76
|
Behringer V, Borchers C, Deschner T, Möstl E, Selzer D, Hohmann G. Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences. PLoS One 2013; 8:e60773. [PMID: 23613746 PMCID: PMC3629192 DOI: 10.1371/journal.pone.0060773] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/02/2013] [Indexed: 12/15/2022] Open
Abstract
Salivary alpha amylase (sAA) is the most abundant enzyme in saliva. Studies in humans found variation in enzymatic activity of sAA across populations that could be linked to the copy number of loci for salivary amylase (AMY1), which was seen as an adaptive response to the intake of dietary starch. In addition to diet dependent variation, differences in sAA activity have been related to social stress. In a previous study, we found evidence for stress-induced variation in sAA activity in the bonobos, a hominoid primate that is closely related to humans. In this study, we explored patterns of variation in sAA activity in bonobos and three other hominoid primates, chimpanzee, gorilla, and orangutan to (a) examine if within-species differences in sAA activity found in bonobos are characteristic for hominoids and (b) assess the extent of variation in sAA activity between different species. The results revealed species-differences in sAA activity with gorillas and orangutans having higher basal sAA activity when compared to Pan. To assess the impact of stress, sAA values were related to cortisol levels measured in the same saliva samples. Gorillas and orangutans had low salivary cortisol concentrations and the highest cortisol concentration was found in samples from male bonobos, the group that also showed the highest sAA activity. Considering published information, the differences in sAA activity correspond with differences in AMY1 copy numbers and match with general features of natural diet. Studies on sAA activity have the potential to complement molecular studies and may contribute to research on feeding ecology and nutrition.
Collapse
|
77
|
Abstract
Adrenarche is an endocrine developmental process whereby humans and select nonhuman primates increase adrenal output of a series of steroids, especially DHEA and DHEAS. The timing of adrenarche varies among primates, but in humans serum levels of DHEAS are seen to increase at around 6 years of age. This phenomenon corresponds with the development and expansion of the zona reticularis of the adrenal gland. The physiological phenomena that trigger the onset of adrenarche are still unknown; however, the biochemical pathways leading to this event have been elucidated in detail. There are numerous reviews examining the process of adrenarche, most of which have focused on the changes within the adrenal as well as the phenotypic results of adrenarche. This article reviews the recent and past studies that show the breadth of changes in the circulating steroid metabolome that occur during the process of adrenarche.
Collapse
|
78
|
Conley AJ, Bernstein RM, Nguyen AD. Adrenarche in nonhuman primates: the evidence for it and the need to redefine it. J Endocrinol 2012; 214:121-31. [PMID: 22378920 DOI: 10.1530/joe-11-0467] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adrenarche is most commonly defined as a prepubertal increase in circulating adrenal androgens, dehydroepiandrosterone (DHEA) and its sulfo-conjugate (DHEAS). This event is thought to have evolved in humans and some great apes but not in Old World monkeys, perhaps to promote brain development. Whether adrenarche represents a shared, derived developmental event in humans and our closest relatives, adrenal androgen secretion (and its regulation) is of considerable clinical interest. Specifically, adrenal androgens play a significant role in the pathophysiology of polycystic ovarian disease and breast and prostate cancers. Understanding the development of androgen secretion by the human adrenal cortex and identifying a suitable model for its study are therefore of central importance for clinical and evolutionary concerns. This review will examine the evidence for adrenarche in nonhuman primates (NHP) and suggest that a broader definition of this developmental event is needed, including morphological, biochemical, and endocrine criteria. Using such a definition, evidence from recent studies suggests that adrenarche evolved in Old World primates but spans a relatively brief period early in development compared with humans and some great apes. This emphasizes the need for frequent longitudinal sampling in evaluating developmental changes in adrenal androgen secretion as well as the tenuous nature of existing evidence of adrenarche in some species among the great apes. Central to an understanding of the regulation of adrenal androgen production in humans is the recognition of the complex nature of adrenarche and the need for more carefully conducted comparative studies and a broader definition in order to promote investigation among NHP in particular.
Collapse
|
79
|
Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, O'Rourke RW, Roberts CT. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology 2012; 153:3100-10. [PMID: 22547568 PMCID: PMC3380299 DOI: 10.1210/en.2011-2111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue.
