1
|
Kemp A, Manahan-Vaughan D. Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc Natl Acad Sci U S A 2004; 101:8192-7. [PMID: 15150407 PMCID: PMC419579 DOI: 10.1073/pnas.0402650101] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Indexed: 01/16/2023] Open
Abstract
The hippocampus is required for encoding spatial information. Little is known however, about how different attributes of learning are related to different types of synaptic plasticity. Here, we investigated the association between long-term depression (LTD) and long-term potentiation, both cellular models for learning, and novelty exploration. We found that exploration of a new environment containing unfamiliar objects and/or familiar objects in new locations facilitated LTD, whereas exploration of the new environment itself, in the absence of objects, impaired LTD. Furthermore, we found this phenomenon to be modulated by 5-hydroxytryptamine 4 receptor activation. In contrast, long-term potentiation was facilitated by exploration of an empty novel environment, but simultaneous object exploration caused depotentiation. We also found that no further LTD could be induced. These findings support a decisive role for LTD in the acquisition of object-place configuration and consolidate its candidacy as a learning mechanism.
Collapse
|
research-article |
21 |
279 |
2
|
Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Piñeyro G, Sadikot AF, Debonnel G. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007; 55:712-25. [PMID: 17785179 DOI: 10.1016/j.neuron.2007.07.041] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 07/24/2006] [Accepted: 07/29/2007] [Indexed: 10/22/2022]
Abstract
Current antidepressants are clinically effective only after several weeks of administration. Here, we show that serotonin(4) (5-HT(4)) agonists reduce immobility in the forced swimming test, displaying an antidepressant potential. Moreover, a 3 day regimen with such compounds modifies rat brain parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein and neurogenesis in the hippocampus. In contrast, a 3 day treatment with the SSRI citalopram remains devoid of any effect on these parameters. Finally, a 3 day regimen with the 5-HT(4) agonist RS 67333 was sufficient to reduce both the hyperlocomotion induced by olfactory bulbectomy and the diminution of sucrose intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
237 |
3
|
Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, Brooks EM, Zhao H, Swain GM, Moses PL, Galligan JJ, Sharkey KA, Greenwood-Van Meerveld B, Mawe GM. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 2012; 142:844-854.e4. [PMID: 22226658 PMCID: PMC3477545 DOI: 10.1053/j.gastro.2011.12.041] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS 5-hydroxytryptamine receptor (5-HT(4)R) agonists promote gastrointestinal motility and attenuate visceral pain, but concerns about adverse reactions have restricted their availability. We tested the hypotheses that 5-HT(4) receptors are expressed in the colonic epithelium and that 5-HT(4)R agonists can act intraluminally to increase motility and reduce visceral hypersensitivity. METHODS Mucosal expression of the 5-HT(4)R was evaluated by reverse-transcriptase polymerase chain reaction and immunohistochemical analysis of tissues from 5-HT(4)R(BAC)-enhanced green fluorescent protein mice. Amperometry, histology, and short-circuit current measurements were used to study 5-HT, mucus, and Cl(-) secretion, respectively. Propulsive motility was measured in guinea pig distal colon, and visceromotor responses were recorded in a rat model of colonic hypersensitivity. 5-HT(4)R compounds included cisapride, tegaserod, naronapride, SB204070, and GR113808. RESULTS Mucosal 5-HT(4) receptors were present in the small and large intestines. In the distal colon, 5-HT(4) receptors were expressed by most epithelial cells, including enterochromaffin and goblet cells. Stimulation of 5-HT(4)Rs evoked mucosal 5-HT release, goblet cell degranulation, and Cl(-) secretion. Luminal administration of 5-HT(4)R agonists accelerated propulsive motility; a 5-HT(4)R antagonist blocked this effect. Bath application of 5-HT(4)R agonists did not affect motility. Oral or intracolonic administration of 5-HT(4)R agonists attenuated visceral hypersensitivity. Intracolonic administration was more potent than oral administration, and was inhibited by a 5-HT(4)R antagonist. CONCLUSIONS Mucosal 5-HT(4) receptor activation can mediate the prokinetic and antinociceptive actions of 5-HT(4)R agonists. Colon-targeted, intraluminal delivery of 5-HT(4)R agonists might be used to promote motility and alleviate visceral pain, while restricting systemic bioavailability and resulting adverse side effects.
Collapse
MESH Headings
- Administration, Oral
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Animals
- Chlorides/metabolism
- Chromosomes, Artificial, Bacterial
- Colon/drug effects
- Colon/innervation
- Colon/metabolism
- Disease Models, Animal
- Enterochromaffin Cells/drug effects
- Enterochromaffin Cells/metabolism
- Gastrointestinal Agents/administration & dosage
- Gastrointestinal Agents/pharmacology
- Gastrointestinal Motility/drug effects
- Goblet Cells/drug effects
- Goblet Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Guinea Pigs
- Humans
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Hyperalgesia/prevention & control
- Immunohistochemistry
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/innervation
- Intestinal Mucosa/metabolism
- Male
- Membrane Potentials
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Mucus/metabolism
- Pain/metabolism
- Pain/physiopathology
- Pain/prevention & control
- Pain Threshold/drug effects
- Pressure
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT4/drug effects
- Receptors, Serotonin, 5-HT4/genetics
- Receptors, Serotonin, 5-HT4/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serotonin/metabolism
- Serotonin 5-HT4 Receptor Agonists/administration & dosage
- Serotonin 5-HT4 Receptor Agonists/pharmacology
Collapse
|
Research Support, N.I.H., Extramural |
13 |
216 |
4
|
Orr AG, Hsiao EC, Wang MM, Ho K, Kim DH, Wang X, Guo W, Kang J, Yu GQ, Adame A, Devidze N, Dubal DB, Masliah E, Conklin BR, Mucke L. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci 2015; 18:423-34. [PMID: 25622143 PMCID: PMC4340760 DOI: 10.1038/nn.3930] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/15/2014] [Indexed: 01/18/2023]
Abstract
Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer's disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice and increased the levels of Arc (also known as Arg3.1), an immediate-early gene that is required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Like humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss.
