101
|
Sáenz-Garcia JL, Yamanaka IB, Pacheco-Lugo LA, Miranda JS, Córneo ES, Machado-de-Ávila RA, De Moura JF, DaRocha WD. Targeting epimastigotes of Trypanosoma cruzi with a peptide isolated from a phage display random library. Exp Parasitol 2020; 210:107830. [PMID: 31917970 DOI: 10.1016/j.exppara.2020.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.
Collapse
|
102
|
Bessa S, Gouveia PF, Carvalho PH, Rodrigues C, Silva NL, Cardoso F, Cardoso JS, Oliveira HP, Cardoso MJ. 3D digital breast cancer models with multimodal fusion algorithms. Breast 2020; 49:281-290. [PMID: 31986378 PMCID: PMC7375583 DOI: 10.1016/j.breast.2019.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022] Open
Abstract
Breast cancer image fusion consists of registering and visualizing different sets of a patient synchronized torso and radiological images into a 3D model. Breast spatial interpretation and visualization by the treating physician can be augmented with a patient-specific digital breast model that integrates radiological images. But the absence of a ground truth for a good correlation between surface and radiological information has impaired the development of potential clinical applications. A new image acquisition protocol was designed to acquire breast Magnetic Resonance Imaging (MRI) and 3D surface scan data with surface markers on the patient’s breasts and torso. A patient-specific digital breast model integrating the real breast torso and the tumor location was created and validated with a MRI/3D surface scan fusion algorithm in 16 breast cancer patients. This protocol was used to quantify breast shape differences between different modalities, and to measure the target registration error of several variants of the MRI/3D scan fusion algorithm. The fusion of single breasts without the biomechanical model of pose transformation had acceptable registration errors and accurate tumor locations. The performance of the fusion algorithm was not affected by breast volume. Further research and virtual clinical interfaces could lead to fast integration of this fusion technology into clinical practice. MRI/3D surface scan fusion algorithm to create 3D breast cancer models. A replicable clinical validation protocol for MRI/3D surface scan fusion algorithms. Anthropometric study that quantifies breast deformations by area in MRI and 3D scans.
Collapse
|
103
|
Marik CM, Zuchel J, Schaffner DW, Strawn LK. Growth and Survival of Listeria monocytogenes on Intact Fruit and Vegetable Surfaces during Postharvest Handling: A Systematic Literature Review. J Food Prot 2020; 83:108-128. [PMID: 31855613 DOI: 10.4315/0362-028x.jfp-19-283] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Listeria monocytogenes may be present in produce-associated environments (e.g., fields, packing houses); thus, understanding its growth and survival on intact, whole produce is of critical importance. The goal of this study was to identify and characterize published data on the growth and/or survival of L. monocytogenes on intact fruit and vegetable surfaces. Relevant studies were identified by searching seven electronic databases: AGRICOLA, CAB Abstracts, Center for Produce Safety funded research project final reports, FST Abstracts, Google Scholar, PubMed, and Web of Science. Searches were conducted using the following terms: Listeria monocytogenes, produce, growth, and survival. Search terms were also modified and "exploded" to find all related subheadings. Included studies had to be prospective, describe methodology (e.g., inoculation method), outline experimental parameters, and provide quantitative growth and/or survival data. Studies were not included if methods were unclear or inappropriate, or if produce was cut, processed, or otherwise treated. Of 3,459 identified citations, 88 were reviewed in full and 29 studies met the inclusion criteria. Included studies represented 21 commodities, with the majority of studies focusing on melons, leafy greens, berries, or sprouts. Synthesis of the reviewed studies suggests L. monocytogenes growth and survival on intact produce surfaces differ substantially by commodity. Parameters such as temperature and produce surface characteristics had a considerable effect on L. monocytogenes growth and survival dynamics. This review provides an inventory of the current data on L. monocytogenes growth and/or survival on intact produce surfaces. Identification of which intact produce commodities support L. monocytogenes growth and/or survival at various conditions observed along the supply chain will assist the industry in managing L. monocytogenes contamination risk.
