1
|
Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 2001; 276:40-7. [PMID: 11022034 DOI: 10.1074/jbc.m004392200] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ascorbic acid has been shown to stimulate endothelial nitric oxide (NO) synthesis in a time- and concentration-dependent fashion without affecting NO synthase (NOS) expression or l-arginine uptake. The present study investigates if the underlying mechanism is related to the NOS cofactor tetrahydrobiopterin. Pretreatment of human umbilical vein endothelial cells with ascorbate (1 microm to 1 mm, 24 h) led to an up to 3-fold increase of intracellular tetrahydrobiopterin levels that was concentration-dependent and saturable at 100 microm. Accordingly, the effect of ascorbic acid on Ca(2+)-dependent formation of citrulline (co-product of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) was abolished when intracellular tetrahydrobiopterin levels were increased by coincubation of endothelial cells with sepiapterin (0.001-100 microm, 24 h). In contrast, ascorbic acid did not modify the pterin affinity of endothelial NOS, which was measured in assays with purified tetrahydrobiopterin-free enzyme. The ascorbate-induced increase of endothelial tetrahydrobiopterin was not due to an enhanced synthesis of the compound. Neither the mRNA expression of the rate-limiting enzyme in tetrahydrobiopterin biosynthesis, GTP cyclohydrolase I, nor the activities of either GTP cyclohydrolase I or 6-pyruvoyl-tetrahydropterin synthase, the second enzyme in the de novo synthesis pathway, were altered by ascorbate. Our data demonstrate that ascorbic acid leads to a chemical stabilization of tetrahydrobiopterin. This was evident as an increase in the half-life of tetrahydrobiopterin in aqueous solution. Furthermore, the increase of tetrahydrobiopterin levels in intact endothelial cells coincubated with cytokines and ascorbate was associated with a decrease of more oxidized biopterin derivatives (7,8-dihydrobiopterin and biopterin) in cells and cell supernatants. The present study suggests that saturated ascorbic acid levels in endothelial cells are necessary to protect tetrahydrobiopterin from oxidation and to provide optimal conditions for cellular NO synthesis.
Collapse
|
|
24 |
304 |
2
|
Yang YM, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol 2009; 297:H1829-36. [PMID: 19767531 PMCID: PMC2781386 DOI: 10.1152/ajpheart.00230.2009] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 09/15/2009] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) uncoupling is a mechanism that leads to endothelial dysfunction. Previously, we reported that shear stress-induced release of nitric oxide in vessels of aged rats was significantly reduced and was accompanied by increased production of superoxide (18, 27). In the present study, we investigated the influence of aging on eNOS uncoupling. Mesenteric arteries were isolated from young (3 mo) and aged (24 mo) C57 BL/6J mice. The expression of eNOS protein in young vs. aged mice was not significantly different. However, the aged mice had remarkable increases in the ratio of eNOS monomers to dimers and N(omega)-nitro-l-arginine methyl ester-inhibitable superoxide formation. The level of nitrotyrosine in the total protein and precipitated eNOS of aged vessels was increased compared with that in young vessels. HPLC analysis indicated a reduced level of tetrahydrobiopterin (BH4), an essential cofactor for eNOS, in the mesenteric arteries of aged mice. Quantitative PCR results implied that the diminished BH4 may result from the decreased expressions of GTP cyclohydrolase I and sepiapterin reductase, enzymes involved in BH4 biosynthesis. When isolated and cannulated second-order mesenteric arteries (approximately 150 microm) from aged mice were treated with sepiapterin, acetylcholine-induced, endothelium-dependent vasodilation improved significantly, which was accompanied by stabilization of the eNOS dimer. These data suggest that eNOS uncoupling and increased nitrosylation of eNOS, decreased expressions of GTP cyclohydrolase I and sepiapterin reductase, and subsequent reduced BH4 bioavailability may be important contributors of endothelial dysfunction in aged vessels.
