101
|
Hallin S, Lindgren PE. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 1999; 65:1652-7. [PMID: 10103263 PMCID: PMC91233 DOI: 10.1128/aem.65.4.1652-1657.1999] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using consensus regions in gene sequences encoding the two forms of nitrite reductase (Nir), a key enzyme in the denitrification pathway, we designed two sets of PCR primers to amplify cd1- and Cu-nir. The primers were evaluated by screening defined denitrifying strains, denitrifying isolates from wastewater treatment plants, and extracts from activated sludge. Sequence relationships of nir genes were also established. The cd1 primers were designed to amplify a 778 to 799-bp region of cd1-nir in the six published sequences. Likewise, the Cu primers amplified a 473-bp region in seven of the eight published Cu-nir sequences. Together, the two sets of PCR primers amplified nir genes in nine species within four genera, as well as in four of the seven sludge isolates. The primers did not amplify genes of nondenitrifying strains. The Cu primers amplified the expected fragment in all 13 sludge samples, but cd1-nir fragments were only obtained in five samples. PCR products of the expected sizes were verified as nir genes after hybridization to DNA probes, except in one case. The sequenced nir fragments were related to other nir sequences, demonstrating that the primers amplified the correct gene. The selected primer sites for Cu-nir were conserved, while broad-range primers targeting conserved regions of cd1-nir seem to be difficult to find. We also report on the existence of Cu-nir in Paracoccus denitrificans Pd1222.
Collapse
|
102
|
Prudêncio M, Eady RR, Sawers G. The blue copper-containing nitrite reductase from Alcaligenes xylosoxidans: cloning of the nirA gene and characterization of the recombinant enzyme. J Bacteriol 1999; 181:2323-9. [PMID: 10197991 PMCID: PMC93653 DOI: 10.1128/jb.181.8.2323-2329.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nirA gene encoding the blue dissimilatory nitrite reductase from Alcaligenes xylosoxidans has been cloned and sequenced. To our knowledge, this is the first report of the characterization of a gene encoding a blue copper-containing nitrite reductase. The deduced amino acid sequence exhibits a high degree of similarity to other copper-containing nitrite reductases from various bacterial sources. The full-length protein included a 24-amino-acid leader peptide. The nirA gene was overexpressed in Escherichia coli and was shown to be exported to the periplasm. Purification was achieved in a single step, and analysis of the recombinant Nir enzyme revealed that cleavage of the signal peptide occurred at a position identical to that for the native enzyme isolated from A. xylosoxidans. The recombinant Nir isolated directly was blue and trimeric and, on the basis of electron paramagnetic resonance spectroscopy and metal analysis, possessed only type 1 copper centers. This type 2-depleted enzyme preparation also had a low nitrite reductase enzyme activity. Incubation of the periplasmic fraction with copper sulfate prior to purification resulted in the isolation of an enzyme with a full complement of type 1 and type 2 copper centers and a high specific activity. The kinetic properties of the recombinant enzyme were indistinguishable from those of the native nitrite reductase isolated from A. xylosoxidans. This rapid isolation procedure will greatly facilitate genetic and biochemical characterization of both wild-type and mutant derivatives of this protein.
Collapse
|
103
|
Suzuki E, Horikoshi N, Kohzuma T. Cloning, sequencing, and transcriptional studies of the gene encoding copper-containing nitrite reductase from Alcaligenes xylosoxidans NCIMB 11015. Biochem Biophys Res Commun 1999; 255:427-31. [PMID: 10049725 DOI: 10.1006/bbrc.1998.9932] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene encoding of the blue copper-containing nitrite reductase (nir) from Alcaligenes xylosoxidans NCIMB 11015 has been cloned and characterized. The nir is translated into a polypeptide of 360 amino acid residues as a precursor, and the N-terminal 24 residues are subsequently removed upon transport into the periplasm as a mature protein. A specific transcription product of nir was detected only in the presence of nitrate. The aeration level of the culture medium did not show a significant effect on the transcriptional level. A varsigma54 binding sequence is identified upstream of the transcriptional initiation at 53 to 26 nucleotides. A putative fnr box has also been identified in the sequence of the upstream region. The mature polypeptide showed 70% sequence identity with those of the Achromobacter cycloclastes enzyme. The transcriptional start point has been determined at 92 nucleotides upstream of the initiation codon and is preceded by the binding sites for varsigma54 and the fnr box. These results suggest that gene expression depends on the presence of nitrate and is stimulated under an anaerobic environment.