Collapse
|
80
|
Nowrouzi A, Penaud-Budloo M, Kaeppel C, Appelt U, Le Guiner C, Moullier P, Kalle CV, Snyder RO, Schmidt M. Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol Ther 2012; 20:1177-86. [PMID: 22453768 PMCID: PMC3369298 DOI: 10.1038/mt.2012.47] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/12/2012] [Indexed: 02/07/2023] Open
Abstract
The comprehensive characterization of recombinant adeno-associated viral (rAAV) integration frequency and persistence for assessing rAAV vector biosafety in gene therapy is severely limited due to the predominance of episomal rAAV vector genomes maintained in vivo. Introducing rAAV insertional standards (rAIS), we show that linear amplification-mediated (LAM)-PCR and deep sequencing can be used for validated measurement of rAAV integration frequencies. Integration of rAAV2/1 or rAAV2/8, following intramuscular (IM) or regional intravenous (RI) administration of therapeutically relevant vector doses in nine adult non-human primates (NHP), occurs at low frequency between 10(-4) and 10(-5) both in NHP liver and muscle, but with no preference for specific genomic loci. High resolution mapping of inverted terminal repeat (ITR) breakpoints in concatemeric and integrated vector genomes reveals distinct vector recombination hotspots, including large deletions of up to 3 kb. Moreover, retrieval of integrated rAAV genomes indicated approximately threefold increase in liver compared to muscle. This molecular analysis of rAAV persistence in NHP provides a promising basis for a reliable genotoxic risk assessment of rAAV in clinical trials.
Collapse
|
81
|
Lackey L, Demorest ZL, Land AM, Hultquist JF, Brown WL, Harris RS. APOBEC3B and AID have similar nuclear import mechanisms. J Mol Biol 2012; 419:301-14. [PMID: 22446380 DOI: 10.1016/j.jmb.2012.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/17/2022]
Abstract
Members of the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) protein family catalyze DNA cytosine deamination and underpin a variety of immune defenses. For instance, several family members, including APOBEC3B (A3B), elicit strong retrotransposon and retrovirus restriction activities. However, unlike the other proteins, A3B is the only family member with steady-state nuclear localization. Here, we show that A3B nuclear import is an active process requiring at least one amino acid (Val54) within an N-terminal motif analogous to the nuclear localization determinant of the antibody gene diversification enzyme AID (activation-induced cytosine deaminase). Mechanistic conservation with AID is further suggested by A3B's capacity to interact with the same subset of importin proteins. Despite these mechanistic similarities, enforced A3B expression cannot substitute for AID-dependent antibody gene diversification by class switch recombination. Regulatory differences between A3B and AID are also visible during cell cycle progression. Our studies suggest that the present-day A3B enzyme retained the nuclear import mechanism of an ancestral AID protein during the expansion of the APOBEC3 locus in primates. Our studies also highlight the likelihood that, after nuclear import, specialized mechanisms exist to guide these enzymes to their respective physiological substrates and prevent gratuitous chromosomal DNA damage.
Collapse
|
82
|
Fung SJ, Joshi D, Allen KM, Sivagnanasundaram S, Rothmond DA, Saunders R, Noble PL, Webster MJ, Weickert CS. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia. PLoS One 2011; 6:e25194. [PMID: 21966452 PMCID: PMC3180379 DOI: 10.1371/journal.pone.0025194] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 08/30/2011] [Indexed: 02/06/2023] Open
Abstract
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia.
Collapse
|
83
|
|
84
|
Lacruz RS, Lakshminarayanan R, Bromley KM, Hacia JG, Bromage TG, Snead ML, Moradian-Oldak J, Paine ML. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin. PLoS One 2011; 6:e18028. [PMID: 21437261 PMCID: PMC3060920 DOI: 10.1371/journal.pone.0018028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/18/2011] [Indexed: 11/29/2022] Open
Abstract
Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates.
Collapse
|
85
|
Abstract
Nonhuman primate (NHP) aging research has traditionally relied mainly on the rhesus macaque. But the long lifespan, low reproductive rate, and relatively large body size of macaques and related Old World monkeys make them less than ideal models for aging research. Manifold advantages would attend the use of smaller, more rapidly developing, shorter-lived NHP species in aging studies, not the least of which are lower cost and the ability to do shorter research projects. Arbitrarily defining "small" primates as those weighing less than 500 g, we assess small, relatively short-lived species among the prosimians and callitrichids for suitability as models for human aging research. Using the criteria of availability, knowledge about (and ease of) maintenance, the possibility of genetic manipulation (a hallmark of 21st century biology), and similarities to humans in the physiology of age-related changes, we suggest three species--two prosimians (Microcebus murinus and Galago senegalensis) and one New World monkey (Callithrix jacchus)--that deserve scrutiny for development as major NHP models for aging studies. We discuss one other New World monkey group, Cebus spp., that might also be an effective NHP model of aging as these species are longer-lived for their body size than any primate except humans.