Collapse
|
104
|
Influences of sodium tantalite submicro-particles in polyetheretherketone based composites on behaviors of rBMSCs/HGE-1 cells for dental application. Colloids Surf B Biointerfaces 2019; 188:110723. [PMID: 31887651 DOI: 10.1016/j.colsurfb.2019.110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 11/21/2022]
Abstract
Dental implanted materials require excellent mechanical properties, biocompatibility as well as integration with bone tissue and gingival tissue to achieve early loading and long-term stability. In this study, cubic shape sodium tantalite (ST) submicro-particles with the size of around 180 nm were synthesized by a hydrothermal method, and ST/polyetheretherketone (PEEK) composites (TPC) with ST content of 20 w% (TPC20) and 40 w% (TPC40) were prepared by melting blend. The results showed that the compressive strength, thermal properties, surface roughness, hydrophilicity and surface energy as well as adsorption of proteins on TPC40 were also significantly enhanced compared with TPC20 and PEEK. Moreover, the responses (adhesion and proliferation as well as differentiation) of rat bone marrow mesenchymal stem cells (rBMSCs), and responses (adhesion, and proliferation) of human gingival epithelial (HGE-1) cells to TPC40 were significantly promoted compared with TPC20 and PEEK. The results demonstrated that ST content in TPC had remarkable effects on the surface properties, which played key roles in stimulating the responses of both rBMSCs and HGE-1 cells. TPC40 with increased surface properties and excellent cytocompatibility might have great potential as an implanted material for dental application.
Collapse
|
105
|
Tyurin YI, Sypchenko VS, Nikitenkov NN, Zhang H, Chernov IP. Data on hydrogen isotopes yield from Pd under thermal, electric current, radiation and UV stimulations. Data Brief 2019; 28:104850. [PMID: 31871991 PMCID: PMC6909038 DOI: 10.1016/j.dib.2019.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 11/04/2022] Open
Abstract
Data on the hydrogen isotopes (H, D) yield of Pd with linear heating: a) by the accelerated electrons beam with energy up to 35 KeV, b) by joule heat of AC (50 Hz) through samples, c) by external coaxial metal furnace (stainless steel), d) in quartz vacuum cell are presented and e) UV stimulation during thermal heating (the research article [2]). The highest temperature position of the maximum hydrogen isotopes intensity release corresponds to the samples heating in a metal vacuum cell by external coaxial furnace. The lowest temperature position of the maximum intensity hydrogen isotopes release corresponds to the heating by accelerated electrons beam. The difference in these positions of the maximum is ΔТ ≈ 300°С. Shift of maxima position in the hydrogen and deuterium release into the low-temperature region is significant (ΔТ ≈ 50–100°С) for the Pd sample when metal are heated by electric current or in a quartz vacuum cell compared to their heating in a metal vacuum cell and under UV stimulation during thermal heating.
Collapse
|
106
|
Tang Y, Shen T, Meng Z. A kinetic study on the mechanisms of metal leaching from the top surface layer of copper aluminates and copper ferrites. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2491-2503. [PMID: 31037582 DOI: 10.1007/s10653-019-00301-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have reported the potential copper immobilization in aluminates (CuAl2O4 and CuAlO2) and ferrites (tetragonal CuFe2O4 and cubic CuFe2O4) and suggested a reliable method to stabilize metals in reusable ceramic products. In this study, copper immobilization effect was further analyzed in the leaching solutions with pH close to environmental conditions. The results from the chemical equilibrium model Visual MINTEQ illustrated that almost all copper, aluminum, and iron formed complexes with CH3COO- ions in the leachates. The dissolution behavior on sample surface was further explicated by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The weight percentage of leached copper was lower than 0.1% even after 22-day leaching, indicating the successful copper stabilization in aluminates and ferrites. The results showed the highest copper concentrations in CuAlO2 leachates and the smallest leached copper amount from tetragonal CuFe2O4, respectively. The incongruent dissolution with Al-O or Fe-O bonds still remaining on the solid surface may be beneficial for preventing further leaching of copper. Furthermore, the modeling of reaction kinetics found that copper leaching from the CuAl2O4 and CuAlO2 obeyed the second-order reaction with correlation coefficients higher than 0.99. Moreover, the shrinking core model was chosen to analyze the leaching mechanisms of both CuFe2O4 ferrites, and the diffusion through product layer model acted as the rate-controlling step in their leaching process.
