76
|
Leone M, Cupane A, Militello V, Cordone L. Thermal broadening of the Soret band in heme complexes and in heme-proteins: role of iron dynamics. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1994; 23:349-52. [PMID: 7835318 DOI: 10.1007/bf00188658] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the thermal broadening of the Soret band in heme-CO, heme-OH and protoporphyrin IX in the temperature range 300-20 K. For protoporphyrin IX the temperature dependent Gaussian line broadening follows the behavior predicted by the harmonic approximation in the entire temperature range investigated. In contrast, for heme-CO and heme-OH the harmonic behavior is obeyed only up to about 180 K and an anomalous line broadening increase is observed at higher temperatures. This effect is attributed to the onset of anharmonic motions of the iron atom with respect to the porphyrin plane. Comparison with previously reported analogous data for heme proteins enables us to suggest that the onset of substrate interconversions in these latter systems can be reflected in motions of the iron atom with respect to the porphyrin plane.
Collapse
|
Comparative Study |
31 |
21 |
77
|
Vásquez GB, Ji X, Fronticelli C, Gilliland GL. Human carboxyhemoglobin at 2.2 A resolution: structure and solvent comparisons of R-state, R2-state and T-state hemoglobins. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 1998; 54:355-66. [PMID: 9761903 DOI: 10.1107/s0907444997012250] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The three-dimensional structure and associated solvent of human carboxyhemoglobin at 2.2 A resolution are compared with other R-state and T-state human hemoglobin structures. The crystal form is isomorphous with that of the 2.7 A structure of carboxyhemoglobin reported earlier [Baldwin (1980). J. Mol. Biol. 136, 103-128], whose coordinates were used as a starting model, and with the 2.2 A structure described in an earlier report [Derewenda et al. (1990). J. Mol. Biol. 211, 515-519]. During the course of the refinement, a natural mutation of the alpha-subunit, A53S, was discovered that forms a new crystal contact through a bridging water molecule. The protein structure shows a significant difference between the alpha and beta heme geometries, with Fe-C-O angles of 125 and 162 degrees, respectively. The carboxyhemoglobin is compared with other fully ligated R-state human hemoglobins [Baldwin (1980). J. Mol. Biol. 136, 103-128; Shaanan (1983). J. Mol. Biol. 195, 419-422] with the R2-state hemoglobin [Silva et al. (1992). J. Biol. Chem. 267, 17248-17256] and with T-state deoxyhemoglobin [Fronticelli et al. (1994). J. Biol. Chem. 269, 23965-23969]. The structure is similar to the earlier reported R-state structures, but there are differences in many side-chain conformations, the associated water structure and the presence and the position of a phosphate ion. The quaternary changes between the R-state carboxyhemoglobin and the R2-state and T-state structures are in general consistent with those reported in the earlier structures. The location of 238 water molecules and a phosphate ion in the carboxyhemoglobin structure allows the first comparison of the solvent structures of the R-state and T-state structures. Distinctive hydration patterns for each of the quaternary structures are observed, but a number of conserved water molecule binding sites are found that are independent of the conformational state of the protein.
Collapse
|
|
27 |
21 |
78
|
Dean BS, Verdile VP, Krenzelok EP. Coma reversal with cerebral dysfunction recovery after repetitive hyperbaric oxygen therapy for severe carbon monoxide poisoning. Am J Emerg Med 1993; 11:616-8. [PMID: 8043054 DOI: 10.1016/0735-6757(93)90016-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The accepted beneficial effects of hyperbaric oxygen (HBO) include a greatly diminished carboxyhemoglobin (COHgb) half-life, enhanced tissue clearance of residual carbon monoxide (CO), reduced cerebral edema, and reversal of cytochrome oxidase inhibition, and prevention of central nervous system lipid peroxidation. Debate regarding the criteria for selection of HBO versus 100% normobaric oxygen therapy continues, and frequently is based solely on the level of COHgb saturation. Patients who manifest signs of serious CO intoxication (unconsciousness, neuropsychiatric symptoms, cardiac or hemodynamic instability) warrant immediate HBO therapy. An unresponsive 33-year-old woman was found in a closed garage, inside her automobile with the ignition on. Her husband admitted to seeing her 6 hours before discovery. 100% normobaric oxygen was administered in the prehospital and emergency department settings. The patient had an initial COHgb saturation of 46.7%, a Glasgow coma score of 3, and was transferred for HBO therapy. Before HBO therapy, the patient remained unresponsive and demonstrated decerebrate posturing and a positive doll's eyes (negative oculocephalic reflex). The electroencephalogram pattern suggested bilateral cerebral dysfunction consistent with a toxic metabolic or hypoxic encephalopathy. The patient underwent HBO therapy at 2.4 ATA for 90 minutes twice a day for 3 consecutive days. On day 7, the patient began to awaken, was weaned from ventilatory support, and was not soon verbalizing appropriately. A Folstein mental status examination showed a score of 26 of 30. Neurological examination demonstrated mild residual left upper extremity weakness and a normal gait. There was no evidence of significant neurological sequelae at 1 month follow-up.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Case Reports |
32 |
20 |
79
|
