101
|
Darvishi Y, Hassan-Beygi SR, Zarafshan P, Hooshyari K, Malaga-Toboła U, Gancarz M. Numerical Modeling and Evaluation of PEM Used for Fuel Cell Vehicles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7907. [PMID: 34947499 PMCID: PMC8703907 DOI: 10.3390/ma14247907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022]
Abstract
The present study sought to analyze a novel type of polymer membrane fuel cell to be used in vehicles. The performance of the fuel cell was evaluated by modeling the types of production-consumption heat in the anode and cathode (including half-reaction heat, activation heat, and absorption/desorption heat) and waterflood conditions. The meshing of flow channels was carried out by square cells and the governing equations were numerically discretized in the steady mode using the finite difference method followed by solving in MATLAB software. Based on the simulation results, the anodic absorption/desorption heat, anodic half-reaction heat, and cathodic activation heat are positive while the cathodic absorption/desorption heat and cathodic half-reaction heat show negative values. All heat values exhibit a decremental trend over the flow channel. Considering the effect of relative humidity, the relative humidity of the cathode showed no significant change while the anode relative humidity decreased along the flow channel. The velocity at the membrane layer was considerably lower, due to the smaller permeability coefficient of this layer compared to the gas diffusion and reactants (cathode) layers.
Collapse
|
102
|
Pachocki L, Daszkiewicz K, Łuczkiewicz P, Witkowski W. Biomechanics of Lumbar Spine Injury in Road Barrier Collision-Finite Element Study. Front Bioeng Biotechnol 2021; 9:760498. [PMID: 34790652 PMCID: PMC8591065 DOI: 10.3389/fbioe.2021.760498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Literature and field data from CIREN database have shown that lumbar spine injuries occur during car crashes. There are multiple hypotheses regarding how they occur; however, there is no biomechanical explanation for these injuries during collisions with road safety barriers (RSBs). Therefore, the objective of this study was to investigate the mechanics of vertebral fractures during car collisions with concrete RSBs. The finite element method was used for the numerical simulations. The global model of the car collision with the concrete RSB was created. The lumbar spine kinematics were extracted from the global simulation and then applied as boundary conditions to the detailed lumbar spine model. The results showed that during the collision, the occupant was elevated, and then dropped during the vehicle landing. This resulted in axial compression forces 2.6 kN with flexion bending moments 34.7 and 37.8 Nm in the L2 and L3 vertebrae. It was shown that the bending moment is the result of the longitudinal force on the eccentricity. The lumbar spine index for the L1-L5 section was 2.80, thus indicating a lumbar spine fracture. The minimum principal strain criterion of 7.4% and damage variable indicated L2 and L3 vertebrae and the inferior part of L1, as those potentially prone to fracture. This study found that lumbar spine fractures could occur as a consequence of vehicle landing during a collision with a concrete RSB mostly affecting the L1-L3 lumbar spine section. The fracture was caused by a combination of axial forces and flexion bending moments.
Collapse
|
103
|
Ye S, Yang M, Zhu Y, Gao X, Meng F, Wu R, Yu B. Numerical analysis of hemodynamic effect under different enhanced external counterpulsation (EECP) frequency for cerebrovascular disease: a simulation study. Comput Methods Biomech Biomed Engin 2021; 25:1169-1179. [PMID: 34797199 DOI: 10.1080/10255842.2021.2005034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Based on the changes in phase characteristics of blood flow and pressure, enhanced external counterpulsation (EECP) reduces cardiac load and improves cerebral perfusion in patients with cerebrovascular diseases. However, increased cerebral blood flow (CBF) is associated with the rise in blood pressure and its complications. Increased EECP frequency is a valuable solution when combined with the electrical equivalent impedance characteristics of the lumped parameter model (LPM) of the human blood circulation system. Herein, to investigate the effect of different EECP frequencies on CBF perfusion, an LPM was established with cardiopulmonary circulation and eight systemic blood flow units with cerebral autoregulation module of ischemic stroke patients. Then, using differential equations, we analyzed those parameters through hemodynamic simulations in four EECP modes. With related influencing parameters remaining constant, we adjusted the pressure frequency of EECP and found that when compared to the traditional sequential EECP mode, the relative increase rate of CBF was 16.68%, 18.95%, and 21.21% from 1 to 3 Hz, respectively. This study validates the effect of improving blood prefusion with increasing EECP frequency through numerical analysis.
