101
|
Pesenti C, Muzza M, Colombo C, Proverbio MC, Farè C, Ferrero S, Miozzo M, Fugazzola L, Tabano S. MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine 2018; 61:36-41. [PMID: 29214440 PMCID: PMC5997117 DOI: 10.1007/s12020-017-1483-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE We exploited the MassARRAY (MA) genotyping platform to develop the "PTC-MA assay", which allows the simultaneous detection of 13 hotspot mutations, in the BRAF, KRAS, NRAS, HRAS, TERT, AKT1, PIK3CA, and EIF1AX genes, and six recurrent genetic rearrangements, involving the RET and TRK genes in papillary thyroid cancer (PTC). METHODS The assay was developed using DNA and cDNA from 12 frozen and 11 formalin-fixed paraffin embedded samples from 23 PTC cases, together with positive and negative controls. RESULTS The PTC-MA assay displays high sensitivity towards point mutations and gene rearrangements, detecting their presence at frequencies as low as 5%. Moreover, this technique allows quantification of the mutated alleles identified at each tested locus. CONCLUSIONS The PTC-MA assay is a novel MA test, which is able to detect fusion genes generated by genomic rearrangements concomitantly with the analysis of hotspot point mutations, thus allowing the evaluation of key diagnostic, prognostic, and therapeutic markers of PTC in a single experiment without any informatics analysis. As the assay is sensitive, robust, easily achievable, and affordable, it is suitable for the diagnostic practice. Finally, the PTC-MA assay can be easily implemented and updated by adding novel genetic markers, according to clinical requirements.
Collapse
|
102
|
Tripathi S, Deem MW. The Standard Genetic Code Facilitates Exploration of the Space of Functional Nucleotide Sequences. J Mol Evol 2018; 86:325-339. [PMID: 29959476 DOI: 10.1007/s00239-018-9852-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/21/2018] [Indexed: 01/07/2023]
Abstract
The standard genetic code is well known to be optimized for minimizing the phenotypic effects of single-nucleotide substitutions, a property that was likely selected for during the emergence of a universal code. Given the fitness advantage afforded by high standing genetic diversity in a population in a dynamic environment, it is possible that selection to explore a large fraction of the space of functional proteins also occurred. To determine whether selection for such a property played a role during the emergence of the nearly universal standard genetic code, we investigated the number of functional variants of the Escherichia coli PhoQ protein explored at different time scales under translation using different genetic codes. We found that the standard genetic code is highly optimal for exploring a large fraction of the space of functional PhoQ variants at intermediate time scales as compared to random codes. Environmental changes, in response to which genetic diversity in a population provides a fitness advantage, are likely to have occurred at these intermediate time scales. Our results indicate that the ability of the standard code to explore a large fraction of the space of functional sequence variants arises from a balance between robustness and flexibility and is largely independent of the property of the standard code to minimize the phenotypic effects of mutations. We propose that selection to explore a large fraction of the functional sequence space while minimizing the phenotypic effects of mutations contributed toward the emergence of the standard code as the universal genetic code.
Collapse
|
103
|
Khatami M, Mazidi M, Taher S, Heidari MM, Hadadzadeh M. Novel Point Mutations in the NKX2.5 Gene in Pediatric Patients with Non-Familial Congenital Heart Disease. ACTA ACUST UNITED AC 2018; 54:medicina54030046. [PMID: 30344277 PMCID: PMC6122093 DOI: 10.3390/medicina54030046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023]
Abstract
Background and objective: Congenital heart disease (CHD) is the most common birth abnormality in the structure or function of the heart that affects approximately 1% of all newborns. Despite its prevalence and clinical importance, the etiology of CHD remains mainly unknown. Somatic and germline mutations in cardiac specific transcription factor genes have been identified as the factors responsible for various forms of CHD, particularly ventricular septal defects (VSDs), tetralogy of Fallot (TOF), and atrial septal defects (ASDs). p. NKX2.5 is a homeodomain protein that controls many of the physiological processes in cardiac development including specification and proliferation of cardiac precursors. The aim of our study was to evaluate the NKX2.5 gene mutations in sporadic pediatric patients with clinical diagnosis of congenital heart malformations. Materials and methods: In this study, we investigated mutations of the NKX2.5 gene’s coding region in 105 Iranian pediatric patients with non-familial CHD by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) and direct sequencing. Results: We observed a total of four mutations, of which, two were novel DNA sequence variants in the coding region of exon 1 (c. 95 A > T and c. 93 A > T) and two others were previously reported as single-nucleotide polymorphisms (SNPs), namely rs72554028 (c. 2357 G > A) and rs3729753 (c. 606 G > C) in exon 2. Further, observed mutations are completely absent in normal healthy individuals (n = 92). Conclusion: These results suggest that NKX2.5 mutations are highly rare in CHD patients. However, in silico analysis proves that c.95 A > T missense mutation in NKX2.5 gene is probably pathogenic and may be contributing to the risk of sporadic CHD in the Iranian population.
