101
|
Mizutani K, Machida Y, Sugiyama K, Unzai S, Park SY, Tame JRH. The crystal structures of the pseudouridine synthases RluC and RluD. Acta Crystallogr A 2005. [DOI: 10.1107/s0108767305092573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
102
|
Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 2005; 9:1199-211. [PMID: 15569152 DOI: 10.1111/j.1365-2443.2004.00798.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytokinesis is the critical step during which daughter cells are separated. We showed previously that a protein complex that consists of NACK1 (and NACK2) kinesin-like protein and NPK1 MAPKKK and its substrate NQK1 MAPKK are required for progression of cytokinesis in Nicotiana tabacum. The genome of Arabidopsis thaliana encodes homologues of NACK1 and NACK2, namely, AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2, respectively. Loss-of-function mutations in AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 result in the occasional failure of somatic and male-meiotic cytokinesis, respectively. However, it is likely that these genes function redundantly to some extent in somatic tissues and female gametogenesis. We describe the phenotypes of Arabidopsis plants that have mutations in both the AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes. These phenotypes suggest that the two genes are essential during both male and female gametogenesis. Female gametes with atnack1 atnack2 double mutations failed to cellularize and to generate a central cell, synergids and the egg cells. Male gametes with atnack1 atnack2 mutations were also not transmitted to the next generation. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes for kinesin-like proteins have overlapping functions that are essential for gametogenetic cytokinesis. They appear to be essential components of a MAP kinase cascade that promotes cytokinesis of plant cells in both gametophytic (haploid) and sporophytic (diploid) proliferation.
Collapse
|
103
|
Takahashi Y, Soyano T, Sasabe M, Machida Y. A MAP kinase cascade that controls plant cytokinesis. J Biochem 2005; 136:127-32. [PMID: 15496582 DOI: 10.1093/jb/mvh118] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several components of mitogen-activated protein kinase (MAPK) cascades have been identified in higher plants and have been implicated in cellular responses to a wide variety of abiotic and biotic stimuli. Our recent work has demonstrated that a MAP kinase cascade is involved in the regulation of cytokinesis in plant cells. The MAP kinase cascade in tobacco includes NPK1 MAPK kinase kinase, NQK1 MAPK kinase, and NRK1 MAPK, and its activation is triggered by the binding of NACK1/2 kinesin-like protein to the NPK1 MAPK kinase kinase at the late M-phase of the cell cycle. We refer to this cascade as the NACK-PQR pathway. In this review, we introduce a mechanism for the regulation of plant cytokinesis, focusing on the role of the NACK-PQR pathway.
Collapse
|
104
|
Kojima S, Machida Y, Machida C. [Mechanisms of axis formation in plant morphogenesis]. TANPAKUSHITSU KAKUSAN KOSO. PROTEIN, NUCLEIC ACID, ENZYME 2005; 50:724-30. [PMID: 15926506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
105
|
Osakabe K, Abe K, Yamanouchi H, Takyuu T, Yoshioka T, Ito Y, Kato T, Tabata S, Kurei S, Yoshioka Y, Machida Y, Seki M, Kobayashi M, Shinozaki K, Ichikawa H, Toki S. Arabidopsis Rad51B is important for double-strand DNA breaks repair in somatic cells. PLANT MOLECULAR BIOLOGY 2005; 57:819-33. [PMID: 15952068 DOI: 10.1007/s11103-005-2187-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 02/14/2005] [Indexed: 05/02/2023]
Abstract
Rad51 paralogs belong to the Rad52 epistasis group of proteins and are involved in homologous recombination (HR), especially the assembly and stabilization of Rad51, which is a homolog of RecA in eukaryotes. We previously cloned and characterized two RAD51 paralogous genes in Arabidopsis, named AtRAD51C and AtXRCC3, which are considered the counterparts of human RAD51C and XRCC3, respectively. Here we describe the identification of RAD51B homologue in Arabidopsis, AtRAD51B. We found a higher expression of AtRAD51B in flower buds and roots. Expression of AtRAD51B was induced by genotoxic stresses such as ionizing irradiation and treatment with a cross-linking reagent, cisplatin. Yeast two-hybrid analysis showed that AtRad51B interacted with AtRad51C. We also found and characterized T-DNA insertion mutant lines. The mutant lines were devoid of AtRAD51B expression, viable and fertile. The mutants were moderately sensitive to gamma-ray and hypersensitive to cisplatin. Our results suggest that AtRAD51B gene product is involved in the repair of double-strand DNA breaks (DSBs) via HR.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Blotting, Northern
- Cisplatin/pharmacology
- Cloning, Molecular
- DNA/genetics
- DNA/metabolism
- DNA Damage
- DNA Repair