Collapse
|
86
|
Abstract
In the 75 years since the seminal observation of Clive McCay that restriction of calorie intake extends the lifespan of rats, a great deal has been learned about the effects of calorie restriction (CR; reduced intake of a nutritious diet) on aging in various short-lived animal models. Studies have demonstrated many beneficial effects of CR on health, the rate of aging, and longevity. Two prospective investigations of the effects of CR on long-lived nonhuman primate (NHP) species began nearly 25 years ago and are still under way. This review presents the design, methods, and main findings of these and other important contributing studies, which have generally revealed beneficial effects of CR on physiological function and the retardation of disease consistent with studies in other species. Specifically, prolonged CR appears to extend the lifespan of rhesus monkeys, which exhibited lower body fat; slower rate of muscle loss with age; lower incidence of neoplasia, cardiovascular disease, type 2 diabetes mellitus, and endometriosis; improved insulin sensitivity and glucose tolerance; and no apparent adverse effect on bone health, as well as a reduction in total energy expenditure. In addition, there are no reports of deleterious effects of CR on reproductive endpoints, and brain morphology is preserved by CR. Adrenal and thyroid hormone profiles are inconsistently affected. More research is needed to delineate the mechanisms of the desirable outcomes of CR and to develop interventions that can produce similar beneficial outcomes for humans. This research offers tremendous potential for producing novel insights into aging and risk of disease.
Collapse
|
87
|
Crowley BE, Carter ML, Karpanty SM, Zihlman AL, Koch PL, Dominy NJ. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 2010; 164:611-26. [PMID: 20628886 PMCID: PMC2955919 DOI: 10.1007/s00442-010-1701-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 06/14/2010] [Indexed: 11/28/2022]
Abstract
Isotopic studies of wild primates have used a wide range of tissues to infer diet and model the foraging ecologies of extinct species. The use of mismatched tissues for such comparisons can be problematic because differences in amino acid compositions can lead to small isotopic differences between tissues. Additionally, physiological and dietary differences among primate species could lead to variable offsets between apatite carbonate and collagen. To improve our understanding of the isotopic chemistry of primates, we explored the apparent enrichment (ε*) between bone collagen and muscle, collagen and fur or hair keratin, muscle and keratin, and collagen and bone carbonate across the primate order. We found that the mean ε* values of proteinaceous tissues were small (≤1‰), and uncorrelated with body size or phylogenetic relatedness. Additionally, ε* values did not vary by habitat, sex, age, or manner of death. The mean ε* value between bone carbonate and collagen (5.6 ± 1.2‰) was consistent with values reported for omnivorous mammals consuming monoisotopic diets. These primate-specific apparent enrichment values will be a valuable tool for cross-species comparisons. Additionally, they will facilitate dietary comparisons between living and fossil primates.
Collapse
|
88
|
Fedrigo O, Warner LR, Pfefferle AD, Babbitt CC, Cruz-Gordillo P, Wray GA. A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues. PLoS One 2010; 5. [PMID: 20824057 PMCID: PMC2932733 DOI: 10.1371/journal.pone.0012545] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 11/20/2022] Open
Abstract
Because many species-specific phenotypic differences are assumed to be caused by differential regulation of gene expression, many recent investigations have focused on measuring transcript abundance. Despite the availability of high-throughput platforms, quantitative real-time polymerase chain reaction (RT-QPCR) is often the method of choice because of its low cost and wider dynamic range. However, the accuracy of this technique heavily relies on the use of multiple valid control genes for normalization. We created a pipeline for choosing genes potentially useful as RT-QPCR control genes for measuring expression between human and chimpanzee samples across multiple tissues, using published microarrays and a measure of tissue-specificity. We identified 13 genes from the pipeline and from commonly used control genes: ACTB, USP49, ARGHGEF2, GSK3A, TBP, SDHA, EIF2B2, GPDH, YWHAZ, HPTR1, RPL13A, HMBS, and EEF2. We then tested these candidate genes and validated their expression stability across species. We established the rank order of the most preferable set of genes for single and combined tissues. Our results suggest that for at least three tissues (cerebral cortex, liver, and skeletal muscle), EIF2B2, EEF2, HMBS, and SDHA are useful genes for normalizing human and chimpanzee expression using RT-QPCR. Interestingly, other commonly used control genes, including TBP, GAPDH, and, especially ACTB do not perform as well. This pipeline could be easily adapted to other species for which expression data exist, providing taxonomically appropriate control genes for comparisons of gene expression among species.