Collapse
|
104
|
Derrien B, Clavel M, Baumberger N, Iki T, Sarazin A, Hacquard T, Ponce MR, Ziegler-Graff V, Vaucheret H, Micol JL, Voinnet O, Genschik P. A Suppressor Screen for AGO1 Degradation by the Viral F-Box P0 Protein Uncovers a Role for AGO DUF1785 in sRNA Duplex Unwinding. THE PLANT CELL 2018; 30:1353-1374. [PMID: 29848768 PMCID: PMC6048793 DOI: 10.1105/tpc.18.00111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/19/2018] [Accepted: 05/18/2018] [Indexed: 05/09/2023]
Abstract
In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing and is a key component in antiviral responses. The polerovirus F-box P0 protein triggers AGO1 degradation as a viral counterdefense. Here, we identified a motif in AGO1 that is required for its interaction with the S phase kinase-associated protein1-cullin 1-F-box protein (SCF) P0 (SCFP0) complex and subsequent degradation. The AGO1 P0 degron is conserved and confers P0-mediated degradation to other AGO proteins. Interestingly, the degron motif is localized in the DUF1785 domain of AGO1, in which a single point mutation (ago1-57, obtained by forward genetic screening) compromises recognition by SCFP0 Recapitulating formation of the RNA-induced silencing complex in a cell-free system revealed that this mutation impairs RNA unwinding, leading to stalled forms of AGO1 still bound to double-stranded RNAs. In vivo, the DUF1785 is required for unwinding perfectly matched siRNA duplexes, but is mostly dispensable for unwinding imperfectly matched miRNA duplexes. Consequently, its mutation nearly abolishes phased siRNA production and sense transgene posttranscriptional gene silencing. Overall, our work sheds new light on the mode of AGO1 recognition by P0 and the in vivo function of DUF1785 in RNA silencing.
Collapse
|
105
|
Kodahl AR, Ehmsen S, Pallisgaard N, Jylling AMB, Jensen JD, Lænkholm A, Knoop AS, Ditzel HJ. Correlation between circulating cell-free PIK3CA tumor DNA levels and treatment response in patients with PIK3CA-mutated metastatic breast cancer. Mol Oncol 2018; 12:925-935. [PMID: 29689598 PMCID: PMC5983134 DOI: 10.1002/1878-0261.12305] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 01/14/2023] Open
Abstract
Liquid biopsies focusing on the analysis of cell-free circulating tumor DNA (ctDNA) may have important clinical implications for personalized medicine, including early detection of cancer, therapeutic guidance, and monitoring of recurrence. Mutations in the oncogene, PIK3CA, are frequently observed in breast cancer and have been suggested as a predictive biomarker for PI3K-selective inhibitor treatment. In this study, we analyzed the presence of PIK3CA mutations in formalin-fixed, paraffin-embedded, metastatic tissue and corresponding ctDNA from serum of patients with advanced breast cancer using a highly sensitive, optimized droplet digital PCR (ddPCR) assay. We found 83% of patients with PIK3CA mutation in the metastatic tumor tissue also had detectable PIK3CA mutations in serum ctDNA. Patients lacking the PIK3CA mutation in corresponding serum ctDNA all had nonvisceral metastatic disease. Four patients with detectable PIK3CA-mutated ctDNA were followed with an additional serum sample during oncological treatment. In all cases, changes in PIK3CA ctDNA level correlated with treatment response. Our results showed high concordance between detection of PIK3CA mutations in tumor tissue and in corresponding serum ctDNA and suggest that serum samples from patients with advanced breast cancer and ddPCR may be used for PIK3CA mutation status assessment to complement imaging techniques as an early marker of treatment response.