Collapse
|
Comparative Study |
16 |
278 |
3
|
Rosenkranz-Weiss P, Sessa WC, Milstien S, Kaufman S, Watson CA, Pober JS. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest 1994; 93:2236-43. [PMID: 7514193 PMCID: PMC294374 DOI: 10.1172/jci117221] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have examined cytokine regulation of nitric oxide synthase (NOS) in human umbilical vein endothelial cells (HUVEC). 24-h treatment with IFN-gamma (200 U/ml) plus TNF (200 U/ml) or IL-1 beta (5 U/ml) increased NOS activity in HUVEC lysates, measured as conversion of [14C]L-arginine to [14C]L-citrulline. Essentially, all NOS activity in these cells was calcium dependent and membrane associated. Histamine-induced nitric oxide release, measured by chemiluminescence, was greater in cytokine-treated cells than in control cells. Paradoxically, steady-state mRNA levels of endothelial NOS fell by 94 +/- 2.0% after cytokine treatment. Supplementation of HUVEC lysates with exogenous tetrahydrobiopterin (3 microM) greatly increased total NOS activity, and under these assay conditions, cytokine treatment decreased maximal NOS activity. IFN-gamma plus TNF or IL-1 beta increased endogenous tetrahydrobiopterin levels and GTP cyclohydrolase I activity, the rate-limiting enzyme of tetrahydrobiopterin synthesis. Intracellular tetrahydrobiopterin levels were higher in freshly isolated HUVEC than in cultured cells, but were still limiting. We conclude that inflammatory cytokines increase NOS activity in cultured human endothelial cells by increasing tetrahydrobiopterin levels in the face of falling total enzyme; similar regulation appears possible in vivo.
Collapse
|
research-article |
31 |
275 |
4
|
Schallreuter KU, Wood JM, Pittelkow MR, Gütlich M, Lemke KR, Rödl W, Swanson NN, Hitzemann K, Ziegler I. Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science 1994; 263:1444-6. [PMID: 8128228 DOI: 10.1126/science.8128228] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The participation of (6R) 5,6,7,8-tetrahydrobiopterin (6-BH4) in regulating the tyrosine supply for melanin biosynthesis was investigated by the examination of human keratinocytes, melanocytes, and epidermal suction blisters from normal human skin and from patients with the depigmentation disorder vitiligo. Cells, as well as total epidermis, contained high phenylalanine hydroxylase activities and also displayed the capacity to synthesize and recycle 6-BH4, the essential cofactor for this enzyme. In vitiligo, 4a-hydroxy-BH4 dehydratase activity was extremely low or absent, yielding an accumulation of the nonenzymatic by-product 7-tetrahydrobiopterin (7-BH4) at concentrations up to 8 x 10(-6) M in the epidermis. This by-product is a potent competitive inhibitor in the phenylalanine hydroxylase reaction with an inhibition constant of 10(-6) M. Thus, 6-BH4 seems to control melanin biosynthesis in the human epidermis, whereas 7-BH4 may initiate depigmentation in patients with vitiligo.
Collapse
|
Comparative Study |
31 |
245 |
5
|
Abstract
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate as substrates. The imidazole ring of GTP is hydrolytically opened, yielding a 4, 5-diaminopyrimidine which is converted to 5-amino-6-ribitylamino-2, 4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3, 4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is recycled in the biosynthetic pathway. The structure of the biosynthetic enzyme, 6,7-dimethyl-8-ribityllumazine synthase, has been studied in considerable detail.
Collapse
|
Review |
24 |
208 |
6
|
Cronin SJF, Seehus C, Weidinger A, Talbot S, Reissig S, Seifert M, Pierson Y, McNeill E, Longhi MS, Turnes BL, Kreslavsky T, Kogler M, Hoffmann D, Ticevic M, da Luz Scheffer D, Tortola L, Cikes D, Jais A, Rangachari M, Rao S, Paolino M, Novatchkova M, Aichinger M, Barrett L, Latremoliere A, Wirnsberger G, Lametschwandtner G, Busslinger M, Zicha S, Latini A, Robson SC, Waisman A, Andrews N, Costigan M, Channon KM, Weiss G, Kozlov AV, Tebbe M, Johnsson K, Woolf CJ, Penninger JM. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 2018; 563:564-568. [PMID: 30405245 PMCID: PMC6438708 DOI: 10.1038/s41586-018-0701-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
204 |
7
|
Abstract
Tetrahydrobiopterin (BH(4)) cofactor is essential for various processes, and is present in probably every cell or tissue of higher organisms. BH(4) is required for various enzyme activities, and for less defined functions at the cellular level. The pathway for the de novo biosynthesis of BH(4) from GTP involves GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase. Based on gene cloning, recombinant expression, mutagenesis studies, structural analysis of crystals and NMR studies, reaction mechanisms for the biosynthetic and recycling enzymes were proposed. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I, the expression of which may be under the control of cytokine induction. In the liver at least, activity is inhibited by BH(4), but stimulated by phenylalanine through the GTP cyclohydrolase I feedback regulatory protein. The enzymes that depend on BH(4) are the phenylalanine, tyrosine and tryptophan hydroxylases, the latter two being the rate-limiting enzymes for catecholamine and 5-hydroxytryptamine (serotonin) biosynthesis, all NO synthase isoforms and the glyceryl-ether mono-oxygenase. On a cellular level, BH(4) has been found to be a growth or proliferation factor for Crithidia fasciculata, haemopoietic cells and various mammalian cell lines. In the nervous system, BH(4) is a self-protecting factor for NO, or a general neuroprotecting factor via the NO synthase pathway, and has neurotransmitter-releasing function. With regard to human disease, BH(4) deficiency due to autosomal recessive mutations in all enzymes (except sepiapterin reductase) have been described as a cause of hyperphenylalaninaemia. Furthermore, several neurological diseases, including Dopa-responsive dystonia, but also Alzheimer's disease, Parkinson's disease, autism and depression, have been suggested to be a consequence of restricted cofactor availability.