Collapse
MESH Headings
- Alzheimer Disease/pathology
- Animals
- Animals, Newborn
- Astrocytes/metabolism
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Gene Expression Regulation/physiology
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Humans
- Indoles/pharmacology
- Maze Learning/physiology
- Memory, Long-Term/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, Serotonin, 5-HT4/genetics
- Receptors, Serotonin, 5-HT4/metabolism
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Serotonin Antagonists/pharmacology
- Signal Transduction/physiology
- Sulfonamides/pharmacology
Collapse
|
Research Support, N.I.H., Extramural |
10 |
206 |
5
|
Jean A, Conductier G, Manrique C, Bouras C, Berta P, Hen R, Charnay Y, Bockaert J, Compan V. Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc Natl Acad Sci U S A 2007; 104:16335-40. [PMID: 17913892 PMCID: PMC2042207 DOI: 10.1073/pnas.0701471104] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anorexia nervosa is a growing concern in mental health, often inducing death. The potential neuronal deficits that may underlie abnormal inhibitions of food intake, however, remain largely unexplored. We hypothesized that anorexia may involve altered signaling events within the nucleus accumbens (NAc), a brain structure involved in reward. We show here that direct stimulation of serotonin (5-hydroxytryptamine, 5-HT) 4 receptors (5-HT(4)R) in the NAc reduces the physiological drive to eat and increases CART (cocaine- and amphetamine-regulated transcript) mRNA levels in fed and food-deprived mice. It further shows that injecting 5-HT(4)R antagonist or siRNA-mediated 5-HT(4)R knockdown into the NAc induced hyperphagia only in fed mice. This hyperphagia was not associated with changes in CART mRNA expression in the NAc in fed and food-deprived mice. Results include that 5-HT(4)R control CART mRNA expression into the NAc via a cAMP/PKA signaling pathway. Considering that CART may interfere with food- and drug-related rewards, we tested whether the appetite suppressant properties of 3,4-N-methylenedioxymethamphetamine (MDMA, ecstasy) involve the 5-HT(4)R. Using 5-HT(4)R knockout mice, we demonstrate that 5-HT(4)R are required for the anorectic effect of MDMA as well as for the MDMA-induced enhancement of CART mRNA expression in the NAc. Directly injecting CART peptide or CART siRNA into the NAc reduces or increases food consumption, respectively. Finally, stimulating 5-HT(4)R- and MDMA-induced anorexia were both reduced by injecting CART siRNA into the NAc. Collectively, these results demonstrate that 5-HT(4)R-mediated up-regulation of CART in the NAc triggers the appetite-suppressant effects of ecstasy.
Collapse
MESH Headings
- Animals
- Anorexia Nervosa/etiology
- Anorexia Nervosa/genetics
- Anorexia Nervosa/metabolism
- Base Sequence
- Eating
- Male
- Mice
- Mice, Knockout
- N-Methyl-3,4-methylenedioxyamphetamine/pharmacology
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Serotonin, 5-HT4/deficiency
- Receptors, Serotonin, 5-HT4/genetics
- Receptors, Serotonin, 5-HT4/metabolism
- Signal Transduction
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
139 |
6
|
Abstract
Serotonin 4 receptors (5-HT(4)Rs) were discovered 15 years ago. They are coded by a very complex gene (700Kb, 38 exons) which generates eight carboxy-terminal variants (a, b, c, d, e, f, g, n). Their sequences differ after position L(358). Another variant is characterized by a 14 residue insertion within the extracellular loop 2. Highly selective potent 5-HT(4) receptor antagonists and partial agonists which cross the blood-brain barrier have been synthesized, but a specific full agonist for brain studies is still missing. Based on physiological and behavioral experiments, 5-HT(4)Rs may be targets to treat cognitive deficits, abdominal pain and feeding disorders. One 5-HT(4)R-directed drug (SL65.0155) is already in phase II to treat patients suffering from memory deficits or dementia.
Collapse
|
|
21 |
127 |
7
|
Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S. G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci U S A 2004; 101:11304-9. [PMID: 15277683 PMCID: PMC509175 DOI: 10.1073/pnas.0401862101] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Indexed: 11/18/2022] Open
Abstract
The application of structure-based in silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human G protein-coupled receptors (GPCRs), one of the most important families of drug targets, where in the absence of x-ray structures, one has to rely on in silico 3D models. We report repeated success in using ab initio in silico GPCR models, generated by the predict method, for blind in silico screening when applied to a set of five different GPCR drug targets. More than 100,000 compounds were typically screened in silico for each target, leading to a selection of <100 "virtual hit" compounds to be tested in the lab. In vitro binding assays of the selected compounds confirm high hit rates, of 12-21% (full dose-response curves, Ki < 5 microM). In most cases, the best hit was a novel compound (New Chemical Entity) in the 1- to 100-nM range, with very promising pharmacological properties, as measured by a variety of in vitro and in vivo assays. These assays validated the quality of the hits as lead compounds for drug discovery. The results demonstrate the usefulness and robustness of ab initio in silico 3D models and of in silico screening for GPCR drug discovery.