Collapse
|
106
|
Takemaru M, Shimoe Y, Sato K, Hashiguchi A, Takashima H, Kuriyama M. [Transient, recurrent, white matter lesions in X-linked Charcot-Marie-Tooth disease with heterozygote mutation of GJB1 gene: case report of a female patient]. Rinsho Shinkeigaku 2018; 58:302-307. [PMID: 29710024 DOI: 10.5692/clinicalneurol.cn-001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 32-year-old woman showed transient central type facial nerve palsy and bulbar symptoms. Brain MRI revealed high intensity signals in the cerebral white matter, splenium of corpus callosum, and posterior limb of internal capsule. Two elder brothers of the patient had distal dominant peripheral neuropathies in four limbs. In this family, the point mutation of GJB1 gene, encoding connexin 32, was revealed and X-linked Charcot-Marie-Tooth disease (CMTX1) was diagnosed. The presented case was a heterozygote of this mutation. She showed severe transient central nervous system (CNS) symptoms and subclinical demyelinating peripheral neuropathy. The CNS symptoms and alterations of brain images were very similar among three siblings. There are many reports on male patients with CMTX1 who show associated CN symptoms, but female patients are very rare. There has been no previous report of a CMTX1 patient similar to the patient presented here. The trigger factors have been recognized at the onset of transient CN symptoms in these cases. The prevention of these factors is important for the management of such patients.
Collapse
|
107
|
Molparia B, Oliveira G, Wagner JL, Spencer EG, Torkamani A. A feasibility study of colorectal cancer diagnosis via circulating tumor DNA derived CNV detection. PLoS One 2018; 13:e0196826. [PMID: 29791457 PMCID: PMC5965833 DOI: 10.1371/journal.pone.0196826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/22/2018] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has shown great promise as a biomarker for early detection of cancer. However, due to the low abundance of ctDNA, especially at early stages, it is hard to detect at high accuracies while keeping sequencing costs low. Here we present a pilot stage study to detect large scale somatic copy numbers variations (CNVs), which contribute more molecules to ctDNA signal compared to point mutations, via cell free DNA sequencing. We show that it is possible to detect somatic CNVs in early stage colorectal cancer (CRC) patients and subsequently discriminate them from normal patients. With 25 normal and 24 CRC samples, we achieve 100% specificity (lower bound confidence interval: 86%) and ~79% sensitivity (95% confidence interval: 63% - 95%,), though the performance should be considered with caution given the limited sample size. We report a lack of concordance between the CNVs detected via cfDNA sequencing and CNVs identified in parent tissue samples. However, recent findings suggest that a lack of concordance is expected for CNVs in CRC because of their sub-clonal nature. Finally, the CNVs we detect very likely contribute to cancer progression as they lie in functionally important regions, and have been shown to be associated with CRC specifically. This study paves the path for a larger scale exploration of the potential of CNV detection for both diagnoses and prognoses of cancer.
Collapse
|
108
|
Prior H, MacConnachie L, Martinez JL, Nicholl GCB, Beg AA. A Rapid and Facile Pipeline for Generating Genomic Point Mutants in C. elegans Using CRISPR/Cas9 Ribonucleoproteins. J Vis Exp 2018:57518. [PMID: 29757293 PMCID: PMC6101052 DOI: 10.3791/57518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The clustered regularly interspersed palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) prokaryotic adaptive immune defense system has been co-opted as a powerful tool for precise eukaryotic genome engineering. Here, we present a rapid and simple method using chimeric single guide RNAs (sgRNA) and CRISPR-Cas9 Ribonucleoproteins (RNPs) for the efficient and precise generation of genomic point mutations in C. elegans. We describe a pipeline for sgRNA target selection, homology-directed repair (HDR) template design, CRISPR-Cas9-RNP complexing and delivery, and a genotyping strategy that enables the robust and rapid identification of correctly edited animals. Our approach not only permits the facile generation and identification of desired genomic point mutant animals, but also facilitates the detection of other complex indel alleles in approximately 4 - 5 days with high efficiency and a reduced screening workload.