Collapse
|
Review |
25 |
175 |
8
|
Bailey JD, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaiphichai S, Hale A, Starr A, Nandi M, Stylianou E, McShane H, Davis S, Fischer R, Kessler BM, McCullagh J, Channon KM, Crabtree MJ. Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation. Cell Rep 2019; 28:218-230.e7. [PMID: 31269442 PMCID: PMC6616861 DOI: 10.1016/j.celrep.2019.06.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/25/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023] Open
Abstract
Classical activation of macrophages (M(LPS+IFNγ)) elicits the expression of inducible nitric oxide synthase (iNOS), generating large amounts of NO and inhibiting mitochondrial respiration. Upregulation of glycolysis and a disrupted tricarboxylic acid (TCA) cycle underpin this switch to a pro-inflammatory phenotype. We show that the NOS cofactor tetrahydrobiopterin (BH4) modulates IL-1β production and key aspects of metabolic remodeling in activated murine macrophages via NO production. Using two complementary genetic models, we reveal that NO modulates levels of the essential TCA cycle metabolites citrate and succinate, as well as the inflammatory mediator itaconate. Furthermore, NO regulates macrophage respiratory function via changes in the abundance of critical N-module subunits in Complex I. However, NO-deficient cells can still upregulate glycolysis despite changes in the abundance of glycolytic intermediates and proteins involved in glucose metabolism. Our findings reveal a fundamental role for iNOS-derived NO in regulating metabolic remodeling and cytokine production in the pro-inflammatory macrophage.
Collapse
|
research-article |
6 |
174 |
9
|
Crabtree MJ, Tatham AL, Hale AB, Alp NJ, Channon KM. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J Biol Chem 2009; 284:28128-28136. [PMID: 19666465 PMCID: PMC2788863 DOI: 10.1074/jbc.m109.041483] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/06/2009] [Indexed: 11/06/2022] Open
Abstract
Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability.
Collapse
|
research-article |
16 |
174 |
10
|
Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Wachter H. Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-gamma. Biochem J 1989; 262:861-6. [PMID: 2511835 PMCID: PMC1133353 DOI: 10.1042/bj2620861] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In all of eight tested human cells and cell lines with inducible indoleamine 2,3-dioxygenase (EC 1.13.11.17) tetrahydrobiopterin biosynthesis was activated by interferon-gamma. This was demonstrated by GTP cyclohydrolase I (EC 3.5.4.16) activities and intracellular neopterin and biopterin concentrations. Pteridine synthesis was influenced by extracellular tryptophan. In T 24-cell extracts, submillimolar concentrations of tetrahydrobiopterin stimulated the indoleamine 2,3-dioxygenase reaction.
Collapse
|
research-article |
36 |
159 |
11
|
Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 2009; 284:1136-44. [PMID: 19011239 DOI: 10.1074/jbc.m805403200] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is a critical determinant of endothelial nitric-oxide synthase (eNOS) activity. In the absence of BH4, eNOS becomes "uncoupled" and generates superoxide rather than NO. However, the stoichiometry of intracellular BH4/eNOS interactions is not well defined, and it is unclear whether intracellular BH4 deficiency alone is sufficient to induce eNOS uncoupling. To address these questions, we developed novel cell lines with tet-regulated expression of human GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in BH4 synthesis, to selectively induce intracellular BH4 deficiency by incubation with doxycycline. These cells were stably co-transfected to express a human eNOS-green fluorescent protein fusion protein, selecting clones expressing either low (GCH/eNOS-LOW) or high (GCH/eNOS-HIGH) levels. Doxycycline abolished GTPCH mRNA expression and GTPCH protein, leading to markedly diminished total biopterin levels and a decreased ratio of BH4 to oxidized biopterins in cells expressing eNOS. Intracellular BH4 deficiency induced superoxide generation from eNOS, as assessed by N-nitro-L-arginine methyl ester inhibitable 2-hydroxyethidium generation, and attenuated NO production. Quantitative analysis of cellular BH4 versus superoxide production between GCH/eNOS-LOW and GCH/eNOS-HIGH cells revealed a striking linear relationship between eNOS protein and cellular BH4 stoichiometry, with eNOS uncoupling at eNOS:BH4 molar ratio >1. Furthermore, increasing the intracellular BH2 concentration in the presence of a constant eNOS:BH4 ratio was sufficient to induce eNOS-dependent superoxide production. This specific, reductionist approach in a cell-based system reveals that eNOS:BH4 reaction stoichiometry together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling, even in the absence of exogenous oxidative stress.