Collapse
MESH Headings
- Algorithms
- Binding Sites
- Combinatorial Chemistry Techniques
- Drug Design
- Humans
- In Vitro Techniques
- Models, Chemical
- Protein Structure, Quaternary
- Receptor, Serotonin, 5-HT1A/chemistry
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, CCR3
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/metabolism
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neurokinin-1/chemistry
- Receptors, Neurokinin-1/metabolism
- Receptors, Serotonin, 5-HT4/chemistry
- Receptors, Serotonin, 5-HT4/metabolism
Collapse
|
research-article |
21 |
121 |
8
|
Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 2004; 117:5367-79. [PMID: 15466885 DOI: 10.1242/jcs.01379] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 5-hydroxytryptamine type 4 receptor (5-HT4R) is involved in learning, feeding, respiratory control and gastrointestinal transit. This receptor is one of the G-protein-coupled receptors for which alternative mRNA splicing generates the most variants that differ in their C-terminal extremities. Some 5-HT4R variants (a, e and f) express canonical PDZ ligands at their C-termini. Here, we have examined whether some mouse 5-HT4R variants associate with specific sets of proteins, using a proteomic approach based on peptide-affinity chromatography, two-dimensional electrophoresis and mass spectrometry. We have identified ten proteins that interact specifically with the 5-HT4(a)R and three that only associate with the 5-HT4(e)R. Most of them are PDZ proteins. Among the proteins that associated specifically with the 5-HT4(a)R variant, NHERF greatly modified its subcellular localization. Moreover, NHERF recruited the 5-HT4(a)R to microvilli, where it localized with activated ezrin, consistent with the role of 5-HT4(a)R in cytoskeleton remodelling. The 5-HT4(a)R also interacted with both the constitutive and inducible (upon methamphetamine treatment) forms of the recently cloned sorting nexin 27 (SNX27a and b, respectively). We found that SNX27a redirected part of 5-HT4(a)R to early endosomes. The interaction of the 5-HT4R splice variants with distinct sets of PDZ proteins might specify their cellular localization as well as their signal transduction properties.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Brain/metabolism
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Line, Tumor
- Chromatography
- Cytoskeletal Proteins
- Cytoskeleton/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Immunoprecipitation
- Mass Spectrometry
- Methamphetamine/pharmacology
- Mice
- Microscopy, Confocal
- Molecular Sequence Data
- NIH 3T3 Cells
- Neurons/metabolism
- Peptides/chemistry
- Phosphoproteins/chemistry
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Proteomics
- Receptors, Serotonin, 5-HT4/metabolism
- Receptors, Serotonin, 5-HT4/physiology
- Signal Transduction
- Sodium-Hydrogen Exchangers
- Sorting Nexins
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
- Vesicular Transport Proteins
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
116 |
9
|
Banères JL, Mesnier D, Martin A, Joubert L, Dumuis A, Bockaert J. Molecular Characterization of a Purified 5-HT4 Receptor. J Biol Chem 2005; 280:20253-60. [PMID: 15774473 DOI: 10.1074/jbc.m412009200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Serotonin 5-HT(4(a)) receptor, a G-protein-coupled receptor (GPCR), was produced as a functional isolated protein using Escherichia coli as an expression system. The isolated receptor was characterized at the molecular level by circular dichroism (CD) and steady-state fluorescence. A specific change in the near-UV CD band associated with the GPCR disulfide bond connecting the third transmembrane domain to the second extracellular loop (e2) was observed upon agonist binding to the purified receptor. This is a direct experimental evidence for a change in the conformation of the e2 loop upon receptor activation. Different variations were obtained depending whether the ligand was an agonist (partial or full) or an inverse agonist. In contrast, antagonist binding did not induce any variation. These observations provide a first direct evidence for the fact that free (or antagonist-occupied), active (partial- or full agonist-occupied) and silent (inverse agonist-occupied) states of the receptor involve different arrangements of the e2 loop. Finally, ligand-induced changes in the fluorescence emission profile of the purified receptor confirmed that the partial agonist stabilized a single, well-defined, conformational state and not a mixture of different states. This result is of particular interest in a pharmacological perspective since it directly demonstrates that the efficacy of a drug is likely due to the stabilization of a ligand-specific state rather than selection of a mixture of different conformational states of the receptor.
Collapse
MESH Headings
- Animals
- Benzimidazoles/metabolism
- Binding Sites
- Bridged Bicyclo Compounds, Heterocyclic/metabolism
- Circular Dichroism
- Drug Therapy
- Escherichia coli/genetics
- Gene Expression
- Indoles/metabolism
- Mice
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Receptors, Serotonin, 5-HT4/chemistry
- Receptors, Serotonin, 5-HT4/genetics
- Receptors, Serotonin, 5-HT4/metabolism
- Recombinant Proteins
- Serotonin Antagonists/metabolism
- Spectrometry, Fluorescence
- Structure-Activity Relationship
- Sulfonamides/metabolism
Collapse
|
|
20 |
113 |
10
|
Vilaró MT, Cortés R, Mengod G. Serotonin 5-HT4receptors and their mRNAs in rat and guinea pig brain: Distribution and effects of neurotoxic lesions. J Comp Neurol 2005; 484:418-39. [PMID: 15770652 DOI: 10.1002/cne.20447] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serotonin 5-HT4 receptors are widely distributed in the periphery and in brain, where they modulate the release of various neurotransmitters and have been implicated in learning and memory. Nine C-terminal splice variants of this receptor have been cloned in mammalian species. In the rat, three such variants have been described: 5-HT4(a), 5-HT4(b), and 5-HT4(e). In the present study, we have examined several aspects of the distribution of these receptors in brain. First, we provide, in rat and guinea pig, a detailed comparison of the distribution of 5-HT4 receptors labeled by the antagonist [125I]-SB 207710 with the distribution of their encoding mRNA visualized by in situ hybridization histochemistry (ISHH). The results suggest that, in several projection systems (striato-nigral and striato-pallidal pathways, projection from dentate granule cells to field CA3, habenulo-interpeduncular pathway), 5-HT4 receptors are located both somatodendritically and axonally. Second, we have analyzed the distribution of mRNA for the three known rat splice variants by reverse transcription-polymerase chain reaction (RT-PCR) and by ISHH. RT-PCR indicates that all three variants are widely distributed, with 5-HT4(b) mRNA being present in all regions examined (olfactory tubercle, striatum, hippocampus, inferior colliculus, substantia nigra, parietal cortex) and 5-HT4(a) and 5-HT4(e) showing a somewhat more restricted distribution. In other regions (periaqueductal gray, reticular formation, medial septum, diagonal band), faint ISHH signals are observed for 5-HT4(a)+4(e) mRNAs, whereas 5-HT4(b) mRNA signals are almost undetectable. Finally, neurotoxic lesions of basal ganglia components in guinea pig also indicate a location of these receptors on terminals of striatal projection neurons.