Collapse
|
104
|
Degen O, Kobayashi M, Shimizu S, Eitinger T. Selective transport of divalent cations by transition metal permeases: the Alcaligenes eutrophus HoxN and the Rhodococcus rhodochrous NhlF. Arch Microbiol 1999; 171:139-45. [PMID: 10201093 DOI: 10.1007/s002030050691] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
nhlF and hoxN, the genes encoding a cobalt transporter of Rhodococcus rhodochrous J1 and a nickel permease of Alcaligenes eutrophus H16, respectively, were expressed in Escherichia coli. 57CO2+ and 63Ni2+ transport of the recombinants was examined by means of a previously described physiological assay. Although the transporters are highly similar, different preferences for divalent transition metal cations were observed. HoxN was unable to transport 57CO2+, but mediated 63Ni2+ uptake. The latter activity was unaffected by a tenfold excess of other divalent cations, showing the specificity of HoxN for Ni2+. In contrast, NhlF transported both 57CO2+ and 63Ni2+ ion. NhlF-mediated 63Ni2+ uptake was markedly reduced in the presence of CO2+, while 57CO2+ uptake was only slightly lower in the presence of Ni2+. These results indicate different affinities of NhlF for CO2+ and Ni2+ and identified CO2+ ion as the preferred substrate.
Collapse
|
105
|
Krooneman J, van den Akker S, Pedro Gomes TM, Forney LJ, Gottschal JC. Degradation of 3-chlorobenzoate under low-oxygen conditions in pure and mixed cultures of the anoxygenic photoheterotroph Rhodopseudomonas palustris DCP3 and an aerobic Alcaligenes species. Appl Environ Microbiol 1999; 65:131-7. [PMID: 9872770 PMCID: PMC90993 DOI: 10.1128/aem.65.1.131-137.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence or absence of molecular oxygen has been shown to play a crucial role in the degradability of haloaromatic compounds. In the present study, it was shown that anaerobic phototrophic 3-chlorobenzoate (3CBA) metabolism by Rhodopseudomonas palustris DCP3 is oxygen tolerant up to a concentration of 3 microM O2. Simultaneous oxidation of an additional carbon source permitted light-dependent anaerobic 3CBA degradation at oxygen input levels which, in the absence of such an additional compound, would result in inhibition of light-dependent dehalogenation. Experiments under the same experimental conditions with strain DCP3 in coculture with an aerobic 3CBA-utilizing heterotroph, Alcaligenes sp. strain L6, revealed that light-dependent dehalogenation of 3CBA did not occur. Under both oxygen limitation (O2 < 0.1 microM) and low oxygen concentrations (3 microM O2), all the 3CBA was metabolized by the aerobic heterotroph. These data suggest that biodegradation of (halo)aromatics by photoheterotrophic bacteria such as R. palustris DCP3 may be restricted to anoxic photic environments.
Collapse
|
106
|
Hansen S, Hough E, Andersen K. Purification, crystallization and preliminary X-ray studies of two isoforms of Rubisco from Alcaligenes eutrophus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 1999; 55:310-3. [PMID: 10089435 DOI: 10.1107/s0907444998010257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 07/28/1998] [Indexed: 11/10/2022]
Abstract
Two different isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Alcaligenes eutrophus have been purified and crystallized. Both isoforms crystallize in space group P43212. Crystals of isoform I (unit-cell dimensions a = 112.0 and c = 402.7 A) diffract to 2.7 A, whereas isoform II (unit-cell dimensions a = 111.8 and c = 400.0 A) presently diffract to 3.2 A, using synchrotron radiation in both cases.