Collapse
|
89
|
Liu J, Chen K, Wang JH, Zhang C. Molecular evolution of the primate antiviral restriction factor tetherin. PLoS One 2010; 5:e11904. [PMID: 20689591 PMCID: PMC2912774 DOI: 10.1371/journal.pone.0011904] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/09/2010] [Indexed: 01/27/2023] Open
Abstract
Background Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu). It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the red-queen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption. Methodology/Principal Findings Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implying that the primate Tetherin may retain broad spectrum of antiviral activity by maintaining structure stability. Conclusions/Significance These results conclude that the molecular evolution of Tetherin may be attributed to the host–virus arms race, supporting the Red Queen hypothesis, and Tetherin may be in an intermediate stage in transition from neutral to pervasive adaptive evolution.
Collapse
|
90
|
Terasawa E, Kurian JR, Guerriero KA, Kenealy BP, Hutz ED, Keen KL. Recent discoveries on the control of gonadotrophin-releasing hormone neurones in nonhuman primates. J Neuroendocrinol 2010; 22:630-8. [PMID: 20456608 PMCID: PMC2908205 DOI: 10.1111/j.1365-2826.2010.02027.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since Ernst Knobil proposed the concept of the gonadotrophin-releasing hormone (GnRH) pulse-generator in the monkey hypothalamus three decades ago, we have made significant progress in this research area with cellular and molecular approaches. First, an increase in pulsatile GnRH release triggers the onset of puberty. However, the question of what triggers the pubertal increase in GnRH is still unclear. GnRH neurones are already mature before puberty but GnRH release is suppressed by a tonic GABA inhibition. Our recent work indicates that blocking endogenous GABA inhibition with the GABA(A) receptor blocker, bicuculline, dramatically increases kisspeptin release, which plays an important role in the pubertal increase in GnRH release. Thus, an interplay between the GABA, kisspeptin, and GnRH neuronal systems appears to trigger puberty. Second, cultured GnRH neurones derived from the olfactory placode of monkey embryos exhibit synchronised intracellular calcium, [Ca(2+)](i), oscillations and release GnRH in pulses at approximately 60-min intervals after 14 days in vitro (div). During the first 14 div, GnRH neurones undergo maturational changes from no [Ca(2+)](i) oscillations and little GnRH release to the fully functional state. Recent work also shows GnRH mRNA expression increases during in vitro maturation. This mRNA increase coincides with significant demethylation of a CpG island in the GnRH 5'-promoter region. This suggests that epigenetic differentiation occurs during GnRH neuronal maturation. Third, oestradiol causes rapid, direct, excitatory action in GnRH neurones and this action of oestradiol appears to be mediated through a membrane receptor, such as G-protein coupled receptor 30.
Collapse
|
91
|
Baur JA. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 2010; 131:261-9. [PMID: 20219519 PMCID: PMC2862768 DOI: 10.1016/j.mad.2010.02.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 02/13/2010] [Accepted: 02/20/2010] [Indexed: 12/24/2022]
Abstract
Dietary restriction (DR) delays or prevents age-related diseases and extends lifespan in species ranging from yeast to primates. Although the applicability of this regimen to humans remains uncertain, a proportional response would add more healthy years to the average life than even a cure for cancer or heart disease. Because it is unlikely that many would be willing or able to maintain a DR lifestyle, there has been intense interest in mimicking its beneficial effects on health, and potentially longevity, with drugs. To date, such efforts have been hindered primarily by our lack of mechanistic understanding of how DR works. Sirtuins, NAD(+)-dependent deacetylases and ADP-ribosyltransferases that influence lifespan in lower organisms, have been proposed to be key mediators of DR, and based on this model, the sirtuin activator resveratrol has been proposed as a candidate DR mimetic. Indeed, resveratrol extends lifespan in yeast, worms, flies, and a short-lived species of fish. In rodents, resveratrol improves health, and prevents the early mortality associated with obesity, but its precise mechanism of action remains a subject of debate, and extension of normal lifespan has not been observed. This review summarizes recent work on resveratrol, sirtuins, and their potential to mimic beneficial effects of DR.