Collapse
|
|
16 |
155 |
12
|
Xu J, Wu Y, Song P, Zhang M, Wang S, Zou MH. Proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 2007; 116:944-53. [PMID: 17679617 DOI: 10.1161/circulationaha.106.684795] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tetrahydrobiopterin (BH4) deficiency is reported to uncouple the enzymatic activity of endothelial nitric oxide synthase in diabetes mellitus. The mechanism by which diabetes actually leads to BH4 deficiency remains elusive. Here, we demonstrate that diabetes reduced BH4 by increasing 26S proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I (GTPCH), a rate-limiting enzyme in the synthesis of BH4, in parallel with increased formation of both superoxide and peroxynitrite (ONOO-). METHODS AND RESULTS Exposure of human umbilical vein endothelial cells to high glucose concentrations (30 mmol/L D-glucose) but not to high osmotic conditions (25 mmol/L L-glucose plus 5 mmol/L D-glucose) significantly lowered the levels of both GTPCH protein and BH4. In addition, high glucose increased both the 26S proteasome activity and the ubiquitination of GTPCH. Inhibition of the 26S proteasome with either MG132 or PR-11 prevented the high glucose-triggered reduction of GTPCH and BH4. Exposure of human umbilical vein endothelial cells to exogenous ONOO- increased proteasome activity and 3-nitrotyrosine in 26S proteasome. Furthermore, adenoviral overexpression of superoxide dismutase and inhibition of endothelial nitric oxide synthase with N(G)-nitro-L-arginine methyl ester significantly attenuated the high glucose-induced activation of 26S proteasome and the reduction of GTPCH. Finally, administration of MG132 or a superoxide dismutase mimetic, tempol, reversed the diabetes mellitus-induced reduction of GTPCH and BH4 and endothelial dysfunction in streptozotocin-induced diabetes mellitus. CONCLUSIONS We conclude that diabetes mellitus triggers BH4 deficiency by increasing proteasome-dependent degradation of GTPCH.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
152 |
13
|
Crabtree MJ, Channon KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 2011; 25:81-8. [PMID: 21550412 PMCID: PMC5357050 DOI: 10.1016/j.niox.2011.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/08/2023]
Abstract
Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of L-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can 'recycle' BH2, and thus regenerate BH4. It is therefore likely that net BH4 cellular bioavailability reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.
Collapse
|
Review |
14 |
148 |
14
|
Levine RA, Miller LP, Lovenberg W. Tetrahydrobiopterin in striatum: localization in dopamine nerve terminals and role in catecholamine synthesis. Science 1981; 214:919-21. [PMID: 6117945 DOI: 10.1126/science.6117945] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The hydroxylase cofactor, tetrahydrobiopterin, and its biosynthetic system are localized in dopaminergic nerve terminals in the striatum. This conclusion is based on the nearly equivalent loss of tyrosine hydroxylase and tetrahydrobiopterin and its initial biosynthetic enzyme, guanosine triphosphate cyclohydrolase, after injection of 6-hydroxydopamine into the substantia nigra. The role of the hydroxylase cofactor in the regulation of dopamine synthesis is reassessed.
