides were measured by high-resolution low-background gamma and alpha spectrometry techniques. Finally, the TCLP leaching test (Toxicity Characteristic Leaching Procedure, USEPA), the radiological index ("I") and the Ra equivalent concentration were also calculated to evaluate the environmental risks. As a final conclusion, it can be pointed out that the addition of ilmenite mud to OPC plays a beneficial role since it reduces the heat of hydration, the final setting time, the expansion and the linear retraction compared to standard OPC. The compression strength improves with the addition of up to 5 wt% mud. Moreover, the environmental impact of IMC2.5 and IMC5 can be considered negligible.
Collapse
|
81
|
Do SH, Jo SH, Roh JS, Im HJ, Park HB, Batchelor B. Reductive dechlorination of DNAPL mixtures with Fe(II/III)-L and Fe(II)-C: Evaluation using a kinetic model for the competitions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:872-877. [PMID: 29274611 DOI: 10.1016/j.scitotenv.2017.12.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
A kinetic model for the competitions was applied to understand the reductive dechlorination of tertiary DNAPL mixtures containing PCE, TCE, and 1,1,1-TCA. The model assumed that the mass transfer rates were sufficiently rapid that the target compounds in the solution and the DNAPL mixture were in phase equilibrium. Dechlorination was achieved using either a mixture of Fe(II), Fe(III), and Ca(OH)2 (Fe(II/III)-L) or a mixture of Fe(II) and Portland cement (Fe(II)-C). PCE in the DNAPL mixtures was gradually reduced and it was reduced more rapidly using Fe(II)-C than Fe(II/III)-L. A constant total TCE concentration in the DNAPL mixtures was observed, which implied that the rate of loss of TCE by dechlorination and possibly other processes was equal to the rate of production of TCE by PCE dechlorination. On the other hand, 1,1,1-TCA in the DNAPL mixtures was removed rapidly and its degradation rate by Fe(II/III)-L was faster than by Fe(II)-C. The coefficients in the kinetic model (ki, Ki) were observed to decrease in the order 1,1,1-TCA>PCE>TCE, for both Fe(II/III)-L and Fe(II)-C. The concentrations of target compounds in solution were the effective solubilities, because of the assumption of phase equilibrium and were calculated with Rault's Law. The concentration changes observed were an increase and then a decrease for PCE, a sharp and then gradual increase for TCE, and a dramatic decrease for 1,1,1-TCA. The fraction of initial and theoretical reductive capacity revealed that Fe(II)-C had ability to degrade target compounds.
Collapse
|
82
|
Pedano MS, Li X, Li S, Sun Z, Cokic SM, Putzeys E, Yoshihara K, Yoshida Y, Chen Z, Van Landuyt K, Van Meerbeek B. Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dent Mater 2018. [PMID: 29525357 DOI: 10.1016/j.dental.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To evaluate the effect of the eluates from 3 freshly-mixed and setting hydraulic calcium-silicate cements (hCSCs) on human dental pulp cells (HDPCs) and to examine the effect of a newly developed hCSC containing phosphopullulan (PPL) on HDPCs. METHODS Human dental pulp cells, previously characterized as mesenchymal stem cells, were used. To collect the eluates, disks occupying the whole surface of a 12-well plate were prepared using an experimental hCSC containing phosphopullulan (GC), Nex-Cem MTA (GC), Biodentine (Septodont) or a zinc-oxide (ZnO) eugenol cement (material-related negative control). Immediately after preparing the disks (non-set), 3ml of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) were added. The medium was left in contact with the disks for 24h before being collected. Four different dilutions were prepared (100%, 50%, 25% and 10%) and cell-cytotoxicity, cell-proliferation, cell-migration and odontogenic differentiation were tested. The cell-cytotoxicity and cell-proliferation assays were performed by XTT-colorimetric assay at different time points. The cell-migration ability was tested with the wound-healing assay and the odontogenic differentiation capacity of hCSCs on HDPCs was tested with RT-PCR. RESULTS Considering all experimental data together, the eluates from 3 freshly-mixed and setting hCSCs appeared not cytotoxic toward HDPCs. Moreover, all three cements stimulated proliferation, migration and odontogenic differentiation of HDPCs. SIGNIFICANCE The use of freshly-mixed and setting hCSCs is an appropriate approach to test the effect of the materials on human dental pulp cells. The experimental material containing PPL is non-cytotoxic and positively stimulates HDPCs.
