101
|
Domagała K, Jacquin C, Borlaf M, Sinnet B, Julian T, Kata D, Graule T. Efficiency and stability evaluation of Cu 2O/ MWCNTs filters for virus removal from water. WATER RESEARCH 2020; 179:115879. [PMID: 32388046 DOI: 10.1016/j.watres.2020.115879] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 05/24/2023]
Abstract
Both multi-walled carbon nanotubes (MWCNTs) and metal or metal oxides have demonstrated virus removal efficacy in drinking water applications. In this study, MWCNTs were coated with copper(I) oxide (Cu2O) using three distinct synthesis procedures (copper ion attachment, copper hydroxide precipitation, and [Cu(NH3)4]2+ complex attachment) and virus removal efficacy (using MS2 bacteriophages) was evaluated. All synthesis procedures resulted in the presence of adsorbed, nanosized Cu2O particles on the MWCNTs, shown using X-ray diffraction. Further, transmission electron microscopy confirmed uniform copper(I) oxide distribution along the MWCNTs for all three materials. Virus removal efficacy was assessed for all three synthesised composites both before and after material conditioning (filtering for at least 24 h/280 mL/h), and accounting for additional MS2 inactivation in the permeate due to continued copper inactivation from dissolved/desorbed copper in permeate (time-control). Material conditioning influenced virus removal, with the first litres of water containing higher concentrations of copper than the sixth litres of water, suggesting excess or non-bonded copper species dissolve from filters. Higher copper dissolution was observed for water at pH 5 than at pH 7, which decreased with time. Copper dissolution most likely caused an associated decrease in copper adsorbed to MWCNTs in the filters, which may explain the observed lower MS2 removal efficacy after conditioning. Additionally, the time-control study (immediately after filtration as compared to 2 h after filtration) highlighted continued MS2 inactivation in the permeate over time. The obtained results indicate that the synthesis procedure influences virus removal efficacy for MWCNTs coated with copper oxides and that virus removal is likely due to not only virus electrostatic adsorption to the coated MWCNTs, but also through antiviral properties of copper which continues to act in the permeate. In conclusion, it is highly important to revise the methods of testing filter materials for virus removal, as well as procedure for virus concentration evaluation.
Collapse
|
102
|
G Jayanthi K, S K S. Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzyme Microb Technol 2020; 140:109631. [PMID: 32912691 DOI: 10.1016/j.enzmictec.2020.109631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023]
Abstract
In the present study, inulin based nanocomposite viz., TiO2-MWCNT@Inulin was prepared by embedding Inulin (a biopolymer extracted from Allium sativum L.) with TiO2 and MWCNTs. The morphology of the prepared nanocomposite was characterized by High Resolution transmission electron microscopy (HRTEM). Cholesterol oxidase (ChOx) enzyme was then immobilized into the nanocomposite and the immobilization was examined by UV-vis and FT-IR spectral studies. The ChOx immobilized nanocomposite was integrated into carbon paste (CP) matrix to prepare the working electrode for the sensing of cholesterol. Electrochemical characterization of the modified CP/TiO2-MWCNT@Inulin/ChOx electrode was done by cyclic voltammetric (CV) and electrochemical impedance spectroscopic (EIS) studies. Differential pulse voltammetric (DPV) studies were carried out to determine the concentration of cholesterol at the interface of the newly fabricated electrode. The fabricated electrode demonstrated a linear range from 83 μM to 14.28 mM, low limit of detection (35 μM), good sensitivity (21.26 μA mM-1 cm-2), low Km (0.49 mM), high stability (120 days) and good selectivity. The presence of Inulin biopolymer played a vital role in attaching ChOx enzyme firmly to the nanocomposite thereby enhancing the stability and electron transfer efficiency of the electrode. The analysis of product that was formed within the electrochemical cell during the electrochemical oxidation of cholesterol was performed by using sodium nitroprusside. This resulted in a deep purple coloured solution which suggested the electrochemical conversion of cholesterol to cholestenone. The practical applicability of the fabricated electrode was also assessed by the determination of cholesterol in spiked blood serum and milk samples.
Collapse
|
103
|
Li Q, Bai A, Zhang T, Li S, Sun H. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200402. [PMID: 32874635 PMCID: PMC7428217 DOI: 10.1098/rsos.200402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Improving the electrochemical activity of electrodes is essential to the development of vanadium redox flow battery (VRFB). In this work, we prepared a novel electrode with the modification of nitrogen-doped carboxyl multiwalled carbon nanotubes using dopamine as an eco-friendly nitrogen source (carboxyl MWCNT@PDAt). Characterization and electrochemical measurements reveal that the synthesized carboxyl MWCNT@PDAt-modified graphite felt electrode (carboxyl MWCNT@PDAt/GF) exhibits excellent electrochemical performance toward VO2+/ V O 2 + reaction. Superior battery performance was obtained with the energy efficiency of 80.54% at a current density of 80 mA cm-2. Excellent durability of the carboxyl MWCNT@PDAt/GF electrode was confirmed by long-term charge/discharge tests. The enhanced reaction kinetics of VO2+/ V O 2 + is ascribed to the synergetic effect of oxygen and nitrogen containing groups on graphite felt surface and the presence of nitrogen-doped carboxyl multiwalled carbon nanotubes (MWCNT). The facile approach proposed in this paper provides a new route to the fabrication of electrode with excellent performance for VRFB.