Collapse
|
|
44 |
144 |
15
|
Nagata D, Takahashi M, Sawai K, Tagami T, Usui T, Shimatsu A, Hirata Y, Naruse M. Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 2006; 48:165-71. [PMID: 16754797 DOI: 10.1161/01.hyp.0000226054.53527.bb] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the proinflammatory and profibrotic actions of aldosterone (Aldo) on the vasculature have been reported, the effects and molecular mechanisms of Aldo on endothelial function are yet to be determined. We investigated how Aldo regulates endothelial NO synthase (eNOS) function in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated for 16 hours with Aldo 10(-7) mol/L. The concentration of reactive oxygen species was estimated by measuring 2',7'-dichlorodihydrofluorescein diacetate chemiluminescence. Signal transduction was estimated by Western immunoblots. Real-time RT-PCR was performed to measure expression of transcripts of endogenous GTP cyclohydrolase-1 and components of reduced nicotinamide-adenine dinucleotide phosphate oxidase. To eliminate the possible effect of the glucocorticoid receptor (GR) and to emphasize the role of mineralocorticoid receptor, we used GR small interfering RNA and knocked down GR expression in several experiments. NO output was estimated by intracellular cGMP concentration. Reactive oxygen species production increased significantly in Aldo-treated HUVECs but was abolished by pretreatment with eplerenone. Transcripts of p47(phox) were increased by Aldo treatment. Vascular endothelial growth factor-induced eNOS Ser 1177 but not Akt Ser 473 phosphorylation levels were reduced significantly by pretreatment with Aldo. Pretreatment with either eplerenone or okadaic acid restored phosphorylation levels of eNOS Ser 1177 in Aldo-treated cells, suggesting that protein phosphatase 2A was upregulated by Aldo via mineralocorticoid receptor. The decrease in NO output caused by Aldo pretreatment was reversed significantly by 5,6,7,8-tetrahydrobiopterin, GTP cyclohydrolase-1 overexpression, or p47(phox) knockdown. These results suggest that Aldo inhibits eNOS function through bimodal mechanisms of 5,6,7,8-tetrahydrobiopterin deficiency and protein phosphatase 2A activation.
Collapse
|
|
19 |
137 |
16
|
Werner-Felmayer G, Golderer G, Werner ER. Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr Drug Metab 2002; 3:159-73. [PMID: 12003348 DOI: 10.2174/1389200024605073] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahydrobiopterin (H4-biopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, i.e. the hydroxylases of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan, of ether lipid oxidase, and of the three nitric oxide synthase (NOS) isoenzymes. As a consequence, H4-biopterin plays a key role in a vast number of biological processes and pathological states associated with neurotransmitter formation, vasorelaxation, and immune response. In mammals, its biosynthesis is controlled by hormones, cytokines and certain immune stimuli. This review aims to summarize recent developments concerning regulation of H4-biopterin biosynthetic and regulatory enzymes and pharmacological effects of H4-biopterin in various conditions, e.g. endothelial dysfunction or apoptosis of neuronal cells. Also, approaches towards gene therapy of diseases like the different forms of phenylketonuria or of Parkinson's disease are reviewed. Additional emphasis is given to H4-biopterin biosynthesis and function in non-mammalian species such as fruit fly, zebra fish, fungi, slime molds, the bacterium Nocardia as well as to the parasitic protozoan genus of Leishmania that is not capable of pteridine biosynthesis but has evolved a sophisticated salvage network for scavenging various pteridine compounds, notably folate and biopterin.
Collapse
|
Review |
23 |
122 |
17
|
Xia N, Daiber A, Habermeier A, Closs EI, Thum T, Spanier G, Lu Q, Oelze M, Torzewski M, Lackner KJ, Münzel T, Förstermann U, Li H. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 2010; 335:149-54. [PMID: 20610621 DOI: 10.1124/jpet.110.168724] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A crucial cause of the decreased bioactivity of nitric oxide (NO) in cardiovascular diseases is the uncoupling of the endothelial NO synthase (eNOS) caused by the oxidative stress-mediated deficiency of the NOS cofactor tetrahydrobiopterin (BH(4)). The reversal of eNOS uncoupling might represent a novel therapeutic approach. The treatment of apolipoprotein E knockout (ApoE-KO) mice with resveratrol resulted in the up-regulation of superoxide dismutase (SOD) isoforms (SOD1-SOD3), glutathione peroxidase 1 (GPx1), and catalase and the down-regulation of NADPH oxidases NOX2 and NOX4 in the hearts of ApoE-KO mice. This was associated with reductions in superoxide, 3-nitrotyrosine, and malondialdehyde levels. In parallel, the cardiac expression of GTP cyclohydrolase 1 (GCH1), the rate-limiting enzyme in BH(4) biosynthesis, was enhanced by resveratrol. This enhancement was accompanied by an elevation in BH(4) levels. Superoxide production from ApoE-KO mice hearts was reduced by the NOS inhibitor L-N(G)-nitro-arginine methyl ester, indicating eNOS uncoupling in this pathological model. Resveratrol treatment resulted in a reversal of eNOS uncoupling. Treatment of human endothelial cells with resveratrol led to an up-regulation of SOD1, SOD2, SOD3, GPx1, catalase, and GCH1. Some of these effects were preventable with sirtinol, an inhibitor of the protein deacetylase sirtuin 1. In summary, resveratrol decreased superoxide production and enhanced the inactivation of reactive oxygen species. The resulting reduction in BH(4) oxidation, together with the enhanced biosynthesis of BH(4) by GCH1, probably was responsible for the reversal of eNOS uncoupling. This novel mechanism (reversal of eNOS uncoupling) might contribute to the protective effects of resveratrol.