Collapse
|
83
|
Ma F, Wu B, Zhang Q, Cui D, Liu Q, Peng C, Li F, Gu Q. An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:742-748. [PMID: 29156386 DOI: 10.1016/j.jhazmat.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Stabilization/solidification (S/S) has been successfully employed in many superfund sites contaminated with organic materials. However, this method's long-term effectiveness has not been fully evaluated and the increase in soil volume following treatment is unfavorable to follow-up disposal. The present study developed a novel method for the S/S of PAHs-contaminated soil with the facilitation of sulfonated oil (SO). Adding SO significantly improved the unconfined compressive strength (UCS) values of Portland cement and activated carbon (PC-AC) treated soil samples, and the UCS values of the soil sample treated with 0.02% of SO were up to 2.3 times higher than without SO addition. When the soil was treated with PC-AC-SO, the PAHs leaching concentrations were 14%-25% of that in leachates of the control soil, and high molecular weight PAHs including benzo(a)pyrene were rarely leached. Freeze/thaw durability tests reveal that the leachability of PAHs was not influenced by freeze-thaw cycles. The UCS values of PC-AC-SO treated soil samples were 2.2-3.4 times greater than those of PC-AC treated soil samples after 12 freeze-thaw cycles. The PC-AC-SO treated soils resist disintegration better when compared to the PC-AC treated soils. The SEM micrographs reveal that the soils' compactness was significantly improved when treated with SO.
Collapse
|
84
|
Zhang M, Yang C, Zhao M, Yu L, Yang K, Zhu X, Jiang X. Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:242-251. [PMID: 28843168 DOI: 10.1016/j.jhazmat.2017.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/10/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
This work aims to illustrate the impact of high concentrations of Cr(VI) (based on Na2CrO4) on the hydration assembly and microstructural development of hydrated Portland cement, and the results also present the role of calcium sulfate on the immobilization of Cr(VI) in Portland cement. The results showed that the immobilization of Cr(VI) in hydrated Portland cement was attributed to the formation of CrO4-U phase, an analogue of SO4-U phase (3CaO·Al2O3·CaSO4·0.5Na2SO4·15H2O). The growth of CrO4-U phase on the surface of clinker particles formed a diffusion barrier and hence increased the setting time. Increasing the calcium sulfate dosage impaired the Cr(VI) immobilization due to the competition between CrO42- and SO42- integrated into the U phase. The generalized acid neutralization capacity (GANC) test indicated that the Cr(VI) leaching behavior was a function of the leachate pH value. As the pH decreased to 11.8, the CrO4-U phase was converted quickly to CrO4-ettringite, which generated a slight increase in Cr(VI) concentration. The most leaching sector, approximately 89.3% of added Cr (1wt% of cement), was found in the pH range 11.8-10.5 due to the dissolution of secondary CrO4-ettringite. It could also be shown that the C-S-H had little chemical binding for Cr(VI).