- DNA, Bacterial/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gamma Rays
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Phylogeny
- Plants, Genetically Modified
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Two-Hybrid System Techniques
Collapse
|
106
|
Watanabe M, Tanaka H, Watanabe D, Machida C, Machida Y. The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:298-308. [PMID: 15255860 DOI: 10.1111/j.1365-313x.2004.02132.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants, an outer layer of meristematic cells, the protoderm, forms early in embryogenesis and this layer gives rise to the epidermis in differentiating tissues. We proposed previously that an Arabidopsis thaliana homolog of crinkly4 (ACR4), a gene for a receptor-like protein kinase, would be involved in differentiation and/or maintenance of epidermis-related tissues. In the present study, we isolated loss-of-function acr4 mutants by a reverse genetic approach. Our extensive analyses using the transmission electron microscopy and the toluidine blue test -- a method that has recently been developed for the rapid visualization of defects in the leaf cuticle -- showed that the acr4 mutations significantly affected the differentiation of leaf epidermal cells, suggesting similar roles for ACR4 and CR4 in the differentiation of leaf epidermis. Our acr4 mutants also had various abnormalities related to epidermal differentiation, which included disorganized cell layers in the integument and endothelium of ovules. In addition, the green fluorescent protein fused to ACR4 was localized preferentially on the lateral and basal plasma membranes in the epidermis of the leaf primordia, suggesting a role for ACR4 in epidermal differentiation at cell surfaces that make contact with adjacent cells. Furthermore, the loss-of-function mutations in the ACR4 and ABNORMAL LEAF SHAPE1 (ALE1) genes, which encode a putative subtilisin-like serine protease, synergistically affected the function of the epidermis such that most leaves fused. Thus, ACR4 seems to play an essential role in the differentiation of proper epidermal cells in both vegetative and reproductive tissues.
Collapse
|
107
|
Araki S, Ito M, Soyano T, Nishihama R, Machida Y. Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco. J Biol Chem 2004; 279:32979-88. [PMID: 15175336 DOI: 10.1074/jbc.m403171200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myb transcription factors, which contain three imperfect repeats in the Myb domain, are evolutionarily conserved members of the Myb superfamily. Vertebrate Myb proteins with three repeats, c-Myb, A-Myb, and BMyb, play important roles at the G(1)/S transition in the cell cycle. In plants, this type of Myb protein controls the G(2)/M phase by activating or repressing the transcription of cyclin B genes and a variety of other G(2)/M phase-specific genes. In tobacco, two genes for Myb activators, NtmybA1 and NtmybA2, are transcriptionally controlled and are expressed specifically at the G(2)/M phase. As we showed here, in addition to the control at the transcriptional level, activity of NtmybA2 is also controlled at the post-translational level. We found that the transactivation potential of NtmybA2 is repressed by a regulatory domain located at its carboxyl terminus and that specific classes of cyclins A and B enhanced NtmybA2 activity possibly by relieving this inhibitory effect. Mutations at the 20 potential sites of phosphorylation by cyclin-dependent kinase (CDK) in NtmybA2 blocked the enhancing effects of the cyclins on NtmybA2 activity. Recombinant NtmybA2 was phosphorylated in vitro by a CDK fraction prepared from tobacco BY2 cells. The kinase activity for NtmybA2 in the CDK fraction was cell cycle-regulated in BY2 cells, peaking at the G(2)/M phase when the level of transcripts of cyclin B is maximal. Taken together, our data suggest that NtmybA2 is phosphorylated by a specific cyclin/CDK complex(es) at G(2)/M and that this phosphorylation removes the inhibitory effect of its C-terminal region, thereby activating NtmybA2 specifically at G(2)/M.
Collapse
|
108
|
Asano T, Yoshioka Y, Kurei S, Sakamoto W, Machida Y. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:448-459. [PMID: 15086805 DOI: 10.1111/j.1365-313x.2004.02057.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified a novel mutation of a nuclear-encoded gene, designated as CRUMPLED LEAF (CRL), of Arabidopsis thaliana that affects the morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, we observed that differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The CRL gene encodes a novel protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria, but not in other organisms. These data suggest that the CRL protein is required for plastid division, and it also plays an important role in cell differentiation and the regulation of the cell division plane in plants. A possible function of the CRL protein is discussed.
