126
|
Li F, Choi J, Zou C, Newell JD, Comellas AP, Lee CH, Ko H, Barr RG, Bleecker ER, Cooper CB, Abtin F, Barjaktarevic I, Couper D, Han M, Hansel NN, Kanner RE, Paine R, Kazerooni EA, Martinez FJ, O'Neal W, Rennard SI, Smith BM, Woodruff PG, Hoffman EA, Lin CL. Latent traits of lung tissue patterns in former smokers derived by dual channel deep learning in computed tomography images. Sci Rep 2021; 11:4916. [PMID: 33649381 PMCID: PMC7921389 DOI: 10.1038/s41598-021-84547-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and the traditional variables extracted from computed tomography (CT) images may not be sufficient to describe all the topological features of lung tissues in COPD patients. We employed an unsupervised three-dimensional (3D) convolutional autoencoder (CAE)-feature constructor (FC) deep learning network to learn from CT data and derive tissue pattern-clusters jointly. We then applied exploratory factor analysis (EFA) to discover the unobserved latent traits (factors) among pattern-clusters. CT images at total lung capacity (TLC) and residual volume (RV) of 541 former smokers and 59 healthy non-smokers from the cohort of the SubPopulations and Intermediate Outcome Measures in the COPD Study (SPIROMICS) were analyzed. TLC and RV images were registered to calculate the Jacobian (determinant) values for all the voxels in TLC images. 3D Regions of interest (ROIs) with two data channels of CT intensity and Jacobian value were randomly extracted from training images and were fed to the 3D CAE-FC model. 80 pattern-clusters and 7 factors were identified. Factor scores computed for individual subjects were able to predict spirometry-measured pulmonary functions. Two factors which correlated with various emphysema subtypes, parametric response mapping (PRM) metrics, airway variants, and airway tree to lung volume ratio were discriminants of patients across all severity stages. Our findings suggest the potential of developing factor-based surrogate markers for new COPD phenotypes.
Collapse
|
127
|
Opron K, Begley LA, Erb-Downward JR, Freeman C, Madapoosi S, Alexis NE, Barjaktarevic I, Graham Barr R, Bleecker ER, Bowler RP, Christenson SA, Comellas AP, Cooper CB, Couper DJ, Doerschuk CM, Dransfield MT, Han MK, Hansel NN, Hastie AT, Hoffman EA, Kaner RJ, Krishnan J, O'Neal WK, Ortega VE, Paine R, Peters SP, Michael Wells J, Woodruff PG, Martinez FJ, Curtis JL, Huffnagle GB, Huang YJ. Lung microbiota associations with clinical features of COPD in the SPIROMICS cohort. NPJ Biofilms Microbiomes 2021; 7:14. [PMID: 33547327 PMCID: PMC7865064 DOI: 10.1038/s41522-021-00185-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is heterogeneous in development, progression, and phenotypes. Little is known about the lung microbiome, sampled by bronchoscopy, in milder COPD and its relationships to clinical features that reflect disease heterogeneity (lung function, symptom burden, and functional impairment). Using bronchoalveolar lavage fluid collected from 181 never-smokers and ever-smokers with or without COPD (GOLD 0-2) enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS), we find that lung bacterial composition associates with several clinical features, in particular bronchodilator responsiveness, peak expiratory flow rate, and forced expiratory flow rate between 25 and 75% of FVC (FEF25–75). Measures of symptom burden (COPD Assessment Test) and functional impairment (six-minute walk distance) also associate with disparate lung microbiota composition. Drivers of these relationships include members of the Streptococcus, Prevotella, Veillonella, Staphylococcus, and Pseudomonas genera. Thus, lung microbiota differences may contribute to airway dysfunction and airway disease in milder COPD.
