76
|
Simsek-Kiper PO, Jacob P, Upadhyai P, Taşkıran ZE, Guleria VS, Karaosmanoglu B, Imren G, Gocmen R, Bhavani GS, Kausthubham N, Shah H, Utine GE, Boduroglu K, Girisha KM. Biallelic loss-of-function variants in EXOC6B are associated with impaired primary ciliogenesis and cause spondylo-epi-metaphyseal dysplasia with joint laxity type 3. Hum Mutat 2022; 43:2116-2129. [PMID: 36150098 PMCID: PMC7615863 DOI: 10.1002/humu.24478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Abstract
Spondylo-epi-metaphyseal dysplasias with joint laxity, type 3 (SEMDJL3) is a genetic skeletal disorder characterized by multiple joint dislocations, caused by biallelic pathogenic variants in the EXOC6B gene. Only four individuals from two families have been reported to have this condition to date. The molecular pathogenesis related to primary ciliogenesis has not been enumerated in subjects with SEMDJL3. In this study, we report two additional affected individuals from unrelated families with biallelic pathogenic variants, c.2122+15447_2197-59588del and c.401T>G in EXOC6B identified by exome sequencing. One of the affected individuals had an intellectual disability and central nervous system anomalies, including hydrocephalus, hypoplastic mesencephalon, and thin corpus callosum. Using the fibroblast cell lines, we demonstrate the primary evidence for the abrogation of exocytosis in an individual with SEMDLJ3 leading to impaired primary ciliogenesis. Osteogenesis differentiation and pathways related to the extracellular matrix were also found to be reduced. Additionally, we provide a review of the clinical and molecular profile of all the mutation-proven patients reported hitherto, thereby further characterizing SEMDJL3. SEMDJL3 with biallelic pathogenic variants in EXOC6B might represent yet another ciliopathy with central nervous system involvement and joint dislocations.
Collapse
|
77
|
Martinez-Fernandez de la Camara C, Cehajic-Kapetanovic J, MacLaren RE. Response: 'letter to the editor: emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa'. Expert Opin Emerg Drugs 2022; 27:449-450. [PMID: 36562394 DOI: 10.1080/14728214.2022.2152212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
|
78
|
Berber P, Bondarenko S, Michaelis L, Weber BHF. Transient Retention of Photoreceptor Outer Segments in Matrigel-Embedded Retinal Organoids. Int J Mol Sci 2022; 23:ijms232314893. [PMID: 36499228 PMCID: PMC9739155 DOI: 10.3390/ijms232314893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Retinal organoids (ROs) are three-dimensional retinal tissues, which are differentiated in vitro from induced pluripotent stem cells (iPSC), ultimately forming all main retinal cell types under defined culture conditions. ROs show several highly specialized retinal features, including the outgrowth of photoreceptor outer segments (OSs). In vivo, the photoreceptor OSs are enveloped and maintained by protrusions of retinal pigment epithelium (RPE) cells, the so-called apical microvilli, while ROs fail to recapitulate this critical interaction in culture development. Here, we define specific co-culture conditions aiming to compensate for the missing physical proximity of RPE and OSs in RO development. Accordingly, functional RPE cells and ROs were differentiated simultaneously from the same iPSC clone, the former resulting in byproduct RPE or bRPE cells. While some co-culture approaches indicated a temporary functional interaction between bRPE and RO photoreceptors, they did not improve the photoreceptor histoarchitecture. In contrast, embedding ROs in a basement membrane extract without bRPE cells showed a robust improvement in the rate of photoreceptor OS retention. RO embedding is a quick and easy method that greatly enhances the preservation of photoreceptor OSs, an important structure for modelling retinal diseases with the involvement of photoreceptors.