Collapse
|
109
|
Segura-Uribe J, Santiago-Payán H, Quintero A. Transitions and Transversions in Ki-Ras Gene in Colorectal Cancers in Mexican Patients. TUMORI JOURNAL 2018; 89:259-62. [PMID: 12908779 DOI: 10.1177/030089160308900305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims & Background An important increase in the incidence of colorectal cancers has been detected in the last 15 years in Mexico. This fact has been attributed to several causes, including the change in diet acquired from industrialized countries. Various groups have studied the mutational pattern of oncogenes, including Ki-ras gene, in colorectal cancers from different human populations. The aim of this work was to study the prevalence of mutations at codons 12, 13 and 61 of the Ki-ras gene in 37 colorectal tumors from Mexican patients and to correlate them with clinical data. Methods Point mutations were studied in 37 colorectal cancers at codons 12 and 13 of the Ki-ras gene, using PCR followed by RFLP. We also performed PCR-SSCP to identify mutations at codon 61. We confirmed mutations by sequence analysis in all the altered codons. Results Our results indicated that 24.3% of the tumors presented mutations at codon 12, 5.4% at codon 13, and 2.7% at codon 61 of the Ki-ras gene. We found that 75% of these mutations were transitions and 25% transversions. The overall results indicated that the frequency of Ki-ras mutations in colorectal cancers in a sample of a Mexican population (Mexico City) was 32.4%, which is similar to that reported in other populations. We did not find a correlation between the Ki-ras mutations and gender, location of the tumor, or Dukes’ stage, but survival of the patient without recurrence was statistically significant. Conclusions The study of colorectal cancer indicated that in a Mexican population Ki-ras mutations were present in tumors of patients who survived without tumor recurrence. Most of them were transitions in the first and second base of codon 12.
Collapse
|
110
|
Gur M, Blackburn EA, Ning J, Narayan V, Ball KL, Walkinshaw MD, Erman B. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties. J Chem Phys 2018; 148:145101. [PMID: 29655319 PMCID: PMC5891347 DOI: 10.1063/1.5019457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 02/02/2023] Open
Abstract
Cyclophilin 40 (Cyp40) is a member of the immunophilin family that acts as a peptidyl-prolyl-isomerase enzyme and binds to the heat shock protein 90 (Hsp90). Its structure comprises an N-terminal cyclophilin domain and a C-terminal tetratricopeptide (TPR) domain. Cyp40 is overexpressed in prostate cancer and certain T-cell lymphomas. The groove for Hsp90 binding on the TPR domain includes residues Lys227 and Lys308, referred to as the carboxylate clamp, and is essential for Cyp40-Hsp90 binding. In this study, the effect of two mutations, K227A and K308A, and their combinative mutant was investigated by performing a total of 5.76 μs of all-atom molecular dynamics (MD) simulations in explicit solvent. All simulations, except the K308A mutant, were found to adopt two distinct (extended or compact) conformers defined by different cyclophilin-TPR interdomain distances. The K308A mutant was only observed in the extended form which is observed in the Cyp40 X-ray structure. The wild-type, K227A, and combined mutant also showed bimodal distributions. The experimental melting temperature, Tm, values of the mutants correlate with the degree of compactness with the K308A extended mutant having a marginally lower melting temperature. Another novel measure of compactness determined from the MD data, the "coordination shell volume," also shows a direct correlation with Tm. In addition, the MD simulations show an allosteric effect with the mutations in the remote TPR domain having a pronounced effect on the molecular motions of the enzymatic cyclophilin domain which helps rationalise the experimentally observed increase in enzyme activity measured for all three mutations.
Collapse
|
111
|
Manda B, Mir H, Gangwar R, Meena AS, Amin S, Shukla PK, Dalal K, Suzuki T, Rao R. Phosphorylation hotspot in the C-terminal domain of occludin regulates the dynamics of epithelial junctional complexes. J Cell Sci 2018; 131:jcs206789. [PMID: 29507118 PMCID: PMC5963837 DOI: 10.1242/jcs.206789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
The apical junctional complex (AJC), which includes tight junctions (TJs) and adherens junctions (AJs), determines the epithelial polarity, cell-cell adhesion and permeability barrier. An intriguing characteristic of a TJ is the dynamic nature of its multiprotein complex. Occludin is the most mobile TJ protein, but its significance in TJ dynamics is poorly understood. On the basis of phosphorylation sites, we distinguished a sequence in the C-terminal domain of occludin as a regulatory motif (ORM). Deletion of ORM and expression of a deletion mutant of occludin in renal and intestinal epithelia reduced the mobility of occludin at the TJs. ORM deletion attenuated Ca2+ depletion, osmotic stress and hydrogen peroxide-induced disruption of TJs, AJs and the cytoskeleton. The double point mutations T403A/T404A, but not T403D/T404D, in occludin mimicked the effects of ORM deletion on occludin mobility and AJC disruption by Ca2+ depletion. Both Y398A/Y402A and Y398D/Y402D double point mutations partially blocked AJC disruption. Expression of a deletion mutant of occludin attenuated collective cell migration in the renal and intestinal epithelia. Overall, this study reveals the role of ORM and its phosphorylation in occludin mobility, AJC dynamics and epithelial cell migration.