Collapse
|
85
|
Bae S, Hikaru F, Kanematsu M, Yoshizawa C, Noguchi T, Yu Y, Ha J. Removal of Hexavalent Chromium in Portland Cement Using Ground Granulated Blast-Furnace Slag Powder. MATERIALS 2017; 11:ma11010011. [PMID: 29271919 PMCID: PMC5793509 DOI: 10.3390/ma11010011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022]
Abstract
Using ground granulated blast-furnace slag (GGBS) under different alkaline conditions, we studied the mechanisms and extents of Cr(VI) reduction and sorption and compared them to reactions with Portland cement (PC). We also investigated the effects of mixing PC/GGBS ratios on Cr(VI) dissolution after carbonating the substrates. We observed a complete sorption and reduction of Cr(VI) to Cr(III) in a GGBS-in-Ca(OH)2 solution (pH > ~12.5) after 10 h, whereas in distilled water (pH = ~11.5) GGBS exhibited only marginal sorption and reduction (20%). Cr reactions with dissolved ions in supernatants derived from GGBS indicated that the anions dissolved from GGBS act as a reducing agent for Cr(VI) in a Ca(OH)2 solution. Soft X-ray absorption microscopy identified a partial reduction of Cr(VI) to Cr(III) on the GGBS surface. The carbonation of pure PC paste substantially increased the amount of dissolved Cr(VI) in a solution phase whereas a 5 wt % replacement of PC with GGBS significantly reduced the amount of dissolved Cr(VI). We concluded that in the mixed paste during the early curing stage GGBS reduced a significant fraction of Cr(VI) to Cr(III) and that the Cr(III) adsorbed in the GGBS-PC mixture’s hydration products does not readily dissolve, even under carbonation conditions.
Collapse
|
86
|
Fu T, Montes F, Suraneni P, Youngblood J, Weiss J. The Influence of Cellulose Nanocrystals on the Hydration and Flexural Strength of Portland Cement Pastes. Polymers (Basel) 2017; 9:E424. [PMID: 30965728 PMCID: PMC6418915 DOI: 10.3390/polym9090424] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
Recent research has shown that cellulose nanocrystals (CNCs) can be used at low dosage levels (approximately 0.2% by volume of cement) to increase the extent of hydration and to improve the flexural strength of cement pastes. However, the previous work was based on using a CNC made from a single source material and processing technique and was performed using only Type V cement. This work examines the influence of various raw material sources and processing techniques used to make the CNCs. In total, nine different CNCs were investigated with pastes made using Type I/II and Type V cements. Isothermal calorimetry (IC), thermogravimetric analysis (TGA) and ball-on-three-ball (B3B) flexural strength testing were used to quantify the performance of CNC-cement composites. IC and TGA results showed that CNCs increased the degree of hydration in all systems. IC results showed that the increase in total heat release was greater in the Type V than in the Type I/II cement paste systems. B3B flexural testing indicated an increase in flexural strength of up to 20% with both Type I/II and Type V systems. These results also showed that the performance of CNC-cement composites can be affected by the source and manufacturing process used to make the CNC.
Collapse
|
87
|
Portland cement induces human periodontal ligament cells to differentiate by upregulating miR-146a. J Formos Med Assoc 2017; 117:308-315. [PMID: 28528141 DOI: 10.1016/j.jfma.2017.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/PURPOSE Bioaggregates such as Portland cement (PC) can be an economical alternative for mineral trioxide aggregate (MTA) with additional benefit of less discoloration. MTA has been known to induce differentiations of several dental cells. MicroRNAs are important regulators of biological processes, including differentiation, physiologic homeostasis, and disease progression. This study is to explore how PC enhances the differentiation of periodontal ligament (PDL) cells in microRNAs level. METHODS PDL cells were cultured in a regular PC- or MTA-conditioned medium or an osteoinduction medium (OIM). Alizarin red staining was used to evaluate the extent of mineralization. Transfection of microRNA mimics induced exogenous miR-31 and miR-146a expression. The expression of microRNAs and differentiation markers was assayed using reverse-transcriptase polymerase chain reaction. RESULTS PC enhanced the mineralization of PDL cells in a dose-dependent manner in the OIM. Exogenous miR-31 and miR-146a expression upregulated alkaline phosphatase (ALP), bone morphogenic protein (BMP), and dentin matrix protein 1 (DMP1) expression. However, miR-31 and miR-146a modulates cementum protein 1 (CEMP1) expression in different ways. PC also enhanced ALP and BMP but attenuated CEMP1 in the OIM. Although the OIM or PC treatment upregulated miR-21, miR-29b, and miR-146a, only miR-146a was able to be induced by PC in combination with OIM. CONCLUSION This study demonstrated that PC enhances the differentiation of PDL cells, especially osteogenic through miR-146a upregulation. In order to control the ankylosis after regenerative endodontics with the usage of bioaggregates, further investigations to explore these differentiation mechanisms in the miRNA level may be needed.