Collapse
|
79
|
Tao T, Liu J, Wang B, Pang J, Li X, Huang L. Novel mutations in BBS genes and clinical characterization of Chinese families with Bardet-Biedl syndrome. Eur J Ophthalmol 2022; 33:11206721221136324. [PMID: 36325687 DOI: 10.1177/11206721221136324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is a rare autosomal-recessive inherited disorder characterized by multisystem anomalies. The objective of this study was to detect and analyse pathogenic variants in four Chinese families with BBS. METHODS Comprehensive clinical examinations were performed to investigate and evaluate the phenotypes of the affected individuals from four families. Genomic DNA was extracted from peripheral blood. Next-generation sequencing (NGS) was performed for four families, and the presence of pathogenic variants was confirmed via Sanger sequencing. RESULTS There were two males and three females with a mean age of 16.00 years. All probands displayed the primary clinical features of BBS. Mutation screening demonstrated four novel mutations: c.613C>T; p.Q205* in the BBS5 gene, c.1391C>G; p.S464* in the BBS10 gene, and c.155delC; p.S52* and c.1584T>G; p.Y528* in the BBS12 gene. Two previously reported mutations were also identified, including c.534 + 1G>T in the BBS2 gene and c.539G>A; p.G180E in the BBS10 gene. The bioinformatic analysis revealed that all the detected mutations in BBS genes were disease causing. CONCLUSIONS This study identified four novel BBS gene mutations in these Chinese families and further expanded the genotypic spectrum of BBS, thus contributing to the literature and understanding of this multisystem disease.
Collapse
|
80
|
Shak C, Vuolo L, Uddin B, Katoh Y, Brown T, Mukhopadhyay AG, Heesom K, Roberts AJ, Stevenson N, Nakayama K, Stephens DJ. Disease-associated mutations in WDR34 lead to diverse impacts on the assembly and function of dynein-2. J Cell Sci 2022; 136:280974. [PMID: 36268591 PMCID: PMC9687537 DOI: 10.1242/jcs.260073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/12/2022] [Indexed: 10/24/2022] Open
Abstract
The primary cilium is a sensory organelle, receiving signals from the external environment and relaying them into the cell. Mutations in proteins required for transport in the primary cilium result in ciliopathies, a group of genetic disorders that commonly lead to the malformation of organs such as the kidney, liver and eyes and skeletal dysplasias. Motor proteins dynein-2 and kinesin-2 mediate retrograde and anterograde transport respectively in the cilium. WDR34, a dynein-2 intermediate chain, is required for the maintenance of cilia function. Here, we investigated WDR34 mutations identified in Jeune syndrome, short-rib polydactyly syndrome or asphyxiating thoracic dysplasia patients. There is a poor correlation between genotype and phenotype in these cases making diagnosis and treatment highly complex. We set out to define the biological impacts on cilia formation and function of WDR34 mutations by stably expressing the mutant proteins in WDR34 knockout cells. WDR34 mutations led to different spectrums of phenotypes. Quantitative proteomics demonstrated changes in dynein-2 assembly, whereas initiation and extension of the axoneme, localization of intraflagellar transport complex-B proteins, transition zone integrity, and Hedgehog signalling were also affected.
Collapse
|
81
|
Wang D, Chen X, Wen Q, Li Z, Chen W, Chen W, Wang X. A single heterozygous nonsense mutation in the TTC21B gene causes adult-onset nephronophthisis 12: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e2076. [PMID: 36263627 PMCID: PMC9747551 DOI: 10.1002/mgg3.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nephronophthisis type 12 (NPHP 12) is a rare cilia-related cystic kidney disease, caused by TTC21B mutation, mainly involving the kidneys, which generally occurs in children. Our study aimed to illustrate its clinical, pathological and genetic characteristics by reporting an adult-onset case of NPHP 12 caused by a single heterozygous nonsense mutation of TTC21B confirmed by renal histology and whole exome sequencing and reviewing related literature with a comparative analysis of the clinical features of each case. It will further increase the recognition of this rare kidney genetic disease, which sometimes can manifest as an adult disease. RESULTS A 33-years-old man showed a chronic disease course, and he exhibited slight renal dysfunction (CKD stage 3, eGFR = 49 ml/[min* 1.73 m2]) with renal tubular proteinuria, without any extrarenal manifestations, congenital malformation history of kidney disease, or family hereditary disease. Renal histological findings showed substantial interstitial fibrosis with some irregular and tortuous tubules with complex branches and segmental thickening and splitting of the tubular basement membrane. The patient was diagnosed with chronic interstitial nephritis for an unknown reason clinically. Further genetic analysis revealed a single heterozygous nonsense mutation in the TTC21B gene and NPHP 12 was diagnosed finally. CONCLUSION A single heterozygous mutation in the TTC21B gene may cause atypical NPHP12, which had a relatively later onset and milder clinical symptoms without developmental abnormalities. Therefore, for unexplained adult-onset chronic interstitial nephritis with unusual changes of renal tubules and interstitial fibrosis, even without a clear history of hereditary kidney disease, genetic testing is still recommended. The correct diagnosis of this rare adult-onset hereditary nephropathy can avoid unnecessary treatment.