Collapse
|
104
|
Lim CS, Porter DW, Orandle MS, Green BJ, Barnes MA, Croston TL, Wolfarth MG, Battelli LA, Andrew ME, Beezhold DH, Siegel PD, Ma Q. Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization. Front Immunol 2020; 11:1186. [PMID: 32595644 PMCID: PMC7303302 DOI: 10.3389/fimmu.2020.01186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary exposure to certain engineered nanomaterials (ENMs) causes chronic lesions like fibrosis and cancer in animal models as a result of unresolved inflammation. Resolution of inflammation involves the time-dependent biosynthesis of lipid mediators (LMs)-in particular, specialized pro-resolving mediators (SPMs). To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F). Pharyngeal aspiration of MWCNTs at 40 μg/mouse or C60F at a dose above 640 μg/mouse elicited pulmonary effects in B6C3F1 mice. Both ENMs stimulated acute inflammation, predominated by neutrophils, in the lung at day 1, which transitioned to histiocytic inflammation by day 7. By day 28, the lesion in MWCNT-exposed mice progressed to fibrotic granulomas, whereas it remained as alveolar histiocytosis in C60F-exposed mice. Flow cytometric profiling of whole lung lavage (WLL) cells revealed that neutrophil recruitment was the greatest at day 1 and declined to 36.6% of that level in MWCNT- and 16.8% in C60F-treated mice by day 7, and to basal levels by day 28, suggesting a rapid initiation phase and an extended resolution phase. Both ENMs induced high levels of proinflammatory leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) with peaks at day 1, and high levels of SPMs resolvin D1 (RvD1) and E1 (RvE1) with peaks at day 7. MWCNTs and C60F induced time-dependent polarization of M1 macrophages with a peak at day 1 and subsequently of M2 macrophages with a peak at day 7 in the lung, accompanied by elevated levels of type 1 or type 2 cytokines, respectively. M1 macrophages exhibited preferential induction of arachidonate 5-lipoxygenase activating protein (ALOX5AP), whereas M2 macrophages had a high level expression of arachidonate 15-lipoxygenase (ALOX15). Polarization of macrophages in vitro differentially induced ALOX5AP in M1 macrophages or ALOX15 in M2 macrophages resulting in increased preferential biosynthesis of proinflammatory LMs or SPMs. MWCNTs increased the M1- or M2-specific production of LMs accordingly. These findings support a mechanism by which persistent ENM-induced neutrophilic inflammation is actively resolved through time-dependent polarization of macrophages and enhanced biosynthesis of specialized LMs via distinct ALOX pathways.
Collapse
|
105
|
Ortega-Murcia A, Navlani-García M, Morallón E, Cazorla-Amorós D. MWCNT-Supported PVP-Capped Pd Nanoparticles as Efficient Catalysts for the Dehydrogenation of Formic Acid. Front Chem 2020; 8:359. [PMID: 32411676 PMCID: PMC7199183 DOI: 10.3389/fchem.2020.00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
Various carbon materials were used as support of polyvinylpyrrolidone (PVP)-capped Pd nanoparticles for the synthesis of catalysts for the production of hydrogen from formic acid dehydrogenation reaction. Among investigated, MWCNT-supported catalysts were the most promising, with a TOF of 1430 h−1 at 80°C. The presence of PVP was shown to play a positive role by increasing the hydrophilicity of the materials and enhancing the interface contact between the reactant molecules and the catalytic active sites.
Collapse
|
106
|
Khan AAP. Electrocatalytic Behavior and Determination of Amitriptyline Drug with MWCNT@Celllulose Composite Modified Glassy Carbon Electrode. MATERIALS 2020; 13:ma13071708. [PMID: 32268511 PMCID: PMC7178697 DOI: 10.3390/ma13071708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
A novel nanocomposite of cellulose based on multiwalled carbon nanotube (MWCNT) was synthesized by a simple solution mixing–evaporation method. The morphology, thermal investigations, electrocatalytic oxidation of amitriptyline were analyzed at multi-walled carbon/cellulose nanocomposite in detail. The amitriptyline (AMT) drug was electrochemically studied in a phosphate buffer at different pH using the MWCNT/cellulose modified glassy carbon electrode (GCE). As per the linear relationship among AMT along with peak current, differential pulse voltammetry technique has been established for their quantitative pharmaceutical’s determination. The oxidation potential shifted negatively compared to GCE, showing that the MWCNT/cellulose modified electrode had an excellent catalytic activity for the AMT oxidation. The anodic peak current varied linear response with AMT’s concentration in the range of 0.5 to 20.0 μM with a LOD of 0.0845 μM and LOQ of 0.282 μM, respectively. The proposed method was effectively put on the determination of AMT in pharmaceutical and urine samples. This novel methodology is presented here as an example of a complete development methodology for the determination of amitriptyline drug and sensor for use in healthcare fields.