Collapse
|
|
15 |
122 |
18
|
Wang S, Xu J, Song P, Viollet B, Zou MH. In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes 2009; 58:1893-901. [PMID: 19528375 PMCID: PMC2712774 DOI: 10.2337/db09-0267] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 05/15/2009] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The activation of AMP-activated protein kinase (AMPK) has been reported to improve endothelial function. However, the targets of AMPK in endothelial cells remain poorly defined. The aim of this study was to test whether AMPK suppresses the degradation of GTP-cyclohydrolase (GTPCH I), a key event in vascular endothelial dysfunction in diabetes. RESEARCH DESIGN AND METHODS Both human umbilical vein endothelial cells and aortas isolated from streptozotocin-injected diabetic mice were assayed for phospho-AMPK (Thr172), GTPCH I, tetrahydrobiopterin (BH4), and endothelial functions. RESULTS Oral administration of metformin (300 mg x kg(-1) . day(-1), 4 weeks) in streptozotocin-injected mice significantly blunted the diabetes-induced reduction of AMPK phosphorylation at Thr172. Metformin treatment also normalized acetylcholine-induced endothelial relaxation and increased the levels of GTPCH I and BH4. The administration of AICAR, an AMPK activator, or adenoviral overexpression of a constitutively active mutant of AMPK abolished the high-glucose-induced (30 mmol/l) reduction of GTPCH I, biopeterins, and BH4 but had no effect on GTPCH I mRNA. Furthermore, AICAR or overexpression of AMPK inhibited the high-glucose-enhanced 26S proteasome activity. Consistently, inhibition of the proteasome by MG132 abolished high-glucose-induced reduction of GTPCH I in human umbilical vein endothelial cells. Further, aortas isolated from AMPKalpha2(-/-) mice, which exhibited elevated 26S proteasome activity, had reduced levels of GTPCH I and BH4. Finally, either administration of MG132 or supplementation of l-sepiapterin normalized the impaired endothelium-dependent relaxation in aortas isolated from AMPKalpha2(-/-) mice. CONCLUSIONS We conclude that AMPK activation normalizes vascular endothelial function by suppressing 26S proteasome-mediated GTPCH I degradation in diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
122 |
19
|
Harada T, Kagamiyama H, Hatakeyama K. Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity. Science 1993; 260:1507-10. [PMID: 8502995 DOI: 10.1126/science.8502995] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Guanosine triphosphate (GTP) cyclohydrolase I, the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin (BH4), is subject to feedback inhibition by BH4, a cofactor for phenylalanine hydroxylase. Inhibition was found to depend specifically on BH4 and the presence of another protein (p35). The inhibition occurred through BH4-dependent complex formation between p35 protein and GTP cyclohydrolase I. Furthermore, the inhibition was specifically reversed by phenylalanine, and, in conjunction with p35, phenylalanine reduced the cooperativity of GTP cyclohydrolase I. These findings also provide a molecular basis for high plasma BH4 concentrations observed in patients with hyperphenylalaninemia caused by phenylalanine hydroxylase deficiency.
Collapse
|
|
32 |
118 |
20
|
Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:113-20. [PMID: 17982884 DOI: 10.1007/978-3-211-73574-9_14] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biochemical studies on postmortem brains of patients with Parkinson's disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCHI), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTH1-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine beta-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains. Programmed cell death of the nigro-striatal dopamine neurons in PD has been suggested from the following findings on postmortem brains: (1) increased levels of pro-inflammatory cytokines such as TNF-alpha and IL-6; (2) increased levels of apoptosis-related factors such as TNF-alpha receptor R1 (p 55), soluble Fas and bcl-2, and increased activities of caspases 1 and 3; and (3) decreased levels of neurotrophins such as brain-derived nerve growth factor (BDNF). Immunohistochemical data and the mRNA levels of the above molecules in PD brains supported these biochemical data. We confirmed by double immunofluorescence staining the production of TNF-alpha and IL-6 in activated microglia in the putamen of PD patients. Owing to the recent development of highly sensitive and wide-range analytical methods for quantifying mRNAs and proteins, future assays of the levels of various mRNAs and proteins not only in micro-dissected brain tissues containing neurons and glial cells, but also in single cells from frozen brain slices isolated by laser capture micro-dissection, coupled with toluidine blue, Nissl staining or immunohistochemical staining, should further contribute to the elucidation of the molecular pathogenesis of PD and other neurodegenerative or neuropsychiatric diseases.