Collapse
|
112
|
Matsumoto Y, Ohta K, Kolakofsky D, Nishio M. The control of paramyxovirus genome hexamer length and mRNA editing. RNA (NEW YORK, N.Y.) 2018; 24:461-467. [PMID: 29358233 PMCID: PMC5855947 DOI: 10.1261/rna.065243.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/18/2018] [Indexed: 05/15/2023]
Abstract
The unusual ability of a human parainfluenza virus type 2 (hPIV2) nucleoprotein point mutation (NPQ202A) to strongly enhance minigenome replication was found to depend on the absence of a functional, internal element of the bipartite replication promoter (CRII). This point mutation allows relatively robust CRII-minus minigenome replication in a CRII-independent manner, under conditions in which NPwt is essentially inactive. The nature of the amino acid at position 202 apparently controls whether viral RNA-dependent RNA polymerase (vRdRp) can, or cannot, initiate RNA synthesis in a CRII-independent manner. By repressing genome synthesis when vRdRp cannot correctly interact with CRII, gln202 of N, the only residue of the RNA-binding groove that contacts a nucleotide base in the N-RNA, acts as a gatekeeper for wild-type (CRII-dependent) RNA synthesis. This ensures that only hexamer-length genomes are replicated, and that the critical hexamer phase of the cis-acting mRNA editing sequence is maintained.
Collapse
|
113
|
McInerney-Leo AM, Wheeler L, Sturm RA, Tan JM, Harris JE, Anderson L, Jagirdar K, Brown MA, Leo PJ, Soyer HP, Duncan EL. Point mutation in p14 ARF -specific exon 1β of CDKN2A causing familial melanoma and astrocytoma. Br J Dermatol 2018; 178:e263-e264. [PMID: 29278422 DOI: 10.1111/bjd.16275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
114
|
Banno S, Nishida K, Arazoe T, Mitsunobu H, Kondo A. Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 2018; 3:423-429. [PMID: 29403014 DOI: 10.1038/s41564-017-0102-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022]
Abstract
In eukaryotes, the CRISPR-Cas9 system has now been widely used as a revolutionary genome engineering tool1, 2. However, in prokaryotes, the use of nuclease-mediated genome editing tools has been limited to negative selection for the already modified cells because of its lethality3, 4. Here, we report on deaminase-mediated targeted nucleotide editing (Target-AID) 5 adopted in Escherichia coli. Cytidine deaminase PmCDA1 fused to the nuclease-deficient CRISPR-Cas9 system achieved specific point mutagenesis at the target sites in E. coli by introducing cytosine mutations without compromising cell growth. The cytosine-to-thymine substitutions were induced mainly within an approximately five-base window of target sequences on the protospacer adjacent motif-distal side, which can be shifted depending on the length of the single guide RNA sequence. Use of a uracil DNA glycosylase inhibitor 6 in combination with a degradation tag (LVA tag) 7 resulted in a robustly high mutation efficiency, which allowed simultaneous multiplex editing of six different genes. The major multi-copy transposase genes that consist of at least 41 loci were also simultaneously edited by using four target sequences. As this system does not rely on any additional or host-dependent factors, it may be readily applicable to a wide range of bacteria.
Collapse
|
115
|
Liu WL, He ZX, Li F, Ai R, Ma HW. Schinzel-Giedion syndrome: a novel case, review and revised diagnostic criteria. J Genet 2018; 97:35-46. [PMID: 29666323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Schinzel-Giedion syndrome (SGS) is a rare autosomal dominant inheritance disorder. Heterozygous de novo mutations in the SETBP1 gene have been identified as the genetic cause of SGS. Here, we report a novel case with the syndrome with a novel insertion mutation in SETBP1. We also present a review of SGS cases, and first revise diagnostic criteria of SGS based on clinicalfindings and/or SETBP1 mutation worldwide. A revised diagnostic criteria and typing of SGS can be determined. Type I (complex and classic type) SGS patients present a development delay and typical facial features (prominent forehead, midface retraction, and short and upturned nose) associated with hydronephrosis or two of the characteristic skeletal anomalies (a sclerotic skull base, wideoccipital synchondrosis, increased cortical density or thickness, and broad ribs). Type II (middle type) patients show development delay and the distinctive facial phenotype (midface retraction, short and upturned nose), lacking both hydronephrosis and typical skeletal abnormalities, with existence of SETBP1mutation. Type III (simple type) patients with SETBP1 alteration show their major symptom is development delay, in which expressive language delay is the most striking feature. Central nervous system involvement with development delay in which expressive language delay is much more obviously affected is the most prominent feature of SGS. There is another indication that severity of phenotype of SGS may be inversely correlated with degree of SETBP1 alteration, besides gain-of-function or dominant-negative effects in SETBP1 alteration causing SGS.