Collapse
|
107
|
Holian A, Hamilton RF, Wu Z, Deb S, Trout KL, Wang Z, Bhargava R, Mitra S. Lung deposition patterns of MWCNT vary with degree of carboxylation. Nanotoxicology 2020; 13:143-159. [PMID: 31111787 DOI: 10.1080/17435390.2018.1530392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functionalization of multi-walled carbon nanotubes (MWCNT) is known to affect the biological response (e.g. toxicity, inflammation) in vitro and in vivo. However, the reasons for these changes in vivo are not well described. This study examined the degree of MWCNT functionalization with regard to in vivo mouse lung distribution, particle retention, and resulting pathology. A commercially available MWCNT (source MWCNT) was functionalized (f-MWCNT) by systematically varying the degree of carboxylation on the particle's surface. Following a pilot study using seven variants, two f-MWCNT variants were chosen and for lung pathology and particle distribution using oropharyngeal aspiration administration of MWCNT in Balb/c mice. Particle distribution in the lung was examined at 7 and 28 days post-instillation by bright-field microscopy, CytoViva hyperspectral dark-field imaging, and Stimulated Raman Scattering (SRS) microscopy. Examination of the lung tissue by bright-field microscopy showed some acute inflammation for all MWCNT that was highest with source MWCNT. Hyperspectral imaging and SRS were employed to assess the changes in particle deposition and retention. Highly functionalized MWCNT had a higher lung burden and were more disperse. They also appeared to be associated more with epithelial cells compared to the source and less functionalized MWCNT that were mostly interacting with alveolar macrophages (AM). These results showing a slightly reduced pathology despite the extended deposition have implications for the engineering of safer MWCNT and may establish a practical use as a targeted delivery system.
Collapse
|
108
|
Khaliullin TO, Yanamala N, Newman MS, Kisin ER, Fatkhutdinova LM, Shvedova AA. Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicol Appl Pharmacol 2020; 390:114898. [PMID: 31978390 DOI: 10.1016/j.taap.2020.114898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) causes inflammation, fibroproliferation, immunotoxicity, and systemic responses in rodents. However, the search for representative biomarkers of exposure is an ongoing endeavor. Whole blood gene expression profiling is a promising new approach for the identification of novel disease biomarkers. We asked if the whole blood transcriptome reflects pathology-specific changes in lung gene expression caused by MWCNT. To answer this question, we performed mRNA sequencing analysis of the whole blood and lung in mice administered MWCNT or vehicle solution via pharyngeal aspiration and sacrificed 56 days later. The pattern of lung mRNA expression as determined using Ingenuity Pathway Analysis (IPA) was indicative of continued inflammation, immune cell trafficking, phagocytosis, and adaptive immune responses. Simultaneously, innate immunity-related transcripts (Plunc, Bpifb1, Reg3g) and cancer-related pathways were downregulated. IPA analysis of the differentially expressed genes in the whole blood suggested increased hematopoiesis, predicted activation of cancer/tumor development pathways, and atopy. There were several common upregulated genes between whole blood and lungs, important for adaptive immune responses: Cxcr1, Cd72, Sharpin, and Slc11a1. Trim24, important for TH2 cell effector function, was downregulated in both datasets. Hla-dqa1 mRNA was upregulated in the lungs and downregulated in the blood, as was Lilrb4, which controls the reactivity of immune response. "Cancer" disease category had opposing activation status in the two datasets, while the only commonality was "Hypersensitivity". Transcriptome changes occurring in the lungs did not produce a completely replicable pattern in whole blood; however, specific systemic responses may be shared between transcriptomic profiles.
Collapse
|
109
|
Spinelli G, Kotsilkova R, Ivanov E, Petrova-Doycheva I, Menseidov D, Georgiev V, Di Maio R, Silvestre C. Effects of Filament Extrusion, 3D Printing and Hot-Pressing on Electrical and Tensile Properties of Poly(Lactic) Acid Composites Filled with Carbon Nanotubes and Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E35. [PMID: 31877817 PMCID: PMC7023088 DOI: 10.3390/nano10010035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
: In this study, the effects of three processing stages: filament extrusion, 3D printing (FDM), and hot-pressing are investigated on electrical conductivity and tensile mechanical properties of poly(lactic) acid (PLA) composites filled with 6 wt.% of multiwall carbon nanotubes(MWCNTs), graphene nanoplatelets (GNPs), and combined fillers. The filaments show several decades' higher electrical conductivity and 50-150% higher values of tensile characteristics, compared to the 3D printed and the hot-pressed samples due to the preferential orientation of nanoparticles during filament extrusion. Similar tensile properties and slightly higher electrical conductivity are found for the hot-pressed compared to the 3D printed samples, due to the reduction of interparticle distances, and consequently, the reduced tunneling resistances in the percolated network by hot pressing. Three structural types are observed in nanocomposite filaments depending on the distribution and interactions of fillers, such as segregated network, homogeneous network, and aggregated structure. The type of structural organization of MWCNTs, GNPs, and combined fillers in the matrix polymer is found determinant for the electrical and tensile properties. The crystallinity of the 3D printed samples is higher compared to the filament and hot-pressed samples, but this structural feature has a slight effect on the electrical and tensile properties. The results help in understanding the influence of processing on the properties of the final products based on PLA composites.