Collapse
|
128
|
Fortis S, Comellas AP, Bhatt SP, Hoffman EA, Han MK, Bhakta NR, Paine R, Ronish B, Kanner RE, Dransfield M, Hoesterey D, Buhr RG, Barr RG, Dolezal B, Ortega VE, Drummond MB, Arjomandi M, Kaner RJ, Kim V, Curtis JL, Bowler RP, Martinez F, Labaki WW, Cooper CB, O'Neal WK, Criner G, Hansel NN, Krishnan JA, Woodruff P, Couper D, Tashkin D, Barjaktarevic I. Ratio of FEV 1/Slow Vital Capacity of < 0.7 Is Associated With Clinical, Functional, and Radiologic Features of Obstructive Lung Disease in Smokers With Preserved Lung Function. Chest 2021; 160:94-103. [PMID: 33539837 DOI: 10.1016/j.chest.2021.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mild expiratory flow limitation may not be recognized using traditional spirometric criteria based on the ratio of FEV1/FVC. RESEARCH QUESTION Does slow vital capacity (SVC) instead of FVC increase the sensitivity of spirometry to identify patients with early or mild obstructive lung disease? STUDY DESIGN AND METHODS We included 854 current and former smokers from the Subpopulations and Intermediate Outcome Measures in COPD Study cohort with a postbronchodilator FEV1/FVC ≥ 0.7 and FEV1 % predicted of ≥ 80% at enrollment. We compared baseline characteristics, chest CT scan features, exacerbations, and progression to COPD (postbronchodilator FEV1/FVC, < 0.7) during the follow-up period between 734 participants with postbronchodilator FEV1/SVC of ≥ 0.7 and 120 with postbronchodilator FEV1/SVC < 0.7 at the enrollment. We performed multivariate linear and logistic regression models and negative binomial and interval-censored proportion hazards regression models adjusted for demographics and smoking exposure to examine the association of FEV1/SVC < 0.7 with those characteristics and outcomes. RESULTS Participants with FEV1/SVC < 0.7 were older and had lower FEV1 and more emphysema than those with FEV1/SVC ≥ 0.7. In adjusted analysis, individuals with postbronchodilator FEV1/SVC < 0.7 showed a greater percentage of emphysema by 0.45% (95% CI, 0.09%-0.82%), percentage of gas trapping by 2.52% (95% CI, 0.59%-4.44%), and percentage of functional small airways disease based on parametric response mapping by 2.78% (95% CI, 0.72%-4.83%) at baseline than those with FEV1/SVC ≥ 0.7. During a median follow-up time of 1,500 days, an FEV1/SVC < 0.7 was not associated with total exacerbations (incident rate ratio [IRR], 1.61; 95% CI, 0.97-2.64), but was associated with severe exacerbations (IRR, 2.60; 95% CI, 1.04-4.89). An FEV1/SVC < 0.7 was associated with progression to COPD during a 3-year follow-up even after adjustment for demographics and smoking exposure (hazard ratio, 3.93; 95% CI, 2.71-5.72). We found similar results when we examined the association of prebronchodilator FEV1/SVC < 0.7 or FEV1/SVC less than the lower limit of normal with chest CT scan features and progression to COPD. INTERPRETATION Low FEV1 to SVC in current and former smokers with normal spirometry results can identify individuals with CT scan features of COPD who are at risk for severe exacerbations and is associated with progression to COPD in the future. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01969344T4; URL: www.clinicaltrials.gov.
Collapse
|
129
|
Nagpal P, Guo J, Shin KM, Lim JK, Kim KB, Comellas AP, Kaczka DW, Peterson S, Lee CH, Hoffman EA. Quantitative CT imaging and advanced visualization methods: potential application in novel coronavirus disease 2019 (COVID-19) pneumonia. BJR Open 2021; 3:20200043. [PMID: 33718766 PMCID: PMC7931412 DOI: 10.1259/bjro.20200043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Increasingly, quantitative lung computed tomography (qCT)-derived metrics are providing novel insights into chronic inflammatory lung diseases, including chronic obstructive pulmonary disease, asthma, interstitial lung disease, and more. Metrics related to parenchymal, airway, and vascular anatomy together with various measures associated with lung function including regional parenchymal mechanics, air trapping associated with functional small airways disease, and dual-energy derived measures of perfused blood volume are offering the ability to characterize disease phenotypes associated with the chronic inflammatory pulmonary diseases. With the emergence of COVID-19, together with its widely varying degrees of severity, its rapid progression in some cases, and the potential for lengthy post-COVID-19 morbidity, there is a new role in applying well-established qCT-based metrics. Based on the utility of qCT tools in other lung diseases, previously validated supervised classical machine learning methods, and emerging unsupervised machine learning and deep-learning approaches, we are now able to provide desperately needed insight into the acute and the chronic phases of this inflammatory lung disease. The potential areas in which qCT imaging can be beneficial include improved accuracy of diagnosis, identification of clinically distinct phenotypes, improvement of disease prognosis, stratification of care, and early objective evaluation of intervention response. There is also a potential role for qCT in evaluating an increasing population of post-COVID-19 lung parenchymal changes such as fibrosis. In this work, we discuss the basis of various lung qCT methods, using case-examples to highlight their potential application as a tool for the exploration and characterization of COVID-19, and offer scanning protocols to serve as templates for imaging the lung such that these established qCT analyses have the best chance at yielding the much needed new insights.