Collapse
|
116
|
Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, Sturrock CJ, Yu H, Lu C, Peng J, Mao C. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:385-397. [PMID: 29294052 PMCID: PMC5853395 DOI: 10.1093/jxb/erx427] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/13/2017] [Indexed: 05/17/2023]
Abstract
Root system architecture is very important for plant growth and crop yield. It is essential for nutrient and water uptake, anchoring, and mechanical support. Root growth angle (RGA) is a vital constituent of root system architecture and is used as a parameter for variety evaluation in plant breeding. However, little is known about the underlying molecular mechanisms that determine root growth angle in rice (Oryza sativa). In this study, a rice mutant large root angle1 (lra1) was isolated and shown to exhibit a large RGA and reduced sensitivity to gravity. Genome resequencing and complementation assays identified OsPIN2 as the gene responsible for the mutant phenotypes. OsPIN2 was mainly expressed in roots and the base of shoots, and showed polar localization in the plasma membrane of root epidermal and cortex cells. OsPIN2 was shown to play an important role in mediating root gravitropic responses in rice and was essential for plants to produce normal RGAs. Taken together, our findings suggest that OsPIN2 plays an important role in root gravitropic responses and determining the root system architecture in rice by affecting polar auxin transport in the root tip.
Collapse
|
117
|
Scharff LB, Ehrnthaler M, Janowski M, Childs LH, Hasse C, Gremmels J, Ruf S, Zoschke R, Bock R. Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco. THE PLANT CELL 2017; 29:3085-3101. [PMID: 29133466 PMCID: PMC5757275 DOI: 10.1105/tpc.17.00524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 05/23/2023]
Abstract
In prokaryotic systems, the translation initiation of many, though not all, mRNAs depends on interaction between a sequence element upstream of the start codon (the Shine-Dalgarno sequence [SD]) and a complementary sequence in the 3' end of the 16S rRNA (anti-Shine-Dalgarno sequence [aSD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations in the aSD coupled with genome-wide analysis of translation by ribosome profiling, we provide a global picture of SD-dependent translation in plastids. We observed a pronounced correlation between weakened predicted SD-aSD interactions and reduced translation efficiency. However, multiple lines of evidence suggest that the strength of the SD-aSD interaction is not the only determinant of the translational output of many plastid mRNAs. Finally, the translation efficiency of mRNAs with strong secondary structures around the start codon is more dependent on the SD-aSD interaction than weakly structured mRNAs. Thus, our data reveal the importance of the aSD in plastid translation initiation, uncover chloroplast genes whose translation is influenced by SD-aSD interactions, and provide insights into determinants of translation efficiency in plastids.
Collapse
|
118
|
Bernkopf M, Hunt D, Koelling N, Morgan T, Collins AL, Fairhurst J, Robertson SP, Douglas AGL, Goriely A. Quantification of transmission risk in a male patient with a FLNB mosaic mutation causing Larsen syndrome: Implications for genetic counseling in postzygotic mosaicism cases. Hum Mutat 2017; 38:1360-1364. [PMID: 28639312 PMCID: PMC5638069 DOI: 10.1002/humu.23281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 06/11/2017] [Indexed: 02/04/2023]
Abstract
We report the case of a male patient with Larsen syndrome found to be mosaic for a novel point mutation in FLNB in whom it was possible to provide evidence-based personalized counseling on transmission risk to future offspring. Using dideoxy sequencing, a low-level FLNB c.698A>G, encoding p.(Tyr233Cys) mutation was detected in buccal mucosa and fibroblast DNA. Mutation quantification was performed by deep next-generation sequencing (NGS) of DNA extracted from three somatic tissues (blood, fibroblasts, saliva) and a sperm sample. The mutation was detectable in all tissues tested, at levels ranging from 7% to 10% (mutation present in ∼20% of diploid somatic cells and 7% of haploid sperm), demonstrating the involvement of both somatic and gonadal lineages in this patient. This report illustrates the clinical utility of performing targeted NGS analysis on sperm from males with a mosaic condition in order to provide personalized transmission risk and offer evidence-based counseling on reproductive safety.