Collapse
|
|
20 |
95 |
11
|
Ramage AG. The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br J Pharmacol 2006; 147 Suppl 2:S120-31. [PMID: 16465176 PMCID: PMC1751491 DOI: 10.1038/sj.bjp.0706504] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
At present the most investigated 5-HT receptor that has been shown to play a role in the control of micturition is the 5-HT(1A) receptor followed by 5-HT(7), 5-HT(2) and 5-HT(3) receptors. Most experiments focus on the control these receptors have on the parasympathetic outflow to the bladder and the somatic outflow to the external urethral sphincter (EUS) in the rat. Furthermore, 5-HT(1A) and 5-HT(7) receptors have been identified as having an excitatory physiological role in the control of bladder function. 5-HT(1A) receptors act, at least in the rat, at both a spinal (probably a heteroreceptor) and supraspinal (probably an autoreceptor) level, while 5-HT(7) receptors only act at a supraspinal level. Additionally, in the rat, 5-HT administered at a spinal or supraspinal site has an excitatory action, although earlier experiments have shown that activating 5-HT-containing brain areas causes inhibition of the bladder. Recent experiments have also indicated that blockade of the 5-HT(1A) receptor pathway shows rapid tolerance. However, no data exist for the development of tolerance for the 5-HT(7) receptor pathway. Neither receptor seems to play a role in the control of the urethra. Regarding 5-HT(2) receptors, activation of this receptor subtype inhibits micturition, and this inhibitory action may occur at a spinal, supraspinal or both levels. Although no physiological role for 5-HT(2C) receptors can yet be identified, 5-HT(2C) receptors have been implicated in the proposed supraspinal tonically active 5-HT(1A) autoreceptor (negative feedback) pathway. This proposition reconciles the data that central 5-HT-containing pathways are inhibitory to micturition, while 5-HT(1A) receptors, although inhibitory to adenylyl cyclase, have an excitatory function. This is because activation of 5-HT(1A) autoreceptors reduces the release of 5-HT thus reducing the activation of the 5-HT(2C) receptors, which are inhibitory in the control of micturition (disinhibition). Furthermore, 5-HT(2A) receptors in the rat and 5-HT(2C) receptors in the guinea pig cause activation of the EUS. In this respect, 5-ht(5A) receptors have also been identified in Onuf's nucleus, the site of somatic motoneurones controlling this sphincter. In the cat there is very little evidence to indicate that 5-HT receptors are involved in micturition except under pathological conditions in which activation of 5-HT(1A) receptors causes inhibition of micturition. Interestingly, under such conditions 5-HT(1A) receptors cause excitation of the EUS. Nevertheless, spinal 5HT(3) receptors have been implicated in the physiological control of micturition in the cat, but not yet in the rat. Overall, the data support the view that 5-HT receptors are important in the control of micturition. However, many more studies are required to fully understand these roles and why there are such species differences.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System/metabolism
- Cats
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Rats
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT2/metabolism
- Receptors, Serotonin, 5-HT3/metabolism
- Receptors, Serotonin, 5-HT4/metabolism
- Urinary Bladder/innervation
- Urinary Bladder/metabolism
- Urination/drug effects
Collapse
|
Review |
19 |
93 |
12
|
Gill RK, Saksena S, Tyagi S, Alrefai WA, Malakooti J, Sarwar Z, Turner JR, Ramaswamy K, Dudeja PK. Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKC alpha in human intestinal epithelial cells. Gastroenterology 2005; 128:962-74. [PMID: 15825078 DOI: 10.1053/j.gastro.2005.02.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Increased serotonin levels have been implicated in the pathophysiology of diarrhea associated with celiac and inflammatory diseases. However, the effects of serotonin on Na+ /H+ exchange (NHE) activity in the human intestine have not been investigated fully. The present studies examined the acute effects of 5-hydroxytryptamine (5-HT) on NHE activity using Caco-2 cells as an in vitro model. METHODS Caco-2 cells were treated with 5-HT (.1 micromol/L, 1 h) and NHE activity was measured as ethyl-isopropyl-amiloride (EIPA)-sensitive 22Na uptake. The effect of 5-HT receptor-specific agonists and antagonists was examined. The role of signaling intermediates in 5-HT-mediated effects on NHE activity was elucidated using pharmacologic inhibitors and immunoblotting. RESULTS NHE activity was inhibited significantly (approximately 50%-75%, P < .05) by .1 micromol/L 5-HT via inhibition of maximal velocity (Vmax) without any changes in apparent affinity (Km) for the substrate Na+ . NHE inhibition involved a decrease of both NHE2 and NHE3 activities. Studies using specific inhibitors and agonists showed that the effects of 5-HT were mediated by 5-HT4 receptors. 5-HT-mediated inhibition of NHE activity was dependent on phosphorylation of phospholipase C gamma 1 (PLC gamma 1) via activation of src-kinases. Signaling pathways downstream of PLC gamma 1 involved increase of intracellular Ca 2+ levels and subsequent activation of protein kinase C alpha (PKC alpha). The effects of 5-HT on NHE activity were not cell-line specific because T84 cells also showed NHE inhibition. CONCLUSIONS A better understanding of the regulation of Na+ absorption by 5-HT offers the potential for providing insights into molecular and cellular mechanisms involved in various diarrheal and inflammatory disorders.