Collapse
|
130
|
Gerard SE, Herrmann J, Xin Y, Martin KT, Rezoagli E, Ippolito D, Bellani G, Cereda M, Guo J, Hoffman EA, Kaczka DW, Reinhardt JM. CT image segmentation for inflamed and fibrotic lungs using a multi-resolution convolutional neural network. Sci Rep 2021; 11:1455. [PMID: 33446781 PMCID: PMC7809065 DOI: 10.1038/s41598-020-80936-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network. The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation. Performance of the proposed lung segmentation algorithm was extensively evaluated on CT scans of subjects with COPD, confirmed COVID-19, lung cancer, and IPF, despite no labeled training data of the latter three diseases. Lobar segmentations were obtained using the left and right lung segmentation as input to the LobeNet algorithm. Regional lobar analysis was performed using hierarchical clustering to identify radiographic subtypes of COVID-19. The proposed lung segmentation algorithm was quantitatively evaluated using semi-automated and manually-corrected segmentations in 87 COVID-19 CT images, achieving an average symmetric surface distance of [Formula: see text] mm and Dice coefficient of [Formula: see text]. Hierarchical clustering identified four radiographical phenotypes of COVID-19 based on lobar fractions of consolidated and poorly aerated tissue. Lower left and lower right lobes were consistently more afflicted with poor aeration and consolidation. However, the most severe cases demonstrated involvement of all lobes. The polymorphic training approach was able to accurately segment COVID-19 cases with diffuse consolidation without requiring COVID-19 cases for training.
Collapse
|
131
|
Gerard SE, Herrmann J, Xin Y, Martin KT, Rezoagli E, Ippolito D, Bellani G, Cereda M, Guo J, Hoffman EA, Kaczka DW, Reinhardt JM. CT Image Segmentation for Inflamed and Fibrotic Lungs Using a Multi-Resolution Convolutional Neural Network. ARXIV 2021:arXiv:2010.08582v2. [PMID: 33469558 PMCID: PMC7814827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network. The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation. Performance of the proposed lung segmentation algorithm was extensively evaluated on CT scans of subjects with COPD, confirmed COVID-19, lung cancer, and IPF, despite no labeled training data of the latter three diseases. Lobar segmentations were obtained using the left and right lung segmentation as input to the LobeNet algorithm. Regional lobar analysis was performed using hierarchical clustering to identify radiographic subtypes of COVID-19. The proposed lung segmentation algorithm was quantitatively evaluated using semi-automated and manually-corrected segmentations in 87 COVID-19 CT images, achieving an average symmetric surface distance of $0.495 \pm 0.309$ mm and Dice coefficient of $0.985 \pm 0.011$. Hierarchical clustering identified four radiographical phenotypes of COVID-19 based on lobar fractions of consolidated and poorly aerated tissue. Lower left and lower right lobes were consistently more afflicted with poor aeration and consolidation. However, the most severe cases demonstrated involvement of all lobes. The polymorphic training approach was able to accurately segment COVID-19 cases with diffuse consolidation without requiring COVID-19 cases for training.
Collapse
|
132
|
Kim JS, Steffen BT, Podolanczuk AJ, Kawut SM, Noth I, Raghu G, Michos ED, Hoffman EA, Axelsson GT, Gudmundsson G, Gudnason V, Gudmundsson EF, Murphy RA, Dupuis J, Xu H, Vasan RS, O'Connor GT, Harris WS, Hunninghake GM, Barr RG, Tsai MY, Lederer DJ. Associations of ω-3 Fatty Acids With Interstitial Lung Disease and Lung Imaging Abnormalities Among Adults. Am J Epidemiol 2021; 190:95-108. [PMID: 32803215 DOI: 10.1093/aje/kwaa168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid, attenuates interstitial lung disease (ILD) in experimental models, but human studies are lacking. We examined associations of circulating levels of DHA and other polyunsaturated fatty acids with hospitalization and death due to ILD over 12 years in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 6,573). We examined cross-sectional associations with CT lung abnormalities in MESA (2000-2012; n = 6,541), the Framingham Heart Study (2005-2011; n = 3,917), and the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik) (2002-2006; n = 1,106). Polyunsaturated fatty acid levels were determined from fasting blood samples and extracted from plasma phospholipids (MESA and AGES-Reykjavik) or red blood cell membranes (Framingham Heart Study). Higher DHA levels were associated with a lower risk of hospitalization due to ILD (per standard-deviation increment, adjusted rate ratio = 0.69, 95% confidence interval (CI): 0.48, 0.99) and a lower rate of death due to ILD (per standard-deviation increment, adjusted hazard ratio = 0.68, 95% CI: 0.47, 0.98). Higher DHA was associated with fewer interstitial lung abnormalities on computed tomography (per natural log increment, pooled adjusted odds ratio = 0.65, 95% CI: 0.46, 0.91). Higher DHA levels were associated with a lower risk of hospitalization and death due to ILD and fewer lung abnormalities on computed tomography in a meta-analysis of data from population-based cohort studies.