Collapse
|
107
|
Inatomi K. Analysis of the nitrous oxide reduction genes, nosZDFYL, of Achromobacter cycloclastes. DNA Res 1998; 5:365-71. [PMID: 10048486 DOI: 10.1093/dnares/5.6.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The structural gene, nosZ, for the monomeric N2O reductase has been cloned and sequenced from the denitrifying bacterium Achromobacter cycloclastes. The nosZ gene encodes a protein of 642 amino acid residues and the deduced amino acid sequence showed homology to the previously derived sequences for the dimeric N2O reductases. The relevant DNA region of about 3.6 kbp was also sequenced and found to consist of four genes, nosDFYL based on the similarity with the N2O reduction genes of Pseudomonas stutzeri. The gene product of A. cycloclastes nosF (299 amino acid residues) has a consensus ATP-binding sequence, and the nos Y gene encodes a hydrophobic protein (273 residues) with five transmembrane segments, suggesting the similarity with an ATP-binding cassette (ABC) transporter which has two distinct domains of a highly hydrophobic region and ATP-binding sites. The nosL gene encodes a protein of 193 amino acid residues and the derived sequence showed a consensus sequence of lipoprotein modification/processing site. The expression of nosZ gene in Escherichia coli cells and the comparison of the translated sequences of the nosDFYL genes with those of bacterial transport genes for inorganic ions are discussed.
Collapse
|
108
|
Choi JI, Lee SY, Han K. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of Poly(3-hydroxybutyrate) in Escherichia coli. Appl Environ Microbiol 1998; 64:4897-903. [PMID: 9835580 PMCID: PMC90940 DOI: 10.1128/aem.64.12.4897-4903.1998] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, beta-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.
Collapse
|
109
|
Lenz O, Friedrich B. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci U S A 1998; 95:12474-9. [PMID: 9770510 PMCID: PMC22855 DOI: 10.1073/pnas.95.21.12474] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidation of molecular hydrogen catalyzed by [NiFe] hydrogenases is a widespread mechanism of energy generation among prokaryotes. Biosynthesis of the H2-oxidizing enzymes is a complex process subject to positive control by H2 and negative control by organic energy sources. In this report we describe a novel signal transduction system regulating hydrogenase gene (hox) expression in the proteobacterium Alcaligenes eutrophus. This multicomponent system consists of the proteins HoxB, HoxC, HoxJ*, and HoxA. HoxB and HoxC share characteristic features of dimeric [NiFe] hydrogenases and form the putative H2 receptor that interacts directly or indirectly with the histidine protein kinase HoxJ*. A single amino acid substitution (HoxJ*G422S) in a conserved C-terminal glycine-rich motif of HoxJ* resulted in a loss of H2-dependent signal transduction and a concomitant block in autophosphorylating activity, suggesting that autokinase activity is essential for the response to H2. Whereas deletions in hoxB or hoxC abolished hydrogenase synthesis almost completely, the autokinase-deficient strain maintained high-level hox gene expression, indicating that the active sensor kinase exerts a negative effect on hox gene expression in the absence of H2. Substitutions of the conserved phosphoryl acceptor residue Asp55 in the response regulator HoxA (HoxAD55E and HoxAD55N) disrupted the H2 signal-transduction chain. Unlike other NtrC-like regulators, the altered HoxA proteins still allowed high-level transcriptional activation. The data presented here suggest a model in which the nonphosphorylated form of HoxA stimulates transcription in concert with a yet unknown global energy-responsive factor.