Collapse
|
104
|
Nikfar M, Razizadeh M, Paul R, Muzykantov V, Liu Y. A numerical study on drug delivery via multiscale synergy of cellular hitchhiking onto red blood cells. NANOSCALE 2021; 13:17359-17372. [PMID: 34590654 PMCID: PMC10169096 DOI: 10.1039/d1nr04057j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Red blood cell (RBC)-hitchhiking, in which different nanocarriers (NCs) shuttle on the erythrocyte membrane and disassociate from RBCs to the first organ downstream of the intravenous injection spot, has recently been introduced as a solution to enhance target site uptake. Several experimental studies have already approved that cellular hitchhiking onto the RBC membrane can improve the delivery of a wide range of NCs in mice, pigs, and ex vivo human lungs. In these studies, the impact of NC size, NC surface chemistry, and shear rate on the delivery process and biodistribution has been widely explored. To shed light on the underlying physics in this type of drug delivery system, we present a computational platform in the context of the lattice Boltzmann method, spring connected network, and frictional immersed boundary method. The proposed algorithm simulates nanoparticle (NP) dislodgment from the RBC surface in shear flow and biomimetic microfluidic channels. The numerical simulations are performed for various NP sizes and RBC-NP adhesion strengths. In shear flow, NP detachment increases upon increasing the shear rate. RBC-RBC interaction can also significantly boost shear-induced particle detachment. Larger NPs have a higher propensity to be disconnected from the RBC surface. The results illustrate that changing the interaction between the NPs and RBCs can control the desorption process. All the findings agree with in vivo and in vitro experimental observations. We believe that the proposed setup can be exploited as a predictive tool to estimate optimum parameters in NP-bound RBCs for better targeting procedures in tissue microvasculature.
Collapse
|
105
|
Werling T, Baumann G, Feist F, Sinz W, Ellersdorfer C. On the Dynamic Electro-Mechanical Failure Behavior of Automotive High-Voltage Busbars Using a Split Hopkinson Pressure Bar. MATERIALS 2021; 14:ma14216320. [PMID: 34771845 PMCID: PMC8585170 DOI: 10.3390/ma14216320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
High-voltage busbars are important electrical components in today's electric vehicle battery systems. Mechanical deformations in the event of a vehicle crash could lead to electrical busbar failure and hazardous situations that pose a threat to people and surroundings. In order to ensure a safe application of busbars, this study investigated their mechanical behavior under high strain rate loading using a split Hopkinson pressure bar. Two different types of high-voltage busbars, consisting of a polyamide 12 and a glass-fiber-reinforced (30%) polyamide 6 insulation layer, were tested. Additionally, the test setup included a 1000 V electrical short circuit measurement to link the electrical with the mechanical failure. It was found that the polyamide 12 insulated busbars' safety regarding insulation failure increases at high loading speed compared to quasi-static measurements. On the contrary, the fiber-reinforced polyamide 6 insulated busbar revealed highly brittle material behavior leading to reduced bearable loads and intrusions. Finally, the split Hopkinson pressure bar tests were simulated. Existing material models for the thermoplastics were complemented with an optimized generalized incremental stress state-dependent model (GISSMO) with strain rate dependency. A good agreement with the experimental behavior was achieved, although the absence of viscoelasticity in the underlying material models was notable.
Collapse
|
106
|
Saternus Z, Piekarska W, Kubiak M, Domański T. The Influence of Welding Heat Source Inclination on the Melted Zone Shape, Deformations and Stress State of Laser Welded T-Joints. MATERIALS 2021; 14:ma14185303. [PMID: 34576525 PMCID: PMC8464895 DOI: 10.3390/ma14185303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022]
Abstract
The paper concerns the numerical analysis of the influence for three different of welding heat source inclinations on the weld pool shape and mechanical properties of the resulting joint. Numerical analysis is based on the experimental tests of single-side welding of two sheets made of X5CrNi18-10 stainless steel. The joint is made using a laser welding heat source. Experimental test was performed for one heating source inclination. As a part of the work metallographic tests are performed on which the quality of obtained joints are determined. Numerical calculations are executed in Abaqus FEA. The same geometrical model is assumed as in the experiment. Material model takes into account changing with temperature thermophysical properties of austenitic steel. Modeling of the motion of heating source is performed in additional subroutine. The welding source parameters are assumed in accordance with the welding process parameters. Numerical calculations were performed for three different inclinations of the source. One inclination is consistent with experimental studies. The performed numerical calculations allowed to determine the temperature field, shape of welding pool as well as deformations and stress state in welded joint. The obtained results are compared to results of the experiment.