Collapse
|
88
|
Kogbara RB. Interrelationships among geotechnical and leaching properties of a cement-stabilized contaminated soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:149-157. [PMID: 27791485 DOI: 10.1080/10934529.2016.1240483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Relationships among selected performance properties have been established using experimental data from a cement-stabilized mixed contaminated soil. The sandy soil was spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. It was then treated with 5%, 10%, 15%, and 20% dosages of Portland cement. Different water contents were considered for lower dosage mixes. Selected geotechnical and leaching properties were determined on 28-day old samples. These include unconfined compressive strength (UCS), bulk density, porosity, hydraulic conductivity, leachate pH and granular leachability of contaminants. Interrelationships among these properties were deduced using the most reasonable best fits determined by specialized curve fitting software. Strong quadratic and log-linear relationships exist between hydraulic conductivity and UCS, with increasing binder and water contents, respectively. However, the strength of interrelationships between hydraulic conductivity and porosity, UCS and porosity, and UCS and bulk density varies with binder and water contents. Leachate pH and granular leachability of contaminants are best related to UCS and hydraulic conductivity by a power law and an exponential function, respectively. These results suggest how the accuracy of not-easily-measurable performance properties may be constrained from simpler ones. Comparisons with some published performance properties data support this.
Collapse
|
89
|
Li H, Zhao J, Huang Y, Jiang Z, Yang X, Yang Z, Chen Q. Investigation on the potential of waste cooking oil as a grinding aid in Portland cement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:545-551. [PMID: 27793479 DOI: 10.1016/j.jenvman.2016.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Although there are several methods for managing waste cooking oil (WCO), a significant result has not been achieved in China. A new method is required for safe WCO management that minimizes the environmental threat. In this context, this work was developed in which cement clinker and gypsum were interground with various WCOs, and their properties, such as grindability, water-cement ratio required to achieve a normal consistency, setting times, compressive strength, contents of calcium hydroxide and ettringite in the hardened paste, microstructure and economic and environmental considerations, were addressed in detail. The results show that, overall, WCO favorably improves cement grinding. WCO prolonged the cement setting times and resulted in longer setting times. Additionally, more remarkable effects were found in cements in which WCO contained more unsaturated fatty acid. WCOs increased the cement strength. However, this enhancement was rated with respect to the WCO contents and components. WCOs decreased the CH and AFt contents in the cement hardened paste. Even the AFt content at later ages was reduced when WCO was used. WCO also densify microstructure of the hardened cement paste. It is economically and environmentally feasible to use WCOs as grinding aids in the cement grinding process. These results contribute to the application of WCOs as grinding aids and to the safe management of WCO.