Collapse
|
110
|
Asadi A, Alarifi IM, Ali V, Nguyen HM. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time. ULTRASONICS SONOCHEMISTRY 2019; 58:104639. [PMID: 31450310 DOI: 10.1016/j.ultsonch.2019.104639] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
The primary objective of the present study is to investigate the possible effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid. The samples have been prepared in three different solid concentrations of 0.1, 0.3, and 0.5 vol.% applying different ultrasonication times, ranging from 10 to 80 min. The stability of the samples has been investigated over 30 days after preparation by conducting zeta potential analysis and visual observation. It is found that increasing the ultrasonication time until 60 min results in enhancing the stability of the samples in all the solid concentrations while prolonging the ultrasonication time leads to deteriorating the stability. The thermal conductivity of the samples has been experimentally measured over different temperatures ranging from 25 to 60 °C, and it is found that increasing the solid concentration and temperature results in enhancing the thermal conductivity. Moreover, the effects of ultrasonication time on thermal conductivity have also been studied, and it is found that increasing the ultrasonication time leads to a gentle enhancement in thermal conductivity. The maximum conductivity was achieved by applying 60 min ultrasonication. Thus, it is concluded that 60 min ultrasonication is the optimum time in which the thermal conductivity and stability reached their highest point.
Collapse
|
111
|
Properties of Cracking Patterns of Multi-Walled Carbon Nanotube-Reinforced Cement Matrix. MATERIALS 2019; 12:ma12182942. [PMID: 31514365 PMCID: PMC6766190 DOI: 10.3390/ma12182942] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 11/17/2022]
Abstract
The research presented in this paper presents a quantitative analysis of cracking patterns on the surface of cement paste, which has been modified by the addition of the multi-wall carbon nanotubes (MWCNTs). The cracking patterns analyzed were created as a result of increased temperature load. MWCNTs were used as an aqueous dispersion in the presence of a surfactant, sodium dodecyl sulfate (SDS). Four series of the cement paste were tested, and the samples differed in the water/cement (w/c) ratio, cement class, and the presence of MWCNTs. Image analysis tools were used to quantify the cracking patterns and it was proposed to measure parameters, such as the average cluster area, average cluster perimeter, average crack width, and crack density. In order to facilitate the image analysis process, the sample surface was subjected to preparation and using statistical analysis tools it was assessed whether the method of surface preparation affects the way the sample is cracked. The paper also presents the analysis of the relationships that occur between parameters describing the cracking patterns, and also with the physico-mechanical properties of the cement pastes. It was attempted to explain the dependencies using elements of fractal theory and the theory of dispersion systems.
Collapse
|
112
|
Huang X, Farra R, Schlögl R, Willinger MG. Growth and Termination Dynamics of Multiwalled Carbon Nanotubes at Near Ambient Pressure: An in Situ Transmission Electron Microscopy Study. NANO LETTERS 2019; 19:5380-5387. [PMID: 31369275 PMCID: PMC6748788 DOI: 10.1021/acs.nanolett.9b01888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Indexed: 05/27/2023]
Abstract
Understanding the growth mechanism of carbon nanotubes (CNTs) has been long pursued since its discovery. With recent integration of in situ techniques into the study of CNT growth, important insights about the growth mechanism of CNT have been generated, which have improved our understanding significantly. However, previous in situ experiments were mainly conducted at low pressures which were far from the practical conditions. Direct information about the growth dynamics under relevant conditions is still absent and thus is highly desirable. In this work, we report atomic-scale observations of multiwalled CNT (MWCNT) growth and termination at near ambient pressure by in situ transmission electron microscopy. On the basis of the real-time imaging, we are able to reveal that the working catalyst is constantly reshaping at its apex during catalyzing CNT growth, whereas at the base the catalyst remains faceted and barely shows any morphological change. The active catalyst is identified as crystalline Fe3C, based on lattice fringes that can be imaged during growth. However, the oscillatory growth behavior of the CNT and the structural dynamics of the apex area strongly indicate that the carbon concentration in the catalyst particle is fluctuating during the course of CNT growth. Extended observations further reveal that the catalyst splitting can occur: whereas the majority of the catalyst stays at the base and continues catalyzing CNT growth, a small portion of it gets trapped inside of the growing nanotube. The catalyst splitting can take place multiple times, leading to shrinkage of both, catalyst size and diameter of CNT, and finally the growth termination of CNT due to the full coverage of the catalyst by carbon layers. Additionally, in situ observations show two more scenarios for the growth termination, that is, out-migration of the catalyst from the growing nanotube induced by (i) Oswald ripening and (ii) weakened adhesion strength between the catalyst and CNT.