Collapse
|
133
|
Kircher M, Elke G, Stender B, Hernandez Mesa M, Schuderer F, Dossel O, Fuld MK, Halaweish AF, Hoffman EA, Weiler N, Frerichs I. Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:251-261. [PMID: 32956046 DOI: 10.1109/tmi.2020.3025080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical impedance tomography is clinically used to trace ventilation related changes in electrical conductivity of lung tissue. Estimating regional pulmonary perfusion using electrical impedance tomography is still a matter of research. To support clinical decision making, reliable bedside information of pulmonary perfusion is needed. We introduce a method to robustly detect pulmonary perfusion based on indicator-enhanced electrical impedance tomography and validate it by dynamic multidetector computed tomography in two experimental models of acute respiratory distress syndrome. The acute injury was induced in a sublobar segment of the right lung by saline lavage or endotoxin instillation in eight anesthetized mechanically ventilated pigs. For electrical impedance tomography measurements, a conductive bolus (10% saline solution) was injected into the right ventricle during breath hold. Electrical impedance tomography perfusion images were reconstructed by linear and normalized Gauss-Newton reconstruction on a finite element mesh with subsequent element-wise signal and feature analysis. An iodinated contrast agent was used to compute pulmonary blood flow via dynamic multidetector computed tomography. Spatial perfusion was estimated based on first-pass indicator dilution for both electrical impedance and multidetector computed tomography and compared by Pearson correlation and Bland-Altman analysis. Strong correlation was found in dorsoventral (r = 0.92) and in right-to-left directions (r = 0.85) with good limits of agreement of 8.74% in eight lung segments. With a robust electrical impedance tomography perfusion estimation method, we found strong agreement between multidetector computed and electrical impedance tomography perfusion in healthy and regionally injured lungs and demonstrated feasibility of electrical impedance tomography perfusion imaging.
Collapse
|
134
|
Nadeem SA, Hoffman EA, Sieren JC, Comellas AP, Bhatt SP, Barjaktarevic IZ, Abtin F, Saha PK. A CT-Based Automated Algorithm for Airway Segmentation Using Freeze-and-Grow Propagation and Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:405-418. [PMID: 33021934 PMCID: PMC7772272 DOI: 10.1109/tmi.2020.3029013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common lung disease, and quantitative CT-based bronchial phenotypes are of increasing interest as a means of exploring COPD sub-phenotypes, establishing disease progression, and evaluating intervention outcomes. Reliable, fully automated, and accurate segmentation of pulmonary airway trees is critical to such exploration. We present a novel approach of multi-parametric freeze-and-grow (FG) propagation which starts with a conservative segmentation parameter and captures finer details through iterative parameter relaxation. First, a CT intensity-based FG algorithm is developed and applied for airway tree segmentation. A more efficient version is produced using deep learning methods generating airway lumen likelihood maps from CT images, which are input to the FG algorithm. Both CT intensity- and deep learning-based algorithms are fully automated, and their performance, in terms of repeat scan reproducibility, accuracy, and leakages, is evaluated and compared with results from several state-of-the-art methods including an industry-standard one, where segmentation results were manually reviewed and corrected. Both new algorithms show a reproducibility of 95% or higher for total lung capacity (TLC) repeat CT scans. Experiments on TLC CT scans from different imaging sites at standard and low radiation dosages show that both new algorithms outperform the other methods in terms of leakages and branch-level accuracy. Considering the performance and execution times, the deep learning-based FG algorithm is a fully automated option for large multi-site studies.