Collapse
|
109
|
Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N. Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:260-75. [PMID: 15078329 DOI: 10.1111/j.1365-313x.2004.02041.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The rooting-locus gene B (rolB) on the T-DNA of the root-inducing (Ri) plasmid in Agrobacterium rhizogenes is responsible for the induction of transformed adventitious roots, although the root induction mechanism is unknown. We report here that the RolB protein of pRi1724 (1724RolB) is associated with Nicotianatabacum14-3-3-like protein omegaII (Nt14-3-3 omegaII) in tobacco bright yellow (BY)-2 cells. Nt14-3-3 omegaII directly interacts with 1724RolB protein. Green fluorescent protein (GFP)-fused 1724RolB is localized to the nucleus. GFP-fused mutant 1724RolB proteins having a deletion or amino acid substitution are unable to interact with Nt14-3-3 omegaII and also show impaired nuclear localization. Moreover, these 1724RolB mutants show decreased capacity for adventitious root induction. These results suggest that adventitious root induction by 1724RolB protein correlates with its interaction with Nt14-3-3 omegaII and the nuclear localization of 1724RolB protein.
Collapse
|
110
|
Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y. A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:139-46. [PMID: 14675439 DOI: 10.1046/j.1365-313x.2003.01946.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The epidermis of higher plants generates the cuticle layer that covers the outer surface of each plant. The cuticle plays a crucial role in plant development, and some mutants with defective cuticle exhibit morphological abnormalities, such as the fusion of organs. The way in which the cuticle forms and its contribution to morphogenesis are poorly understood. Conventional detection of the cuticle by transmission electron microscopy (TEM) requires laborious procedures, which include fixation, staining with osmium, and preparation of ultra-thin sections. It is also difficult to survey entire surfaces of expanded leaves because of the limited size of specimens that can be examined. Thus, TEM is unsuitable for large-scale screening for mutants with defective cuticle. We describe here a rapid and inexpensive method, designated the toluidine-blue (TB) test, for detection of cuticular defects in whole leaves. We demonstrated the validity of the TB test using mutants of Arabidopsis thaliana, including abnormal leaf shape1 (ale1), fiddlehead (fdh), and five eceriferum (cer) mutants, in which the structure and/or function of the cuticle is abnormal. Genetic screening for mutants using the TB test allowed us to identify seven loci. The cuticle-defective regions of leaves of the mutants revealed five intrinsic patterns of surface defects (classes I through V), suggesting that formation of functional cuticle on leaves involves various spatially regulated factors.
Collapse
|
111
|
Asano T, Yoshioka Y, Machida Y. A defect in atToc159 of Arabidopsis thaliana causes severe defects in leaf development. Genes Genet Syst 2004; 79:207-12. [PMID: 15514440 DOI: 10.1266/ggs.79.207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plastid protein import 2 (ppi2), a mutant of Arabidopsis thaliana, lacks a homologue of a component of the translocon at the outer envelope membrane of chloroplasts (Toc), designated Toc159 of the pea. Toc159 is thought to be essential for the import of photosynthetic proteins into chloroplasts. In order to investigate the effect of protein import on the plant development, we examined the morphologies of the developing leaves and the shoot apical meristems (SAM) in the ppi2 plants. Our histological analysis revealed that the development of leaves is severely affected in ppi2, while the structure of SAM is normal. Abnormalities in leaves became obvious in the later stages of leaf development, resulting in the generation of mature leaves with fewer mesophyll cells and more intercellular spaces as compared with the wild type. Palisade and spongy tissues of the mature leaves were indistinguishable in ppi2. Replication of chloroplast DNA was also suggested to be impaired in ppi2. Our results suggest that protein import into chloroplasts is important for the normal development of leaves.