Collapse
|
90
|
Biological evaluation of a new pulp capping material developed from Portland cement. ACTA ACUST UNITED AC 2016; 69:115-122. [PMID: 27986375 DOI: 10.1016/j.etp.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/27/2016] [Accepted: 12/09/2016] [Indexed: 02/05/2023]
Abstract
This study evaluates the biological properties of a new pulp capping material developed from Portland cement. This study was conducted on 48 teeth in 4 dogs (12 teeth/dog). The dogs were classified into two equal groups (n=24 teeth) according to the evaluation period including: group A (3 weeks) and group B (3 months). Each group was further subdivided into three equal subgroups (n=8 teeth) according to the capping material including: subgroup 1: mineral trioxide aggregate (MTA), subgroup2: Portland cement+10% calcium hydroxide+20% bismuth oxide (Port Cal) and subgroup 3: Portland cement+bismuth oxide. After general anesthesia, a class V buccal cavity was prepared coronal to the gingival margin. After pulp exposure and hemostasis,the capping materials and glass ionomer filling were placed on the exposure sites. All histopathological findings, inflammatory cell count and dentin bridge formation were recorded. Data were analyzed statistically. After 3 months, the histopathological picture of the pulp in subgroup 1 showed normal pulp, continuous odontoblastic layer and complete dentin bridge formation while subgroup 2 showed partial and complete dentin bridge over a normal and necrotic pulps. Subgroup 3 showed loss of normal architecture, areas of necrosis, complete, or incomplete dentin bridge formation, attached and detached pulp stones and fatty degeneration in group B. For group A, MTA subgroup showed the least number of inflammatory cell infiltrate followed by Port Cal subgroup. While subgroup 3 showed the highest number of inflammatory cell infiltrate. For group B, the mean inflammatory cell count increased with the three tested materials with no statistical difference. Regarding dentin bridge formation at group A, no significant differences was found between subgroups, while at group B, MTA subgroup exhibited significantly higher scores than other subgroups. In conclusion, addition of calcium hydroxide to Portland cement improves the dentin bridge formation qualitatively and quantitatively.
Collapse
|
91
|
Abdelhamid A. Effect of Exposure to Portland Cement Dust on the Periodontal Status and on the Outcome of Non-Surgical Periodontal Therapy. Int J Health Sci (Qassim) 2016; 10:339-352. [PMID: 27610057 PMCID: PMC5003577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Cement dust contains heavy metals like nickel, cobalt, lead and chromium, pollutants hazardous to the biotic environment, with adverse impact for vegetation, human and animal health and ecosystems. OBJECTIVE To investigate if long term exposure to cement dust can affect the periodontal health and affect the outcome of non-surgical periodontal therapy. METHODS A total of sixty subjects were included in this study. Forty patients with chronic periodontitis were grouped into; Group I comprised of 20 patients with chronic periodontitis working in the Portland Cement Company and Group II comprised of 20 patients with chronic periodontitis who does not work in cement factories nor live near any of them. Twenty healthy subjects were included in this study as healthy control group (Group III). Clinical parameters including gingival index (GI), plaque index (PI), pocket depth (PD) and clinical attachment loss (CLA) were scored for all patients before and after periodontal therapy. All patients received non-surgical periodontal therapy together with strict oral hygiene program for one month. Gingival crevicular fluid (GCF) samples were collected from both groups at baseline and one month after periodontal therapy. Real time PCR (RT-PCR) was used to analyze the GCF samples for detection and assessment of the levels of IL-1β and TNFα. RESULTS The two studied groups responded well to non-surgical periodontal treatment and there was no significant difference between GI and GII (P>0.05). The levels of TNFα was higher in GI than in GII before and after periodontal therapy (P<0.05). The levels of IL-1β did not show any significant difference between the two groups at base line (P>0.05), but represented with a highly significant difference between G1 and GII after periodontal therapy (P<0.001). A significant positive correlation was found between the levels of both IL-1β and TNFα and all the clinical parameters in GI before and after periodontal therapy and in GII before periodontal therapy (P<0.05). CONCLUSION It seems that long term exposure to cement dust does not affect the clinical outcome of non-surgical periodontal treatment but it affects the levels of the pro-inflammatory mediators leading to more periodontal tissue destruction.
Collapse
|
92
|
Leung Tang P, Alqassim M, Nic Daéid N, Berlouis L, Seelenbinder J. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs. APPLIED SPECTROSCOPY 2016; 70:923-931. [PMID: 27059444 DOI: 10.1177/0003702816638306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.