Collapse
|
82
|
Jafari Khamirani H, Palicharla VR, Dastgheib SA, Dianatpour M, Imanieh MH, Tabei SS, Besse W, Mukhopadhyay S, Liem KF. A pathogenic variant of TULP3 causes renal and hepatic fibrocystic disease. Front Genet 2022; 13:1021037. [PMID: 36276950 PMCID: PMC9585244 DOI: 10.3389/fgene.2022.1021037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Patient variants in Tubby Like Protein-3 (TULP3) have recently been associated with progressive fibrocystic disease in tissues and organs. TULP3 is a ciliary trafficking protein that links membrane-associated proteins to the intraflagellar transport complex A. In mice, mutations in Tulp3 drive phenotypes consistent with ciliary dysfunction which include renal cystic disease, as part of a ciliopathic spectrum. Here we report two sisters from consanguineous parents with fibrocystic renal and hepatic disease harboring a homozygous missense mutation in TULP3 (NM_003324.5: c.1144C>T, p.Arg382Trp). The R382W patient mutation resides within the C-terminal Tubby domain, a conserved domain required for TULP3 to associate with phosphoinositides. We show that inner medullary collecting duct-3 cells expressing the TULP3 R382W patient variant have a severely reduced ability to localize the membrane-associated proteins ARL13b, INPP5E, and GPR161 to the cilium, consistent with a loss of TULP3 function. These studies establish Arginine 382 as a critical residue in the Tubby domain, which is essential for TULP3-mediated protein trafficking within the cilium, and expand the phenotypic spectrum known to result from recessive deleterious mutations in TULP3.
Collapse
|
83
|
Iturrate A, Rivera-Barahona A, Flores CL, Otaify GA, Elhossini R, Perez-Sanz ML, Nevado J, Tenorio-Castano J, Triviño JC, Garcia-Gonzalo FR, Piceci-Sparascio F, De Luca A, Martínez L, Kalaycı T, Lapunzina P, Altunoglu U, Aglan M, Abdalla E, Ruiz-Perez VL. Mutations in SCNM1 cause orofaciodigital syndrome due to minor intron splicing defects affecting primary cilia. Am J Hum Genet 2022; 109:1828-1849. [PMID: 36084634 PMCID: PMC9606384 DOI: 10.1016/j.ajhg.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/12/2022] [Indexed: 01/25/2023] Open
Abstract
Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.
Collapse
|
84
|
Walczak-Sztulpa J, Wawrocka A, Sikora W, Pawlak M, Bukowska-Olech E, Kopaczewski B, Urzykowska A, Arts HH, Gotz-Więckowska A, Grenda R, Latos-Bieleńska A, Glazar R. WDR35 variants in a cranioectodermal dysplasia patient with early onset end-stage renal disease and retinal dystrophy. Am J Med Genet A 2022; 188:3071-3077. [PMID: 35875935 DOI: 10.1002/ajmg.a.62903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/31/2023]
Abstract
Cranioectodermal dysplasia (CED) is rare heterogeneous condition. It belongs to a group of disorders defined as ciliopathies and is associated with defective cilia function and structure. To date six genes have been associated with CED. Here we describe a 4-year-old male CED patient whose features include dolichocephaly, multi-suture craniosynostosis, epicanthus, frontal bossing, narrow thorax, limb shortening, and brachydactyly. The patient presented early-onset chronic kidney disease and was transplanted at the age of 2 years and 5 months. At the age of 3.5 years a retinal degeneration was diagnosed. Targeted sequencing by NGS revealed the presence of compound heterozygous variants in the WDR35 gene. The variants are a novel missense change in exon 9 p.(Gly303Arg) and a previously described nonsense variant in exon 18 p.(Leu641*). Our findings suggest that patients with WDR35 defects may be at risk to develop early-onset retinal degeneration. Therefore, CED patients with pathogenic variation in this gene should be assessed at least once by the ophthalmologist before the age of 4 years to detect early signs of retinal degeneration.
Collapse
|
85
|
Wang W, Silva LM, Wang HH, Kavanaugh MA, Pottorf TS, Allard BA, Jacobs DT, Dong R, Cornelius JT, Chaturvedi A, Swenson-Fields KI, Fields TA, Pritchard MT, Sharma M, Slawson C, Wallace DP, Calvet JP, Tran PV. Ttc21b deficiency attenuates autosomal dominant polycystic kidney disease in a kidney tubular- and maturation-dependent manner. Kidney Int 2022; 102:577-591. [PMID: 35644283 PMCID: PMC9398994 DOI: 10.1016/j.kint.2022.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023]
Abstract
Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked β-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.