Collapse
|
110
|
Genser KF, Renner G, Schwab H. Molecular cloning, sequencing and expression in Escherichia coli of the poly(3-hydroxyalkanoate) synthesis genes from Alcaligenes latus DSM1124. J Biotechnol 1998; 64:125-35. [PMID: 9821671 DOI: 10.1016/s0168-1656(98)00093-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fragments of chromosomal DNA from Alcaligenes latus DSM1124 were cloned into Escherichia coli and transformants were screened for poly(D(-)-3-hydroxybutyrate) [P(3HB)] production during excess carbon supply. A plasmid harboring a 5.5-kb insert of A. latus DNA was isolated from a P(3HB)-producing bacterial colony. The insert was partially sequenced and three major open reading frames (ORFs) were found, representing the PHA synthase (phaC), beta-ketothiolase (phaA) and acetoacetyl-CoA reductase (phaB) genes. They show striking homology to the Ralstonia eutropha (formerly Alcaligenes eutrophus) phaC (71%), phaA (77%) and phaB (80%) genes, and are organized in the same way. The only major difference is the replacement of 560 nucleotides by 160 non-homologous nucleotides in the 5' region of phaC in A. latus. The phaC ORF lacks 29 amino acids at the N-terminus, compared to that of R. eutropha, and starts with a GTG codon. The transcription start points of the operon were determined. P(3HB) production of recombinant E. coli strains harboring the pha operons of A. latus DSM1124 or R. eutropha H16 was investigated. Both operons gave rise to less than 5% P(3HB) formation during exponential growth. At the end of the growth phase, the P(3HB) content reached approximately 20% of cell dry mass. Under nitrogen-depleted conditions, the A. latus pha genes gave rise to 50-52% P(3HB), compared to 33-38% for the R. eutropha pha genes. No NADH oxidase activity was detectable in A. latus, indicating an impaired respiratory pathway and a dependence on PHA synthesis for storing reduction equivalents during growth.
Collapse
|
111
|
Vu-Thien H, Darbord JC, Moissenet D, Dulot C, Dufourcq JB, Marsol P, Garbarg-Chenon A. Investigation of an outbreak of wound infections due to Alcaligenes xylosoxidans transmitted by chlorhexidine in a burns unit. Eur J Clin Microbiol Infect Dis 1998; 17:724-6. [PMID: 9865987 DOI: 10.1007/s100960050168] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcaligenes xylosoxidans, an environmental gram-negative bacillus, was isolated within a 1-month period from six patients in a pediatric burns unit. Twelve isolates were studied, one from each of the six patients (five from wound cultures and one from a blood culture) and one from each of six contaminated atomizers containing chlorhexidine diluted to 600 mg/l. The biochemical and susceptibility patterns of all the isolates were similar, and their DNA enzyme restriction patterns were identical. The epidemic strain of Alcaligenes xylosoxidans was probably introduced into the atomizers during handling of the diluted solution, which failed to eliminate it.
Collapse
|
112
|
McGowan C, Fulthorpe R, Wright A, Tiedje JM. Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl Environ Microbiol 1998; 64:4089-92. [PMID: 9758850 PMCID: PMC106609 DOI: 10.1128/aem.64.10.4089-4092.1998] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the alpha-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient.