Collapse
|
|
20 |
79 |
13
|
Cho S, Hu Y. Activation of 5-HT4 receptors inhibits secretion of β-amyloid peptides and increases neuronal survival. Exp Neurol 2007; 203:274-8. [PMID: 16978609 DOI: 10.1016/j.expneurol.2006.07.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Activation of 5-HT4 receptors has been shown to improve memory processes in preclinical cognition models, suggesting potential utility of 5-HT4 agonists for the symptomatic treatment of Alzheimer's disease (AD). Recent studies have shown that 5-HT4 agonists also increase the secretion of the non-amyloidogenic soluble amyloid precursor protein-alpha (sAPPalpha). In the present study, we demonstrated that a selective 5-HT4 partial agonist, RS67333, inhibited the generation of beta-amyloid peptide (Abeta) in primary cortical cultures of Tg2576 transgenic mice expressing human APP(K670N/M671L). Furthermore, treatments with RS67333 selectively increased the survival of transgenic neurons in a dose-dependent manner, which was inhibited by 5-HT4 antagonists. These and previous data collectively suggest that the 5-HT4 receptor may be an effective therapeutic target for AD, providing both symptomatic improvements and neuroprotection.
Collapse
|
|
18 |
75 |
14
|
Marner L, Gillings N, Madsen K, Erritzoe D, Baaré WFC, Svarer C, Hasselbalch SG, Knudsen GM. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. Neuroimage 2010; 50:855-61. [PMID: 20096787 DOI: 10.1016/j.neuroimage.2010.01.054] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/04/2010] [Accepted: 01/14/2010] [Indexed: 12/16/2022] Open
Abstract
Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy subjects (20-45 years, 8 males) using the simplified reference tissue model. We tested within our population the effect of age and other demographic factors on the endpoint. In seven subjects, we tested the vulnerability of radioligand binding to a pharmacolological challenge with citalopram, which is expected to increase competition from endogenous serotonin. Given radiotracer administration at a range of specific activities, we were able to use the individual BP(ND) measurements for population-based estimation of the saturation binding parameters; B(max) ranged from 0.3 to 1.6 nM. B(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given the low inter-and intrasubject variation, use of the present method will enable detection of a 15% difference in striatum with only 7-13 subjects in a 2-sample test and with only 4-5 subjects in a paired test. The citalopram challenge did not discernibly alter [(11)C]SB207145 binding. In conclusion, the 5-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
62 |
15
|
Barthet G, Framery B, Gaven F, Pellissier L, Reiter E, Claeysen S, Bockaert J, Dumuis A. 5-hydroxytryptamine 4 receptor activation of the extracellular signal-regulated kinase pathway depends on Src activation but not on G protein or beta-arrestin signaling. Mol Biol Cell 2007; 18:1979-91. [PMID: 17377064 PMCID: PMC1877087 DOI: 10.1091/mbc.e06-12-1080] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 5-hydroxytryptamine(4) (5-HT(4)) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine(4) receptors (5-HT(4)Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and memory: the extracellular signal-regulated kinase (ERK) pathway. Here, we show that 5-HT(4)R stimulation, in primary neurons, produced a potent but transient activation of the ERK pathway. Surprisingly, this activation was mostly PKA independent. Similarly, using pharmacological, genetic, and molecular tools, we observed that 5-HT(4)Rs in human embryonic kidney 293 cells, activated the ERK pathway in a G(s)/cAMP/PKA-independent manner. We also demonstrated that other classical G proteins (G(q)/G(i)/G(o)) and associated downstream messengers were not implicated in the 5-HT(4)R-activated ERK pathway. The 5-HT(4)R-mediated ERK activation seemed to be dependent on Src tyrosine kinase and yet totally independent of beta-arrestin. Immunocytofluorescence revealed that ERK activation by 5-HT(4)R was restrained to the plasma membrane, whereas p-Src colocalized with the receptor and carried on even after endocytosis. This phenomenon may result from a tight interaction between 5-HT(4)R and p-Src detected by coimmunoprecipitation. Finally, we confirmed that the main route by which 5-HT(4)Rs activate ERKs in neurons was Src dependent. Thus, in addition to classical cAMP/PKA signaling pathways, 5-HT(4)Rs may use ERK pathways to control memory process.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
61 |
16
|
Conductier G, Dusticier N, Lucas G, Côté F, Debonnel G, Daszuta A, Dumuis A, Nieoullon A, Hen R, Bockaert J, Compan V. Adaptive changes in serotonin neurons of the raphe nuclei in 5-HT4receptor knock-out mouse. Eur J Neurosci 2006; 24:1053-62. [PMID: 16930432 DOI: 10.1111/j.1460-9568.2006.04943.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Decreased serotonin (5-HT) transmission is thought to underlie several mental diseases, including depression and feeding disorders. However, whether deficits in genes encoding G protein-coupled receptors may down-regulate the activity of 5-HT neurons is unknown currently. Based on recent evidence that stress-induced anorexia may involve 5-HT(4)receptors (5-HT(4)R), we measured various aspects of 5-HT function in 5-HT(4)R knock-out (KO) mice. When compared to dorsal raphe nucleus (DRN) 5-HT neurons from wild-type mice, those from 5-HT(4)R KO mice exhibited reduced spontaneous electrical activity. This reduced activity was associated with diminished tissue levels of 5-HT and its main metabolite, 5-hydroxyindole acetic acid (5-HIAA). Cumulative, systemic doses of the 5-HT uptake blocker citalopram, that reduced 5-HT cell firing by 30% in wild-type animals, completely inhibited 5-HT neuron firing in the KO mice. This effect was reversed by administration of the 5-HT(1A) receptor (5-HT(1A)R) antagonist, WAY100635, in mice of both genotypes. Other changes in DRN of the KO mice included increases in the levels of 5-HT plasma membrane transporter sites and mRNA, as well as a decrease in the density of 5-HT(1A)R sites without any change in 5-HT(1A) mRNA content. With the exception of increased 5-HT turnover index in the hypothalamus and nucleus accumbens and a decreased density of 5-HT(1A)R sites in the dorsal hippocampus (CA1) and septum, no major changes were detected in 5-HT territories of projection, suggesting region-specific adaptive changes. The mechanisms whereby 5-HT(4)R mediate a tonic positive influence on the firing activity of DRN 5-HT neurons and 5-HT content remain to be determined.