Collapse
|
107
|
Fischer FC, Hiki K, Soetaert K, Endo S. Mind the Exposure Gaps-Modeling Chemical Transport in Sediment Toxicity Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11885-11893. [PMID: 34488347 DOI: 10.1021/acs.est.1c03201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical exposure in flow-through sediment toxicity tests can vary in time, between pore and overlying water, and amid free and bound states, complicating the link between toxicity and observable concentrations such as free pore (Cfree,pore), free overlying (Cfree,over), or the corresponding dissolved concentrations (Cdiss, free + bound to dissolved organic carbon, DOC). We introduce a numerical model that describes the desorption from sediments to pore water, diffusion through pores and the sediment-water boundary, DOC-mediated transport, and mixing in and outflow from overlying water. The model explained both the experimentally measured gap between Cfree,over and Cfree,pore and the continuous decrease in overlying Cdiss. Spatially resolved modeling suggested a steep concentration gradient present in the upper millimeter of the sediment due to slow chemical diffusion in sediment pores and fast outflux from the overlying water. In contrast to continuous decrease in overlying Cdiss expected for any chemical, Cfree,over of highly hydrophobic chemicals was kept relatively constant following desorption from DOC, a mechanism comparable to passive dosing. Our mechanistic analyses emphasize that exposure will depend on the chemical's hydrophobicity, the test organism habitat and uptake of bound chemicals, and the properties of sediment components, including DOC. The model can help to re-evaluate existing toxicity data, optimize experimental setups, and extrapolate laboratory toxicity data to field exposure.
Collapse
|
108
|
Investigating Optimal Confinement Behaviour of Low-Strength Concrete through Quantitative and Analytical Approaches. MATERIALS 2021; 14:ma14164675. [PMID: 34443196 PMCID: PMC8398666 DOI: 10.3390/ma14164675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022]
Abstract
Reinforced concrete is used worldwide in the construction industry. In past eras, extensive research has been conducted and has clearly shown the performance of stress–strain behaviour and ductility design for high-, standard-, and normal-strength concrete (NSC) in axial compression. Limited research has been conducted on the experimental and analytical investigation of low-strength concrete (LSC) confinement behaviour under axial compression and relative ductility. Meanwhile, analytical equations are not investigated experimentally for the confinement behaviour of LSC by transverse reinforcement. The current study experimentally investigates the concrete confinement behaviour under axial compression and relative ductility of NSC and LSC using volumetric transverse reinforcement (VTR), and comparison with several analytical models such as Mander, Kent, and Park, and Saatcioglu. In this study, a total of 44 reinforced-column specimens at a length of 18 in with a cross-section of 7 in × 7 in were used for uniaxial monotonic loading of NSC and LSC. Three columns of each set were confined with 2 in, 4 in, 6 in, and 8 in c/c lateral ties spacing. The experimental results show that the central concrete stresses are significantly affected by decreasing the spacing between the transverse steel. In the case of the LSC, the core stresses are double the central stress of NSC. However, increasing the VTR, the capacity and the ductility of NSC and LSC increases. Reducing the spacing between the ties from 8 in to 2 in center to center can affect the concrete column’s strength by 60% in LSC, but 25% in the NSC. The VTR and the spacing between the ties greatly affected the LSC compared to NSC. It was found that the relative ductility of the confined column samples was almost twice that of the unrestrained column samples. Regarding different models, the Manders model best represents the performance before the ultimate strength, whereas Kent and Park represents post-peak behaviour.
Collapse
|
109
|
Makarov SN, Golestanirad L, Wartman WA, Nguyen BT, Noetscher GM, Ahveninen JP, Fujimoto K, Weise K, Nummenmaa AR. Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes. J Neural Eng 2021; 18. [PMID: 34311449 DOI: 10.1088/1741-2552/ac17d7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
Objective. To formulate, validate, and apply an alternative to the finite element method (FEM) high-resolution modeling technique for electrical brain stimulation-the boundary element fast multipole method (BEM-FMM). To include practical electrode models for both surface and embedded electrodes.Approach. Integral equations of the boundary element method in terms of surface charge density are combined with a general-purpose fast multipole method and are expanded for voltage, shunt, current, and floating electrodes. The solution of coupled and properly weighted/preconditioned integral equations is accompanied by enforcing global conservation laws: charge conservation law and Kirchhoff's current law.Main results.A sub-percent accuracy is reported as compared to the analytical solutions and simple validation geometries. Comparison to FEM considering realistic head models resulted in relative differences of the electric field magnitude in the range of 3%-6% or less. Quantities that contain higher order spatial derivatives, such as the activating function, are determined with a higher accuracy and a faster speed as compared to the FEM. The method can be easily combined with existing head modeling pipelines such as headreco or mri2mesh.Significance.The BEM-FMM does not rely on a volumetric mesh and is therefore particularly suitable for modeling some mesoscale problems with submillimeter (and possibly finer) resolution with high accuracy at moderate computational cost. Utilizing Helmholtz reciprocity principle makes it possible to expand the method to a solution of EEG forward problems with a very large number of cortical dipoles.