Collapse
|
86
|
Stubbs T, Koemeter-Cox A, Bingman JI, Zhao F, Kalyanasundaram A, Rowland LA, Periasamy M, Carter CS, Sheffield VC, Askwith CC, Mykytyn K. Disruption of Dopamine Receptor 1 Localization to Primary Cilia Impairs Signaling in Striatal Neurons. J Neurosci 2022; 42:6692-6705. [PMID: 35882560 PMCID: PMC9436016 DOI: 10.1523/jneurosci.0497-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
A rod-shaped appendage called a primary cilium projects from the soma of most central neurons in the mammalian brain. The importance of cilia within the nervous system is highlighted by the fact that human syndromes linked to primary cilia dysfunction, collectively termed ciliopathies, are associated with numerous neuropathologies, including hyperphagia-induced obesity, neuropsychiatric disorders, and learning and memory deficits. Neuronal cilia are enriched with signaling molecules, including specific G-protein-coupled receptors (GPCRs) and their downstream effectors, suggesting that they act as sensory organelles that respond to neuromodulators in the extracellular space. We previously showed that GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome (BBS). Based on this finding, we hypothesized that mislocalization of ciliary GPCRs may impact receptor signaling and contribute to the BBS phenotypes. Here, we show that disrupting localization of the ciliary GPCR dopamine receptor 1 (D1) in male and female mice, either by loss of a BBS protein or loss of the cilium itself, specifically in D1-expressing neurons, results in obesity. Interestingly, the weight gain is associated with reduced locomotor activity, rather than increased food intake. Moreover, the loss of a BBS protein or cilia on D1-expressing neurons leads to a reduction in D1-mediated signaling. Together, these results indicate that cilia impact D1 activity in the nervous system and underscore the importance of neuronal cilia for proper GPCR signaling.SIGNIFICANCE STATEMENT Most mammalian neurons possess solitary appendages called primary cilia. These rod-shaped structures are enriched with signaling proteins, such as G-protein-coupled receptors (GPCRs), suggesting that they respond to neuromodulators. This study examines the consequences of disrupting ciliary localization of the GPCR dopamine receptor 1 (D1) in D1-expressing neurons. Remarkably, mice that have either an abnormal accumulation of D1 in cilia or a loss of D1 ciliary localization become obese. In both cases, the obesity is associated with lower locomotor activity rather than overeating. As D1 activation increases locomotor activity, these results are consistent with a reduction in D1 signaling. Indeed, we found that D1-mediated signaling is reduced in brain slices from both mouse models. Thus, cilia impact D1 signaling in the brain.
Collapse
|
87
|
Ge R, Cao M, Chen M, Liu M, Xie S. Cytoskeletal networks in primary cilia: Current knowledge and perspectives. J Cell Physiol 2022; 237:3975-3983. [PMID: 36000703 DOI: 10.1002/jcp.30865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
Primary cilia, microtubule-based protrusions present on the surface of most mammalian cells, function as sensory organelles that monitor extracellular signals and transduce them into intracellular biochemical responses. There is renewed research interest in primary cilia due to their essential roles in development, tissue homeostasis, and human diseases. Primary cilia dysfunction causes a large spectrum of human diseases, collectively known as ciliopathies. Despite significant advances in our understanding of primary cilia, there are still no effective agents for treating ciliopathies. Primary ciliogenesis is a highly ordered process involving membrane trafficking, basal body maturation, vesicle docking and fusion, transition zone assembly, and axoneme extension, in which actin and microtubule networks play critical and multiple roles. Actin and microtubule network architecture, isotropy, and dynamics are tightly controlled by cytoskeleton-associated proteins, a growing number of which are now recognized as responsible for cilium formation and maintenance. Here we summarize the roles of actin and microtubules and their associated proteins in primary ciliogenesis and maintenance. In doing so, we highlight that targeting cytoskeleton-associated proteins may be a promising therapeutic strategy for the treatment of ciliopathies.