Collapse
|
|
19 |
61 |
17
|
Rosel P, Arranz B, Urretavizcaya M, Oros M, San L, Navarro MA. Altered 5-HT2A and 5-HT4 postsynaptic receptors and their intracellular signalling systems IP3 and cAMP in brains from depressed violent suicide victims. Neuropsychobiology 2004; 49:189-95. [PMID: 15118356 DOI: 10.1159/000077365] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serotonin 5-HT2A and 5-HT4 binding parameters and their second messengers 1,4,5-inositol triphosphate (IP3) and cyclic adenosyl monophosphate (cAMP) were studied in the frontal cortex, hippocampus, caudate nucleus and amygdala of 19 control subjects and 19 antidepressant-free, violent suicide victims. A significantly higher number of 5-HT4 receptors and higher second messenger cAMP concentrations were found in the frontal cortex and caudate nucleus of the depressed suicide victims as compared with the control group. Furthermore, significantly increased 5-HT2A binding sites and IP3 concentrations were noted in the caudate nucleus of the suicide victims, together with a significantly reduced number of 5-HT2A binding sites, higher binding affinity and increased IP3 concentrations in the hippocampus. No significant alterations in 5-HT4 and cAMP or in 5-HT2A and IP3 concentrations were observed in the amygdala. The caudate nucleus of depressed suicide victims seems to be the brain region with the highest alteration of the serotonergic system, and hence with the most diagnostic sensitivity. Further studies on suicidality and depression should focus on the functionality of the caudate nucleus.
Collapse
|
Comparative Study |
21 |
60 |
18
|
Brattelid T, Kvingedal AM, Krobert KA, Andressen KW, Bach T, Hystad ME, Kaumann AJ, Levy FO. Cloning, pharmacological characterisation and tissue distribution of a novel 5-HT 4 receptor splice variant, 5-HT 4(i). Naunyn Schmiedebergs Arch Pharmacol 2004; 369:616-28. [PMID: 15118808 DOI: 10.1007/s00210-004-0919-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
5-HT4 receptor pre-mRNA is alternatively spliced in human (h) tissue to produce several splice variants, called 5-HT4(a) to 5-HT4(h) and 5-HT4(n). Polymerase chain reaction (PCR) with primers designed to amplify both 5-HT4(a) and 5-HT4(b) amplified three additional bands in different tissues, two representing different mRNA species both encoding 5-HT4(g) and one representing mRNA for a novel splice variant named 5-HT4(i), cloned from testis and pancreas respectively. Primary and nested PCR detected both 5-HT4(g) and 5-HT4(i) in multiple tissues. Whereas 5-HT4(i), was found in all cardiovascular tissues analysed, 5-HT4(g) was mainly present in atria. However, quantitative RT-PCR indicated 5-HT4(g) expression also in cardiac ventricle. The pharmacological profiles and ability to activate adenylyl cyclase (AC) were compared between four recombinant h5-HT4 splice variants (a, b, g and i) expressed transiently and stably in HEK293 cells. Displacement of [(3)H]GR113808 with ten ligands revealed identical pharmacological profiles (affinity rank order: GR125487, SB207710, GR113808>SB203186>serotonin, cisapride, tropisetron>renzapride, 5-MeOT>5-CT). In transiently transfected HEK293 cells cisapride was a partial agonist compared to serotonin at 5-HT4(b), 5-HT4(g) and 5-HT4(i) receptors. In membranes from HEK293 cells stably expressing 5-HT4(g) (3,000 fmol/mg protein) or 5-HT4(i) (500 fmol/mg protein), serotonin and 5-MeOT were full agonists while cisapride was full agonist at 5-HT4(g) and partial agonist at 5-HT4(i), probably due to different receptor expression levels. At both 5-HT4(g) and 5-HT4(i), the behaviour of 5-HT4 receptor antagonists was dependent on receptor level. At high receptor levels, tropisetron and SB207710 and to a variable extent SB203186 and GR113808 displayed some partial agonist activity, whereas GR125487 and SB207266 reduced the AC activity below basal, indicating both receptors to be constitutively active. We conclude that the novel 5-HT4(i) receptor splice variant is pharmacologically indistinguishable from other 5-HT4 splice variants and that the 5-HT4(i) C-terminal tail does not influence coupling to AC.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Binding, Competitive
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Enzyme Activation/drug effects
- Humans
- Ligands
- Molecular Sequence Data
- Myocardium/chemistry
- Myocardium/metabolism
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Isoforms/pharmacology
- RNA, Messenger/analysis
- Receptors, Serotonin, 5-HT4/biosynthesis
- Receptors, Serotonin, 5-HT4/genetics
- Receptors, Serotonin, 5-HT4/metabolism
- Serotonin Antagonists/metabolism
- Serotonin Receptor Agonists/metabolism
- Transfection
Collapse
|
|
21 |
54 |
19
|
Poole DP, Xu B, Koh SL, Hunne B, Coupar IM, Irving HR, Shinjo K, Furness JB. Identification of neurons that express 5-hydroxytryptamine4 receptors in intestine. Cell Tissue Res 2006; 325:413-22. [PMID: 16628410 DOI: 10.1007/s00441-006-0181-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 02/01/2006] [Indexed: 01/14/2023]
Abstract
5-Hydroxytryptamine (5-HT) is an endogenous stimulant of intestinal propulsive reflexes. It exerts its effects partly through 5-HT4 receptors; 5-HT4 receptor agonists that are stimulants of intestinal transit are in clinical use. Both pharmacological and recent immunohistochemical studies indicate that 5-HT4 receptors are present on enteric neurons but the specific neurons that express the receptors have not been determined. In the present work, we describe the characterization of an anti-5-HT4 receptor antiserum that reveals immunoreactivity for enteric neurons and other cell types in the gastrointestinal tract. With this antiserum, 5-HT4 receptor immunoreactivity has been found in the muscularis mucosae of the rat oesophagus, a standard assay tissue for 5-HT4 receptors. It is also present in the muscularis mucosae of the guinea-pig and mouse oesophagus. In guinea-pig small intestine and rat and mouse colon, 5-HT4 receptor immunoreactivity occurs in subpopulations of enteric neurons, including prominent large neurons. Double-staining has shown that these large neurons in the guinea-pig small intestine are also immunoreactive for two markers of intrinsic primary afferent neurons, cytoplasmic NeuN and calbindin. Some muscle motor neurons in the myenteric ganglia are immunoreactive for this receptor, whereas it is rarely expressed by secretomotor neurons. Immunoreactivity also occurs in the interstitial cells of Cajal but is faint in the external muscle. Expression of the protein and mRNA has been confirmed in extracts containing enteric neurons. The observations suggest that one site of action of 5-HT4 receptor agonists is the intrinsic primary afferent neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
52 |
20
|