Collapse
|
107
|
Kabir H, Ma PY, Renn N, Nicholas NW, Cheng IF. Electrochemical determination of free chlorine on pseudo-graphite electrode. Talanta 2019; 205:120101. [PMID: 31450477 DOI: 10.1016/j.talanta.2019.06.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Pseudo-graphite from the University of Idaho Thermolyzed Asphalt Reaction also known as GUITAR is a new form of carbon. It shares morphological features with graphites, including basal and edge planes. Unlike graphites and other sp2-hybridized carbons, GUITAR has fast heterogeneous electron transfer across its basal planes and resistance to corrosion similar to boron-doped diamond electrodes. In this contribution GUITAR electrodes were examined as sensors for aqueous free chlorine (HOCl and OCl-) at pH 7.0 with cyclic voltammetric (CV) and chronoamperometric (CA) methods. Using CV at 50 mV s-1 GUITAR has a limit of detection of 1.0 μmol L-1, linear range of 0-5,000 μmol L-1, sensitivity of 215.8 μA L mmol-1 cm-2 and a signal stability of 4 days in constant exposure to 1 mmol L-1 free chlorine in pH 7.0, 0.1 mol L-1 phosphate buffer system. After 7 days of exposure GUITAR electrodes lost 37% of the former sensitivity, which was recovered by an in-situ regeneration procedure. The common aqueous ions, Ca2+, Na+, NO3-, SO42-, Cl-, CO32- and dissolved oxygen did not affect the response of the GUITAR-based sensor. The combination of limit of detection, linear range, sensitivity, sensor lifetime and its relative lack of interferences indicate that GUITAR is one of the best performers in free chlorine sensors.
Collapse
|
108
|
Guo Y, Zhang Z, Pu M, Huang Y, Li X, Ma X, Xu M, Luo X. Spoof Plasmonic Meta surfaces with Catenary Dispersion for Two-Dimensional Wide-Angle Focusing and Imaging. iScience 2019; 21:145-156. [PMID: 31655255 PMCID: PMC6820237 DOI: 10.1016/j.isci.2019.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 10/07/2019] [Indexed: 11/06/2022] Open
Abstract
Although tremendous efforts have been devoted to investigating the analogy between the surface plasmon polariton and its spoof counterparts, it remains elusive that a single thin spoof plasmonic metalens realizes wide-angle focusing and wide field-of-view (FOV) imaging. Here, we propose a spoof plasmonic metasurface that can impart arbitrary phase with high transmittance, which comprises two-dimensional (2D) gradient spoof-insulator-spoof waveguides. With the developed catenary field and dispersion theory, their intrinsic physics is theoretically analyzed. As a proof of concept, a spoof plasmonic metalens with a thickness of 0.15λ has been elaborately designed and experimentally demonstrated for wide-angle (∼170°) focusing and wide FOV (∼40°) imaging. To the best of our knowledge, it is the first experimental demonstration of wide FOV imaging of a 2D object with single thin and planar metalens in the microwave regime. The proposed method offers a promising solution to compact cameras, integrated imaging, and detection systems. Thin spoof metalens has been developed A satisfactory qualitative description through catenary dispersion theory Wide-angle microwave focusing (170°) and wide FOV (40°) imaging of 2D objects
Collapse
|
109
|
Wang Y, Hao L, Zhang Y, Zuo C, Wang D. Entorhinal cortex volume, thickness, surface area and curvature trajectories over the adult lifespan. Psychiatry Res Neuroimaging 2019; 292:47-53. [PMID: 31521943 DOI: 10.1016/j.pscychresns.2019.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023]
Abstract
The entorhinal cortex (ERC) acts as a connection between the hippocampus and temporal cortex and plays a key role in memory retrieval and navigation. The morphology of this brain region changes with age. However, there are few quantitative magnetic resonance imaging studies of ERC morphology across the healthy adult lifespan. In this study, we quantified ERC volume, thickness, surface area, and curvature in a large number of subjects spanning seven decades of life. Using structural MRI data from 563 healthy subjects ranging from 19 to 86 years of age, we explored the adult lifespan trajectory of ERC volume, thickness, surface and curvature. ERC volume, thickness, and surface area initially increased with age, reaching a peak at about 32 years, 40 years, and 50 years of age, respectively, after which they decreased with age. ERC volume and surface area were hemispherically leftward asymmetric, whereas ERC thickness was hemispherically rightward asymmetric, with no gender differences. The direction of asymmetry differed across the measures. This informs previous inconsistencies in reports of ERC asymmetry. ERC aging began in mid-adulthood. At this stage of life, it may be important to adopt some strategies to reduce the effects of aging on cognition.