Collapse
|
92
|
Abstract
Recent studies of the effects of developmental iron deficiency (ID) and iron deficiency anemia in nonhuman primates have provided new insights into this widespread and well-recognized human nutritional deficiency. The rhesus monkey was the animal model in these experiments, which used extensive hematological and behavioral evaluations in addition to noninvasive brain measures. Two important findings were as follows: 1) different behavioral consequences depending on the timing of ID relative to brain developmental stages and 2) the potential for long-lasting changes in brain iron regulatory systems. Further work in this model, including integration with studies in humans and in laboratory rodents, is ongoing.
Collapse
|
93
|
Johannesson M, Backman L, Claesson HE, Forsell PKA. Cloning, purification and characterization of non-human primate 12/15-lipoxygenases. Prostaglandins Leukot Essent Fatty Acids 2010; 82:121-9. [PMID: 20106647 DOI: 10.1016/j.plefa.2009.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/07/2009] [Accepted: 11/29/2009] [Indexed: 11/18/2022]
Abstract
The enzyme 15-lipoxygenase-1 (15-LO-1) possesses mainly 15-LO activity and has so far only been described in human cells and rabbit reticulocytes. The animal ortholog, except rabbit reticulocytes, is an enzyme with predominantly a 12-lipoxygenase activity, commonly referred to as 12/15-LO. We describe herein the characterization of the 12/15-LOs in Macaca mulatta (rhesus monkey) and in Pongo pygmaeus (orang-utan). The rhesus and the orang-utan enzymes have mainly 12-lipoxygenase and 15-lipoxygenase activity, respectively, and they display 94% and 98% identity to the human 15-LO-1 protein. The rhesus enzyme was functionally different from the human enzyme with respect to substrate utilization in that anandamide was used differently and that the rhesus enzymes positional specificity could be affected by the substrate concentration. Furthermore, genomic data indicate that chimpanzees express an enzyme with mainly 15-lipoxygenase activity whereas marmosets express an enzyme with mainly 12-LO activity. Taken together, the switch during evolution from a 12-lipoxygenating enzyme in lower primates to a 15-lipoxygenating enzyme in higher primates and man might be of importance for the biological function of this enzyme.
Collapse
|
94
|
Romano MC, Rodas AZ, Valdez RA, Hernández SE, Galindo F, Canales D, Brousset DM. Stress in wildlife species: noninvasive monitoring of glucocorticoids. Neuroimmunomodulation 2010; 17:209-12. [PMID: 20134205 DOI: 10.1159/000258726] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Depression and stress are related pathologies extensively studied in humans. However, this relationship is not well known in animals kept in zoos and even less known in wild animals. In zoo animals, acute and chronic stress caused by difficulties in coping with stressors such as public presence and noise, among others, can induce the appearance of repetitive pathological behaviors such as stereotypies, many times associated with organic pathologies that deeply affect their health and welfare. In the wild, factors such as deforestation, habitat fragmentation, lack of food and water, and human disturbances are potential causes of acute and chronic stress for the resident fauna. Glucocorticoids (GC) have been extensively used as stress indicators in many species including humans. Since chase and handling of wild animals immediately raise their GC serum levels, noninvasive methods have been developed to assess stress without interference caused by sample collection. The hormones and their metabolites can be measured in various body fluids and excreta and detect basal feedback free hormone concentrations as well as the response to ACTH and handling. In order to study the influence of disturbing factors we have measured GC as stress indicators by noninvasive techniques in dolphins and felids (ocelots, jaguarundis and margays) and cortisol and testosterone in spider monkeys.