Collapse
|
135
|
Fawzy A, Woo H, Balasubramanian A, Barjaktarevic I, Barr RG, Bowler RP, Comellas AP, Cooper CB, Couper D, Criner GJ, Dransfield MT, Han MK, Hoffman EA, Kanner RE, Krishnan JA, Martinez FJ, McCormack M, Paine Iii R, Peters S, Wise R, Woodruff PG, Hansel NN, Putcha N. Polycythemia is Associated with Lower Incidence of Severe COPD Exacerbations in the SPIROMICS Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2021; 8:326-335. [PMID: 34197703 DOI: 10.15326/jcopdf.2021.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary polycythemia has long been recognized as a consequence of chronic pulmonary disease and hypoxemia and is associated with lower mortality and fewer hospitalizations among individuals with chronic obstructive pulmonary disease (COPD)-prescribed long-term oxygen therapy. This study investigates the association of polycythemia with COPD severity, phenotypic features, and respiratory exacerbations in a contemporary and representative sample of individuals with COPD. Current and former smokers with COPD (forced expiratory volume in 1 second [FEV1] to forced vital capacity [FVC] ratio <70%) without a history of hematologic/oncologic disorders were selected from the SubPopulations and InteRmediate Outcomes Measures In COPD Study (SPIROMICS), a multi-center observational cohort. Participants with polycythemia (hemoglobin ≥15g/dL [females] or ≥17g/dL [males]), were compared to individuals without anemia (hemoglobin ≥12g/dL [females] or ≥13g/dL [males]). Cross-sectional outcomes including percent predicted FEV1, respiratory symptoms, quality of life, exercise tolerance, and percentage and distribution of emphysema (voxels<-950 Hounsfield units [HU] at total lung capacity) were evaluated using linear or logistic regression. Longitudinal acute exacerbation of COPD (AECOPD) and severe AECOPD (requiring an emergency department visit or hospitalization) were assessed using zero-inflated negative binomial models. Among 1261 participants, 148 (11.7%) had polycythemia. Average follow-up was 4.2±1.7 years and did not differ by presence of polycythemia. In multivariate analysis, compared to participants with normal hemoglobin, polycythemia was associated with a reduced rate of severe AECOPD (adjusted incidence rate ratio 0.57, 95% CI: 0.33-0.98), lower percent predicted FEV1, lower resting oxygen saturation, increased upper to lower lobe ratio of emphysema, and a greater degree of emphysema, though the latter was attenuated after adjusting for lung function. There were no significant differences in total AECOPD, patient-reported outcomes, or exercise tolerance. These findings suggest that polycythemia, while associated with less favorable physiologic parameters, is not independently associated with symptoms, and is associated with fewer severe exacerbations. Future studies should explore the potentially protective role of increased hemoglobin beyond the correction of anemia.
Collapse
|
136
|
Philibert R, Mills JA, Long JD, Salisbury SE, Comellas A, Gerke A, Dawes K, Vander Weg M, Hoffman EA. The Reversion of cg05575921 Methylation in Smoking Cessation: A Potential Tool for Incentivizing Healthy Aging. Genes (Basel) 2020; 11:E1415. [PMID: 33260961 PMCID: PMC7760261 DOI: 10.3390/genes11121415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Smoking is the largest preventable cause of mortality and the largest environmental driver of epigenetic aging. Contingency management-based strategies can be used to treat smoking but require objective methods of verifying quitting status. Prior studies have suggested that cg05575921 methylation reverts as a function of smoking cessation, but that it can be used to verify the success of smoking cessation has not been unequivocally demonstrated. To test whether methylation can be used to verify cessation, we determined monthly cg05575921 levels in a group of 67 self-reported smokers undergoing biochemically monitored contingency management-based smoking cessation therapy, as part of a lung imaging protocol. A total of 20 subjects in this protocol completed three months of cotinine verified smoking cessation. In these 20 quitters, the reversion of cg05575921 methylation was dependent on their initial smoking intensity, with methylation levels in the heaviest smokers reverting to an average of 0.12% per day over the 3-month treatment period. In addition, we found suggestive evidence that some individuals may have embellished their smoking history to gain entry to the study. Given the prominent effect of smoking on longevity, we conclude that DNA methylation may be a useful tool for guiding and incentivizing contingency management-based approaches for smoking cessation.