Collapse
|
110
|
Tsarev A. Effect of Dispersion-Enhanced Sensitivity in a Two-Mode Optical Waveguide with an Asymmetric Diffraction Grating. SENSORS 2021; 21:s21165492. [PMID: 34450934 PMCID: PMC8399926 DOI: 10.3390/s21165492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Analysis of trends in the development of silicon photonics shows the high efficiency regarding the creation of optical sensors. The concept of bimodal sensors, which suggests moving away from the usual paradigm based only on single-mode waveguides and using the inter-mode interaction of guided optical waves in a two-mode optical waveguide, is developed in the present paper. In this case, the interaction occurs in the presence of an asymmetric periodic perturbation of the refractive index above the waveguide surface. Such a system has unique dispersion properties that lead to the implementation of collinear Bragg diffraction with the mode number transformation, in which there is an extremely high dependence of the Bragg wavelength on the change in the refractive index of the environment. This is called the "effect of dispersion-enhanced sensitivity". In this paper, it is shown by numerical calculation methods that the effect can be used to create optical sensors with the homogeneous sensitivity higher than 3000 nm/RIU, which is many times better than that of sensors in single-mode waveguide structures.
Collapse
|
111
|
Peng X, Ji Q, Angell JH, Kearns PJ, Bowen JL, Ward BB. Long-Term Fertilization Alters Nitrous Oxide Cycling Dynamics in Salt Marsh Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10832-10842. [PMID: 34291904 DOI: 10.1021/acs.est.1c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Salt marsh sediments are known hotspots for nitrogen cycling, including the production and consumption of nitrous oxide (N2O), a potent greenhouse gas and ozone-depleting agent. Coastal eutrophication, particularly elevated nitrogen loading from the application of fertilizers, is accelerating nitrogen cycling processes in salt marsh sediments. Here, we examine the impact of long-term fertilization on nitrogen cycling processes with a focus on N2O dynamics in a New England salt marsh. By combining 15N-tracer experiments with numerical modeling, we found that both nitrification and denitrification contribute to net N2O production in fertilized sediments. Long-term fertilization increased the relative importance of nitrification to N2O production, likely a result of increased oxygen penetration from nutrient-induced increases in marsh elevation. Substrate utilization rates of key nitrogen cycling processes revealed links between functions and the corresponding microbial communities. Higher specific substrate utilization rates leading to N2O production from nitrification in fertilized sediments indicate a shift in the community composition of ammonia oxidizers, whereas the lack of change in specific substrate utilization of N2O production from denitrification under long-term fertilization suggests resilience of the denitrifying communities. Both are consistent with previous studies on the functional gene community composition in these experimental plots.
Collapse
|
112
|
González JR, Damião C, Moran M, Pantaleão CA, Cruz RA, Balarini GA, Conci A. A Computational Study on the Role of Parameters for Identification of Thyroid Nodules by Infrared Images (and Comparison with Real Data). SENSORS (BASEL, SWITZERLAND) 2021; 21:4459. [PMID: 34209986 PMCID: PMC8272175 DOI: 10.3390/s21134459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023]
Abstract
According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule's heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university's hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.
Collapse
|
113
|
Barnat N, Grisey A, Gerold B, Yon S, Anquez J, Aubry JF. Vein wall shrinkage induced by thermal coagulation with high-intensity-focused ultrasound: numerical modeling and in vivo experiments in sheep. Int J Hyperthermia 2021; 37:1238-1247. [PMID: 33164625 DOI: 10.1080/02656736.2020.1834626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Varicose veins are a common disease that may significantly affect quality of life. Different approaches are currently used in clinical practice to treat this pathology. MATERIALS AND METHODS In thermal therapy (radiofrequency or laser therapy), the vein is directly heated to a high temperature to induce vein wall coagulation, and the heat induces denaturation of the intramural collagen, which results macroscopically in vein shrinkage. Thermal vein shrinkage is a physical indicator of the efficiency of endovenous treatment. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can thermally coagulate vein walls and induce vein shrinkage. In this study, we evaluated the vein shrinkage induced in vivo by extracorporeal HIFU ablation of sheep veins: six lateral saphenous veins (3.4mm mean diameter) were sonicated for 8 s with 3MHz continuous waves. Ultrasound imaging was performed before and immediately post-HIFU to quantify the HIFU-induced shrinkage. RESULTS Luminal constriction was observed in 100% (6/6) of the treated veins. The immediate findings showed a mean diameter constriction of 53%. The experimental HIFU-induced shrinkage data were used to validate a numerical model developed to predict the thermally induced vein contraction during HIFU treatment. CONCLUSIONS This model is based on the use of the k-wave library and published contraction rates of vessels immersed in hot water baths. The simulation results agreed well with those of in vivo experiments, showing a mean percent difference of 5%. The numerical model could thus be a valuable tool for optimizing ultrasound parameters as functions of the vein diameter, and future clinical trials are anticipated.