Collapse
|
119
|
Hoffmann T, Bleisteiner M, Sappa PK, Steil L, Mäder U, Völker U, Bremer E. Synthesis of the compatible solute proline by Bacillus subtilis: point mutations rendering the osmotically controlled proHJ promoter hyperactive. Environ Microbiol 2017; 19:3700-3720. [PMID: 28752945 DOI: 10.1111/1462-2920.13870] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/29/2023]
Abstract
The ProJ and ProH enzymes of Bacillus subtilis catalyse together with ProA (ProJ-ProA-ProH), osmostress-adaptive synthesis of the compatible solute proline. The proA-encoded gamma-glutamyl phosphate reductase is also used for anabolic proline synthesis (ProB-ProA-ProI). Transcription of the proHJ operon is osmotically inducible whereas that of the proBA operon is not. Targeted and quantitative proteome analysis revealed that the amount of ProA is not limiting for the interconnected anabolic and osmostress-responsive proline production routes. A key player for enhanced osmostress-adaptive proline production is the osmotically regulated proHJ promoter. We used site-directed mutagenesis to study the salient features of this stress-responsive promoter. Two important features were identified: (i) deviations of the proHJ promoter from the consensus sequence of SigA-type promoters serve to keep transcription low under non-inducing growth conditions, while still allowing a finely tuned induction of transcriptional activity when the external osmolarity is increased and (ii) a suboptimal spacer length for SigA-type promoters of either 16-bp (the natural proHJ promoter), or 18-bp (a synthetic promoter variant) is strictly required to allow regulation of promoter activity in proportion to the external salinity. Collectively, our data suggest that changes in the local DNA structure at the proHJ promoter are important determinants for osmostress-inducibility of transcription.
Collapse
|
120
|
Chen X, Li F, Chen A, Ma K, Liang P, Liu Y, Song D, Gao X. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:1-8. [PMID: 28911734 DOI: 10.1016/j.pestbp.2016.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 05/27/2023]
Abstract
Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China.
Collapse
|
121
|
Dallery JF, Lapalu N, Zampounis A, Pigné S, Luyten I, Amselem J, Wittenberg AHJ, Zhou S, de Queiroz MV, Robin GP, Auger A, Hainaut M, Henrissat B, Kim KT, Lee YH, Lespinet O, Schwartz DC, Thon MR, O’Connell RJ. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics 2017; 18:667. [PMID: 28851275 PMCID: PMC5576322 DOI: 10.1186/s12864-017-4083-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/21/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.
Collapse
|
122
|
Lepre MG, Omar SI, Grasso G, Morbiducci U, Deriu MA, Tuszynski JA. Insights into the Effect of the G245S Single Point Mutation on the Structure of p53 and the Binding of the Protein to DNA. Molecules 2017; 22:E1358. [PMID: 28813011 PMCID: PMC6152093 DOI: 10.3390/molecules22081358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/20/2022] Open
Abstract
The transcription factor p53 is a potent tumor suppressor dubbed as the "guardian of the genome" because of its ability to orchestrate protective biological outputs in response to a variety of oncogenic stresses. Mutation and thus inactivation of p53 can be found in 50% of human tumors. The majority are missense mutations located in the DNA binding region. Among them, G245S is known to be a structural hotspot mutation. To understand the behaviors and differences between the wild-type and mutant, both a dimer of the wild type p53 (wt-p53) and its G245S mutant (G245S-mp53), complexed with DNA, were simulated using molecular dynamics for more than 1 μs. wt-p53 and G245S-mp53 apo monomers were simulated for 1 μs as well. Conformational analyses and binding energy evaluations performed underline important differences and therefore provide insights to understand the G245S-mp53 loss of function. Our results indicate that the G245S mutation destabilizes several structural regions in the protein that are crucial for DNA binding when found in its apo form and highlight differences in the mutant-DNA complex structure compared to the wt protein. These findings not only provide means that can be applied to other p53 mutants but also serve as structural basis for further studies aimed at the development of cancer therapies based on restoring the function of p53.