Collapse
|
137
|
Chae KJ, Choi J, Jin GY, Hoffman EA, Laroia AT, Park M, Lee CH. Relative Regional Air Volume Change Maps at the Acinar Scale Reflect Variable Ventilation in Low Lung Attenuation of COPD patients. Acad Radiol 2020; 27:1540-1548. [PMID: 32024604 DOI: 10.1016/j.acra.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate regional air volume changes at the acinar scale of the lung in chronic obstructive pulmonary disease (COPD) patients using an image registration technique. MATERIALS AND METHODS Thirty-four emphysema patients and 24 subjects with normal chest CT and pulmonary function test (PFT) results were included in this retrospective study for which informed consent was waived by the institutional review board. After lung segmentation, a mass-preserving image registration technique was used to compute relative regional air volume changes (RRAVCs) between inspiration and expiration CT scans. After determining the appropriate thresholds of RRAVCs for low ventilation areas (LVAs), they were displayed and analyzed using color maps on the background inspiration CT image, and compared with the low attenuation area (LAA) map. Correlations between quantitative CT parameters and PFTs were assessed using Pearson's correlation test, and parameters were compared between emphysema and normal-CT patients using the Student's t-test. RESULTS LVA percentage with an RRAVC threshold of 0.5 (%LVA0.5) showed the strongest correlations with FEV1/FVC (r = -0.566), FEV1 (r = -0.534), %LAA-950insp (r = 0.712), and %LAA-856exp (r = 0.775). %LVA0.5 was significantly higher (P < 0.001) in COPD patients than normal subjects. Despite the identical appearance of emphysematous lesions on the LAA-950insp map, the RRAVC map depicted a wide range of ventilation differences between these LAA clusters. CONCLUSION RRAVC-based %LVA0.5 correlated well with FEV1/FVC, FEV1, %LAA-950insp and %LAA-856exp. RRAVC holds the potential for providing additional acinar scale functional information for emphysematous LAAs in inspiratory CT images, providing the basis for a novel set for emphysematous phenotypes.
Collapse
|
138
|
Smith BM, Hoffman EA, Barr RG. Dysanapsis and COPD-Reply. JAMA 2020; 324:1572. [PMID: 33079150 DOI: 10.1001/jama.2020.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
139
|
Ostedgaard LS, Price MP, Whitworth KM, Abou Alaiwa MH, Fischer AJ, Warrier A, Samuel M, Spate LD, Allen PD, Hilkin BM, Romano Ibarra GS, Ortiz Bezara ME, Goodell BJ, Mather SE, Powers LS, Stroik MR, Gansemer ND, Hippee CE, Zarei K, Goeken JA, Businga TR, Hoffman EA, Meyerholz DK, Prather RS, Stoltz DA, Welsh MJ. Lack of airway submucosal glands impairs respiratory host defenses. eLife 2020; 9:59653. [PMID: 33026343 PMCID: PMC7541087 DOI: 10.7554/elife.59653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.
Collapse
|
140
|
Shin KM, Choi J, Chae KJ, Jin GY, Eskandari A, Hoffman EA, Hall C, Castro M, Lee CH. Quantitative CT-based image registration metrics provide different ventilation and lung motion patterns in prone and supine positions in healthy subjects. Respir Res 2020; 21:254. [PMID: 33008396 PMCID: PMC7531138 DOI: 10.1186/s12931-020-01519-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies suggested that the prone position (PP) improves oxygenation and reduces mortality among patients with acute respiratory distress syndrome (ARDS). However, the mechanism of this clinical benefit of PP is not completely understood. The aim of the present study was to quantitatively compare regional characteristics of lung functions in the PP with those in the supine position (SP) using inspiratory and expiratory computed tomography (CT) scans. Methods Ninety subjects with normal pulmonary function and inspiration and expiration CT images were included in the study. Thirty-four subjects were scanned in PP, and 56 subjects were scanned in SP. Non-rigid image registration-based inspiratory-expiratory image matching assessment was used for regional lung function analysis. Tissue fractions (TF) were computed based on the CT density and compared on a lobar basis. Three registration-derived functional variables, relative regional air volume change (RRAVC), volumetric expansion ratio (J), and three-dimensional relative regional displacement (s*) were used to evaluate regional ventilation and deformation characteristics. Results J was greater in PP than in SP in the right middle lobe (P = 0 .025), and RRAVC was increased in the upper and right middle lobes (P < 0.001). The ratio of the TF on inspiratory and expiratory scans, J, and RRAVC at the upper lobes to those at the middle and lower lobes and that ratio at the upper and middle lobes to those at the lower lobes of were all near unity in PP, and significantly higher than those in SP (0.98–1.06 vs 0.61–0.94, P < 0.001). Conclusion We visually and quantitatively observed that PP not only induced more uniform contributions of regional lung ventilation along the ventral-dorsal axis but also minimized the lobar differences of lung functions in comparison with SP. This may help in the clinician’s search for an understanding of the benefits of the application of PP to the patients with ARDS or other gravitationally dependent pathologic lung diseases. Trial registration Retrospectively registered.