Collapse
|
Review |
18 |
115 |
21
|
Baptista MJ, O'Farrell C, Daya S, Ahmad R, Miller DW, Hardy J, Farrer MJ, Cookson MR. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines. J Neurochem 2003; 85:957-68. [PMID: 12716427 DOI: 10.1046/j.1471-4159.2003.01742.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.
Collapse
|
|
22 |
112 |
22
|
Schoedon G, Troppmair J, Fontana A, Huber C, Curtius HC, Niederwieser A. Biosynthesis and metabolism of pterins in peripheral blood mononuclear cells and leukemia lines of man and mouse. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:303-10. [PMID: 3301338 DOI: 10.1111/j.1432-1033.1987.tb13515.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cellular origin and the control of neopterin release associated with immune stimulation was studied in cell cultures. Using purified human mononuclear cells, the intracellular change in concentrations of GTP and pterins was measured under various kinds of stimulation. Three enzymes involved in tetrahydrobiopterin biosynthesis, i.e. GTP cyclohydrolase I, 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase, were also determined. Human macrophages stimulated with culture supernatant from activated T-lymphocytes were the main producers of neopterin. In these cells, GTP cyclohydrolase I activity was elevated due to high GTP levels and therefore neopterin accumulated. Human macrophages lack 6-pyruvoyl tetrahydropterin synthase activity. Exogenous tetrahydrobiopterin added to the culture medium of stimulated T cells and macrophages suppressed the elevation of GTP cyclohydrolase I activity and neopterin concentration, but not the elevation of intracellular GTP. Stimulation of macrophages with recombinant human interferon-gamma and neutralization of the effect of T cell supernatants by addition of a monoclonal antibody specific for human interferon-gamma showed that immune interferon induced the alterations in GTP cyclohydrolase I activity and neopterin concentration. In the human macrophage line U-937 and in the leukemia line HL-60, no GTP cyclohydrolase I activity or intracellular pterins were detected, but high levels of GTP. In mouse mononuclear cells, no neopterin was detected, but biopterin and pterin. After stimulation, biopterin was elevated in the same way as neopterin in human mononuclear cells. This is explained by the different regulation of the rate-limiting steps of tetrahydrobiopterin biosynthesis in man and in mouse. These results suggest that neopterin is an unspecific marker for the activation of the cellular immune system.
Collapse
|
|
38 |
106 |
23
|
Zheng JS, Yang XQ, Lookingland KJ, Fink GD, Hesslinger C, Kapatos G, Kovesdi I, Chen AF. Gene transfer of human guanosine 5'-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 2003; 108:1238-45. [PMID: 12925450 DOI: 10.1161/01.cir.0000089082.40285.c3] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We recently reported that arterial superoxide (O2-) is augmented by increased endothelin-1 (ET-1) in deoxycorticosterone acetate (DOCA)-salt hypertension, a model of low renin hypertension. Tetrahydrobiopterin (BH4), a potent reducing molecule with antioxidant properties and an essential cofactor for endothelial nitric oxide synthase, protects against O2--induced vascular dysfunction. However, the interaction between O2- and BH4 on endothelial function and the underlying mechanisms are unknown. METHODS AND RESULTS The present study tested the hypothesis that BH4 deficiency due to ET-1-induced O2- leads to impaired endothelium-dependent relaxation and that gene transfer of human guanosine 5'-triphosphate (GTP) cyclohydrolase I (GTPCH I), the first and rate-limiting enzyme for BH4 biosynthesis, reverses such deficiency and endothelial dysfunction in carotid arteries of DOCA-salt rats. There were significantly increased arterial O2- levels and decreased GTPCH I activity and BH4 levels in DOCA-salt compared with sham rats. Treatment of arteries of DOCA-salt rats with the selective ETA receptor antagonist ABT-627, NADPH oxidase inhibitor apocynin, or superoxide dismutase (SOD) mimetic tempol abolished O2- and restored BH4 levels. Basal arterial NO release and endothelium-dependent relaxations were impaired in DOCA-salt rats, conditions that were improved by apocynin or tempol treatment. Gene transfer of GTPCH I restored arterial GTPCH I activity and BH4 levels, resulting in reduced O2- and improved endothelium-dependent relaxation and basal NO release in DOCA-salt rats. CONCLUSIONS These results indicate that a BH4 deficiency resulting from ET-1-induced O2- via an ETA/NADPH oxidase pathway leads to endothelial dysfunction, and gene transfer of GTPCH I reverses the BH4 deficiency and endothelial dysfunction by reducing O2- in low renin mineralocorticoid hypertension.