Collapse
|
88
|
Unilateral Retinitis Pigmentosa Associated with Possible Ciliopathy and a Novel Mutation. Clin Pract 2022; 12:491-500. [PMID: 35892439 PMCID: PMC9326729 DOI: 10.3390/clinpract12040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral retinitis pigmentosa (URP) is a rare retinal dystrophy. We describe the clinical course of two patients with (URP) unilateral retinitis pigmentosa confirmed by genetic testing, indicating ciliary dysfunction. Methods: The methods used in this study included a detailed ophthalmic examination, multimodal retinal imaging, Goldmann visual fields, full-field electroretinography (ffERG) and targeted next-generation sequencing. Results: A 32-year-old female (patient 1) and 65-year-old male (patient 2) were found to have URP. ffERG showed a non-recordable response in the affected eye and a response within normal limits in the fellow eye of patient 1, while patient 2 showed non-recordable responses in the apparently unaffected eye and a profound reduction in the photopic and scotopic responses in the affected eye. Next-generation sequencing revealed novel compound heterozygous c.373 C>T (p.Arg125Trp) and c.730-22_730-19dup variants in AGBL5 in patient 1, and a novel hemizygous c.1286 C>T (p.Pro429Leu) in patient 2; both gene mutations were 0%. Segregation analysis was not possible for either of the mutations. Conclusion: This report expands the clinical and molecular genetic spectrum of URP.
Collapse
|
89
|
Hasanain AA, Soliman MAR, Elwy R, Ezzat AAM, Abdel-Bari SH, Marx S, Jenkins A, El Refaee E, Zohdi A. An eye on the future for defeating hydrocephalus, ciliary dyskinesia-related hydrocephalus: review article. Br J Neurosurg 2022; 36:329-339. [PMID: 35579079 DOI: 10.1080/02688697.2022.2074373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Congenital hydrocephalus affects approximately one in 1000 newborn children and is fatal in approximately 50% of untreated cases. The currently known management protocols usually necessitate multiple interventions and long-term use of healthcare resources due to a relatively high incidence of complications, and many of them mostly provide a treatment of the effect rather than the cause of cerebrospinal fluid flow reduction or outflow obstruction. Future studies discussing etiology specific hydrocephalus alternative treatments are needed. We systematically reviewed the available literature on the effect of ciliary abnormality on congenital hydrocephalus pathogenesis, to open a discussion on the feasibility of factoring ciliary abnormality in future research on hydrocephalus treatment modalities. Although there are different forms of ciliopathies, we focused in this review on primary ciliary dyskinesia. There is growing evidence of association of other ciliary syndromes and hydrocephalus, such as the reduced generation of multiple motile cilia, which is distinct from primary ciliary dyskinesia. Data for this review were identified by searching PubMed using the search terms 'hydrocephalus,' 'Kartagener syndrome,' 'primary ciliary dyskinesia,' and 'immotile cilia syndrome.' Only articles published in English and reporting human patients were included. Seven studies met our inclusion criteria, reporting 12 cases of hydrocephalus associated with primary ciliary dyskinesia. The patients had variable clinical presentations, genetic backgrounds, and ciliary defects. The ependymal water propelling cilia differ in structure and function from the mucus propelling cilia, and there is a possibility of isolated non-syndromic ependymal ciliopathy causing only hydrocephalus with growing evidence in the literature for the association ependymal ciliary abnormality and hydrocephalus. Abdominal and thoracic situs in children with hydrocephalus can be evaluated, and secondary damage of ependymal cilia causing hydrocephalus in cases with generalized ciliary abnormality can be considered.
Collapse
|
90
|
Devane J, Ott E, Olinger EG, Epting D, Decker E, Friedrich A, Bachmann N, Renschler G, Eisenberger T, Briem-Richter A, Grabhorn EF, Powell L, Wilson IJ, Rice SJ, Miles CG, Wood K, Trivedi P, Hirschfield G, Pietrobattista A, Wohler E, Mezina A, Sobreira N, Agolini E, Maggiore G, Dahmer-Heath M, Yilmaz A, Boerries M, Metzger P, Schell C, Grünewald I, Konrad M, König J, Schlevogt B, Sayer JA, Bergmann C. Progressive liver, kidney, and heart degeneration in children and adults affected by TULP3 mutations. Am J Hum Genet 2022; 109:928-943. [PMID: 35397207 PMCID: PMC9118107 DOI: 10.1016/j.ajhg.2022.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/31/2022] Open
Abstract
Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-β signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.