Collapse
|
113
|
Source Separation Using Sensor's Frequency Response: Theory and Practice on Carbon Nanotubes Sensors. SENSORS 2019; 19:s19153389. [PMID: 31382380 PMCID: PMC6696222 DOI: 10.3390/s19153389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Nowadays, there is an increased demand in integrated sensors for electronic devices. Multi-functional sensors provide the same amount of data using fewer sensors. Carbon nanotubes are non-selectively sensitive to temperature, gas and strain. Thus, carbon nanotubes are perfect candidates to design multi-functional sensors. In our study, we are interested in a dual humidity-temperature sensor. Here, we present a novel method to differentiate at least two sources using the sensor's frequency responses based on multiwall carbon nanotubes sensors. The experimental results demonstrate that there are temperature- or moisture-invariant frequencies of the impedance magnitude, and their values depend on the sensor's geometry. The proposed measurement model shows that source-invariant frequencies of the phase can be also determined. In addition, the source separation method is generalized to other materials or sources enabling multi-functional sensors for environment monitoring.
Collapse
|
114
|
Kunde GB, Sehgal B, Ganguli AK. Synthesis of mesoporous rebar MWCNT/alumina composite (RMAC) nodules for the effective removal of methylene blue and Cr (VI) from an aqueous medium. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:140-151. [PMID: 30991166 DOI: 10.1016/j.jhazmat.2019.03.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The distinctive and tuneable physical, chemical and configurational properties of carbon nanotubes (CNTs), has prompted their combination with metal oxides to contrive carbon composites showing entrancing adsorption property with incredible potential in water treatment. MWCNT/Alumina (RMAC) nodules with effective adsorption capacity were synthesized following aqueous sol-gel route. Batch sorption experiments examined the efficiency of removal of dyes and heavy metal ions from an aqueous solution on RMAC nodules. The factors affecting adsorption were studied for adsorption of methylene blue dye (MB) and hexavalent chromium by altering the MWCNT concentration from 1 wt.% to 5 wt.%. The adsorption experiment demonstrated an adsorption capacity of 187.5 and 597 mg g-1 at 25 °C for MB and Cr (VI) respectively. Various characterization techniques such as XRD, BET, TEM, Raman, FTIR, TPD and CHN were employed to study the initial development of the material. Multiple adsorption interaction mechanisms (electrostatic interactions, hydrogen bonding, π-π electron-donor-acceptor interactions) may be credited for the remarkable adsorption capacity of these nodules. Results of this work are of great significance for environmental applications of Alumina/MWCNT composite as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions. Apart from high sorption ability, these nodules offer ease of separation with splendid regeneration ability.
Collapse
|
115
|
Rasras S, Kalantari H, Rezaei M, Dehghani MA, Zeidooni L, Alikarami K, Dehghani F, Alboghobeish S. Single-walled and multiwalled carbon nanotubes induce oxidative stress in isolated rat brain mitochondria. Toxicol Ind Health 2019; 35:497-506. [PMID: 31272286 DOI: 10.1177/0748233719856983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) are broadly applicable across a variety of industrial fields. Despite their usefulness in many different applications, oxidative stress-induced toxicity of SWCNTs and MWCNTs has not been widely investigated. The present study examined the effects of SWCNTs and MWCNTs on rat brain mitochondria using the 3,4 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and indices of reactive oxygen species (ROS), based on measurements of malondialdehyde (MDA), glutathione (GSH), and mitochondrial membrane potential. Based on the MTT assay, exposure to SWCNTs and MWCNTs decreased mitochondrial survival and viability in a dose-dependent manner. Findings also indicated that MWCNTs and SWCNTs could damage mitochondrial membranes and induce the formation of ROS, as indicated by increased levels of MDA and decreased GSH content. The results of this study suggest that SWCNTs and MWCNTs likely damage brain tissue mitochondria by increasing oxidative stress and possibly activating the apoptosis pathway as well as other pathways of cytotoxicity.
Collapse
|
116
|
Snyder-Talkington BN, Dong C, Castranova V, Qian Y, Guo NL. Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure. Toxicol Rep 2019; 6:482-488. [PMID: 31194188 PMCID: PMC6554470 DOI: 10.1016/j.toxrep.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Coculture gene expression may have opposite direction of changes than monoculture. Cells grow and treated in monoculture may exaggerate toxicological responses. Coculture of cells may provide a more in-depth assessment of toxicological responses.