Karavitis M, Fronticelli C, Brinigar WS, Vasquez GB, Militello V, Leone M, Cupane A. Properties of human hemoglobins with increased polarity in the alpha- or beta-heme pocket. Carbonmonoxy derivatives. J Biol Chem 1998; 273:23740-9. [PMID: 9726982 DOI: 10.1074/jbc.273.37.23740] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectroscopic, conformational, and functional properties of mutant carbonmonoxy hemoglobins in which either the beta-globin Val67(E11) or the alpha-globin Val62(E11) is replaced by threonine have been investigated. The thermal evolution of the Soret absorption band and the stretching frequency of the bound CO were used to probe the stereodynamic properties of the heme pocket. The functional properties were investigated by kinetic measurements. The spectroscopic and functional data were related to the conformational properties through molecular analysis. The effects of this nonpolar-to-polar isosteric mutation are: (i) increase of heme pocket anharmonic motions, (ii) stabilization of the A0 conformer in the IR spectrum, (iii) increased CO dissociation rates. The spectroscopic data indicate that for the carbonmonoxy derivatives, the Val --> Thr mutation has a larger conformational effect on the beta-subunits than on the alpha-subunits. This is at variance with the deoxy derivatives where the conformational modification was larger in the heme pocket of the alpha-subunit (Cupane, A., Leone, M., Militello, V., Friedman, R. K., Koley, A. P., Vasquez, G. P., Brinigar, W. S., Karavitis, M., and Fronticelli, C. (1997) J. Biol. Chem. 272, 26271-26278). These effects are attributed to a different electrostatic interaction between Ogamma of Thr(E11) and the bound CO molecule. Molecular analysis indicates a more favorable interaction of the bound CO with Thr Ogamma in the beta-subunit heme pocket.
Collapse
|
|
27 |
20 |
80
|
Yamaguchi T, Adachi K. Hemoglobin equilibrium analysis by the multiangle laser light-scattering method. Biochem Biophys Res Commun 2002; 290:1382-7. [PMID: 11820774 DOI: 10.1006/bbrc.2002.6362] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dimer-tetramer and monomer-dimer-tetramer equilibria of tetrameric hemoglobins and their single chains in the CO form, respectively, were evaluated using the microbatch multiangle light-scattering (MALS) analysis system. The molecular weights of human Hb A and Hb F in the CO form were dependent on concentration. The dissociation constants to dimers of Hb A and Hb F were 2.58 x 10(-6) and 0.66 x 10(-6), respectively. Equilibration of single globin chains, including alpha, beta, and gamma chains, was also evaluated by the same method. The dissociation constants of alpha-chain dimers to monomers, of beta-chain tetramers to monomers, and of gamma-chain tetramers to dimers were 14 x 10(-6), 25 x 10(-17), and 6.86 x 10(-6) M, respectively. These results indicate that the MALS analysis system can not only determine molecular weight but also characterize protein-protein interactions of multi-subunit proteins.
Collapse
|
|
23 |
19 |
81
|
Song S, Boffi A, Chiancone E, Rousseau DL. Protein-heme interactions in hemoglobin from the mollusc Scapharca inaequivalvis: evidence from resonance Raman scattering. Biochemistry 1993; 32:6330-6. [PMID: 8518278 DOI: 10.1021/bi00076a005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Resonance Raman spectra of the Scapharca inaequivalvis homodimeric hemoglobin (HbI) have been measured for the ligand-bound and ligand-free ferrous forms of the protein. In the deoxy derivative, the iron-histidine (Fe-His) stretching mode, proposed as a marker of the oxygen affinity and a conduit linking the hemes to the subunit interface, gives rise to a Raman peak centered at 203 cm-1, an unusually low frequency compared to that reported for other hemoglobins and myoglobins. In the CO-bound derivative, three isotope-sensitive lines at 517, 583, and 1945 cm-1 have been assigned to the Fe-CO stretching, Fe-C-O bending, and C-O stretching modes, respectively. From the frequencies of these modes and from their relative intensities, the Fe-C-O geometry appears to be tilted from axial coordination and shows a bending angle which has been estimated to be about 171 +/- 5 degrees. For the oxygen derivative, only one isotope-sensitive peak has been detected at 570 cm-1, in line with the values found for myoglobin and other hemoglobins. Resonance Raman spectra of HbI modified with p-(chloromercuri)benzoate (PMB) at Cys92 have been measured in parallel with those of the native protein. Despite the large increase in oxygen affinity produced by the PMB modification, the frequency of the Fe-His stretching mode is unshifted in the deoxy derivative.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
32 |
19 |
82
|
Krueger S, Chen SH, Hofrichter J, Nossal R. Small angle neutron scattering studies of HbA in concentrated solutions. Biophys J 1990; 58:745-57. [PMID: 2207261 PMCID: PMC1281015 DOI: 10.1016/s0006-3495(90)82417-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Differential cross-sections for neutrons scattered by normal human hemoglobin have been determined over the range of concentrations from 2 to approximately 35 weight percent. Data are compared with structure factors calculated from models of monodisperse hard spheres interacting through a screened Coulomb potential. Good agreement is noted when the volume fraction eta is adjusted during multivariate fitting of data, but the fitted value of eta is always lower than expected from the known Hb concentration of the samples. Calculations of cross-sections for polydisperse scatterers suggest that the samples may contain oligomers of the fundamental tetrameric Hb molecule.