Collapse
|
93
|
Serrano S, Vlassopoulos D, O'Day PA. Mechanism of Hg(II) Immobilization in Sediments by Sulfate-Cement Amendment. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2016; 67:68-80. [PMID: 26997751 PMCID: PMC4792068 DOI: 10.1016/j.apgeochem.2016.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg LIII- and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca6Al2(SO4)3(OH)12.26H2O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20-25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg-Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg-Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt as the primary immobilization mechanism.
Collapse
|
94
|
Clinical and Radiographic Evaluation of the Effectiveness of Formocresol, Mineral Trioxide Aggregate, Portland Cement, and Enamel Matrix Derivative in Primary Teeth Pulpotomies: A Two Year Follow-Up. J Clin Pediatr Dent 2016; 40:14-20. [PMID: 26696101 DOI: 10.17796/1053-4628-40.1.14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate and to compare clinical and radiographic outcomes of 4 materials (formocresol, mineral trioxide aggregate (MTA), Portland cement and enamel matrix derivative) using in primary teeth pulpotomies. STUDY DESIGN Sixty-five patients aged 5-9 years (32 female, 33 male) were included in this study. A total of 140 primary first and second molars with deep caries were treated with pulpotomy. All teeth were then restored with stainless steel crowns. The treated teeth were evaluated clinically and radiographically at 3, 6, 12, 18 and 24 months. RESULTS At 24 months, the clinical success rates of formocresol, MTA, Portland cement, and enamel matrix derivative were 96.9%, 100%, 93.9%, and 93.3%, respectively. The corresponding radiographic success rates were 84.4%, 93.9%, 86.7% and 78.1%, respectively. CONCLUSION Although there were no statistically significant differences in clinical and radiographic success rates among the 4 groups, MTA appears to be superior to formocresol, Portland cement, and enamel matrix derivative as a pulpotomy agent in primary teeth.
Collapse
|
95
|
Jain A, Ponnappa KC, Yadav P, Rao Y, Relhan N, Gupta P, Choubey A, Bhardwaj S. Comparison of the Root End Sealing Ability of Four Different Retrograde Filling Materials in Teeth with Root Apices Resected at Different Angles - An Invitro Study. J Clin Diagn Res 2016; 10:ZC14-7. [PMID: 26894168 DOI: 10.7860/jcdr/2016/15437.7042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Insufficient apical seal is the significant reason for surgical endodontic disappointment. The root-end filling material utilized should avoid egress of potential contaminants into periapical tissue. AIM The aim of this study was to compare the sealing ability of four root-end filling materials MTA, Portland cement, IRM, RMGIC in teeth with root apices resected at 0 and 45 angle using dye penetration method under fluorescent microscope. MATERIALS AND METHODS Hundred extracted human maxillary anterior teeth were sectioned horizontally at the cement-enamel junction. After cleaning, shaping and obturation with gutta-percha and AH Plus sealer, the tooth samples were randomly divided in two groups (the root apices resected at 0° and 45° to the long axis of the root). The root resections were carried out by removing 2 mm and 1 mm in both the groups. Following which 3 mm deep root-end cavities were prepared at the apices and the root were coated with nail varnish except the tip. The teeth in both the group were randomly divided into four subgroups each (Pro root MTA, Portland cement, IRM and Light cure nano GIC Ketac N-100). All the retrofilled samples were stored in acrydine orange for 24 hours after which they were cleaned and vertically sectioned buccolingually. The sectioned root samples were observed under fluorescent microscope. RESULTS The root apex sealing ability of Mineral Trioxide Aggregate (MTA) was superior to Portland cement, Intermediate Restorative Material (IRM) and LC GIC. IRM demonstrated the maximum apical leakage value among all the materials. Portland cement and LC GIC showed comparable sealing ability. CONCLUSION The angulation whether 0° or 45° angle did not affect the sealing ability of all the four materials used, MTA proved to be one of the superior materials for root-end filling.