Collapse
|
113
|
Hein S, Tran H, Steinbüchel A. Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 1998; 170:162-70. [PMID: 9683655 DOI: 10.1007/s002030050629] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During cultivation under storage conditions with BG11 medium containing acetate as a carbon source, Synechocystis sp. PCC6803 accumulated poly(3-hydroxybutyrate) up to 10% (w/w) of the cell dry weight. Our analysis of the complete Synechocystis sp. PCC6803 genome sequence, which had recently become available, revealed that not only the open reading frame slr1830 (which was designated as phaC) but also the open reading frame slr1829, which is located colinear and upstream of phaC, most probably represent a polyhydroxyalkanoic acid (PHA) synthase gene. The open reading frame slr1829 was therefore designated as phaE. The phaE and phaC gene products exhibited striking sequence similarities to the corresponding PHA synthase subunits PhaE and PhaC of Thiocystis violacea, Chromatium vinosum, and Thiocapsa pfennigii. The Synechocystis sp. PCC6803 genes were cloned using PCR and were heterologously expressed in Escherichia coli and in Alcaligenes eutrophus. Only coexpression of phaE and phaC partially restored the ability to accumulate poly(3-hydroxybutyrate) in the PHA-negative mutant A. eutrophus PHB-4. These results confirmed our hypothesis that coexpression of the two genes is necessary for the synthesis of a functionally active Synechocystis sp. PCC6803 PHA synthase. PHA granules were detected by electron microscopy in these cells, and the PHA-granule-associated proteins were studied. Western blot analysis of Synechocystis sp. PCC6803 crude cellular extracts and of granule-associated proteins employing antibodies raised against the PHA synthases of A. eutrophus (PhaC) and of C. vinosum (PhaE and PhaC) revealed no immunoreaction.
Collapse
|
114
|
Sudesh K, Fukui T, Doi Y. Genetic analysis of Comamonas acidovorans polyhydroxyalkanoate synthase and factors affecting the incorporation of 4-hydroxybutyrate monomer. Appl Environ Microbiol 1998; 64:3437-43. [PMID: 9726894 PMCID: PMC106744 DOI: 10.1128/aem.64.9.3437-3443.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp beta-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB-4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism's PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content.
Collapse
|
115
|
Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) comb. nov. Microbiol Immunol 1998; 42:429-38. [PMID: 9688077 DOI: 10.1111/j.1348-0421.1998.tb02306.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the results of GC content determination and 16S rRNA sequence analysis among the type strains of Achromobacter xylosoxidans, 4 Alcaligenes species, 5 Bordetella species, and 12 species of 4 other genera, the separation of genus Achromobacter Yabuuchi and Yano 1981, with the type species Achromobacter xylosoxidans, is confirmed. Alcaligenes ruhlandii (Packer and Vishniac) Aragno and Schlegel 1992 is a distinct species and not a senior synonym of Achromobacter xylosoxidans. Alcaligenes ruhlandii and Alcaligenes piechaudii Kiredjian et al 1986 are transferred to genus Achromobacter. Thus 2 new combinations, Achromobacter ruhlandii (Packer and Vishniac) and Achromobacter piechaudii (Kiredjian et al) are proposed; their type strains are ATCC 15749 and ATCC 43552, respectively. Alcaligenes denitrificans Rüger and Tan 1983 is also transferred to genus Achromobacter and ranked down to the subspecies of Achromobacter xylosoxidans. Thus a new subspecies name, Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) is proposed. The type strain of the subspecies is ATCC 15173. This proposal automatically creates type subspecies, Achromobacter xylosoxidans subsp. xylosoxidans, with type strain ATCC 27061. An emended description of genus Achromobacter and of type species Achromobacter xylosoxidans are given.
Collapse
|
116
|
Hino S, Watanabe K, Takahashi N. Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1765-1772. [PMID: 9695910 DOI: 10.1099/00221287-144-7-1765] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ralstonia eutropha strain E2 (previously Alcaligenes sp.) is a phenol-degrading bacterium expressing phenol-oxygenating activity with a low Ks (the apparent half-saturation constant in Haldane's equation) and an extremely high KSI (the apparent inhibition constant). To identify the molecular basis for these novel cellular kinetic properties, a 9.5 kb DNA fragment that allowed Pseudomonas aeruginosa PAO1c (Phl- Cat+) to grow on phenol as the sole carbon source was cloned from strain E2 into plasmid pRO1614. PAO1c harbouring this plasmid (designated pROE217) transformed phenol to catechol, indicating that this fragment contains gene(s) for phenol hydroxylase. The cloned genes consist of eight complete ORFs, designated poxRABCDEFG. The products are homologous to those of dmpRKLMNOPQ of Pseudomonas sp. CF600, sharing 30-65% identity: this suggests that the phenol hydroxylase is a multicomponent enzyme. The kinetic constants for phenol-oxygenating activity of PAO1c(pROE217) were determined, and these were compared with those of strain E2. The kinetic constants of PAO1c derivatives expressing different phenol hydroxylases were also determined. A comparison of these kinetic data suggests that phenol hydroxylase, the first enzyme in the phenol-degradative pathway, determines Ks and KSI values for the cellular phenol-oxygenating activity. It is thus suggested that the phenol hydroxylase cloned from strain E2 exhibits the novel kinetic properties that were observed with intact cells of strain E2.