Collapse
|
research-article |
35 |
18 |
83
|
Woehlck HJ, Mei D, Dunning MB, Ruiz F. Mathematical Modeling of Carbon Monoxide Exposures from Anesthetic Breakdown. Anesthesiology 2001; 94:457-60. [PMID: 11374606 DOI: 10.1097/00000542-200103000-00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background
Carbon monoxide (CO) is produced by reaction of isoflurane, enflurane, and desflurane in desiccated carbon dioxide absorbents. The inspiratory CO concentration depends on the dryness and identity of the absorbent and anesthetic. The adaptation of existing mathematical models to a rebreathing circuit allows identification of patient factors that predispose to more severe exposures, as identified by carboxyhemoglobin concentration.
Methods
From our companion study, the authors used quantitative in vitro CO production data for 60 min at 7.5% desflurane or 1.5% isoflurane at 1 l/min fresh gas flow. The carboxyhemoglobin concentration was calculated by iteratively solving the Coburn Forster Kane equation modified for a rebreathing system that incorporates the removal of CO by patient absorption. Demonstrating good fit of predicted carboxyhemoglobin concentrations to published data from animal and human exposures validated the model. Carboxyhemoglobin concentrations were predicted for exposures of various severity, patients of different sizes, hematocrit, and fraction of inspired oxygen.
Results
The calculated carboxyhemoglobin concentrations closely predicted the experimental results of other investigators, thereby validating the model. These equations indicate the severity of CO poisoning is inversely related to the hemoglobin quantity of a subject. Fraction of inspired oxygen had the greatest effect in patients of small size with low hematocrit values, where equilibrium and not the rate of uptake determined carboxyhemoglobin concentrations.
Conclusion
This model predicts that patients with low hemoglobin quantities will have more severe CO exposures based on the attainment of a higher carboxyhemoglobin concentration. This includes patients of small size (pediatric population) and patients with anemia.
Collapse
|
|
24 |
17 |
84
|
Pitcher WH, Keller SL, Huestis WH. Interaction of nominally soluble proteins with phospholipid monolayers at the air-water interface. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:107-13. [PMID: 12101002 DOI: 10.1016/s0005-2736(02)00405-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interactions of carbonmonoxyhemoglobin (HbCO), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and polyhistidine with phospholipid monolayers at the air-water interface were studied at physiological pH and ionic strength. HbCO and GAPDH both interact more strongly with monolayers containing negatively charged lipids. The interaction of HbCO and GAPDH with lipid monolayers decreases with increasing pH. Both the HbCO-monolayer and the GAPDH-monolayer interactions can be modeled as diffusion-limited processes, with kinetic data fit to a stretched exponential equation. The significance of these kinetics are discussed. Polyhistidine interacts only with monolayers containing lipids with negatively charged headgroups. In total, the results presented are consistent with an HbCO-lipid interaction with a large electrostatic component, a GAPDH-lipid interaction with comparable electrostatic and hydrophobic components, and a polyhistidine-lipid interaction that is solely electrostatic.