Collapse
|
96
|
Ha WN, Nicholson T, Kahler B, Walsh LJ. Methodologies for measuring the setting times of mineral trioxide aggregate and Portland cement products used in dentistry. ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA 2016. [PMID: 28642908 PMCID: PMC5433181 DOI: 10.3109/23337931.2015.1135746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective The current standard used to measure setting time for Mineral Trioxide Aggregate (MTA) involves indentation testing with arbitrary weights. This study compared indentation testing against rheological measurements and assessed the influences of particle size and the inclusion of bismuth oxide on the setting time of experimental MTA and Portland cement (PC). Material and methods Two PCs (P1 and P2) of different particle sizes were produced using the same clinker. From these two PCs, two experimental MTAs (M1 and M2) were created with the addition of bismuth oxide. Particle size distributions were assessed using laser diffraction analysis. Indentation setting time tests were performed in accordance to the Gillmore needle test. Elastic modulus was assessed using a strain-controlled rheometer at 1 rad s−1 and an applied strain of 0.01%. Results P1, P2, M1 and M2 cements had median particle sizes of 6.1, 12.5, 6.5 and 13.0 μm, respectively. Using indentation testing, final setting times were ranked P1 < M1 < P2 < M2. The ranking of the final setting time corresponded with the rheological assessment of time required to reach 95% of the elastic modulus plateau. Conclusions The time to reach 95% elastic modulus plateau of 9.3 min corresponds to a time close to the point where the material can be overlaid with another restorative material to give a final restoration. The 95% plateau value for elastic modulus may be a more useful parameter for determining how the setting reaction of PC and MTA cements progress over time.
Collapse
|
97
|
Mangala MG, Chandra SMS, Bhavle RM. To evaluate the biocompatibility of the Indian Portland cement with potential for use in dentistry: An animal study. J Conserv Dent 2016; 18:440-4. [PMID: 26752835 PMCID: PMC4693314 DOI: 10.4103/0972-0707.168800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aims: This study evaluated the biocompatibility of the Indian Portland cement with potential for use in dentistry. Materials and Methods: This study was performed in Swiss albino mice, by implanting the Indian Portland cement pellets subcutaneously. After 1, 3, and 6 weeks the tissue specimens were prepared for histological examination. Results: The histological analysis showed moderate to severe inflammation at 1 week. The inflammation gradually decreased by 6 weeks, with most of the specimens showing the absence of inflammatory reaction. Conclusions: According to these experimental conditions, the tested Indian Portland cement was biocompatible.
Collapse
|
98
|
Baranwal AK, Paul ML, Mazumdar D, Adhikari HD, Vyavahare NK, Jhajharia K. An ex-vivo comparative study of root-end marginal adaptation using grey mineral trioxide aggregate, white mineral trioxide aggregate, and Portland cement under scanning electron microscopy. J Conserv Dent 2015; 18:399-404. [PMID: 26430305 PMCID: PMC4578186 DOI: 10.4103/0972-0707.164054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Context: Where nonsurgical endodontic intervention is not possible, or it will not solve the problem, surgical endodontic treatment must be considered. A major cause of surgical endodontic failures is an inadequate apical seal, so the use of the suitable substance as root-end filling material that prevents egress of potential contaminants into periapical tissue is very critical. Aims: The aim of the present ex-vivo study was to compare and evaluate the three root-end filling materials of mineral trioxide aggregate (MTA) family (white MTA [WMTA], grey MTA [GMTA] and Portland cement [PC]) for their marginal adaptation at the root-end dentinal wall using scanning electron microscopy (SEM). Materials and Methods: Sixty human single-rooted teeth were decoronated, instrumented, and obturated with Gutta-percha. After the root-end resection and apical cavity preparation, the teeth were randomly divided into three-experimental groups (each containing 20 teeth) and each group was filled with their respective experimental materials. After longitudinal sectioning of root, SEM examination was done to determine the overall gap between retrograde materials and cavity walls in terms of length and width of the gap (maximum) at the interface. Descriptive statistical analysis was performed to calculate the means with corresponding standard errors, median and ranges along with an analysis of variance and Tukey's test. Results: The least overall gap was observed in GMTA followed by PC and WMTA. While after statistically analyzing the various data obtained from different groups, there was no significant difference among these three groups in terms of marginal adaptation. Conclusion: GMTA showed the best overall adaptation to root dentinal wall compared to PC and WMTA. Being biocompatible and cheaper, the PC may be an alternative but not a substitute for MTA.