Collapse
|
141
|
Bon J, Nouraie SM, Smith KJ, Dransfield MT, McDonald ML, Hoffman EA, Newell JD, Comellas AP, Saha PK, Bowler RP, Regan EA. Lung-Specific Risk Factors Associated With Incident Hip Fracture in Current and Former Smokers. J Bone Miner Res 2020; 35:1952-1961. [PMID: 32754944 PMCID: PMC8773459 DOI: 10.1002/jbmr.4103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 11/06/2022]
Abstract
Hip fractures are associated with significant morbidity and mortality in smokers with lung disease, but whether lung-specific factors are associated with fracture risk is unknown. Our goal was to determine whether lung-specific factors associate with incident hip fracture and improve risk discrimination of traditional fracture risk models in smokers. The analysis consisted of a convenience sample of 9187 current and former smokers (58,477 participant follow-up years) participating in the Genetic Epidemiology of chronic obstructive pulmonary disease (COPD) longitudinal observational cohort study. Participants were enrolled between 2008 and 2011 with follow-up data collection through July 2018. Traditional risk factors associated with incident hip fracture (n = 361) included age, female sex, osteoporosis, prevalent spine and hip fracture, rheumatoid arthritis, and diabetes. Lung-specific risk factors included post-bronchodilator percent forced expiratory volume in 1 s (FEV1 %) predicted (OR, 0.95; 95% CI, 0.92-0.99 for each 10% increase), Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification (OR, 1.09; 95% CI, 1.002-1.19 for each higher stage), presence of CT-determined emphysema (OR, 1.34; 95% CI, 1.06-1.69), symptom scores (OR, 1.10; 95% CI, 1.03-1.19 for each higher unit score), 6-min walk distance (OR, 0.92; 95% CI, 0.90-0.95 for each 30-m increase), body mass index, airflow obstruction, dyspnea, and exercise (BODE) index (OR, 1.07; 95% CI, 1.01-1.13 for each higher unit score), total exacerbations (OR, 1.13; 95% CI, 1.10-1.16 per exacerbation), and annual exacerbations (OR, 1.37; 95% CI, 1.21-1.55 per exacerbation). In multivariable modeling, age, black race, osteoporosis, prevalent hip and spine fracture, rheumatoid arthritis, and diabetes were associated with incident hip fracture. The presence of emphysema, 6-min walk distance, and total number of exacerbations added to traditional models improved risk discrimination (integrated discrimination improvement [IDI] values 0.001 [95% CI, 0.0003-0.002], 0.001 [95% CI, 0.0001-0.002], and 0.008 [95% CI, 0.003-0.013], corresponding to relative IDIs of 12.8%, 6.3%, and 34.6%, respectively). These findings suggest that the incorporation of lung-specific risk factors into fracture risk assessment tools may more accurately predict fracture risk in smokers. © 2020 American Society for Bone and Mineral Research.
Collapse
|
142
|
Stapleton EM, Kizhakke Puliyakote A, Metwali N, Jeronimo M, Thornell IM, Manges RB, Bilas M, Kamal Batcha MA, Kumaravel MS, Durairaj K, Karuppusamy K, Kathiresan G, Rahim SA, Shanmugam K, Thorne PS, Peters TM, Hoffman EA, Comellas AP. Lung function of primary cooks using LPG or biomass and the effect of particulate matter on airway epithelial barrier integrity. ENVIRONMENTAL RESEARCH 2020; 189:109888. [PMID: 32979995 PMCID: PMC7525042 DOI: 10.1016/j.envres.2020.109888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cooks exposed to biomass fuel experience increased risk of respiratory disease and mortality. We sought to characterize lung function and environmental exposures of primary cooking women using two fuel-types in southeastern India, as well as to investigate the effect of particulate matter (PM) from kitchens on human airway epithelial (HAE) cells in vitro. METHODS We assessed pre- and post-bronchodilator lung function on 25 primary female cooks using wood biomass or liquified petroleum gas (LPG), and quantified exposures from 34 kitchens (PM2.5, PM < 40 μm, black carbon, endotoxin, and PM metal and bacterial content). We then challenged HAE cells with PM, assessing its cytotoxicity to small-airway cells (A549) and its effect on: transepithelial conductance and macromolecule permeability (NuLi cells), and antimicrobial activity (using airway surface liquid, ASL, from primary HAE cells). RESULTS Lung function was impaired in cooks using both fuel-types. 