Collapse
|
110
|
Kind J, Thiele CM. MRI and localised NMR spectroscopy of sessile droplets on hydrophilic, hydrophobic and superhydrophobic surfaces - Examination of the chemical composition during evaporation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106579. [PMID: 31450187 DOI: 10.1016/j.jmr.2019.106579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Evaporation of droplets is a process important in many different areas of science, technology and also everyday life. The understanding of droplet evaporation of homogeneous and heterogeneous substance mixtures is important, for example, to explain the formation of coffee stains or to optimize the results in offset printing. For a detailed understanding of the evaporation of complex mixtures from structured surfaces, such as inks used in offset printing, a time-resolved analysis of the droplet composition is essential. Measurement of (local) concentrations may deepen the understanding of wetting phenomena and their connection with transport phenomena. Therefore, we demonstrate in this paper that magnetic resonance methods can be used to (a) image sessile droplets on structured surfaces and (b) investigate their composition in a time-resolved manner. First it is shown that water droplets on superhydrophobic, hydrophobic and hydrophilic surfaces, despite the large liquid/gas interface, can be imaged well and without interfering artefacts using RARE. Further, the signals are examined in localised PRESS NMR spectra with respect to line shape and quantifiability. Finally, it is demonstrated that non-localised NMR spectra can be used to track the droplet composition during evaporation.
Collapse
|
111
|
Quantitative evaluation of the surface stability and morphological changes of Cu 2O particles. Heliyon 2019; 5:e02500. [PMID: 31667374 PMCID: PMC6812201 DOI: 10.1016/j.heliyon.2019.e02500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
Cu2O low-index surfaces periodic models have been simulated based on density functional theory. The calculated surfaces energies allowed estimating the morphology by means of the Wulff theorem as well as the investigation of possible paths of morphological changes. Therefore, systematic morphology diagrams and change paths according to the energy modulation in relation to the surfaces stabilizations were elaborated. The applicability of this strategy was exemplified by comparing the obtained results with experimental available data from the literature. The morphology diagrams with the quantitative energetic point of view can be used as a guide to support experimental works in order to understand the relation between surface interactions and crystal growth.
Collapse
|
112
|
Osteoblasts grown on microroughened titanium surfaces regulate angiogenic growth factor production through specific integrin receptors. Acta Biomater 2019; 97:578-586. [PMID: 31349056 DOI: 10.1016/j.actbio.2019.07.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/27/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023]
Abstract
Cellular attachment and response to biomaterials are mediated by integrin receptor binding to extracellular matrix proteins adsorbed onto the material surface. Osteoblasts interact with their substrates via several integrin complexes including fibronectin-binding α5β1 and collagen-binding α1β1 and α2β1. Knockdown of α2 or β1 integrin subunits inhibits the production of factors that promote an osteogenic microenvironment, including osteocalcin, osteoprotegerin, and TGFβ1. Osteoblasts also secrete several angiogenic growth factors such as VEGF-A (VEGF165), FGF-2, and angiopoietin 1, which are regulated by titanium surface topography and surface energy. Here, we examined whether signaling through integrin receptor complexes regulates production and secretion of angiogenic factors during osteoblast differentiation on microtextured Ti surfaces. To do this, integrin subunits α1, α2, α5, and β1 were stably silenced in MG63 osteoblast-like cells cultured on grit-blasted/acid-etched hydrophobic Ti (SLA) or on hydrophilic SLA (modSLA). VEGF-A production increased in response to Ti surface topography and energy in integrin α2, α5, and β1 silenced cells but decreased in α1-silenced cells. FGF-2 decreased on modSLA substrates in both α1 and α2-silenced cells but was unchanged in response to silencing of either α5 or β1. In integrin α1, α2, and β1-silenced cells, Ang-1 increased on modSLA but α5-silencing did not affect Ang-1 production during surface mediated differentiation. These results suggest that signaling through specific integrin receptor complexes during osteoblast differentiation on microstructured Ti substrates, regulates the production of angiogenic factors by those cells, and this is differentially regulated by surface hydrophilicity. STATEMENT OF SIGNIFICANCE: Successful implantation of synthetic biomaterials into bone depends on the biological process known as osseointegration. Osseointegration is a highly regulated communication of cells that orchestrates the migration of progenitor cells towards the implant site and promotes the deposition and mineralization of extracellular matrix proteins within the implant microenvironment, to tightly join the implant to native bone. In this process, angiogenesis functions as the initiation site of progenitor cell migration and is necessary for matrix deposition by providing the necessary nutrients for bone formation. In the present study, we show a novel regulation of specific angiogenic growth factors by integrin receptor complexes. This research is important to develop biomaterials that promote and maintain osseointegration through proper vascularization and prevent implant failure in patients lacking sufficient angiogenesis.