Collapse
|
114
|
Determination of Optimal Flat-End Head Geometries for Pressure Vessels Based on Numerical and Experimental Approaches. MATERIALS 2021; 14:ma14102520. [PMID: 34066276 PMCID: PMC8152071 DOI: 10.3390/ma14102520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/02/2022]
Abstract
The experimental and numerical analyses of the pressure vessels with different flat ends are presented and discussed in the paper. The main aim of the study is to propose the optimal flat head end geometry. The analyses are focused on the comparison of standardized geometries and with the proposed elliptical cut-out. The experimental tests with the application of strain-gauge measurements and numerical modeling of the pressure vessel are conducted. The behavior under low and high pressures and the influence of the residual welding stresses, material properties, and geometrical tolerances on the level of the plastic deformation in the flat end is discussed. It is presented that the rules given in the recent standard are not sufficient for optimal selection of the optimal geometry. It is observed that in certain geometries the deviations of the pipe thickness may lead to a significant increase of the equivalent stresses. The residual welding stresses have a significant influence on the stress and strain level—particularly in the stress relief groove (SRG). The performed study and comparison of the different geometries allow for the proposal of the optimal shape of the flat end. It appeared that the pressure vessels with SRG are the most optimal choice, particularly when elliptic shapes are in use. In some cases (i.e., pipe with wall-thickness equal to 40 mm and the flat end with circular SRG), the optimal configuration is reached for dimensions beyond the admissible by code range.
Collapse
|
115
|
Physical and Numerical Modeling of the Slag Splashing Process. MATERIALS 2021; 14:ma14092289. [PMID: 33925136 PMCID: PMC8124851 DOI: 10.3390/ma14092289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
The influence of technological factors on the process of slag splashing was analyzed in the paper. The problems were solved in several stages using our own and commercial calculation programs and laboratory tests. Based on the performed calculations and simulations, factors affecting the slag splashing were determined. It was observed that the high efficiency of the process can be achieved by optimizing numerous technological parameters, e.g., flow parameters, pressure, and temperature of the nitrogen stream, height and angle of the lance position, as well as slag height into which the gas stream enters and MgO consumption. In addition, the chemical and mineralogical composition of the slag and its physicochemical parameters should be also considered. The obtained results of numerical simulations of slag splashing in the oxygen converter coincide with the results of experiments carried out using the physical model of oxygen converter. This means that the simulations well represent the real course of the slag splashing process for the studied variants.
Collapse
|
116
|
Merder T, Pieprzyca J, Warzecha M, Warzecha P, Hutny A. Evolution of the Numerical Model Describing the Distribution of Non-Metallic Inclusions in the Tundish. MATERIALS 2021; 14:ma14092229. [PMID: 33926005 PMCID: PMC8123659 DOI: 10.3390/ma14092229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Continuous casting is one of the steel production stages, during which the improvement in the metallurgical purity of steel can be additionally affected by removing nonmetallic inclusions (NMIs). This can be achieved by means of various types of flow controllers, installed in the working space of the tundish. The change in the steel flow structure, caused by those flow controllers, should lead to an intensification of NMIs removal from the liquid metal to the slag. Therefore, it is crucial to understand the behavior of nonmetallic inclusions during the flow of liquid steel through the tundish, and particularly during their distribution. The presented paper reports the results of the modeling studies of NMI distribution in liquid steel, flowing through the tundish. CFD modeling methods—using different models and computation variants—were employed in the study. The obtained CFD results were compared with the results of laboratory tests (using a tundish water model). The results of the performed investigations allow us to compare both methods of modeling; the investigated phenomena were microparticle distribution and mass microparticle concentration in the model fluid. The validation of the CFD results verified the analyzed computation variants. The aim of the research was to determine which numerical model is the best for describing the studied phenomenon. This will be used as the first phase of a larger research program which will provide for a comprehensive study of the distribution of NMIs flowing through tundish steel.