Collapse
|
|
23 |
17 |
85
|
Bolden C, King SB, Kim-Shapiro DB. Reactions between nitrosopersulfide and heme proteins. Free Radic Biol Med 2016; 99:418-425. [PMID: 27609224 PMCID: PMC5107148 DOI: 10.1016/j.freeradbiomed.2016.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 02/07/2023]
Abstract
When nitrosothiols react with excess hydrogen sulfide, H2S, they form several intermediates including nitrosopersulfide (SSNO-). The stability and importance of this species has been debated. While some data suggest SSNO- can be a relatively stable source of NO activity, others suggest that the species degrades too quickly. We find the species to be relatively stable in isolation. Due to the abundance and prominence of iron-containing proteins throughout the human body, it is important to establish the interaction of ferrous- and ferric-iron containing proteins with SSNO-. Study of the reactions of SSNO- with heme proteins can also provide information about the potential in vivo stability and spontaneous reactivity of this species. We have used time-resolved electron paramagnetic resonance and UV-Vis absorption spectroscopy to study the reactions of SSNO- with heme proteins. Iron-nitrosyl hemoglobin is formed when SSNO- is reacted with deoxyhemoglobin and deoxygenated methemoglobin, suggesting NO formation from SSNO-. However, the yields of nitrosyl hemoglobin in reactions of SSNO- with deoxyhemoglobin are much less than when SSNO- is reacted with deoxygenated methemoglobin. Very little to no nitrosyl hemoglobin is formed when SSNO- is reacted carboxyhemoglobin, HbCO, and when SSNO- is reacted with oxygenated hemoglobin, minimal methemoglobin is formed Taken together, these data confirm the release of NO, but indicate a vacant heme is necessary to facilitate a direct heme-SSNO- reaction to form substantial NO. These data also suggest that the ferric iron in methemoglobin potentiates SSNO- reactivity. These results could potentially impact NO and sulfide bioavailability and reactivity.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
17 |
86
|
|
Review |
31 |
17 |
87
|
Kiger L, Poyart C, Marden MC. Oxygen and CO binding to triply NO and asymmetric NO/CO hemoglobin hybrids. Biophys J 1993; 65:1050-8. [PMID: 8241385 PMCID: PMC1225821 DOI: 10.1016/s0006-3495(93)81164-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The bimolecular and geminate CO recombination kinetics have been measured for hemoglobin (Hb) with over 90% of the ligand binding sites occupied by NO. Since Hb(NO)4 with inositol hexaphosphate (IHP) at pH below 7 is thought to take on the low affinity (deoxy) conformation, the goal of the experiments was to determine whether the species IHPHb-(NO)3(CO) also exists in this quaternary structure, which would allow ligand binding studies to tetramers in the deoxy conformation. For samples at pH 6.6 in the presence of IHP, the bimolecular kinetics show only a slow phase with rate 7 x 10(4) M-1 s-1, characteristic of CO binding to deoxy Hb, indicating that the triply NO tetramers are in the deoxy conformation. Unlike Hb(CO)4, the fraction recombination occurring during the geminate phase is low (< 1%) in aqueous solutions, suggesting that the IHPHb(NO)3(CO) hybrid is also essentially in the deoxy conformation. By mixing stock solutions of HbCO and HbNO, the initial exchange of dimers produces asymmetric (alpha NO beta NO/alpha CO beta CO) hybrids. At low pH in the presence of IHP, this hybrid also displays a high bimolecular quantum yield and a large fraction of slow (deoxy-like) CO recombination; the slow bimolecular kinetics show components of equal amplitude with rates 7 and 20 x 10(4) M-1 s-1, probably reflecting the differences in the alpha and beta chains. Samples of symmetric hybrids (a2NOI32Co or a2Co922NO) showed a lower (R-like) bimolecular yield and less slow phase for the CO bimolecular recombination, relative to the asymmetric hybrid or the triply NO species. The slower (T state) bimolecular rate of 7 x 104 M-1 s-1 was observed for CO rebinding to a chain.While oxygen equilibrium studies with 'HPHb(NO)3 were hampered by a high oxidation rate, it was possible to perform experiments with samples equilibrated with a mixed CO/oxygen atmosphere. Photodissociation of CO allows a temporary exposure of the binding sites to oxygen. The results confirm that IHPHb(NO)3 has a low oxygen affinity.
Collapse
|
research-article |
32 |
17 |
88
|
Pechik I, Ji X, Fidelis K, Karavitis M, Moult J, Brinigar WS, Fronticelli C, Gilliland GL. Crystallographic, molecular modeling, and biophysical characterization of the valine beta 67 (E11)-->threonine variant of hemoglobin. Biochemistry 1996; 35:1935-45. [PMID: 8639677 DOI: 10.1021/bi9519967] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystal structure of the mutant deoxyhemoglobin in which the beta-globin Val67(E11) has been replaced with threonine [Fronticelli et al. (1993) Biochemistry 32, 1235-1242] has been determined at 2.2 A resolution. Prior to the crystal structure determination, molecular modeling indicated that the Thr67(E11) side chain hydroxyl group in the distal beta-heme pocket forms a hydrogen bond with the backbone carbonyl of His63(E7) and is within hydrogen-bonding distance of the N delta of His63(E7). The mutant crystal structure indicates only small changes in conformation in the vicinity of the E11 mutation confirming the molecular modeling predictions. Comparison of the structures of the mutant beta-subunits and recombinant porcine myoglobin with the identical mutation [Cameron et al. (1993) Biochemistry 32, 13061-13070] indicates similar conformations of residues in the distal heme pocket, but there is no water molecule associated with either of the threonines of the beta-subunits. The introduction of threonine into the distal heme pocket, despite having only small perturbations in the local structure, has a marked affect on the interaction with ligands. In the oxy derivative there is a 2-fold decrease in O2 affinity [Fronticelli et al. (1993) Biochemistry 32, 1235-1242], and the rate of autoxidation is increased by 2 orders of magnitude. In the CO derivative the IR spectrum shows modifications with respect to that of normal human hemoglobin, suggesting the presence of multiple CO conformers. In the nitrosyl derivative an interaction with the O gamma atom of Thr67(E11) is probably responsible for the 10-fold increase in the rate of NO release from the beta-subunits. In the aquomet derivative there is a 6-fold decrease in the rate of hemin dissociation suggesting an interaction of the Fe-coordinated water with the O gamma of Thr67(E11).