Collapse
|
112
|
Soyano T, Machida Y. [Regulation of plant cytokinesis: a role of kinesin-like proteins and a MAP kinase cascade]. TANPAKUSHITSU KAKUSAN KOSO. PROTEIN, NUCLEIC ACID, ENZYME 2003; 48:1683-92. [PMID: 12971271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
113
|
Souma S, Machida Y, Sato T, Takahashi T, Matsui H, Wang SC, Ding H, Kaminski A, Campuzano JC, Sasaki S, Kadowaki K. The origin of multiple superconducting gaps in MgB2. Nature 2003; 423:65-7. [PMID: 12721624 DOI: 10.1038/nature01619] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 04/08/2003] [Indexed: 11/09/2022]
Abstract
Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.
Collapse
|
114
|
Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y. NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 2003. [PMID: 12704083 DOI: 10.1101/gad.107110317/8/1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tobacco protein kinase NPK1 is a MAPKKK that regulates formation of the cell plate during cytokinesis. In the present study, we have identified tobacco NQK1/NtMEK1 and NRK1 as a MAPKK and a MAPK, respectively, downstream of NPK1. NQK1/NtMEK1 complements the mutation in the PBS2 MAPKK gene of yeast in a manner that depends on both NPK1 and its activator, NACK1, a kinesin-like protein. Active NPK1 and NQK1/NtMEK1 phosphorylate and activate NQK1/NtMEK1 and NRK1, respectively. Both NQK1/NtMEK1 and NRK1, as well as NPK1, are activated at the late M phase of the cell cycle in tobacco cells, and they are rapidly inactivated by depolymerization of phragmoplast microtubules. These results suggest the existence of a MAPK cascade that consists of NPK1, NQK1/NtMEK1, and NRK1 and functions in a process related to the architecture of phragmoplasts at the late M phase of the cell cycle. Overexpression of kinase-negative NQK1/NtMEK1 in tobacco cells generates multinucleate cells with incomplete cross-walls. Arabidopsis plants with a mutation in the ANQ1 gene, an ortholog of NQK1/NtMEK1, display a dwarf phenotype, with unusually large cells that contain multiple nuclei and cell-wall stubs in various organs. In addition, anq1 homozygotes set fewer flowers and produce large and malformed pollen grains with a tetrad structure. Thus, NQK1/NtMEK1 (ANQ1) MAPKK appears to be a positive regulator of plant cytokinesis during meiosis as well as mitosis.
Collapse
|
115
|
Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y. NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 2003; 17:1055-67. [PMID: 12704083 PMCID: PMC196038 DOI: 10.1101/gad.1071103] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Accepted: 02/21/2003] [Indexed: 12/30/2022]
Abstract
The tobacco protein kinase NPK1 is a MAPKKK that regulates formation of the cell plate during cytokinesis. In the present study, we have identified tobacco NQK1/NtMEK1 and NRK1 as a MAPKK and a MAPK, respectively, downstream of NPK1. NQK1/NtMEK1 complements the mutation in the PBS2 MAPKK gene of yeast in a manner that depends on both NPK1 and its activator, NACK1, a kinesin-like protein. Active NPK1 and NQK1/NtMEK1 phosphorylate and activate NQK1/NtMEK1 and NRK1, respectively. Both NQK1/NtMEK1 and NRK1, as well as NPK1, are activated at the late M phase of the cell cycle in tobacco cells, and they are rapidly inactivated by depolymerization of phragmoplast microtubules. These results suggest the existence of a MAPK cascade that consists of NPK1, NQK1/NtMEK1, and NRK1 and functions in a process related to the architecture of phragmoplasts at the late M phase of the cell cycle. Overexpression of kinase-negative NQK1/NtMEK1 in tobacco cells generates multinucleate cells with incomplete cross-walls. Arabidopsis plants with a mutation in the ANQ1 gene, an ortholog of NQK1/NtMEK1, display a dwarf phenotype, with unusually large cells that contain multiple nuclei and cell-wall stubs in various organs. In addition, anq1 homozygotes set fewer flowers and produce large and malformed pollen grains with a tetrad structure. Thus, NQK1/NtMEK1 (ANQ1) MAPKK appears to be a positive regulator of plant cytokinesis during meiosis as well as mitosis.