Collapse
|
99
|
El-Khodary HM, Farsi DJ, Farsi NM, Zidan AZ. Sealing Ability of Four Calcium Containing Cements used for Repairing Furcal Perforations in Primary Molars: An in vitro study. J Contemp Dent Pract 2015; 16:733-9. [PMID: 26522599 DOI: 10.5005/jp-journals-10024-1749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM The aim of this study was to compare the sealing ability of mineral trioxide aggregate (MTA), Portland cement (PC), Biodentine(TM) and Tech biosealer in repairing furcal perforations in primary molars using the fluid-filtration technique. MATERIALS AND METHODS Fifty freshly extracted maxillary second primary molars were sectioned horizontally at the furcation region to create dentin disks of 1.5 mm (+ 0.1 mm) thickness. Five disks were not perforated and served as negative controls. In the remaining 45 disks, furcation perforations were prepared. Five disks did not receive furcation repair and served as positive controls. The remaining 40 disks were then randomly divided into four equal groups (10 disks in each group). Perforations were repaired with: MTA, PC, Biodentine(TM) or Tech Biosealer. The sealing ability of the tested materials was evaluated by measuring microleakage for each disk after four different storage periods: 24-hour, 1-month, 6-month and 1-year storage using fluid-filtration. Comparisons between the four materials and the four time periods were done using the two-way analysis of variance and the Scheffe multiple comparisons test. RESULTS There was no significant difference between the mean microleakage values obtained in the four tested materials after 24 hours, 1, 6 month and 1 year. However, microleakage values for each individual material were significantly higher at 24 hours than at the other time intervals. CONCLUSION Mineral trioxide aggregate, PC, Biodentine(TM) and Tech biosealer showed similar capabilities in sealing the furcal perforations of the primary molars, where the sealing ability improved over time for each individual material.
Collapse
|
100
|
Marques N, Lourenço Neto N, Fernandes AP, Rodini C, Hungaro Duarte M, Rios D, Machado MA, Oliveira T. Pulp tissue response to Portland cement associated with different radio pacifying agents on pulpotomy of human primary molars. J Microsc 2015; 260:281-6. [PMID: 26258985 DOI: 10.1111/jmi.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/25/2015] [Indexed: 12/01/2022]
Abstract
The objective of this research was to evaluate the response of Portland cement associated with different radio pacifying agents on pulp treatment of human primary teeth by clinical and radiographic exams and microscopic analysis. Thirty mandibular primary molars were randomly divided into the following groups: Group I - Portland cement; Group II - Portland cement with iodoform (Portland cement + CHI3 ); Group III - Portland cement with zirconium oxide (Portland cement + ZrO2 ); and treated by pulpotomy technique (removal of a portion of the pulp aiming to maintain the vitally of the remaining radicular pulp tissue using a therapeutic dressing). Clinical and radiographic evaluations were recorded at 6, 12 and 24 months follow-up. The teeth at the regular exfoliation period were extracted and processed for histological analysis. Data were tested using statistical analysis with a significance level of 5%. The microscopic findings were descriptively analysed. All treated teeth were clinically and radiographically successful at follow-up appointments. The microscopic analysis revealed positive response to pulp repair with hard tissue barrier formation and pulp calcification in the remaining roots of all available teeth. The findings of this study suggest that primary teeth pulp tissue exhibited satisfactory biological response to Portland cement associated with radio pacifying agents. However, further studies with long-term follow-up are needed to determine the safe clinical indication of this alternative material for pulp therapy of primary teeth.
Collapse
|