Collapse
|
|
22 |
105 |
24
|
Shi W, Meininger CJ, Haynes TE, Hatakeyama K, Wu G. Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 2004; 41:415-34. [PMID: 15509890 DOI: 10.1385/cbb:41:3:415] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tetrahydrobiopterin (BH4) is a member of the pterin family that has a core structure of pyrazino-2,3-d-pyrimidine rings. Because BH4 is an essential cofactor for the biosynthesis of nitric oxide (a major vasodilator), there is growing interest in BH4 biochemistry in endothelial cells (the cells that line blood vessels). BH4 is synthesized via de novo and salvage pathways from guanosine 5'-triphosphate (GTP) and 7,8-dihydrobiopterin, respectively, in animal cells. GTP cyclohydrolase-I (GTP-CH) is the first and rate-controlling enzyme in the de novo pathway. Available evidence shows that endothelial GTP-CH expression and BH4 synthesis are stimulated by a wide array of nutritional (phenylalanine and arginine), hormonal (insulin and estrogen), immunological (inflammatory cytokines including interleukin [IL]-1, interferon-gamma, and tumor necrosis factor-alpha), therapeutic (statins and cyclosporin A), and endothelium-derived (basic fibroblast growth factor and H2O2) factors. In contrast, glucocorticoids and anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor [TGF]-beta) inhibit endothelial BH4 synthesis. Because BH4 is oxidized to 7,8-dihydrobiopterin and 7,8-dihydropterin at physiological pH, endothelial BH4 homeostasis is regulated by both BH4 synthesis and its oxidation. Vitamin C, folate, and other antioxidants enhance endothelial BH4 bioavailability through chemical stabilization or scavenging of reactive oxygen species, thereby contributing to the maintenance of physiological homeostasis in the endothelium. New knowledge about the cellular and molecular mechanisms for the regulation of endothelial BH4 synthesis and bioavailability is beneficial for developing effective means to prevent and treat cardiovascular disorders, the leading cause of death in developed nations.
Collapse
|
Review |
21 |
104 |
25
|
Wenzel P, Schulz E, Oelze M, Müller J, Schuhmacher S, Alhamdani MSS, Debrezion J, Hortmann M, Reifenberg K, Fleming I, Münzel T, Daiber A. AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. Free Radic Biol Med 2008; 45:619-26. [PMID: 18539157 DOI: 10.1016/j.freeradbiomed.2008.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/30/2008] [Accepted: 05/09/2008] [Indexed: 12/22/2022]
Abstract
Several enzymatic sources of reactive oxygen species (ROS) were described as potential reasons of eNOS uncoupling in diabetes mellitus. In the present study, we investigated the effects of AT1-receptor blockade with chronic telmisartan (25 mg/kg/day, 6.5 weeks) therapy on expression of the BH4-synthesizing enzyme GTP-cyclohydrolase I (GCH-I), eNOS uncoupling, and endothelial dysfunction in streptozotocin (STZ, 60 mg/kg iv, 7 weeks)-induced diabetes mellitus (type I). Telmisartan therapy did not modify blood glucose and body weight. Aortas from diabetic animals had vascular dysfunction as revealed by isometric tension studies (acetylcholine and nitroglycerin potency). Vascular and cardiac ROS produced by NADPH oxidase, mitochondria, eNOS, and xanthine oxidase were increased in the diabetic group as was the expression of NADPH oxidase subunits at the protein level. The expression of GCH-I and the phosphorylation of eNOS at Ser1177 was decreased by STZ treatment. Therapy with telmisartan normalized these parameters. The present study demonstrates for the first time that AT1-receptor blockade by telmisartan prevents downregulation of the BH4 synthase GCH-I and thereby eNOS uncoupling in experimental diabetes. In addition, telmisartan inhibits activation of superoxide sources like NADPH oxidase, mitochondria, and xanthine oxidase. These effects may explain the beneficial effects of telmisartan on endothelial dysfunction in diabetes.
Collapse
|
|
17 |
99 |