Collapse
|
123
|
Suzuki D, Saito-Hakoda A, Ito R, Shimizu K, Parvin R, Shimada H, Noro E, Suzuki S, Fujiwara I, Kagechika H, Rainey WE, Kure S, Ito S, Yokoyama A, Sugawara A. Suppressive effects of RXR agonist PA024 on adrenal CYP11B2 expression, aldosterone secretion and blood pressure. PLoS One 2017; 12:e0181055. [PMID: 28800627 PMCID: PMC5553648 DOI: 10.1371/journal.pone.0181055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The effects of retinoids on adrenal aldosterone synthase gene (CYP11B2) expression and aldosterone secretion are still unknown. We therefore examined the effects of nuclear retinoid X receptor (RXR) pan-agonist PA024 on CYP11B2 expression, aldosterone secretion and blood pressure, to elucidate its potential as a novel anti-hypertensive drug. We demonstrated that PA024 significantly suppressed angiotensin II (Ang II)-induced CYP11B2 mRNA expression, promoter activity and aldosterone secretion in human adrenocortical H295R cells. Human CYP11B2 promoter functional analyses using its deletion and point mutants indicated that the suppression of CYP11B2 promoter activity by PA024 was in the region from -1521 (full length) to -106 including the NBRE-1 and the Ad5 elements, and the Ad5 element may be mainly involved in the PA024-mediated suppression. PA024 also significantly suppressed the Ang II-induced mRNA expression of transcription factors NURR1 and NGFIB that bind to and activate the Ad5 element. NURR1 overexpression demonstrated that the decrease of NURR1 expression may contribute to the PA024-mediated suppression of CYP11B2 transcription. PA024 also suppressed the Ang II-induced mRNA expression of StAR, HSD3β2 and CYP21A2, a steroidogenic enzyme group involved in aldosterone biosynthesis. Additionally, the PA024-mediated CYP11B2 transcription suppression was shown to be exerted via RXRα. Moreover, the combination of PPARγ agonist pioglitazone and PA024 caused synergistic suppressive effects on CYP11B2 mRNA expression. Finally, PA024 treatment significantly lowered both the systolic and diastolic blood pressure in Tsukuba hypertensive mice (hRN8-12 x hAG2-5). Thus, RXR pan-agonist PA024 may be a candidate anti-hypertensive drugs that acts via the suppression of aldosterone synthesis and secretion.
Collapse
|
124
|
Hayashi S, Uehara DT, Tanimoto K, Mizuno S, Chinen Y, Fukumura S, Takanashi JI, Osaka H, Okamoto N, Inazawa J. Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH). PLoS One 2017; 12:e0181791. [PMID: 28783747 PMCID: PMC5546575 DOI: 10.1371/journal.pone.0181791] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/09/2017] [Indexed: 01/10/2023] Open
Abstract
The CASK gene (Xp11.4) is highly expressed in the mammalian nervous system and plays several roles in neural development and synaptic function. Loss-of-function mutations of CASK are associated with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH), especially in females. Here, we present a comprehensive investigation of 41 MICPCH patients, analyzed by mutational search of CASK and screening of candidate genes using an SNP array, targeted resequencing and whole-exome sequencing (WES). In total, we identified causative or candidate genomic aberrations in 37 of the 41 cases (90.2%). CASK aberrations including a rare mosaic mutation in a male patient, were found in 32 cases, and a mutation in ITPR1, another known gene in which mutations are causative for MICPCH, was found in one case. We also found aberrations involving genes other than CASK, such as HDAC2, MARCKS, and possibly HS3ST5, which may be associated with MICPCH. Moreover, the targeted resequencing screening detected heterozygous variants in RELN in two cases, of uncertain pathogenicity, and WES analysis suggested that concurrent mutations of both DYNC1H1 and DCTN1 in one case could lead to MICPCH. Our results not only identified the etiology of MICPCH in nearly all the investigated patients but also suggest that MICPCH is a genetically heterogeneous condition, in which CASK inactivating mutations appear to account for the majority of cases.
Collapse
|
125
|
Dorr CR, Remmel RP, Muthusamy A, Fisher J, Moriarity BS, Yasuda K, Wu B, Guan W, Schuetz EG, Oetting WS, Jacobson PA, Israni AK. CRISPR/Cas9 Genetic Modification of CYP3A5 *3 in HuH-7 Human Hepatocyte Cell Line Leads to Cell Lines with Increased Midazolam and Tacrolimus Metabolism. Drug Metab Dispos 2017; 45:957-965. [PMID: 28533324 PMCID: PMC5518718 DOI: 10.1124/dmd.117.076307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 (CYP3A5 *3/*3) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA (P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis.
Collapse
|