Collapse
|
117
|
Wong HH, Lee SY. Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 1998; 50:30-3. [PMID: 9720197 DOI: 10.1007/s002530051252] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey, pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l-1 and 50 g l-1 respectively in 47 h. When concentrated whey solution containing 210 g l-1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l-1 and 69 g l-1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate.
Collapse
|
118
|
McGuirl MA, Nelson LK, Bollinger JA, Chan YK, Dooley DM. The nos (nitrous oxide reductase) gene cluster from the soil bacterium Achromobacter cycloclastes: cloning, sequence analysis, and expression. J Inorg Biochem 1998; 70:155-69. [PMID: 9720302 DOI: 10.1016/s0162-0134(98)10001-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nitrous oxide (N2O) reductase (nos) gene cluster from Achromobacter cycloclastes has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ (structural N2O reductase gene), nosD, nosF, nosY, nosL, and nosX are detected, indicating a genetic organization similar to that of Rhizobium meliloti. To aid homology studies, nosR from R. meliloti has also been sequenced. Comparison of the deduced amino acid sequences with corresponding sequences from other organisms has also allowed structural and functional inferences to be made. The heterologous expression of NosD, NosZ (N2O reductase), and NosL is also reported. A model of the CuA site in N2O reductase, based on the crystal structure of this site in bovine heart cytochrome c oxidase, is presented. The model suggests that a His residue of the CuA domain may be a ligand to the catalytic CuZ site. In addition, the origin of the spectroscopically-observed Cys coordination to CuZ is discussed in terms of the sequence alignment of seven N2O reductases.
Collapse
|
119
|
Knippschild M, Ansorg R. Epidemiological typing of Alcaligenes xylosoxidans subsp. xylosoxidans by antibacterial susceptibility testing, fatty acid analysis, PAGE of whole-cell protein and pulsed-field gel electrophoresis. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1998; 288:145-57. [PMID: 9728414 DOI: 10.1016/s0934-8840(98)80113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibacterial susceptibility testing, fatty acid analysis, protein analysis and DNA analysis of Alcaligenes xylosoxidans subsp. xylosoxidans were compared to determine the efficiency of the methods available for strain typing. Thirty isolates were investigated: 20 clinical isolates from a nonsocomial outbreak in Essen (Germany), 9 clinical isolates from sporadic nosocomial cases in Paris (France) and reference strain ATCC 2402. The highest microbiological discriminative power was exhibited by pulsed-field gel electrophoresis (PFGE) yielding nine types, followed by fatty acid methyl ester (FAME) analysis with six types, and antibacterial susceptibility testing and polyacrylamide gel electrophoresis with five types each. By combining the results of the four typing methods, 14 varieties could be differentiated. Protein analysis and fatty acid analysis failed to discriminate between isolates from Essen and Paris and the reference strain, while antibacterial susceptibility testing and DNA analysis clearly discriminated them. It is concluded that a combination of antibacterial susceptibility testing and PFGE typing is most suitable for epidemiological typing of Alcaligenes xylosoxidans subsp. xylosoxidans strains.