Tian XY, Bian ZX, Hu XG, Zhang XJ, Liu L, Zhang H. Electro-acupuncture attenuates stress-induced defecation in rats with chronic visceral hypersensitivity via serotonergic pathway. Brain Res 2006; 1088:101-8. [PMID: 16650387 DOI: 10.1016/j.brainres.2006.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/28/2006] [Accepted: 03/03/2006] [Indexed: 02/07/2023]
Abstract
Acupuncture has long been used for patients with irritable bowel syndrome. However, it has remained unclear. The aim of this study was to testify the effect of electro-acupuncture(EA) on (1) visceral hypersensitivity induced by the mechanical colorectal irritation during postnatal development of rats, and (2) stress-induced colonic motility changes on rats with chronic visceral hypersensitivity. The abdominal withdrawal reflex (pain threshold and score) for visceral hypersensitivity and fecal pellet output for motor dysfunction were selected as two indexes for measurement. In addition, the effect of EA on 5-HT(4a) receptor and serotonin transporter (SERT) expression in the colon mucosa was analyzed semi-quantitatively through immunohistochemistry and 5-HT concentration in the colon tissue was observed through spectro-photo-fluorimeter detection, respectively. Our results showed that EA significantly elevated pain threshold, decreased the scores and also decreased fecal pellet output during water avoid stress. Furthermore, EA decreased 5-HT concentration in colon in rats with CVH and CVH rats with water avoidance stress, and increased the 5-HT(4a) and SERT expression in rats with CVH. Thus, it can be concluded that EA attenuates behavioral hyperalgesia and stress-induced colonic motor dysfunction in CVH rats via serotonergic pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
50 |
21
|
El Ghorayeb N, Bourdeau I, Lacroix A. Multiple aberrant hormone receptors in Cushing's syndrome. Eur J Endocrinol 2015; 173:M45-60. [PMID: 25971648 DOI: 10.1530/eje-15-0200] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/12/2015] [Indexed: 01/19/2023]
Abstract
The mechanisms regulating cortisol production when ACTH of pituitary origin is suppressed in primary adrenal causes of Cushing's syndrome (CS) include diverse genetic and molecular mechanisms. These can lead either to constitutive activation of the cAMP system and steroidogenesis or to its regulation exerted by the aberrant adrenal expression of several hormone receptors, particularly G-protein coupled hormone receptors (GPCR) and their ligands. Screening for aberrant expression of GPCR in bilateral macronodular adrenal hyperplasia (BMAH) and unilateral adrenal tumors of patients with overt or subclinical CS demonstrates the frequent co-expression of several receptors. Aberrant hormone receptors can also exert their activity by regulating the paracrine secretion of ACTH or other ligands for those receptors in BMAH or unilateral tumors. The aberrant expression of hormone receptors is not limited to adrenal CS but can be implicated in other endocrine tumors including primary aldosteronism and Cushing's disease. Targeted therapies to block the aberrant receptors or their ligands could become useful in the future.
Collapse
MESH Headings
- Adenoma/metabolism
- Adrenal Gland Neoplasms/metabolism
- Cushing Syndrome/metabolism
- Cyclic AMP/metabolism
- Gene Expression
- Humans
- Receptor, Melanocortin, Type 2/metabolism
- Receptors, Adrenergic, beta/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Glucagon/metabolism
- Receptors, LH/metabolism
- Receptors, Serotonin, 5-HT4/metabolism
- Receptors, Vasopressin/metabolism
Collapse
|
Review |
10 |
50 |
22
|
Huang YY, Kandel ER. Low-frequency stimulation induces a pathway-specific late phase of LTP in the amygdala that is mediated by PKA and dependent on protein synthesis. Learn Mem 2007; 14:497-503. [PMID: 17626908 PMCID: PMC1934345 DOI: 10.1101/lm.593407] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Activity-dependent changes in synaptic efficacy are thought to be the key cellular mechanism for the formation and storage of both explicit and implicit memory. Different patterns of stimulation can elicit different changes in the efficiency on excitatory synaptic transmission. Here, we examined the synaptic changes in the amygdala of adult mice produced by low-frequency stimulation (1 Hz, 15 min, LFS). We first compared the synaptic changes induced by LFS in three different synaptic pathways of amygdala: cortical-lateral amygdala, thalamic-lateral amygdala, and lateral-basolateral amygdala pathways. We find that the plastic changes induced by LFS are different between synaptic pathways. Low-frequency stimulation selectively elicits a slow onset and protein synthesis-dependent late-phase LTP in the cortical-lateral amygdala pathway, but not in the thalamic-lateral or lateral-basolateral pathways. We next analyzed LTP induced by LFS in the cortical-lateral amygdala pathway and found that three PKA-coupling neurotransmitter receptors are involved: 5-HT4, Dopamine D1, and beta-adrenergic receptors. Antagonists of these receptors block the LFS L-LTP, but the effects of agonists of these receptors are clearly different. These results indicate that the threshold for the induction of LFS L-LTP is different among these pathways and that the maintenance of LFS L-LTP requires a cross-talk among multiple neurotransmitters.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
49 |
23
|
Abstract
The 5-HT(4) partial agonist tegaserod is effective in the treatment of chronic constipation and constipation predominant irritable bowel syndrome. 5-HT(4) receptors are located on presynaptic terminals in the enteric nervous system. Stimulation of 5-HT(4) receptors enhances the release of acetylcholine and calcitonin gene related peptide from stimulated nerve terminals. This action strengthens neurotransmission in prokinetic pathways, enhancing gastrointestinal motility. The knockout of 5-HT(4) receptors in mice not only slows gastrointestinal activity but also, after 1 month of age, increases the age-related loss of enteric neurons and decreases the size of neurons that survive. 5-HT(4) receptor agonists, tegaserod and RS67506, increase numbers of enteric neurons developing from precursor cells and/or surviving in culture; they also increase neurite outgrowth and decrease apoptosis. The 5-HT(4) receptor antagonist, GR113808, blocks all of these effects, which are thus specific and 5-HT(4)-mediated. 5-HT(4) receptor agonists, therefore, are neuroprotective and neurotrophic for enteric neurons. Because the age-related decline in numbers of enteric neurons may contribute to the dysmotilities of the elderly, the possibility that the neuroprotective actions of 5-HT agonists can be utilized to prevent the occurrence or worsening of these conditions should be investigated.