Collapse
|
|
29 |
17 |
89
|
Venkatesh B, Ramasamy S, Mylrajan M, Asokan R, Manoharan PT, Rifkind JM. Fourier transform Raman approach to structural correlation in hemoglobin derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 1999; 55A:1691-1697. [PMID: 10439514 DOI: 10.1016/s1386-1425(99)00008-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to obtain information on the structural aspects of hemoglobin (Hb), Fourier transform Raman (FT-R) measurements on various ferrous, ferric derivatives and nickel reconstituted Hb (NiHb) has been made. FT-R spectra for these derivatives were obtained by laser excitation in the near infrared region (NIR) (1064 nm) whereby the wave-number region (600-1700 cm-1) related to both porphyrin ring modes and some globin modes were monitored. Comparison of various modes was made based on previous resonance Raman (RR) results. The wave-number shifts with respect to changes in oxidation state and spin state are very similar to those observed by RR. Additional bands at 1654, 1459, and 1003 cm-1 for deoxyHb and at 1656, 1454, and 1004 cm-1 for oxy Hb can be correlated to globin modes. The shift in the position of these bands for the binding of oxygen can be related to changes in conformation during the transformation. The presence of two distinct sites in NiHb could be monitored by the use of FT-R technique.
Collapse
|
Comparative Study |
26 |
17 |
90
|
Gryczynski Z, Fronticelli C, Tenenholz T, Bucci E. Effect of disordered hemes on energy transfer rates between tryptophans and heme in myoglobin. Biophys J 1993; 65:1951-8. [PMID: 8298024 PMCID: PMC1225930 DOI: 10.1016/s0006-3495(93)81266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Our recent linear dichroism study of heme transitions (Gryczynski, Z., E. Bucci, and J. Kusba. 1993. Photochem. Photobiology. in press) indicate that heme cannot be considered a planar oscillator when it acts as an acceptor of radiationless excitation energy transfer from tryptophan. The linear nature of the heme absorption transition moment in the near-UV region implies a strong dependence of the transfer rate factors on the relative angular position of the heme and tryptophan, i.e., on the kappa 2 orientation parameter of the Förster equation. Using the atomic coordinates of SW myoglobin we have estimated the variation of kappa 2 parameter as a function of the heme absorption transition moment direction. The simulations proved that transfer is very efficient and anticipates lifetimes in the picosecond range. Also, they showed that transfer is very sensitive to rotations of the heme around its alpha-gamma-meso-axis, which may reduce the efficiency of transfer to almost zero values, producing lifetimes very similar to those of free tryptophan, in the nanosecond range. Comparisons between the lifetime values reported in the literature and those here estimated suggest that natural heme disorder, in which heme is rotated 180 degrees around its meso axis, is at the origin of the nanosecond lifetimes found in myoglobin systems.
Collapse
|
research-article |
32 |
16 |
91
|
Pitcher WH, Huestis WH. Preparation and analysis of small unilamellar phospholipid vesicles of a uniform size. Biochem Biophys Res Commun 2002; 296:1352-5. [PMID: 12207924 DOI: 10.1016/s0006-291x(02)02092-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction of carbonmonoxyhemoglobin and heme with small unilamellar phospholipid vesicles was studied using dynamic light scattering. Addition of carbonmonoxyhemoglobin to dimyristoylphosphatidylcholine:dimyristoylphosphatidylserine small unilamellar vesicles resulted in an increase of average vesicle size from 17.4 to 32.0nm. Addition of heme to vesicles produced a smaller size increase, from 17.4 to 21.0nm. Also reported is a method for preparing small unilamellar lipid vesicles of a uniform size, suitable for use in NMR spectroscopy.