Collapse
|
116
|
Ishikawa T, Machida C, Yoshioka Y, Kitano H, Machida Y. The GLOBULAR ARREST1 gene, which is involved in the biosynthesis of folates, is essential for embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:235-244. [PMID: 12535338 DOI: 10.1046/j.1365-313x.2003.01621.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified a mutation in Arabidopsis that resulted in defective embryos, and we designated this mutation globular arrest1 (gla1). The predicted amino acid sequence encoded by the GLA1 gene is homologous to the amino acid sequences of folylpolyglutamate synthetase (FPGS) and dihydrofolate synthetase (DHFS), which participate in folate biosynthesis. The defect of gla1 in the formation of calli was rescued by the supplement of 5-formyl tetrahydrofolate. These results indicated that GLA1 is involved in the biosynthesis of tetrahydrofolate. The gla1 embryos developed normally in the early stage of development but did not undergo the transition to the heart stage. Thus, the function of the GLA1 gene in embryogenesis appears to be required after the globular stage. However, when the levels of GLA1 transcripts in transgenic plants were increased by introduction of several copies of a GLA1 transgene (GLA6.8), the gla1 embryos that grew on gla1/gla1 GLA6.8/- plants developed as far as the heart to bent-cotyledon stage. This result suggests that the GLA1 function is provided to embryos by maternal tissues until embryos reach the globular stage.
Collapse
|
117
|
Ha CM, Kim GT, Kim BC, Jun JH, Soh MS, Ueno Y, Machida Y, Tsukaya H, Nam HG. The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 2003; 130:161-72. [PMID: 12441300 DOI: 10.1242/dev.00196] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant leaf provides an ideal system to study the mechanisms of organ formation and morphogenesis. The key factors that control leaf morphogenesis include the timing, location and extent of meristematic activity during cell division and differentiation. We identified an Arabidopsis mutant in which the regulation of meristematic activities in leaves was aberrant. The recessive mutant allele blade-on-petiole1-1 (bop1-1) produced ectopic, lobed blades along the adaxial side of petioles of the cotyledon and rosette leaves. The ectopic organ, which has some of the characteristics of rosette leaf blades with formation of trichomes in a dorsoventrally dependent manner, was generated by prolonged and clustered cell division in the mutant petioles. Ectopic, lobed blades were also formed on the proximal part of cauline leaves that lacked a petiole. Thus, BOP1 regulates the meristematic activity of leaf cells in a proximodistally dependent manner. Manifestation of the phenotypes in the mutant leaves was dependent on the leaf position. Thus, BOP1 controls leaf morphogenesis through control of the ectopic meristematic activity but within the context of the leaf proximodistality, dorsoventrality and heteroblasty. BOP1 appears to regulate meristematic activity in organs other than leaves, since the mutation also causes some ectopic outgrowths on stem surfaces and at the base of floral organs. Three class I knox genes, i.e., KNAT1, KNAT2 and KNAT6, were expressed aberrantly in the leaves of the bop1-1 mutant. Furthermore, the bop1-1 mutation showed some synergistic effect in double mutants with as1-1 or as2-2 mutation that is known to be defective in the regulation of meristematic activity and class I knox gene expression in leaves. The bop1-1 mutation also showed a synergistic effect with the stm-1 mutation, a strong mutant allele of a class I knox gene, STM. We, thus, suggest that BOP1 promotes or maintains a developmentally determinate state in leaf cells through the regulation of class I knox genes.
Collapse
|
118
|
Ide M, Yamate J, Machida Y, Nakanishi M, Kuwamura M, Kotani T, Sawamoto O. Emergence of different macrophage populations in hepatic fibrosis following thioacetamide-induced acute hepatocyte injury in rats. J Comp Pathol 2003; 128:41-51. [PMID: 12531686 DOI: 10.1053/jcpa.2002.0603] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages may play a role in fibrogenesis. The kinetics and distribution of different macrophage populations were investigated immunohistochemically in hepatic lesions following acute hepatocyte injury induced in F344 rats by a single injection of thioacetamide (TAA) (300 mg/kg body weight, intraperitoneally). Hepatocyte degeneration or necrosis induced by TAA occurred mainly in the perivenular areas of hepatic lobules as early as post-injection (PI) days 1 and 3; fibrotic lesion development began in the damaged areas on day 1, and peaked on day 5; thereafter (PI days 7 and 10), the fibrotic areas decreased and were replaced by regenerated hepatocytes on PI days 15 and 20, indicating a remodelling process. In this rat model, the number of macrophages reacting with ED1 antibody (specific for exudate macrophages), ED2 (recognizing cell membrane antigens of resident macrophages, including Kupffer cells) and OX6 (recognizing MHC class II antigens expressed in antigen-presenting macrophages and dendritic cells) began to increase on PI day 1, peaking on PI day 3. The numbers gradually decreased on PI days 5 and 7; however, the statistically significant increase was maintained in respect of ED1-positive cells up to PI day 20, whereas no significant increase in ED2- and OX6-positive cells remained from PI day 10 onwards. Interestingly, of the ED1-, ED2- and OX6-positive cells, the OX6-positive cells were the least numerous. ED1- and OX6-positive cells appeared exclusively in the injured perivenular areas, whereas ED2-positive cells were present mainly in the mid-zonal areas and in smaller numbers in the perivenular areas. These findings indicated differences in kinetics and distribution between macrophage populations appearing in hepatic fibrosis. In addition, RT-PCR revealed that mRNA expression of osteopontin, a factor for induction and maintenance of macrophages in inflammation, was markedly increased on PI days 5, 7 and 10, suggesting a role in the pathogenesis of hepatic fibrosis.