Collapse
|
117
|
Dhanoa MS, López S, Powell CD, Sanderson R, Ellis JL, Murray JAMD, Garber A, Williams BA, France J. An Illustrative Analysis of Atypical Gas Production Profiles Obtained from In Vitro Digestibility Studies Using Fecal Inoculum. Animals (Basel) 2021; 11:1069. [PMID: 33918882 PMCID: PMC8069660 DOI: 10.3390/ani11041069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Gas production profiles typically show a monotonically increasing monophasic pattern. However, atypical gas production profiles exist whereby at least two consecutive phases of gas production or additional extraneous features that distort the typical profile are present. Such profiles are more likely to occur with the use of a fecal inoculum and are much less well described. The presence of multiple phases or non-descript extraneous features makes it difficult to apply directly recommended modeling approaches such as standard response functions or classical growth functions. To overcome such difficulties, extensions of the Mitscherlich equation and a numerical modeling option also based on the Mitscherlich are explored. The numerical modeling option uses an estimate of relative rate obtained from the smoothed data profile and an estimate of maximum gas produced together with any lag time information drawn from the raw data to construct a simple Mitscherlich equation. In summary, this article illustrates the analysis of atypical gas production profiles obtained using a fecal inoculum and explores the methodology of numerical modeling to reconstruct equivalent typical growth-like trends.
Collapse
|
118
|
A Numerical Study on the Effect of Variable Wear Coefficient on Fretting Wear Characteristics. MATERIALS 2021; 14:ma14081840. [PMID: 33917650 PMCID: PMC8068001 DOI: 10.3390/ma14081840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022]
Abstract
Fretting wear is a common phenomenon that happens between contact parts when there is an oscillatory relative movement. To investigate wear characteristics history in the fretting process, the finite element method (FEM) is commonly applied to simulate the fretting by considering the wear in the model. In most literature publications, the wear coefficient is considered as a constant, which is not a real case based on the experimental results. To consider the variation of wear coefficient, a double-linear model is applied in this paper, and the tribologically transformed structure (TTS) phase is considered in the study of the wear coefficient variation model. By using these models for variable wear coefficient for both flat and cylinder, the difference of wear characteristics, plastic strain, and stress between variable wear coefficient model (VWCM) and constant wear coefficient model (CWCM) are analyzed. The results show that the variable wear coefficient has no significant effect on the wear characteristic at the end of the process in the gross sliding regime. However, in the partial slip regime, the effect of variable wear coefficient on wear characteristics is significant. Due to the difference in contact geometry in the fretting process between VWCM and CWCM, the tangential and shear stress and equivalent plastic strain also show differences during the fretting process.
Collapse
|
119
|
Pérez-Indoval R, Rodrigo-Ilarri J, Cassiraga E, Rodrigo-Clavero ME. Numerical Modeling of Groundwater Pollution by Chlorpyrifos, Bromacil and Terbuthylazine. Application to the Buñol-Cheste Aquifer (Spain). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073511. [PMID: 33800654 PMCID: PMC8036925 DOI: 10.3390/ijerph18073511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/27/2022]
Abstract
Chlorpyrifos, Bromacil and Terbuthylazine are commonly used as insecticides and herbicides to control weeds and prevent non-desirable growth of algae, fungi and bacteria in many agricultural applications. Despite their highly negative effects on human health, environmental modeling of these pesticides in the vadose zone until they reach groundwater is still not being conducted on a regular basis. This work shows results obtained by version 5.08 of the Pesticide Root Zone Model (PRZM5) numerical model to simulate the fate and transport of Chlorpyrifos, Bromacil and Terbuthylazine between 2006 and 2018 inside the Buñol-Cheste aquifer in Spain. The model uses a whole set of parameters to solve a modified version of the mass transport equation considering the combined effect of advection, dispersion and reactive transport processes. The simulation process was designed for a set of twelve scenarios considering four application doses for each pesticide. Results show that the maximum concentration value for every scenario exceeds the current Spanish Maximum Concentration Limit (0.1 μg/L). Numerical simulations were able to reproduce concentration observations over time despite the limited amount of available data.