Collapse
|
120
|
Willis LB, Walker GC. The phbC (poly-beta-hydroxybutyrate synthase) gene of Rhizobium (Sinorhizobium) meliloti and characterization of phbC mutants. Can J Microbiol 1998; 44:554-64. [PMID: 9734305 DOI: 10.1139/w98-033] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defined insertion mutations have been constructed in the Rhizobium (Sinorhizobium) meliloti phbC gene, which encodes poly-beta-hydroxybutyrate (PHB) synthase. The locus was isolated and subcloned from a genomic library of R. meliloti Rm1021 by complementation of phbC mutation of Alcaligenes eutrophus. PHB production was detected in wild-type R. meliloti under nutrient-limited conditions but not in rich medium. No PHB production was detected in the R. meliloti phbC mutants. The DNA sequence of the R. meliloti phbC gene was determined. The deduced polypeptide sequence is homologous to previously identified PhbCs from other bacteria. The R. meliloti phbC locus maps to pRmeSU47a, the smaller of the two megaplasmids in this strain.
Collapse
|
121
|
Cheng H, Lin M, Ping S, Elmerich C, Jia S. [The construction of Alcaligenes faecalis ntrC-lacZ fusion gene and its expression during association with rice roots]. WEI SHENG WU XUE BAO = ACTA MICROBIOLOGICA SINICA 1998; 38:168-75. [PMID: 12549327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
A broad host range vector pLA2917 containing ntrC gene or ntrC-lacZ fusion were constructed, namely pLAC1 and pLAC2. The plasmids pLAC1 and pLAC2 were introduced into A. faecalis wild type strain A1501 by conjugation, subsequently to abtain A15C1 and A15C2. The expression and regulation of ntrC gene of A. faecalis associated with rice roots was investigated under the condition of the associative nitrogen fixation using X-Gal decoration method, micrograph and ntrC partially deletion mutant. The blue precipitation was strongly existed in parenchyma cells as well as in the lateral root primordial. It showed that ntrC gene could express at much higher level in these sites. In the presence of ammonia, the number of multi-copy ntrC conjugatants colonized on surface of rice roots is higher than that of wild type A1501, and the colonization of ntrC mutant is weakest among these three strains. This provided an evidence that ntrC gene might be involved in procedure of colonization of A. faecalis to rice roots.
Collapse
|
122
|
Schwartz E, Gerischer U, Friedrich B. Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 1998; 180:3197-204. [PMID: 9620971 PMCID: PMC107822 DOI: 10.1128/jb.180.12.3197-3204.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1998] [Accepted: 04/08/1998] [Indexed: 02/07/2023] Open
Abstract
Alcaligenes eutrophus H16 produces a soluble hydrogenase (SH) and a membrane-bound hydrogenase (MBH) which catalyze the oxidation of H2, supplying the organism with energy for autotrophic growth. The promoters of the structural genes for the SH and the MBH, PSH and PMBH, respectively, were identified by means of the primer extension technique. Both promoters were active in vivo under hydrogenase-derepressing conditions but directed only low levels of transcription under condition which repressed hydrogenase synthesis. The cellular pools of SH and MBH transcripts under the different growth conditions correlated with the activities of the respective promoters. Also, an immediate and drastic increase in transcript pool levels occurred upon derepression of the hydrogenase system. Both promoters were dependent on the minor sigma factor sigma 54 and on the hydrogenase regulator HoxA in vivo. PSH was stronger than PMBH under both heterotrophic and autotrophic growth conditions. The two promoters were induced at approximately the same rates upon derepression of the hydrogenase system in diauxic cultures. The response regulator HoxA mediated low-level activation of PSH and PMBH in a heterologous system.