Concurrent with rising production of carbon-based engineered nanomaterials is a potential increase in respiratory and cardiovascular diseases due to exposure to nanomaterials in the workplace atmosphere. While single-cell models of pulmonary exposure are often used to determine the potential toxicity of nanomaterials in vitro, previous studies have shown that coculture cell models better represent the cellular response and crosstalk that occurs in vivo. This study identified differential gene regulation in human small airway epithelial cells (SAECs) grown either in monoculture or in coculture with human microvascular endothelial cells following exposure of the SAECs to multiwalled carbon nanotubes (MWCNTs). SAEC genes that either changed their regulation direction from upregulated in monoculture to downregulated in coculture (or vice versa) or had a more than a two-fold changed in the same regulation direction were identified. Genes that changed regulation direction were most often involved in the processes of cellular growth and proliferation and cellular immune response and inflammation. Genes that had a more than a two-fold change in regulation in the same direction were most often involved in the inflammatory response. The direction and fold-change of this differential gene regulation suggests that toxicity testing in monoculture may exaggerate cellular responses to MWCNTs, and coculture of cells may provide a more in-depth assessment of toxicological responses.
Collapse
|
117
|
Snyder-Talkington BN, Dong C, Singh S, Raese R, Qian Y, Porter DW, Wolfarth MG, Guo NL. Multi-Walled Carbon Nanotube-Induced Gene Expression Biomarkers for Medical and Occupational Surveillance. Int J Mol Sci 2019; 20:E2635. [PMID: 31146342 PMCID: PMC6600433 DOI: 10.3390/ijms20112635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
As the demand for multi-walled carbon nanotube (MWCNT) incorporation into industrial and biomedical applications increases, so does the potential for unintentional pulmonary MWCNT exposure, particularly among workers during manufacturing. Pulmonary exposure to MWCNTs raises the potential for development of lung inflammation, fibrosis, and cancer among those exposed; however, there are currently no effective biomarkers for detecting lung fibrosis or predicting the risk of lung cancer resulting from MWCNT exposure. To uncover potential mRNAs and miRNAs that could be used as markers of exposure, this study compared in vivo mRNA and miRNA expression in lung tissue and blood of mice exposed to MWCNTs with in vitro mRNA and miRNA expression from a co-culture model of human lung epithelial and microvascular cells, a system previously shown to have a higher overall genome-scale correlation with mRNA expression in mouse lungs than either cell type grown separately. Concordant mRNAs and miRNAs identified by this study could be used to drive future studies confirming human biomarkers of MWCNT exposure. These potential biomarkers could be used to assess overall worker health and predict the occurrence of MWCNT-induced diseases.
Collapse
|
118
|
Mostovenko E, Young T, Muldoon PP, Bishop L, Canal CG, Vucetic A, Zeidler-Erdely PC, Erdely A, Campen MJ, Ottens AK. Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Part Fibre Toxicol 2019; 16:20. [PMID: 31142334 PMCID: PMC6542040 DOI: 10.1186/s12989-019-0304-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background The mechanisms driving systemic effects consequent pulmonary nanoparticle exposure remain unclear. Recent work has established the existence of an indirect process by which factors released from the lung into the circulation promote systemic inflammation and cellular dysfunction, particularly on the vasculature. However, the composition of circulating contributing factors and how they are produced remains unknown. Evidence suggests matrix protease involvement; thus, here we used a well-characterized multi-walled carbon nanotube (MWCNT) oropharyngeal aspiration model with known vascular effects to assess the distinct contribution of nanoparticle-induced peptide fragments in driving systemic pathobiology. Results Data-independent mass spectrometry enabled the unbiased quantitative characterization of 841 significant MWCNT-responses within an enriched peptide fraction, with 567 of these factors demonstrating significant correlation across animal-paired bronchoalveolar lavage and serum biofluids. A database search curated for known matrix protease substrates and predicted signaling motifs enabled identification of 73 MWCNT-responsive peptides, which were significantly associated with an abnormal cardiovascular phenotype, extracellular matrix organization, immune-inflammatory processes, cell receptor signaling, and a MWCNT-altered serum exosome population. Production of a diverse peptidomic response was supported by a wide number of upregulated matrix and lysosomal proteases in the lung after MWCNT exposure. The peptide fraction was then found bioactive, producing endothelial cell inflammation and vascular dysfunction ex vivo akin to that induced with whole serum. Results implicate receptor ligand functionality in driving systemic effects, exemplified by an identified 59-mer thrombospondin fragment, replete with CD36 modulatory motifs, that when synthesized produced an anti-angiogenic response in vitro matching that of the peptide fraction. Other identified peptides point to integrin ligand functionality and more broadly to a diversity of receptor-mediated bioactivity induced by the peptidomic response to nanoparticle exposure. Conclusion The present study demonstrates that pulmonary-sequestered nanoparticles, such as multi-walled carbon nanotubes, acutely upregulate a diverse profile of matrix proteases, and induce a complex peptidomic response across lung and blood compartments. The serum peptide fraction, having cell-surface receptor ligand properties, conveys peripheral bioactivity in promoting endothelial cell inflammation, vasodilatory dysfunction and inhibiting angiogenesis. Results here establish peptide fragments as indirect, non-cytokine mediators and putative biomarkers of systemic health outcomes from nanoparticle exposure.