Collapse
|
120
|
Simka M, Latacz P. Numerical modeling of blood flow in the internal jugular vein with the use of computational fluid mechanics software. Phlebology 2021; 36:541-548. [PMID: 33611976 DOI: 10.1177/0268355521996087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To determine the site and nature of altered hemodynamics in pathological internal jugular veins. METHOD With the use of computational fluid mechanics software we simulated blood flow in 3 D models of the internal jugular veins that exhibited different morphologies, including nozzle-like strictures in their upper parts and valves in the lower parts. RESULTS In a majority of models with nozzle-like strictures, especially those positioned asymmetrically, abnormal flow pattern was revealed, with significant flow separation and regions with reversed flow. Abnormal valves had no significant impact on flow in a case of already altered flow evoked by stricture in upper part of the vein. CONCLUSIONS In our jugular model, cranially-located stenoses, which in clinical practice are primarily caused by external compression, cause more significant outflow impact respect to endoluminal defects and pathological valves located more caudally.
Collapse
|
121
|
Gawronska E, Dyja R. A Numerical Study of Geometry's Impact on the Thermal and Mechanical Properties of Periodic Surface Structures. MATERIALS 2021; 14:ma14020427. [PMID: 33467124 PMCID: PMC7830026 DOI: 10.3390/ma14020427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
The paper focuses on thermal and mechanical analysis of Periodic Surface Structure (PSS). PSS is a continuous surface with a specific topology that is mathematically formulated by geometric factors. Cubic P-surface ("primitive"), D-surface ("diamond"), and G-surface ("gyroid") structures were simulated under load and heat transport using a numerical approach. We conducted our study by solving the stress and heat equations using the Finite Element Method (FEM). We achieved results using our software module, which generates PSS and simulates stress and temperature distribution. The stress model defined by dependence between stress and strain, gained from an experiment, and correlation of strain and displacement, gained from geometric conditions, was used in numerical experiments. The influence of geometric factors on the thermal and mechanical behavior of PSS was qualitatively determined. We showed decreasing effective stress values with an increased number of cells in the cubic domain for concerned PSS. It is important, because the increase in the number of cells does not increase the structure's volume.
Collapse
|
122
|
The Use of Neural Networks in the Analysis of Dual Adhesive Single Lap Joints Subjected to Uniaxial Tensile Test. MATERIALS 2021; 14:ma14020419. [PMID: 33467776 PMCID: PMC7831007 DOI: 10.3390/ma14020419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/17/2022]
Abstract
Adhesive bonding are becoming increasingly important in civil and mechanical engineering, in the field of mobile applications such as aircraft or automotive. Adhesive joints offer many advantages such as low weight, uniform stress distribution, vibration damping properties or the possibility of joining different materials. The paper presents the results of numerical modeling and the use of neural networks in the analysis of dual adhesive single-lap joints subjected to a uniaxial tensile test. The dual adhesive joint was created through the use of adhesives with various parameters in terms of stiffness and strength. In the axis of the overlap, there was a point bonded joint characterized by greater stiffness and strength, and on the outside, there was a bonded joint limited by the edges of the overlap and characterized by lower stiffness and strength. It is an innovative solution for joining technology and the influence of such parameters as the thickness of one of the adherends, the radius of the point bonded joint and the material parameters of both adhesive layers were analyzed. The joint is characterized by a two-stage degradation process, i.e., after the damage of the rigid adhesive, the flexible adhesive ensures the integrity of the entire joint. For numerical modeling, the Finite Element Method (FEM) and cohesive elements was used, which served as input data to an Artificial Neural Network (ANN). The applied approach allowed the impact of individual parameters on the maximum force, initiation energy, and fracture energy to be studied.