Collapse
|
95
|
Dissen GA, Lomniczi A, Neff TL, Hobbs TR, Kohama SG, Kroenke CD, Galimi F, Ojeda SR. In vivo manipulation of gene expression in non-human primates using lentiviral vectors as delivery vehicles. Methods 2009; 49:70-7. [PMID: 19559089 PMCID: PMC2732747 DOI: 10.1016/j.ymeth.2009.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/28/2009] [Accepted: 06/05/2009] [Indexed: 02/07/2023] Open
Abstract
Non-human primates (NHPs) are an invaluable resource for the study of genetic regulation of disease mechanisms. The main disadvantage of using NHPs as a preclinical model of human disease is the difficulty of manipulating the monkey genome using conventional gene modifying strategies. Lentiviruses offer the possibility of circumventing this difficulty because they can infect and transduce either dividing or nondividing cells, without producing an immune response. In addition, lentiviruses can permanently integrate into the genome of host cells, and are able to maintain long-term expression. In this article we describe the lentiviral vectors that we use to both express transgenes and suppress expression of endogenous genes via RNA interference (RNAi) in NHPs. We also discuss the safety features of currently available vectors that are especially important when lentiviral vectors are used in a species as closely related to humans as NHPs. Finally, we describe in detail the lentiviral vector production protocol we use and provide examples of how the vector can be employed to target peripheral tissues and the brain.
Collapse
|
96
|
Ying M, Zhan Z, Wang W, Chen D. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 2009; 447:72-85. [PMID: 19664694 DOI: 10.1016/j.gene.2009.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 11/19/2022]
Abstract
The origin of eukaryotic ubiquitin-conjugating enzymes (E2s) can be traced back to the Guillardia theta nucleomorph about 2500 million years ago (Mya). E2s are largely vertically inherited over eukaryotic evolution [Lespinet, O., Wolf, Y.I., Koonin, E.V., Aravind, L., 2002. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 1048-1059], while mammal E2s experienced evolution of multigene families by gene duplications which have been accompanied by the increase in the species complexity. Because of alternatively splicing, primate-specific expansions of E2s happened once again at a transcriptional level. Both of them resulted in increasing genomic complexity and diversity of primate E2 proteomic function. The evolutionary processes of human E2 gene structure during expansions were accompanied by exon duplication and exonization of intronic sequences. Exonizations of Transposable Elements (TEs) in UBE2D3, UBE2L3 and UBE2V1 genes from primates indicate that exaptation of TEs also plays important roles in the structural innovation of primate-specific E2s and may create alternative splicing isoforms at a transcriptional level. Estimates for the ratio of dN/dS suggest that a strong purifying selection had acted upon protein-coding sequences of their orthologous UBE2D2, UBE2A, UBE2N, UBE2I and Rbx1 genes from animals, plants and fungi. The similar rates of synonymous substitutions are in accordance with the neutral mutation-random drift hypothesis of molecular evolution. Systematic detection of the origin and evolution of E2s, analyzing the evolution of E2 multigene families by gene duplications and the evolutionary processes of E2s during expansions, and testing its evolutionary force using E2s from distant phylogenetic lineages may advance our distinguishing of ancestral E2s from created E2s, and reveal previously unknown relationships between E2s and metazoan complexity. Analysis of these conserved proteins provides strong support for a close relationship between social amoeba and eukaryote, choanoflagellate and metazoan, and for the central roles of social amoeba and choanoflagellate in the origin and evolution of eukaryote and metazoan. Retracing the different stages of primate E2 exonization by monitoring genomic events over 63 Myr of primate evolution will advance our understanding of how TEs dynamically modified primate transcriptome and proteome in the past, and continue to do so.
Collapse
|
97
|
|
98
|
Merz WE. The primate placenta and human chorionic gonadotropin. EXPERIMENTAL AND CLINICAL ENDOCRINOLOGY 2009; 102:222-34. [PMID: 7995344 DOI: 10.1055/s-0029-1211286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the primate placenta various peptide and proteohormones are synthesized which control growth and development of the fetus as well as the exchange of nutrients and metabolic products between the mother and the fetus. In humans, maintenance of pregnancy in the first trimester depends on the synthesis of the bioactive glycoprotein hormone human chorionic gonadotropin (hCG). It is expressed in placenta by the syncytiothrophoblast of early pregnancy. In cell culture, hCG production seems to mark a certain step in the process of differentiation of cytotrophoblasts and choriocarcinoma cells. It is neither understood how hCG synthesis is initiated and maintained at the beginning of gestation nor what control mechanisms are responsible for the down-regulation of the synthesis at the end of the first trimester. Besides a long list of various other substances which have been described to act as intrinsic placental stimulators of hCG biosynthesis, gonadoliberin and gamma-aminobutyric acid seem to play an important role. This establishes to some extent an analogy to the regulation of gonadotropin synthesis in the central nervous system. Recently, a full-length form of functional LH/hCG receptors of approximately 80 kD has been found in term placenta suggesting autoregulation as a regulatory principle of hCG biosynthesis. In the first trimester placenta as well as in choriocarcinoma cells a truncated form (50 kd) of LH/hCG receptors seems to exist. In these cases, exogenous hCG was unable to down-regulate its own synthesis. The carbohydrate moiety of hCG influences folding, subunit assembly, circulatory half-life, receptor interaction and biological response. A surplus of glycosylation may prevent subunit assembly. Experimental deglycosylation induces a different conformation of hCG, which partly acquires antagonistic properties. Recent results indicate that cAMP, which increases transcription and mRNA stability, also expands the N-glycosylation capacity and thus may accomplish an over-all coordination of hCG biosynthesis including post-translational events.