Collapse
|
91
|
Moran AL, Carter SP, Kaylor JJ, Jiang Z, Broekman S, Dillon ET, Gómez Sánchez A, Minhas SK, van Wijk E, Radu RA, Travis GH, Carey M, Blacque OE, Kennedy BN. Dawn and dusk peaks of outer segment phagocytosis, and visual cycle function require Rab28. FASEB J 2022; 36:e22309. [PMID: 35471581 PMCID: PMC9322422 DOI: 10.1096/fj.202101897r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
RAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP). Here, we demonstrate that Rab28 is also required for dusk peaks of OSP, but not for basal OSP levels. This study further elucidated the molecular mechanisms by which Rab28 controls OSP and inherited blindness. Proteomic profiling identified factors whose expression in the eye or whose expression at dawn and dusk peaks of OSP is dysregulated by loss of Rab28. Notably, transgenic overexpression of Rab28, solely in zebrafish cones, rescues the OSP defect in rab28 KO fish, suggesting rab28 gene replacement in cone photoreceptors is sufficient to regulate Rab28-OSP. Rab28 loss also perturbs function of the visual cycle as retinoid levels of 11-cRAL, 11cRP, and atRP are significantly reduced in larval and adult rab28 KO retinae (p < .05). These data give further understanding on the molecular mechanisms of RAB28-associated CRD, highlighting roles of Rab28 in both peaks of OSP, in vitamin A metabolism and in retinoid recycling.
Collapse
|
92
|
Lee CH, Kang GM, Kim MS. Mechanisms of Weight Control by Primary Cilia. Mol Cells 2022; 45:169-176. [PMID: 35387896 PMCID: PMC9001153 DOI: 10.14348/molcells.2022.2046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.
Collapse
|
93
|
Chen X, Faviez C, Vincent M, Briseño-Roa L, Faour H, Annereau JP, Lyonnet S, Zaidan M, Saunier S, Garcelon N, Burgun A. Patient-Patient Similarity-Based Screening of a Clinical Data Warehouse to Support Ciliopathy Diagnosis. Front Pharmacol 2022; 13:786710. [PMID: 35401179 PMCID: PMC8993144 DOI: 10.3389/fphar.2022.786710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
A timely diagnosis is a key challenge for many rare diseases. As an expanding group of rare and severe monogenic disorders with a broad spectrum of clinical manifestations, ciliopathies, notably renal ciliopathies, suffer from important underdiagnosis issues. Our objective is to develop an approach for screening large-scale clinical data warehouses and detecting patients with similar clinical manifestations to those from diagnosed ciliopathy patients. We expect that the top-ranked similar patients will benefit from genetic testing for an early diagnosis. The dependence and relatedness between phenotypes were taken into account in our similarity model through medical concept embedding. The relevance of each phenotype to each patient was also considered by adjusted aggregation of phenotype similarity into patient similarity. A ranking model based on the best-subtype-average similarity was proposed to address the phenotypic overlapping and heterogeneity of ciliopathies. Our results showed that using less than one-tenth of learning sources, our language and center specific embedding provided comparable or better performances than other existing medical concept embeddings. Combined with the best-subtype-average ranking model, our patient-patient similarity-based screening approach was demonstrated effective in two large scale unbalanced datasets containing approximately 10,000 and 60,000 controls with kidney manifestations in the clinical data warehouse (about 2 and 0.4% of prevalence, respectively). Our approach will offer the opportunity to identify candidate patients who could go through genetic testing for ciliopathy. Earlier diagnosis, before irreversible end-stage kidney disease, will enable these patients to benefit from appropriate follow-up and novel treatments that could alleviate kidney dysfunction.
Collapse
|
94
|
Al-Smair A, Younes S, Saadeh O, Saadeh A, Al-Ali A. Adult Presentation of Joubert Syndrome Presenting With Dysphagia: A Case Report. Cureus 2022; 14:e24226. [PMID: 35602833 PMCID: PMC9114833 DOI: 10.7759/cureus.24226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Joubert syndrome (JS) is a rare autosomal recessive disease affecting the cilium, an intracellular organelle. It has a wide spectrum of presentations with the involvement of multiple genes. JS has multiple subtypes that are either pure JS or JS with other organ involvement such as the kidneys, liver, and others. However, all subtypes share the involvement of the cerebellar peduncles and the brainstem, which presents as "a molar tooth sign" on magnetic resonance imaging, hypotonia, and intellectual disability. It has a higher prevalence among children with few able to survive to adulthood. Unfortunately, survivors live with debilitating comorbidities. Here, we present the case of a 20-year-old patient who presented with a new onset of dysphagia that led to a diagnosis of JS.