Collapse
|
119
|
Ishikawa M, Soyano T, Nishihama R, Machida Y. The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:789-98. [PMID: 12472693 DOI: 10.1046/j.1365-313x.2002.01469.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The tobacco mitogen-activated protein kinase kinase kinase NPK1 localizes to the equatorial region of phragmoplasts by interacting with kinesin-like protein NACK1. This leads to activation of NPK1 kinase at late M phase, which is necessary for cell plate formation. Until now, its localization during interphase has not been reported. We investigated the subcellular localization of NPK1 in tobacco-cultured BY-2 cells at interphase using indirect immunofluorescence microscopy and fusion to green fluorescent protein (GFP). Fluorescence of anti-NPK1 antibodies and GFP-fused NPK1 were detected only in the nuclei of BY-2 cells at interphase. Examination of the amino acid sequence of NPK1 showed that at the carboxyl-terminal region in the regulatory domain, which contains the binding site of NACK1, NPK1 contained a cluster of basic amino acids that resemble a bipartite nuclear localization signal (NLS). Amino acid substitution mutations in the critical residues in putative NLS caused a marked reduction in nuclear localization of NPK1 in BY-2 cells, indicating that this sequence is functional in tobacco BY-2 cells. We also found that the 64-amino acid sequence at the carboxyl terminus that contains NLS sequence is essential for interaction with NACK1, and that mutations in the NLS sequence prevented NPK1 from interacting with NACK1. Thus, the amino acid sequence at the carboxyl-terminal region of NPK1 has dual functions for nuclear localization during interphase and binding NACK1 in M phase.
Collapse
|
120
|
Ueno Y, Machida C, Machida Y. [Mechanism of regulation for formation of a symmetric flat leaf lamina in leaf development]. TANPAKUSHITSU KAKUSAN KOSO. PROTEIN, NUCLEIC ACID, ENZYME 2002; 47:1570-5. [PMID: 12357614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
121
|
(Kazuya Ichimura et al.) MAPKG, Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC. Mitogen-activated protein kinase cascades in plants: a new nomenclature. TRENDS IN PLANT SCIENCE 2002; 7:301-8. [PMID: 12119167 DOI: 10.1016/s1360-1385(02)02302-6] [Citation(s) in RCA: 757] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.
Collapse
|
122
|
Soyano T, Ishikawa M, Nishihama R, Araki S, Ito M, Ito M, Machida Y. Control of plant cytokinesis by an NPK1-mediated mitogen-activated protein kinase cascade. Philos Trans R Soc Lond B Biol Sci 2002; 357:767-75. [PMID: 12079672 PMCID: PMC1692986 DOI: 10.1098/rstb.2002.1094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokinesis is the last essential step in the distribution of genetic information to daughter cells and partition of the cytoplasm. In plant cells, various proteins have been found in the phragmoplast, which corresponds to the cytokinetic apparatus, and in the cell plate, which corresponds to a new cross wall, but our understanding of the functions of these proteins in cytokinesis remains incomplete. Reverse genetic analysis of NPK1 MAPKKK (nucleus- and phragmoplast-localized protein kinase 1 mitogen-activated protein kinase kinase kinase) and investigations of factors that might be functionally related to NPK1 have helped to clarify new aspects of the mechanisms of cytokinesis in plant cells. In this review, we summarize the evidence for the involvement of NPK1 in cytokinesis. We also describe the characteristics of a kinesin-like protein and the homologue of a mitogen-activated protein kinase that we identified recently, and we discuss possible relationships among these proteins in cytokinesis.