Collapse
|
|
23 |
16 |
92
|
Fang TY, Simplaceanu V, Tsai CH, Ho NT, Ho C. An additional H-bond in the alpha 1 beta 2 interface as the structural basis for the low oxygen affinity and high cooperativity of a novel recombinant hemoglobin (beta L105W). Biochemistry 2000; 39:13708-18. [PMID: 11076510 DOI: 10.1021/bi001115i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-directed mutagenesis has been used to construct three recombinant mutant hemoglobins (rHbs), rHb(beta L105W), rHb(alpha D94A/betaL105W), and rHb(alpha D94A). rHb(beta L105W) is designed to form a new hydrogen bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface to lower the oxygen binding affinity by stabilizing the deoxy quaternary structure. We have found that rHb(beta L105W) does indeed possess a very low oxygen affinity and maintains normal cooperativity (P(50) = 28.2 mmHg, n(max) = 2.6 in 0.1 M sodium phosphate at pH 7.4) compared to those of Hb A (P(50) = 9.9 mmHg, n(max) = 3.2 at pH 7.4). rHb(alpha D94A/beta L105W) and rHb(alpha D94A) are expressed to provide evidence that rHb(betaL 105W) does form a new H-bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface of the deoxy quaternary structure. Our multinuclear, multidimensional nuclear magnetic resonance (NMR) studies on (15)N-labeled rHb(beta L105W) have identified the indole nitrogen-attached (1)H resonance of beta 105Trp for rHb(beta L105W). (1)H NMR studies on Hb A and mutant rHbs have been used to investigate the structural basis for the low O(2) affinity of rHb(beta L105W). Our NMR results provide evidence that rHb(beta L105W) forms a new H-bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface of the deoxy quaternary structure. The NMR results also show that these three rHbs can switch from the R quaternary structure to the T quaternary structure in their ligated state upon addition of an allosteric effector, inositol hexaphosphate. We propose that the low O(2) affinity of rHb(beta L105W) is due to the formation of a new H-bond between alpha 105Trp and alpha 94Asp in the deoxy quaternary structure.
Collapse
|
|
25 |
15 |
93
|
Coletta M, Ascenzi P, Santucci R, Bertollini A, Amiconi G. Interaction of inositol hexakisphosphate with liganded ferrous human hemoglobin. Direct evidence for two functionally operative binding sites. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1162:309-14. [PMID: 8457595 DOI: 10.1016/0167-4838(93)90295-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inositol hexakisphosphate (InsP6) binding to the oxygenated, carbonylated and nitrosylated derivatives of ferrous human hemoglobin (HbO2, HbCO and HbNO, respectively) has been measured at pH 7.0 (0.1 M Bis-Tris buffer, 0.1 M NaCl) and 20 degrees C. The observations indicate the presence of two InsP6 binding sites per tetramer in all the heme liganded hemoglobin derivatives, with different affinities for the polyphosphate. For each binding site, InsP6 interacts with similar affinity constants to HbO2, HbCO and HbNO. Such a finding indicates that different heme ligands do not alter significantly the stereochemistry of the polyphosphate binding cleft. This behaviour seems to indicate that, even though different heme ligands are likely to affect the tertiary conformation of the subunit in a different fashion, the perturbation does not seem to be transmitted to the quaternary arrangement of the whole macromolecule, and, thus, to the InsP6 binding site.
Collapse
|
|
32 |
15 |
94
|
Abstract
Bovine carbonmonoxy hemoglobin investigated with light scattering studies is found to dissociate from its native tetramer structure into dimers and monomers. The values of the hydrated tetramer radius, RT = 32.1 A, and the fractional dissociation vs pH, have been obtained at different ionic strengths from the autocorrelation function of the scattered light. The results suggest that a relevant contribution to Hb dissociation is due to electrostatic effects and, by means of a model derived by Tanford, it has been possible to predict the behavior of dissociation. Among the findings of this approach, we recall the estimates of the electrostatic energy contributions to Hb dissociation, up to congruent to 6RT, and the predicted charge of tetrameric Hb vs pH, which agrees very well with the experimental data.