Collapse
|
95
|
Yu AT, Shah SP. Idiopathic intracranial hypertension in a child with Bardet-Biedl syndrome. Ophthalmic Genet 2022; 43:534-537. [PMID: 35345964 DOI: 10.1080/13816810.2022.2050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is known to be associated with hydrocephalus, but not with idiopathic intracranial hypertension (IIH). Case presentation: We describe such a case and propose the pathogenesis. We also discuss the challenges of diagnosis, treatment, and monitoring outcomes in this population that is already at high risk of vision loss from retinal dystrophy. CONCLUSION IIH can result from a combination of risk factors in conjunction with the underlying dysfunctional cilia in BBS patients. Monitoring disease progression is difficult, and as such IIH may be underdiagnosed or missed. Management must be adjusted to account for BBS patients' impaired metabolic and renal physiology. It is important that clinicians be aware of these challenges in this vulnerable population, and regular monitoring should be done to avoid preventable vision loss.
Collapse
|
96
|
An HL, Kuo HC, Tang TK. Modeling Human Primary Microcephaly With hiPSC-Derived Brain Organoids Carrying CPAP-E1235V Disease-Associated Mutant Protein. Front Cell Dev Biol 2022; 10:830432. [PMID: 35309908 PMCID: PMC8924525 DOI: 10.3389/fcell.2022.830432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The centrosome is composed of a pair of centrioles and serves as the major microtubule-organizing center (MTOC) in cells. Centrosome dysfunction has been linked to autosomal recessive primary microcephaly (MCPH), which is a rare human neurodevelopmental disorder characterized by small brain size with intellectual disability. Recently, several mouse models carrying mutated genes encoding centrosomal proteins have been generated to address the genotype-phenotype relationships in MCPH. However, several human-specific features were not observed in the mouse models during brain development. Herein, we generated isogenic hiPSCs carrying the gene encoding centrosomal CPAP-E1235V mutant protein using the CRISPR-Cas9 genome editing system, and examined the phenotypic features of wild-type and mutant hiPSCs and their derived brain organoids. Our results showed that the CPAP-E1235V mutant perturbed the recruitment of several centriolar proteins involved in centriole elongation, including CEP120, CEP295, CENTROBIN, POC5, and POC1B, onto nascent centrioles, resulting in the production of short centrioles but long cilia. Importantly, our wild-type hiPSC-derived brain organoid recapitulated many cellular events seen in the developing human brain, including neuronal differentiation and cortical spatial lamination. Interestingly, hiPSC-CPAP-E1235V-derived brain organoids induced p53-dependent neuronal cell death, resulting in the production of smaller brain organoids that mimic the microcephaly phenotype. Furthermore, we observed that the CPAP-E1235V mutation altered the spindle orientation of neuronal progenitor cells and induced premature neuronal differentiation. In summary, we have shown that the hiPSC-derived brain organoid coupled with CRISPR/Cas9 gene editing technology can recapitulate the centrosome/centriole-associated MCPH pathological features. Possible mechanisms for MCPH with centriole/centrosome dysfunction are discussed.
Collapse
|
97
|
Chahine Karam F, Loi TH, Ma A, Nash BM, Grigg JR, Parekh D, Riley LG, Farnsworth E, Bennetts B, Gonzalez-Cordero A, Jamieson RV. Human iPSC-Derived Retinal Organoids and Retinal Pigment Epithelium for Novel Intronic RPGR Variant Assessment for Therapy Suitability. J Pers Med 2022; 12:jpm12030502. [PMID: 35330501 PMCID: PMC8951517 DOI: 10.3390/jpm12030502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
The RPGR gene encodes Retinitis Pigmentosa GTPase Regulator, a known interactor with ciliary proteins, which is involved in maintaining healthy photoreceptor cells. Variants in RPGR are the main contributor to X-linked rod-cone dystrophy (RCD), and RPGR gene therapy approaches are in clinical trials. Hence, elucidation of the pathogenicity of novel RPGR variants is important for a patient therapy opportunity. Here, we describe a novel intronic RPGR variant, c.1415 − 9A>G, in a patient with RCD, which was classified as a variant of uncertain significance according to current clinical diagnostic criteria. The variant lay several base pairs intronic to the canonical splice acceptor site, raising suspicion of an RPGR RNA splicing abnormality and consequent protein dysfunction. To investigate disease causation in an appropriate disease model, induced pluripotent stem cells were generated from patient fibroblasts and differentiated to retinal pigment epithelium (iPSC-RPE) and retinal organoids (iPSC-RO). Abnormal RNA splicing of RPGR was demonstrated in patient fibroblasts, iPSC-RPE and iPSC-ROs, leading to a predicted frameshift and premature stop codon. Decreased RPGR expression was demonstrated in these cell types, with a striking loss of RPGR localization at the ciliary transitional zone, critically in the photoreceptor cilium of the patient iPSC-ROs. Mislocalisation of rhodopsin staining was present in the patient’s iPSC-RO rod photoreceptor cells, along with an abnormality of L/M opsin staining affecting cone photoreceptor cells and increased photoreceptor apoptosis. Additionally, patient iPSC-ROs displayed an increase in F-actin expression that was consistent with an abnormal actin regulation phenotype. Collectively, these studies indicate that the splicing abnormality caused by the c.1415 − 9A>G variant has an impact on RPGR function. This work has enabled the reclassification of this variant to pathogenic, allowing the consideration of patients with this variant having access to gene therapy clinical trials. In addition, we have identified biomarkers of disease suitable for the interrogation of other RPGR variants of uncertain significance.