Collapse
|
113
|
Velicanu A, Boucher F, Braye F, Shipkov H, Brosset S, Mojallal A. [Profunda femoral artery perforator flap: Anatomical study]. ANN CHIR PLAST ESTH 2019; 65:313-319. [PMID: 31563445 DOI: 10.1016/j.anplas.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/06/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Within the framework of mammary reconstruction, since 2012 when Allen first described it, the profunda femoral artery perforator flap (PAP) takes an important place in the current therapeutic options. OBJECTIVE This anatomical study aims to analyze the anatomy and morphologic consideration of the PAP : position of the perforating artery; length of the pedicle, area and volume of vascularization. METHODS Sixteen flaps were harvested on fresh subjects at the University Department of Anatomy of Rockfeller, Lyon. The first direct cutaneous branch from the deep femoral vessels was located between or through the adductor magnus and gracilis muscles. Pedicle location, diameter, length and position regard to the great saphenous vein were recorded. A flap based on this vessel was designed. Height, width, and surface of the skin paddle were recorded. Three-dimensional computed tomographic angiography was used to analyze the area and volume of cutaneous territory supplied by the studied perforator. RESULTS On the 16 analyzed flaps, localization of the perforating artery is on average to 8.2cm of the pubic tuber and 3.7cm behind a line connecting the pubic tuber to the internal femoral condyle. The length of the pedicle is on average of 11.7cm and the average area of skin perfused was 94,68cm2. The way of this perforating arterty is primarily through the adductor magnus. On the radiological images of the 8 flaps, the analysis shows an average surface of 111,25cm2 and a mean volume of 325.3cm3. DISCUSSION PAP is an interesting therapeutic choice within the framework of a mammary reconstruction. Its surface and its volume associated with a discrete scar make a valid indication within the framework of this surgery.
Collapse
|
114
|
Deng W, Almeida G, Gibson KE. Co-culture with Enterobacter cloacae does not Enhance Virus Resistance to Thermal and Chemical Treatments. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:238-246. [PMID: 30915682 DOI: 10.1007/s12560-019-09381-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Human noroviruses (hNoV) are the primary cause of foodborne disease in the USA. Most studies on inactivation kinetics of hNoV and its surrogates are performed in monoculture, while the microbial ecosystem effect on virus inactivation remains limited. This study investigated the persistence of hNoV surrogates, murine norovirus (MNV) and Tulane virus (TuV), along with Aichi virus (AiV) under thermal and chemical inactivation in association with Gram-negative (Enterobacter cloacae) bacteria. Thermal inactivation of viruses in co-culture with E. cloacae revealed no protective effects of bacteria. At 56 °C, AiV with and without bacteria was completely inactivated by 10 min with decimal reduction values (D-values) of 41 and 43 s, respectively. Similar results were also observed for TuV. Conversely, MNV with bacteria was completely inactivated by 10 min while MNV alone remained stable up to 30 min at 56 °C. Both MNV and TuV were slightly more stable than AiV at 63 °C with TuV detection up to 2 min without bacteria. For chemical inactivation on stainless steel surfaces, viruses alone and in association with bacteria were treated with 1000 ppm sodium hypochlorite. Virus association with bacteria had no significant effect (p > 0.05) on virus resistance to bleach inactivation compared to virus alone. Specifically, exposure to 1000 ppm bleach for 5 min resulted in an average of 3.86, 2.14, and 0.94 log10 PFU/ml reductions for TuV, MNV, and AiV without bacteria, respectively. Reductions in TuV, MNV, and AiV were 3.50, 1.88, and 0.61 log10 PFU/ml when associated with E. cloacae, respectively.