Collapse
|
119
|
Zhang X, Xie M, Yang Z, Wu HC, Fang C, Bai L, Fang LF, Yoshioka T, Matsuyama H. Antifouling Double-Skinned Forward Osmosis Membranes by Constructing Zwitterionic Brush-Decorated MWCNT Ultrathin Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19462-19471. [PMID: 31071260 DOI: 10.1021/acsami.9b03259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pressure retarded osmosis (PRO) process is hindered by severe fouling occurring within the porous support of the forward osmosis (FO) membranes. We designed a novel double-skinned FO membrane containing a polyamide salt-rejecting layer and a zwitterionic brush-decorated, multiwalled carbon nanotube (MWCNT/PSBMA) foulant-resisting layer on the back side. Our results demonstrated that the coating of the MWCNT/PSBMA layer on the porous polyketone (PK) support imparted enhanced hydrophilicity and smaller membrane pore size, thereby providing excellent resistance toward both protein adhesion and bacterial adsorption. We also further evaluated this resultant double-skinned membrane (i.e., TFC-MWCNT/PSBMA) in dynamic PRO fouling experiments using protein and alginate as model organic foulants. Compared to the pristine TFC-PK and hydrophobic TFC-MWCNT membranes, the TFC-MWCNT/PSBMA membrane exhibited not only the lowest water flux decline but also the highest water flux recovery after simple physical flushing. These results shed light on fabrication of antifouling PRO membranes for water purification purposes.
Collapse
|
120
|
Kasai T, Umeda Y, Sasaki T, Fukushima S. Thinking on occupational exposure assessment of multi-walled carbon nanotube carcinogenicity. J Occup Health 2019; 61:208-210. [PMID: 30801936 PMCID: PMC6499350 DOI: 10.1002/1348-9585.12045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 11/28/2022] Open
|
121
|
Hamilton RF, Wu Z, Thakkar M, Holian A, Mitra S. Modification of nano-silver bioactivity by adsorption on carbon nanotubes and graphene oxide. Inhal Toxicol 2019; 30:429-438. [PMID: 30618316 DOI: 10.1080/08958378.2018.1547334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The toxicity of silver nanomaterials in various forms has been extensively evaluated, but the toxicity of silver nanocarbon composites is less well understood. Therefore, silver-carbon nanotube composites (Ag-MWCNT-COOH) and silver-graphene oxide composites (Ag-GO) were synthesized by microwave irradiation and evaluated in two in vitro cell models. MATERIALS/METHODS Toxicity of silver nanosphere (Ag), Ag-MWCNT-COOH and Ag-GO were analyzed by MTS assay and LDH assay in primary C57BL/6 murine alveolar macrophages and human THP-1 cells. Activation of NLRP3 inflammasome by particle variants in these models was done by proxy using LPS co-culture and IL-1β release. RESULTS The results depended on the model, as the amount of Ag on the modified carbon resulted in slightly increased toxicity for the murine cells, but did not appear to affect toxicity in the human cell model. IL-1β release from carbon particle-exposures was decreased by the presence of Ag in both cell models. Suspensions of Ag-MWCNT-COOH, Ag-GO and Ag in artificial lysosomal fluid were prepared and ICP-MS was used to detect Ag ions concentration in three silver suspension/solutions. The amount of Ag ions released from Ag-MWCNT-COOH and Ag-GO were similar, which were both lower than that of Ag nanospheres. CONCLUSIONS The results suggest the bioactivity of silver composites may be related to the amount of Ag ions released, which can be dependent on the cell model under investigation.
Collapse
|
122
|
Nahle S, Safar R, Grandemange S, Foliguet B, Lovera-Leroux M, Doumandji Z, Le Faou A, Joubert O, Rihn B, Ferrari L. Single wall and multiwall carbon nanotubes induce different toxicological responses in rat alveolar macrophages. J Appl Toxicol 2019; 39:764-772. [PMID: 30605223 PMCID: PMC6590492 DOI: 10.1002/jat.3765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Human exposure to airborne carbon nanotubes (CNT) is increasing because of their applications in different sectors; therefore, they constitute a biological hazard. Consequently, developing studies on CNT toxicity become a necessity. CNTs can have different properties in term of length, size and charge. Here, we compared the cellular effect of multiwall (MWCNTs) and single wall CNTs (SWCNTs). MWCNTs consist of multiple layers of graphene, while SWCNTs are monolayers. The effects of MWCNTs and SWCNTs were evaluated by the water-soluble tetrazolium salt cell proliferation assay on NR8383 cells, rat alveolar macrophage cell line (NR8383). After 24 hours of exposure, MWCNTs showed higher toxicity (50% inhibitory concentration [IC50 ] = 3.2 cm2 /cm2 ) than SWCNTs (IC50 = 44 cm2 /cm2 ). Only SWCNTs have induced NR8383 cells apoptosis as assayed by flow cytometry using the annexin V/IP staining test. The expression of genes involved in oxidative burst (Ncf1), inflammation (Nfκb, Tnf-α, Il-6 and Il-1β), mitochondrial damage (Opa) and apoptotic balance (Pdcd4, Bcl-2 and Casp-8) was determined. We found that MWCNT exposure predominantly induce inflammation, while SWCNTs induce apoptosis and impaired mitochondrial function. Our results clearly suggest that MWCNTs are ideal candidates for acute inflammation induction. In vivo studies are required to confirm this hypothesis. However, we conclude that toxicity of CNTs is dependent on their physical and chemical characteristics.