Collapse
|
98
|
Huljev Frković S, Vičić A, Crkvenac Gornik K, Kulišić D, Stipoljev F. Prenatally detected encephalocele associated with a novel pathogenic TCTN3 variant: A case report and literature review. Am J Med Genet A 2022; 188:1826-1830. [PMID: 35170189 DOI: 10.1002/ajmg.a.62684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
Primary cilia are a component of almost all vertebrate cells with a crucial role in sensing and transducing environmental signals during tissue development. Their dysfunction is known as ciliopathies and can manifest with a wide spectrum of clinical disorders. Overlapping features and molecular heterogeneity of ciliopathies make diagnoses distinctly challenging. In this group of diseases, tectonic genes, and their mutations play an important role. We present a first-trimester fetus with occipital encephalocele and OFD type IV caused by TCTN3 compound heterozygous pathogenic variants: c.1423_1429del (p.Arg475Serfs*10) and c.3G>A (initiator codon). A severe arm anomaly was described in our case, with two fingers along the atrophic forearm and polydactyly on other limbs. This could be a new phenotypic characteristic contributing to further understanding of TCTN3-related disorders as well as other tectonic proteins in ciliopathy spectrum diseases.
Collapse
|
99
|
Ostrowski LE, Yin W, Smith AJ, Sears PR, Bustamante-Marin XM, Dang H, Hildebrandt F, Daniels LA, Capps NA, Sullivan KM, Leigh MW, Zariwala MA, Knowles MR. Expression of a Truncated Form of ODAD1 Associated with an Unusually Mild Primary Ciliary Dyskinesia Phenotype. Int J Mol Sci 2022; 23:ijms23031753. [PMID: 35163670 PMCID: PMC8835943 DOI: 10.3390/ijms23031753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/25/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, with causative mutations in > 50 genes identified, and clinical phenotypes ranging from mild to severe. Absence of ODAD1 (CCDC114), a component of the outer dynein arm docking complex, results in a failure to assemble outer dynein arms (ODAs), mostly immotile cilia, and a typical PCD phenotype. We identified a female (now 34 years old) with an unusually mild clinical phenotype who has a homozygous non-canonical splice mutation (c.1502+5G>A) in ODAD1. To investigate the mechanism for the unusual phenotype, we performed molecular and functional studies of cultured nasal epithelial cells. We demonstrate that this splice mutation results in the expression of a truncated protein that is attached to the axoneme, indicating that the mutant protein retains partial function. This allows for the assembly of some ODAs and a significant level of ciliary activity that may result in the atypically mild clinical phenotype. The results also suggest that partial restoration of ciliary function by therapeutic agents could lead to significant improvement of disease symptoms.
Collapse
|
100
|
Liu Z, Hai Y, Li Z, Wu L. Zebrafish and idiopathic scoliosis: the 'unknown knowns'. Trends Genet 2022; 38:524-528. [PMID: 35115176 DOI: 10.1016/j.tig.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
Abstract
The etiology and heterogeneity of idiopathic scoliosis (IS) are poorly understood. Studies using scoliotic zebrafish models have indicated a potential link between ciliary defects and scoliosis. They may further explain the onset of IS partially. However, it is necessary to further interpret the link between this progress and clinical medicine.
Collapse
|