Collapse
|
research-article |
18 |
46 |
24
|
Böttner M, Barrenschee M, Hellwig I, Harde J, Egberts JH, Becker T, Zorenkov D, Wedel T. The enteric serotonergic system is altered in patients with diverticular disease. Gut 2013; 62:1753-62. [PMID: 23144076 DOI: 10.1136/gutjnl-2012-302660] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Disturbances of the enteric serotonergic system have been implicated in several intestinal motility disorders. Patients with diverticular disease (DD) have been reported to exhibit abnormal intestinal motility and innervation patterns. Gene expression profiles of the serotonergic system and distribution of the serotonin type 4 receptor (5HT-4R) were thus studied in patients with DD. DESIGN Colonic specimens from patients with DD and controls were subjected to quantitative PCR for serotonin receptors 2B, 3A, 4, serotonin transporter and synthesising enzyme tryptophan hydroxylase. Localisation of 5HT-4R was determined by dual-label immunocytochemistry using smooth muscle actin (α-SMA) and pan-neuronal markers (PGP 9.5) and quantitative analysis was carried out. Site-specific gene expression analysis of 5HT-4R was assessed within myenteric ganglia and muscle layers. Correlation of 5HT-4R with muscarinic receptors 2 and 3 (M2R, M3R) messenger RNA expression was determined. RESULTS 5HT-4R mRNA expression was downregulated in the tunica muscularis and upregulated in the mucosa of patients with DD, whereas the other components of the serotonergic system remained unchanged. 5HT-4R was detected in ganglia and muscle layers, but was decreased in the circular muscle layer and myenteric ganglia of patients with DD. 5HT-4R mRNA expression correlated with M2R/M3R mRNA expression in controls, but not in patients with DD. CONCLUSIONS The serotonergic system is compromised in DD. Altered expression of 5HT-4R at mRNA and protein levels may contribute to intestinal motor disturbances reported in patients with DD. The findings support the hypothesis that DD is associated and possibly promoted by an enteric neuromuscular pathology.
Collapse
MESH Headings
- Aged
- Case-Control Studies
- Colon, Sigmoid/metabolism
- Colon, Sigmoid/physiopathology
- Diverticulum, Colon/metabolism
- Diverticulum, Colon/physiopathology
- Enteric Nervous System/metabolism
- Enteric Nervous System/physiopathology
- Female
- Humans
- Male
- Middle Aged
- Polymerase Chain Reaction
- Receptors, Serotonin, 5-HT2/metabolism
- Receptors, Serotonin, 5-HT2/physiology
- Receptors, Serotonin, 5-HT3/metabolism
- Receptors, Serotonin, 5-HT3/physiology
- Receptors, Serotonin, 5-HT4/metabolism
- Receptors, Serotonin, 5-HT4/physiology
- Serotonergic Neurons/metabolism
- Serotonergic Neurons/physiology
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Serotonin Plasma Membrane Transport Proteins/physiology
- Transcriptome/physiology
- Tryptophan Hydroxylase/metabolism
- Tryptophan Hydroxylase/physiology
Collapse
|
|
12 |
45 |
25
|
Tokita Y, Yuzurihara M, Sakaguchi M, Satoh K, Kase Y. The pharmacological effects of Daikenchuto, a traditional herbal medicine, on delayed gastrointestinal transit in rat postoperative ileus. J Pharmacol Sci 2007; 104:303-10. [PMID: 17666868 DOI: 10.1254/jphs.fp0070831] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The effect of Daikenchuto, a traditional herbal medicine, on gastrointestinal hypoperistalsis in postoperative ileus (POI) was investigated. POI was induced by laparotomy with manipulation of the gastrointestine under anesthesia, and gastrointestinal transit was calculated by migration of Evans blue. Daikenchuto (270 - 2,700 mg/kg, p.o.) dose-dependently improved the delayed gastrointestinal transit in POI. This effect of Daikenchuto was partially inhibited by SB204070 (1 mg/kg, s.c.), a 5-hydroxytriptamine(4) (5-HT(4))-receptor antagonist and completely abolished by atropine (1 mg/kg, s.c.), a muscarine-receptor antagonist. Among the constituents of Daikenchuto, the medical herb zanthoxylum fruit (60 mg/kg, p.o.) and maltose syrup (2,400 mg/kg, p.o.) significantly ameliorated the delayed gastrointestinal transit, but ginseng and processed ginger did not affect the gastrointestinal transit in the rat POI. The improvement induced by zanthoxylum fruit was also inhibited by atropine or SB204070. In addition, the high osmotic pressure of the maltose syrup (2400 mg/10 mL per kg) was related to the improvement of delayed gastrointestinal transit. These results demonstrated that Daikenchuto ameliorates postoperative hypoperistalsis via cholinergic nerves and 5-HT(4) receptors and that osmotic pressure also may be involved in this action. Moreover, zanthoxylum fruit and maltose syrup were crucial medical herbs contributing to the ability of Daikenchuto.
Collapse
|
|
18 |
45 |