Collapse
|
|
31 |
15 |
95
|
Nagatomo S, Nagai M, Tsuneshige A, Yonetani T, Kitagawa T. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme. Biochemistry 1999; 38:9659-66. [PMID: 10423244 DOI: 10.1021/bi990567w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human alpha-nitrosyl beta-deoxy hemoglobin A, alpha(NO)beta(deoxy), is considered to have a T (tense) structure with the low O(2) affinity extreme and the Fe-histidine (His87) (Fe-His) bond of alpha heme cleaved. The Fe-His bonding of alpha heme and the intersubunit interactions at the alpha 1-beta 2 contact of alpha(NO)-Hbs have been examined under various conditions with EPR and UV resonance Raman (UVRR) spectra excited at 235 nm, respectively. NOHb at pH 6.7 gave the UVRR spectrum of the R structure, but in the presence of inositol-hexakis-phosphate (IHP) for which the Fe-His bond of the alpha heme is broken, UVRR bands of Trp residues behaved half-T-like while Tyr bands remained R-like. The half-ligated nitrosylHb, alpha(NO)beta(deoxy), in the presence of IHP at pH 5.6, gave T-like UVRR spectra for both Tyr and Trp, but binding of CO to its beta heme (alpha(NO)beta(CO)) changed the UVRR spectrum to half-T-like. Binding of NO to its beta heme (NOHb) changed the UVRR spectrum to 70% T-type for Trp but almost R-type for Tyr. When the pH was raised to 8.2 in the presence of IHP, the UVRR spectrum of NOHb was the same as that of COHb. EPR spectra of these Hbs indicated that the Fe-His bond of alpha(NO) heme is partially cleaved. On the other hand, the UVRR spectra of alpha(NO)beta(deoxy) in the absence of IHP at pH 8.8 showed the T-like UVRR spectrum, but the EPR spectrum indicated that 40-50% of the Fe-His bond of alpha hemes was intact. Therefore, it became evident that there is a qualitative correlation between the cleavage of the Fe-His bond of alpha heme and T-like contact of Trp-beta 37. We note that the behaviors of Tyr and Trp residues at the alpha 1-beta 2 interface are not synchronous. It is likely that the behaviors of Tyr residues are controlled by the ligation of beta heme through His-beta 92(F8)-->Val-beta 98(FG5)-->Asp-beta 99(G1 )-->Tyr-alpha 42(C7) or Tyr-beta 145(HC2).
Collapse
|
|
26 |
14 |
96
|
Nuernberger P, Lee KF, Bonvalet A, Polack T, Vos MH, Alexandrou A, Joffre M. Suppression of perturbed free-induction decay and noise in experimental ultrafast pump-probe data. OPTICS LETTERS 2009; 34:3226-3228. [PMID: 19838281 DOI: 10.1364/ol.34.003226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We apply a Fourier filtering technique for the global removal of coherent contributions, like perturbed free-induction decay, and noise, to experimental pump-probe spectra. A further filtering scheme gains access to spectra otherwise only recordable by scanning the probe's center frequency with adjustable spectral resolution. These methods cleanse pump-probe data and allow improved visualization and simpler analysis of the contained dynamics. We demonstrate these filters using visible pump/mid-infrared probe spectroscopy of ligand dissociation in carboxyhemoglobin.
Collapse
|
|
16 |
13 |
97
|
Baudin V, Pagnier J, Kiger L, Kister J, Schaad O, Bihoreau MT, Lacaze N, Marden MC, Edelstein SJ, Poyart C. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers. Protein Sci 1993; 2:1320-30. [PMID: 8401217 PMCID: PMC2142439 DOI: 10.1002/pro.5560020815] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A seminal difference exists between the two types of chains that constitute the tetrameric hemoglobin in vertebrates. While alpha chains associate weakly into dimers, beta chains self-associate into tightly assembled tetramers. While heterotetramers bind ligands cooperatively with moderate affinity, homotetramers bind ligands with high affinity and without cooperativity. These characteristics lead to the conclusion that the beta 4 tetramer is frozen in a quaternary R-state resembling that of liganded HbA. X-ray diffraction studies of the liganded beta 4 tetramers and molecular modeling calculations revealed several differences relative to the native heterotetramer at the "allosteric" interface (alpha 1 beta 2 in HbA) and possibly at the origin of a large instability of the hypothetical deoxy T-state of the beta 4 tetramer. We have studied natural and artificial Hb mutants at different sites in the beta chains responsible for the T-state conformation in deoxy HbA with the view of restoring a low ligand affinity with heme-heme interaction in homotetramers. Functional studies have been performed for oxygen equilibrium binding and kinetics after flash photolysis of CO for both hetero- and homotetramers. Our conclusion is that the "allosteric" interface is so precisely tailored for maintaining the assembly between alpha beta dimers that any change in the side chains of beta 40 (C6), beta 99 (G1), and beta 101 (G3) involved in the interface results in increased R-state behavior. In the homotetramer, the mutations at these sites lead to the destabilization of the beta 4 hemoglobin and the formation of lower affinity noncooperative monomers.