Collapse
|
115
|
Shimon D, van Schooten KJ, Paul S, Peng Z, Takahashi S, Köckenberger W, Ramanathan C. DNP-NMR of surface hydrogen on silicon microparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:68-75. [PMID: 31128358 DOI: 10.1016/j.ssnmr.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) offers a promising route to studying local atomic environments at the surface of both crystalline and amorphous materials. We take advantage of unpaired electrons due to defects close to the surface of the silicon microparticles to hyperpolarize adjacent 1H nuclei. At 3.3 T and 4.2 K, we observe the presence of two proton peaks, each with a linewidth on the order of 5 kHz. Echo experiments indicate a homogeneous linewidth of ∼150-300 Hz for both peaks, indicative of a sparse distribution of protons in both environments. The high frequency peak at 10 ppm lies within the typical chemical shift range for proton NMR, and was found to be relatively stable over repeated measurements. The low frequency peak was found to vary in position between -19 and -37 ppm, well outside the range of typical proton NMR shifts, and indicative of a high-degree of chemical shielding. The low frequency peak was also found to vary significantly in intensity across different experimental runs, suggesting a weakly-bound species. These results suggest that the hydrogen is located in two distinct microscopic environments on the surface of these Si particles.
Collapse
|
116
|
Hudcová B, Erben M, Vítková M, Komárek M. Antimonate adsorption onto Mg-Fe layered double hydroxides in aqueous solutions at different pH values: Coupling surface complexation modeling with solid-state analyses. CHEMOSPHERE 2019; 229:236-246. [PMID: 31078880 DOI: 10.1016/j.chemosphere.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In this study, the importance of Sb behavior under different pH conditions has been addressed with respect to its stabilization in aqueous solutions using Mg-Fe layered double hydroxides (LDHs). The Sb(V) adsorption onto Mg-Fe LDHs was performed at different initial Sb(V) concentrations and pH values (pH 5.5, 6.5 and 7.5). The removal rate and the maximal adsorbed amount increased with decreasing pH values. Moreover, the surface complexation modeling (SCM) predicted preferable formation of monodentate mononuclear and bidentate binuclear complexes on the Mg-Fe LDH surface. Spectroscopic (X-ray diffraction analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy) and microscopic (scanning electron microscopy and energy-dispersive X-ray spectroscopy) techniques were used to further specify the adsorption mechanisms. The influence of chemical adsorption, surface-induced precipitation of brandholzite Mg[Sb(OH)6]2·6H2O, formation of brandholzite-like phases and/or anion exchange was observed. Moreover, Sb(V) was nonhomogeneously distributed on the Mg-Fe LDH surface at all pH values. The surface complexation modeling supported by solid-state analyses provided a strong tool to investigate the binding arrangements of Sb(V) on the Mg-Fe LDH surface. Such a complex mechanistic/modeling approach has not previously been presented and enables prediction of the Sb(V) adsorption behavior onto Mg-Fe LDHs under different conditions, evaluating their possible use in actual applications.
Collapse
|
117
|
Brash JL, Horbett TA, Latour RA, Tengvall P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater 2019; 94:11-24. [PMID: 31226477 PMCID: PMC6642842 DOI: 10.1016/j.actbio.2019.06.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
The adsorption of proteins is the initiating event in the processes occurring when blood contacts a "foreign" surface in a medical device, leading inevitably to thrombus formation. Knowledge of protein adsorption in this context has accumulated over many years but remains fragmentary and incomplete. Moreover, the significance and relevance of the information for blood compatibility are not entirely agreed upon in the biomaterials research community. In this review, protein adsorption from blood is discussed under the headings "agreed upon" and "not agreed upon or not known" with respect to: protein layer composition, effects on coagulation and complement activation, effects on platelet adhesion and activation, protein conformational change and denaturation, prevention of nonspecific protein adsorption, and controlling/tailoring the protein layer composition. STATEMENT OF SIGNIFICANCE: This paper is part 2 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
|
118
|
Qin J, Zhang J, Bai Y, Ma S, Wang M, Xu H, Loyd M, Zhan Y, Hou X, Hu B. Enabling Self-passivation by Attaching Small Grains on Surfaces of Large Grains toward High-Performance Perovskite LEDs. iScience 2019; 19:378-387. [PMID: 31419631 PMCID: PMC6706605 DOI: 10.1016/j.isci.2019.07.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/08/2019] [Accepted: 07/25/2019] [Indexed: 11/29/2022] Open
Abstract
This paper reports a new method to generate stable and high-brightness electroluminescence (EL) by subsequently growing large/small grains at micro/nano scales with the configuration of attaching small grains on the surfaces of large grains in perovskite (MAPbBr3) films by mixing two precursor solutions (PbBr2 + MABr and Pb(Ac)2·3H2O + MABr). Consequently, the small and large grains serve, respectively, as passivation agents and light-emitting centers, enabling self-passivation on the defects located on the surfaces of light-emitting large grains. Furthermore, the light-emitting states become linearly polarized with maximal polarization of 30.8%, demonstrating a very stable light emission (49,119 cd/m2 with EQE = 11.31%) and a lower turn-on bias (1.9 V) than the bandgap (2.25V) in the perovskite LEDs (ITO/PEDOT:PSS/MAPbBr3/TPBi[50 nm]/LiF[0.7 nm]/Ag). Therefore, mixing large/small grains with the configuration of attaching small grains on the surfaces of large grains by mixing two precursor solutions presents a new strategy to develop high-performance perovskite LEDs.