Collapse
MESH Headings
- Alcaligenes/enzymology
- Alcaligenes/genetics
- Alcaligenes/metabolism
- Bacterial Proteins/metabolism
- Base Sequence
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA-Binding Proteins
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Homeodomain Proteins
- Hydrogenase/genetics
- Hydrogenase/metabolism
- Kinetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Polymerase Sigma 54
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sigma Factor/metabolism
- Solubility
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
|
123
|
Willis LB, Walker GC. Identification of the Rhizobium meliloti alcohol dehydrogenase gene (adhA) and heterologous expression in Alcaligenes eutrophus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1384:197-203. [PMID: 9659380 DOI: 10.1016/s0167-4838(98)00048-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A screen for Rhizobium meliloti genes which improve the growth of Alcaligenes eutrophus on sucrose identified the first alcohol dehydrogenase gene (adhA) isolated from the Rhizobiaceae. R. meliloti adhA is constitutively expressed in A. eutrophus and has alcohol dehydrogenase activity. R. meliloti adhA mutants retain some alcohol dehydrogenase activity.
Collapse
|
124
|
Kang E, Oh JM, Lee J, Kim YC, Min KH, Min KR, Kim Y. Genetic structure of the bphG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase of Achromobacter xylosoxidans KF701. Biochem Biophys Res Commun 1998; 246:20-5. [PMID: 9600061 DOI: 10.1006/bbrc.1998.8556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2-Hydroxymuconic semialdehyde dehydrogenase catalyzes the conversion of 2-hydroxymuconic semialdehyde (HMS) to an enol form of 4-oxalocrotonate which is a step in the catechol meta-cleavage pathway. A bphG gene encoding HMS dehydrogenase of A. xylosoxidans KF701, a soil bacterium degrading biphenyl, was identified at between catechol 2,3-dioxygenase gene and HMS hydrolase gene, and its sequence was analyzed. An open reading frame (ORF) corresponding to bphG gene was consisted of 1461 nucleotides with ATG initiation codon and TGA termination codon. The ORF exhibited 66% of G + C content, and a putative ribosome-binding sequence, AGAGA, was identified at about 10 nucleotides upstream initiation codon of the bphG gene. The bphG gene can encode a polypeptide of molecular weight 52 kDa containing 486 amino acid residues. A deduced amino acid sequence of HMS dehydrogenase encoded in bphG gene from A. xylosoxidans KF701 exhibited the highest 94% homology with that of corresponding enzyme encoded in xylG from P. putida mt-2, 63% to 90% homology with those of other reported HMS dehydrogenases, and 29% to 42% homology with those of betaine aldehyde dehydrogenase, 5-carboxy-HMS dehydrogenase, aldehyde dehydrogenase, indole-3-acetaldehyde dehydrogenase, succinic semialdehyde dehydrogenase, methylmalonate semialdehyde dehydrogenase, and succinylglutamate 5-semialdehyde dehydrogenase. From an alignment of amino acid sequence of HMS dehydrogenase from A xylosoxidans KF701 with other reported dehydrogenases, putative cofactor NAD(+)-binding regions and catalytic residues were identified.
Collapse
|
125
|
Di Gioia D, Peel M, Fava F, Wyndham RC. Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol 1998; 64:1940-6. [PMID: 9572977 PMCID: PMC106256 DOI: 10.1128/aem.64.5.1940-1946.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IS1071 is a class II transposable element carrying a tnpA gene related to the transposase genes of the Tn3 family. Copies of IS1071 that are conserved with more than 99% nucleotide sequence identity have been found as direct repeats flanking a remarkable variety of catabolic gene sequences worldwide. The sequences of chlorobenzoate catabolic transposons found on pBRC60 (Tn5271) in Niagara Falls, N.Y., and on pCPE3 in Bologna, Italy, show that these transposons were formed from highly homologous IS1071 and cbaABC components (levels of identity, > 99.5 and > 99.3%, respectively). Nevertheless, the junction sequences between the IS1071L and IS1071R elements and the internal DNA differ by 41 and 927 bp, respectively, suggesting that these transposons were assembled independently on the two plasmids. The formation of the right junction in both transposons truncated an open reading frame for a putative aryl-coenzyme A ligase with sequence similarity to benzoate- and p-hydroxybenzoate-coenzyme A ligases of Rhodopseudomonas palustris.
Collapse
|