Collapse
|
99
|
Dever JT, Tanumihardjo SA. Hypervitaminosis A in experimental nonhuman primates: evidence, causes, and the road to recovery. Am J Primatol 2009; 71:813-6. [PMID: 19484706 DOI: 10.1002/ajp.20714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the great underlying assumptions made by all scientists utilizing primate models for their research is that the optimal nutritional status and health of the animals in use has been achieved. That is, no nutrient deficiency or excess has compromised their health in any detectable way. To meet this assumption, we rely on the National Research Council's (NRC's) nutritional recommendations for nonhuman primates to provide accurate guidance for proper dietary formulations. We also rely on feed manufacturers to follow these guidelines. With that in mind, the purpose of this commentary is to discuss three related points that we believe have significant ramifications for the health and well being of captive primates as well as for their effective use in biomedical research. First, our laboratory has shown that most experimental primates are likely in a state of hypervitaminosis A. Second, it is apparent that many primate diets are providing vitamin A at levels higher than the NRC's recommendation. Third, the recommendation itself is based on inadequate information about nutrient needs and is likely too high, especially when compared with human requirements.
Collapse
|
100
|
Abbott DH, Bird IM. Nonhuman primates as models for human adrenal androgen production: function and dysfunction. Rev Endocr Metab Disord 2009; 10:33-42. [PMID: 18683055 PMCID: PMC2653599 DOI: 10.1007/s11154-008-9099-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of circulating DHEA and adrenal-derived androgens in humans and nonhuman primates is largely distinct from other mammalian species. In humans and many Old world primates, the fetal adrenal gland and adult zona reticularis (ZR) are known to be the source for production of DHEA (and DHEAS) in mg quantities. In spite of similarities there are also some differences. Herein, we take a comparative endocrine approach to the diversity of adrenal androgen biosynthesis and its developmental timing in three primate species to illustrate how understanding such differences may provide unique insight into mechanisms underlying adrenal androgen regulation and its pathophysiology in humans. We contrast the conventional developmental onset of adrenal DHEA biosynthesis at adrenarche in humans with (1) an earlier, peri-partutrition onset of adrenal DHEA synthesis in rhesus macaques (Old World primate) and (2) a more dynamic and reversible onset of adrenal DHEA biosynthesis in female marmosets (New World primate), and further consider these events in terms of the corresponding developmental changes in expression of CYP17, HSD3B2 and CYB5 in the ZR. We also integrate these observations with recently described biochemical characterization of CYP17 cDNA cloned from each of these nonhuman primate species and the corresponding effects of phosphorylation versus CYB5 coexpression on 17,20 lyase versus 17-hydroxylase activity in each case. In addition, female rhesus macaques exposed in utero to exogenous androgen excess, exhibit symptoms of adrenal hyperandrogenism in adult females in a manner reminiscent of that seen in the human condition of PCOS. The possible mechanisms underlying such adrenal hyperandrogenism are further considered in terms of the effects of altered relative expression of CYP17, HSD3B2 and CYB5 as well as the altered signaling responses of various kinases including protein kinase A, or the insulin sensitive PI3-kinase/AKT signaling pathway which may impact on 17,20 lyase activity. We conclude that while the triggers for the onset of ZR function in all three species show clear differences (age, stage of development, social status, gender), there are still common mechanisms driving an increase in DHEA biosynthesis in each case. A full understanding of the mechanisms that control 17,20 lyase function and dysfunction in humans may best be achieved by comparative studies of the endocrine mechanisms controlling adrenal ZR function and dysfunction in these nonhuman primate species.
Collapse
|