Collapse
|
123
|
Knüsel J, Crespi A, Cabelguen JM, Ijspeert AJ, Ryczko D. Reproducing Five Motor Behaviors in a Salamander Robot With Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback. Front Neurorobot 2020; 14:604426. [PMID: 33424576 PMCID: PMC7786271 DOI: 10.3389/fnbot.2020.604426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Diverse locomotor behaviors emerge from the interactions between the spinal central pattern generator (CPG), descending brain signals and sensory feedback. Salamander motor behaviors include swimming, struggling, forward underwater stepping, and forward and backward terrestrial stepping. Electromyographic and kinematic recordings of the trunk show that each of these five behaviors is characterized by specific patterns of muscle activation and body curvature. Electrophysiological recordings in isolated spinal cords show even more diverse patterns of activity. Using numerical modeling and robotics, we explored the mechanisms through which descending brain signals and proprioceptive feedback could take advantage of the flexibility of the spinal CPG to generate different motor patterns. Adapting a previous CPG model based on abstract oscillators, we propose a model that reproduces the features of spinal cord recordings: the diversity of motor patterns, the correlation between phase lags and cycle frequencies, and the spontaneous switches between slow and fast rhythms. The five salamander behaviors were reproduced by connecting the CPG model to a mechanical simulation of the salamander with virtual muscles and local proprioceptive feedback. The main results were validated on a robot. A distributed controller was used to obtain the fast control loops necessary for implementing the virtual muscles. The distributed control is demonstrated in an experiment where the robot splits into multiple functional parts. The five salamander behaviors were emulated by regulating the CPG with two descending drives. Reproducing the kinematics of backward stepping and struggling however required stronger muscle contractions. The passive oscillations observed in the salamander's tail during forward underwater stepping could be reproduced using a third descending drive of zero to the tail oscillators. This reduced the drag on the body in our hydrodynamic simulation. We explored the effect of local proprioceptive feedback during swimming and forward terrestrial stepping. We found that feedback could replace or reduce the need for different drives in both cases. It also reduced the variability of intersegmental phase lags toward values appropriate for locomotion. Our work suggests that different motor behaviors do not require different CPG circuits: a single circuit can produce various behaviors when modulated by descending drive and sensory feedback.
Collapse
|
124
|
Abd-Elaty I, Pugliese L, Zelenakova M, Mesaros P, Shinawi AE. Simulation-Based Solutions Reducing Soil and Groundwater Contamination from Fertilizers in Arid and Semi-Arid Regions: Case Study the Eastern Nile Delta, Egypt. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249373. [PMID: 33333761 PMCID: PMC7765233 DOI: 10.3390/ijerph17249373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 11/22/2022]
Abstract
Intensive agriculture requires increasing application of fertilizers in order to sustain food production. Improper use of these substances in combination with increasing seawater intrusion results in long-term and nonpoint soil and groundwater contamination. In this work, a 3-D groundwater and solute transport numerical model was created to simulate the effect of excessive fertilizers application along the Bahr El Baqar drain system, in the eastern Nile Delta, Egypt. The geotechnical properties of the soils, hydrologic parameters, and unconfined compressive strength were determined at different sites and used as input parameters for the model. Model results showed that silty clay soils are able to contain the contaminations and preserve the groundwater quality. Nevertheless, sandy soils primarily located at the beginning of the Bahr El Baqar drain allow leakage of fertilizers to the groundwater. Thus, fertilizer application should be properly managed in the top sandy layers to protect the groundwater and soil, as increasing aquifer by excess irrigation water increased the groundwater contamination in confined layers due to the high value of cumulative salt for the current situation while the unconfined zone decreased groundwater and soil contamination. A mass transport 3-D multi-species (MT3D) model was set to identify the optimal measure to tackle soil and groundwater contamination along the Bahr El-Baqar drain system. A potential increase of the abstraction rates in the study area has a positive impact in reducing the transfer of fertilizer contamination to groundwater while it has a negative impact for soil contamination. The scenario analysis further indicated that the installation of a drainage network decreases the groundwater and soil contamination. Both solutions are potentially effective for protection against nonpoint contamination along the Bahr El Baqar drain system. However, a more sustainable management approach of fertilizer application is needed to adequately protect the receptors located further downstream in the Nile Delta.
Collapse
|
125
|
Márquez Costa JP, Legrand V, Fréour S, Jacquemin F. Towards the Prediction of Sandwich Composites Durability in Severe Condition of Temperature: A New Numerical Model Describing the Influence of Material Water Content during a Fire Scenario. MATERIALS 2020; 13:ma13235420. [PMID: 33260519 PMCID: PMC7731082 DOI: 10.3390/ma13235420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/04/2022]
Abstract
An advanced fire thermal model was developed to predict the evolution of the temperature and decomposition gradient across a sandwich composite structure when exposed to high temperatures (fire). This model allows the prediction of a large numbers of parameters, such as thermal expansion, gas mass storage, porosity, permeability, density, and internal pressure. The highlight of this model is that we consider, in the sandwich constituents (core and skins), additional parameters, such as changing volume porosities, other coupled constituents (as infused resin in the balsa core), and what make the main originality of the present approach: moisture content (free and bounded water). The time dependence of many parameters, i.e., among others, the combustion advancing front and mechanical properties, can be predicted in a large number of material and fire scenarios. The proposed approach was validated in the case of sandwich panels, with glass/polyester or glass/vinyl ester skins and balsa core, exposed to high temperatures up to 750 °C. The influence of water on the thermal and mechanical responses is also highlighted.
Collapse
|