Collapse
|
research-article |
32 |
13 |
98
|
Fetler BK, Simplaceanu V, Ho C. 1H-NMR investigation of the oxygenation of hemoglobin in intact human red blood cells. Biophys J 1995; 68:681-93. [PMID: 7696519 PMCID: PMC1281732 DOI: 10.1016/s0006-3495(95)80229-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using improved selective excitation methods for protein nuclear magnetic resonance (NMR), we have conducted measurements of the oxygenation of hemoglobin inside intact human red blood cells. The selective excitation methods use pulse shape-insensitive suppression of the water signal, while producing uniform phase excitation in the region of interest and, thus, are suitable for a wide variety of applications in vivo. We have measured the areas of 1H-NMR resonances of the hyperfine-shifted, exchangeable N delta H protons of the proximal histidine residues of the alpha- and beta-chains in deoxyhemoglobin (63 and 76 ppm downfield from the proton resonance of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), respectively), which are sensitive to the paramagnetic state of the iron, and for which the alpha- and beta-chain resonances are resolved, and from the ring current-shifted gamma 2-CH3 protons of the distal valine residues in oxyhemoglobin (2.4 ppm upfield from DSS), which are sensitive to the conformation of the heme pocket in the oxy state. We have found that the proximal histidine resonances are directly correlated with the degree of oxygenation of hemoglobin, whereas the distal valine resonances appear to be correlated with the conformation in the heme pocket that occurs after the binding of oxygen, in both the presence and absence of 2,3-diphosphoglycerate. In addition, from the proximal histidine resonances, we have observed a preference for the binding of oxygen to the alpha-chain (up to about 10%) of hemoglobin over the beta-chain in both the presence and absence of 2,3-diphosphoglycerate. These new results obtained in intact erythrocytes are consistent with our previous 1H-NMR studies on purified human normal adult hemoglobin. A unique feature of our 1H-NMR method is the ability to monitor the binding of oxygen specifically to the alpha- and beta-chains of hemoglobin both in solution and in intact red blood cells. This information is essential to our understanding of the molecular basis for the hemoglobin molecule serving as the oxygen carrier in vertebrates.
Collapse
|
research-article |
30 |
13 |
99
|
Braden BC, Arents G, Padlan EA, Love WE. Glycera dibranchiata hemoglobin. X-ray structure of carbonmonoxide hemoglobin at 1.5 A resolution. J Mol Biol 1994; 238:42-53. [PMID: 8145255 DOI: 10.1006/jmbi.1994.1266] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure of carbonmonoxide Glycera hemoglobin has been determined to 1.5 A resolution by X-ray diffraction. The model, including ordered solvent, has been refined by the method of restrained least-squares to an R-value of 0.146. The positions of 1104 protein atoms and the oxygens of 155 water molecules have been determined with an estimated r.m.s. error of 0.10 to 0.13 A. The r.m.s. errors in protein geometry are 0.027 A for bond distances, 0.038 A for angle distances and 0.012 A for deviations of planar groups from their least-squares planes. The iron lies exactly in the plane of the heme nitrogens and the heme is very slightly domed toward the proximal side. The carbon-oxygen bond in the carbon monoxide ligand is bent 7.9 degrees away from the normal to the plane of the heme nitrogens. The ligand is in close contact with, and slightly removed from the heme normal by distal residues Leu 58(E7) and Val62(E11). Comparison of the CO structure with the 1.5 A deoxy structure shows that the majority of the rather small structural changes occurring upon ligation are mediated by movement of the heme due to shortening of the five iron to nitrogen bonds. There is very little empty space inside the molecule, and no direct channel from the solvent into the heme pocket; however, rotation of the side-chain of the distal leucine residue Leu 58(E6) could provide a ligand pathway.
Collapse
|
|
31 |
13 |
100
|
Olsen SH, Elvevoll EO. pH-induced shift in hemoglobin spectra: a spectrophotometeric comparison of atlantic cod ( Gadus morhua ) and mammalian hemoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1415-1422. [PMID: 21235209 DOI: 10.1021/jf1036273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Due to a pH-sensitive effect in many fish hemoglobins (Hb), analytical errors may occur when mammalian Hb is used as a standard in quantitative spectrophotometric multicomponent analysis of fish blood. The aim of this work was to examine differences in the optical spectra of mammalian (human) and fish (farmed Atlantic cod) Hb subjected to pH 7.4 and 6.5. The absorption spectra of the common derivatives, deoxy- (HHb), oxy- (OHb), carboxy- (COHb), and methemoglobin (metHb), were determined in the spectral range of 450-700 nm. The metHb spectra of fish differed considerably from the corresponding human Hb spectra, whereas only minor differences in OHb, HHb, and COHb were found. Cod Hb was significantly (P < 0.05) influenced by a drop in pH compared to mammalian Hb. This resulted in deoxygenation of the Hb and increased autoxidation. For human Hb, a pH-independent isosbestic point in the spectra of OHb, HHb, and metHb at 523 nm was found. This isosbestic point was not found in the absorption spectra of cod Hb. In conclusion, spectra of cod metHb and human metHb behave differently. This must thus be taken into account in spectrophotometric multicomponent analysis. Ideally, Hb in muscle or blood should be determined by comparison to a standard made from the same species.
Collapse
|
Comparative Study |
14 |
12 |