Collapse
|
123
|
Dou H, Liu P, Li XY, He CH. Effect of MWCNT on the Structure and Property of Nanofibrous Bundles by Blown Bubble Spinning. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:171-180. [PMID: 32026766 DOI: 10.2174/1872210513666190426143559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/16/2018] [Accepted: 10/10/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Many spinning patents and technologies have been explored to produce diverse types of nanomaterials for different applications. As a novel method, the blown bubble-spinning is a one-step process for fabrication of nanofibrous bundles. METHOD In this study, polyamide6/66(PA6/66) nanofibrous bundles filled with different concentrations of multi-walled carbon nanotubes (MWCNTs) were prepared by the blown bubble-spinning. The dispersion of MWCNT in nanofibers under different treatments was investigated and a detailed characterization focusing on the influence of the presence of MWCNT on the morphology, thermal property and electrical property was carried out. RESULTS The results showed that MWCNTs treated by Tween60 and ultrasonication were embedded in the PA6/66 nanofibers with uniform dispersion. In addition, it was observed that thermal stability and electrical conductivity of nanofibrous bundles increased with an increase in MWCNT content. CONCLUSION The PA6/66/MWCNT nanofibrous bundles fabricated by the blown bubble spinning have the great potential applications in sensors and supercapacitors.
Collapse
|
124
|
Limón-Martínez RJ, Olivas-Armendáriz I, Sosa-Rodarte E, Rodríguez-Rodríguez CI, Hernández-Paz JF, Acosta-Torres LS, García-Contreras R, Santos-Rodríguez E, Martel-Estrada SA. Evaluation of in vitro bioactivity and in vitro biocompatibility of Polycaprolactone/Hyaluronic acid/Multiwalled Carbon Nanotubes/Extract from Mimosa tenuiflora composites. Biomed Mater Eng 2018; 30:97-109. [PMID: 30562892 DOI: 10.3233/bme-181036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of biomaterial scaffolds and implementation of tissue engineering techniques are necessary. Therefore, Polycaprolactone/Sodium Hyaluronate/Multiwalled Carbon Nanotubes/Extract of Mimosa tenuiflora composites have been produced by a thermally-induced phase separation method. OBJECTIVE The objective of this research was to evaluate the in vitro bioactivity and in vitro biocompatibility of the composites. METHODS The in vitro bioactivity of the composites was assessed by soaking them in simulated body fluid for 7, 14, 21, and 28 days. The structure and composition of the composites were analyzed using scanning electron microscopy coupled with energy dispersive spectroscopy and Fourier transform infrared spectroscopy. Also, the in vitro biocompatibility of the composites was evaluated by means of alkaline phosphatase activity of the osteoblasts and by measuring the metabolic activity of the cells using MTT assay. RESULTS The results show a porous and interconnected morphology with enhanced bioactivity. It was observed that the incorporation of Mimosa tenuiflora in the composites promotes increased viability of osteoblasts in the scaffolds. CONCLUSIONS The results show the efficiency of bioactive and biocompatible composites and their potential as candidates for tissue engineering applications.
Collapse
|
125
|
Ahmed MB, Johir MAH, Khourshed C, Zhou JL, Ngo HH, Nghiem DL, Moni M, Sun L. Sorptive removal of dissolved organic matter in biologically-treated effluent by functionalized biochar and carbon nanotubes: Importance of sorbent functionality. BIORESOURCE TECHNOLOGY 2018; 269:9-17. [PMID: 30145522 DOI: 10.1016/j.biortech.2018.08.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The sorptive removal of dissolved organic matter (DOM) in biologically-treated effluent was studied by using multi-walled carbon nanotube (MWCNT), carboxylic functionalised MWCNT (MWCNT-COOH), hydroxyl functionalized MWCNT (MWCNT-OH) and functionalized biochar (fBC). DOM was dominated by hydrophilic fraction (79.6%) with a significantly lower hydrophobic fraction (20.4%). The sorption of hydrophobic DOM was not significantly affected by the sorbent functionality (∼10.4% variation) and sorption capacity followed the order of MWCNT > MWCNT-COOH > MWCNT-OH > fBC. In comparison, the sorption of hydrophilic fraction of DOM changed significantly (∼37.35% variation) with the change of sorbent functionality with adsorption capacity decreasing as MWCNT-OH > MWCNT-COOH > MWCNT > fBC. Furthermore, the affinity of adsorbents toward a hydrophilic compound (dinitrobenzene), a hydrophobic compound (pyrene) and humic acid was also evaluated to validate the proposed mechanisms. The results provided important insights on the type of sorbents which are most effective to remove different DOM fractions.
Collapse
|