Collapse
|
119
|
Curran M, Holmes I. A comparison of the length and width of static inked two-dimensional bare footprints found on a hard compared to a soft surface. Sci Justice 2019; 59:448-451. [PMID: 31256817 DOI: 10.1016/j.scijus.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 11/19/2022]
Abstract
In forensic intelligence-gathering it would be useful to evaluate if there are differences between static inked bare footprints captured on hard surfaces compared to soft surfaces. This was undertaken using samples from 30 undergraduate students. Initially a static footprint was taken for each participant on a hard surface and this was followed by a static footprint on a soft surface. On both occasions, the participants stood on an inkless mat and then on reactive paper, creating a two-dimensional print. The Reel method was used to analyse each footprint and the print was measured to see whether a difference existed between length and width (forefoot and rearfoot width) on a hard surface compared to a soft surface. The conclusion from this study was there is a statistically significant increase in length and width of a static bare footprint on a soft surface as opposed to a hard surface. If a forensic footprint examiner compares static bare footprints found on a soft surface and compares them to a static bare footprint of the same foot taken later, then the increase in both length and width of the footprints on a soft surface should be considered in the evaluation.
Collapse
|
120
|
Short B, Brown J, Delaney C, Sherry L, Williams C, Ramage G, Kean R. Candida auris exhibits resilient biofilm characteristics in vitro: implications for environmental persistence. J Hosp Infect 2019; 103:92-96. [PMID: 31226270 DOI: 10.1016/j.jhin.2019.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
Surfaces within healthcare play a key role in the transmission of drug-resistant pathogens. Candida auris is an emerging multidrug-resistant yeast which can survive for prolonged periods on environmental surfaces. Here we show that the ability to form cellular aggregates increases survival after 14 days, which coincides with the upregulation of biofilm-associated genes. Additionally, the aggregating strain demonstrated tolerance to clinical concentrations of sodium hypochlorite and remained viable 14 days post treatment. The ability of C. auris to adhere to and persist on environmental surfaces emphasizes our need to better understand the biology of this fungal pathogen.
Collapse
|
121
|
Weber DJ, Sickbert-Bennett EE, Kanamori H, Rutala WA. New and emerging infectious diseases (Ebola, Middle Eastern respiratory syndrome coronavirus, carbapenem-resistant Enterobacteriaceae, Candida auris): Focus on environmental survival and germicide susceptibility. Am J Infect Control 2019; 47S:A29-A38. [PMID: 31146847 PMCID: PMC7132701 DOI: 10.1016/j.ajic.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
122
|
Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C, Lu Z. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol 2019; 103:4565-4574. [PMID: 31011774 DOI: 10.1007/s00253-019-09808-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 11/26/2022]
Abstract
Biosurfactants are amphiphilic compounds that composed of hydrophilic and hydrophobic moieties, which possess the ability of self-organizing between phases, reducing the interfacial tension, and forming aggregates such as micelles. This spontaneous process results in significant changes in surface properties that directly influence the adherence of microorganisms. In this study, the ability of surfactin, a biosurfactant produced by Bacillus subtilis in reducing adhesion and disrupting the presence of biofilm of Staphylococcus aureus (S. aureus) on several surfaces, was investigated. Significant biofilm removal was observed on glass, polystyrene, and stainless steel surfaces. Furthermore, we explored the probable mechanism about how surfactin affected S. aureus biofilm formation. Based on our findings, surfactin had a significant effect on the polysaccharides production and especially decreased the percentage of alkali-soluble polysaccharide in biofilms. It also down-regulated the expression of icaA and icaD significantly, which are necessary for the important constituents to take shape of staphylococcal biofilm. In addition, it was found that the lipopeptide affected the quorum sensing (QS) system in S. aureus through regulating the auto inducer 2 (AI-2) activity, which has been reported to be negative for biofilm formation in S. aureus. These above properties could be applied in developing surfactin as a potential pre-coating agent on material surfaces to prevent S. aureus biofilm formation.