Collapse
|
123
|
Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. PLANT & CELL PHYSIOLOGY 2002; 43:467-78. [PMID: 12040093 DOI: 10.1093/pcp/pcf077] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana is involved in the establishment of the leaf venation system, which includes the prominent midvein, as well as in the development of a symmetric lamina. The gene product also represses the expression of class 1 knox homeobox genes in leaves. We have characterized the AS2 gene, which appears to encode a novel protein with cysteine repeats (designated the C-motif) and a leucine-zipper-like sequence in the amino-terminal half of the primary sequence. The Arabidopsis genome contains 42 putative genes that potentially encode proteins with conserved amino acid sequences that include the C-motif and the leucine-zipper-like sequence in the amino-terminal half. Thus, the AS2 protein belongs to a novel family of proteins that we have designated the AS2 family. Members of this family except AS2 also have been designated ASLs (AS2-like proteins). Transcripts of AS2 were detected mainly in adaxial domains of cotyledonary primordia. Green fluorescent protein-fused AS2 was concentrated in plant cell nuclei. Overexpression of AS2 cDNA in transgenic Arabidopsis plants resulted in upwardly curled leaves, which differed markedly from the downwardly curled leaves generated by loss-of-function mutation of AS2. Our results suggest that AS2 functions in the transcription of a certain gene(s) in plant nuclei and thereby controls the formation of a symmetric flat leaf lamina and the establishment of a prominent midvein and other patterns of venation.
Collapse
|
124
|
Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y. Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 2002; 109:87-99. [PMID: 11955449 DOI: 10.1016/s0092-8674(02)00691-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tobacco mitogen-activated protein kinase kinase kinase NPK1 regulates lateral expansion of the cell plate at cytokinesis. Here, we show that the kinesin-like proteins NACK1 and NACK2 act as activators of NPK1. Biochemical analysis suggests that direct binding of NACK1 to NPK1 stimulates kinase activity. NACK1 is accumulated specifically in M phase and colocalized with NPK1 at the phragmoplast equator. Overexpression of a truncated NACK1 protein that lacks the motor domain disrupts NPK1 concentration at the phragmoplast equator and cell plate formation. Incomplete cytokinesis is also observed when expression of NACK1 and NACK2 is repressed by virus-induced gene silencing and in embryonic cells from Arabidopsis mutants in which a NACK1 ortholog is disrupted. Thus, we conclude that expansion of the cell plate requires NACK1/2 to regulate the activity and localization of NPK1.
Collapse
|
125
|
Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y. ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. PLANT & CELL PHYSIOLOGY 2002; 43:419-28. [PMID: 11978870 DOI: 10.1093/pcp/pcf052] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The surfaces of higher plants are characterized by epidermis, which usually consists of a single layer of cells. The epidermis is derived from the outer cell layer of the embryo or protoderm, which arises as a result of periclinal cell division. After seed germination, most of the epidermal cells of the aerial parts of plants are derived from the outer cell layer of the shoot apical meristem (the L1 layer). Thus, knowledge of how the protoderm and/or L1 layer is established is fundamental to understanding the morphogenesis of higher plants. Here, we report the isolation of a gene encoding an Arabidopsis homologue (ACR4) of the maize putative receptor kinase CRINKLY4 (CR4), which is involved in epidermal differentiation. The domain organization of the predicted amino acid sequence of ACR4 is essentially identical to that of CR4. ACR4-GFP fusion protein localized to the cell surface when expressed in tobacco cell (BY-2) culture. ACR4 transcripts were detected in all the organs of the Arabidopsis plant. In developing embryos and shoot apices, ACR4 transcripts accumulated in protoderm and epidermis at relatively higher levels than in the inner tissues. Over-expression of antisense ACR4 in Arabidopsis plants resulted in malformation of embryos to varying degrees. These results suggest that ACR4 is, at a minimum, involved in the normal morphogenesis of embryos, most likely through properly differentiating protoderm cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Plant
- In Situ Hybridization
- Molecular Sequence Data
- Plant Epidermis/enzymology
- Plant Epidermis/genetics
- Plant Stems/enzymology
- Plant Stems/genetics
- Plants, Genetically Modified
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Seeds/enzymology
- Seeds/genetics
- Seeds/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Zea mays/genetics
Collapse
|