Collapse
|
123
|
Abe H, Niwa Y, Takeichi Y, Kimura M. In situ TREXS Observation of Surface Reduction Reaction of NiO Film with ∼2 nm Surface Sensitivity. CHEM REC 2019; 19:1457-1461. [PMID: 30920721 DOI: 10.1002/tcr.201800197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 11/07/2022]
Abstract
X-ray absorption fine structure (XAFS) spectroscopy is one of the most widely used methods at synchrotron radiation facilities. XAFS gives us information on chemical states and local structures. Fundamentally, XAFS is bulk sensitive, not surface sensitive. If a surface sensitive XAFS method was available, surface chemical reactions can be observed under realistic conditions. Here, we report the development and present status of a type of surface sensitive x-ray spectroscopy, which is named total reflection x-ray spectroscopy, TREXS.
Collapse
|
124
|
Feng Y, Peng C, Li Y, Hu J, Deng Q, Wu Q, Xu Z. Superhydrophobic nanocomposite coatings with photoinitiated three-dimensional networks based on reactive graphene nanosheet-induced self-wrinkling patterned surfaces. J Colloid Interface Sci 2019; 536:149-159. [PMID: 30366180 DOI: 10.1016/j.jcis.2018.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023]
Abstract
HYPOTHESIS Bionic superhydrophobicity including high contact angle, low sliding angle and nonstick property, combined with both strong pH and ultraviolet (UV) resistance, is difficult to simultaneously achieve for large-scale preparation of superhydrophobic surfaces by blending polymer with a nonreactive inorganic nanofiller. EXPERIMENTS A series of high pH and UV-irradiation-resistant superhydrophobic nanocomposite films were prepared through UV-light-assisted chemical cross-linking among ternary components under nitrogen protection. Ethoxylated bisphenol A diacrylate, 2-(perfluorooctyl) ethyl acrylate, reactive thiol-coupled graphene nanosheets and photoinitiator were evenly mixed, followed by UV-irradiation curing. FINDINGS Abundant 3D networks could be formed. A robust self-wrinkling surface morphology was formed due to a UV-curing-induced inner tension in the composites, 2D morphology-induced flexibility for graphene nanosheets and fluorine-bearing component-induced phase separation at the wetted surfaces. High roughness and use of the fluorine element endows the surfaces with superhydrophobicity and oleophobicity. A favorable nonstick performance was obtained. Superhydrophobicity could be maintained despite changing the film-forming substrate, pH of soaking solutions from 1 to 12, or use of a prolonged UV-irradiation time reaching 120 h. Therefore, both superhydrophobicity/oleophobicity and strong pH/UV resistance are finely balanced. This work might open up the way for large-scale fabrication of promising superhydrophobic surfaces.
Collapse
|
125
|
Lallo da Silva B, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf B Biointerfaces 2019; 177:440-447. [PMID: 30798065 DOI: 10.1016/j.colsurfb.2019.02.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
In the current study, the size and surface of ZnO nanoparticle (ZnO NP) suspensions and powders were finely controlled to evaluate their influence on the ZnO antibacterial activity against Staphylococcus aureus and Escherichia coli. The ZnO NP were prepared by the sol-gel method with different reaction times for NP size control and followed by the addition of (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as a surface modifier. The ZnO NP were characterized by different techniques and the antibacterial activity was assessed through the minimum inhibitory concentration assay (MIC), minimum bactericidal concentration assay (MBC) and scanning electron microscopy (SEM). The ZnO NP exhibited significant antibacterial activity against Staphylococcus aureus. The NP size highly influenced the antibacterial activity, which increased with decreasing particle size. The small ZnO NP presented bactericidal activity whereas the largest showed bacteriostatic activity. The use of GPTMS, in general, led to increase of MIC and MBC. The formation of holes in the cell wall of Staphylococcus aureus was evidenced by SEM after contact between the bacteria and ZnO NP. The cytotoxicity assay showed that ZnO NP did not cause a loss of cell viability in the human keratinocyte cell line (HaCat) at the maximum concentration assessed. Thus, this study indicated that 5 nm ZnO NP modified by GPTMS has great potential for use as an inorganic antibacterial material.
Collapse
|