60% of participants in both fuel-types had respiratory restriction (post bronchodilator FEV1/FVC>90). The remaining 40% in the LPG group had normal spirometry (post FEV1/FVC = 80-90), while only 10% of participants in the biomass group had normal spirometry, and the remaining biomass cooks (30%) had respiratory obstruction (post FEV1/FVC<80). Significant differences were found in environmental parameters, with biomass kitchens containing greater PM2.5, black carbon, zirconium, arsenic, iron, vanadium, and endotoxin concentrations. LPG kitchens tended to have more bacteria (p = 0.14), and LPG kitchen PM had greater sulphur concentrations (p = 0.02). In vitro, PM induced cytotoxicity in HAE A549 cells in a dose-dependent manner, however the effect was minimal and there were no differences between fuel-types. PM from homes of participants with a restrictive physiology increased electrical conductance of NuLi HAE cells (p = 0.06) and decreased macromolar permeability (p ≤ 0.05), while PM from homes of those with respiratory obstruction tended to increase electrical conductance (p = 0.20) and permeability (p = 0.07). PM from homes of participants with normal spirometry did not affect conductance or permeability. PM from all homes tended to inhibit antimicrobial activity of primary HAE cell airway surface liquid (p = 0.06). CONCLUSIONS Biomass cooks had airway obstruction, and significantly greater concentrations of kitchen environmental contaminants than LPG kitchens. PM from homes of participants with respiratory restriction and obstruction altered airway cell barrier function, elucidating mechanisms potentially responsible for respiratory phenotypes observed in biomass cooks.
Collapse
|
143
|
Motahari A, Hermann E, Hiura G, Allen N, Bertoni A, Bluemke DA, Eskandari A, Michos ED, Nagpal P, Pankow J, Stukovsky K, Watson K, Barr RG, Hoffman EA. DECT-derived PBV heterogeneity in a general population sample: The MESA Lung Study. Epidemiology 2020. [DOI: 10.1183/13993003.congress-2020.4187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
144
|
Nagpal P, Narayanasamy S, Vidholia A, Guo J, Shin KM, Lee CH, Hoffman EA. Imaging of COVID-19 pneumonia: Patterns, pathogenesis, and advances. Br J Radiol 2020; 93:20200538. [PMID: 32758014 PMCID: PMC7465853 DOI: 10.1259/bjr.20200538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
COVID-19 pneumonia is a newly recognized lung infection. Initially, CT imaging was demonstrated to be one of the most sensitive tests for the detection of infection. Currently, with broader availability of polymerase chain reaction for disease diagnosis, CT is mainly used for the identification of complications and other defined clinical indications in hospitalized patients. Nonetheless, radiologists are interpreting lung imaging in unsuspected patients as well as in suspected patients with imaging obtained to rule out other relevant clinical indications. The knowledge of pathological findings is also crucial for imagers to better interpret various imaging findings. Identification of the imaging findings that are commonly seen with the disease is important to diagnose and suggest confirmatory testing in unsuspected cases. Proper precautionary measures will be important in such unsuspected patients to prevent further spread. In addition to understanding the imaging findings for the diagnosis of the disease, it is important to understand the growing set of tools provided by artificial intelligence. The goal of this review is to highlight common imaging findings using illustrative examples, describe the evolution of disease over time, discuss differences in imaging appearance of adult and pediatric patients and review the available literature on quantitative CT for COVID-19. We briefly address the known pathological findings of the COVID-19 lung disease that may help better understand the imaging appearance, and we provide a demonstration of novel display methodologies and artificial intelligence applications serving to support clinical observations.
Collapse
|
145
|
Yoon S, Tam TM, Rajaraman PK, Lin CL, Tawhai M, Hoffman EA, Choi S. An integrated 1D breathing lung simulation with relative hysteresis of airway structure and regional pressure for healthy and asthmatic human lungs. J Appl Physiol (1985) 2020; 129:732-747. [PMID: 32758040 DOI: 10.1152/japplphysiol.00176.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aims to develop a one-dimensional (1D) computational fluid dynamics (CFD) model with dynamic airway geometry that considers airway wall compliance and acinar dynamics. The proposed 1D model evaluates the pressure distribution and the hysteresis between the pressure and tidal volume (Vtidal) in the central and terminal airways for healthy and asthmatic subjects. Four-dimensional CT images were captured at 11-14 time points during the breathing cycle. The airway diameter and length were reconstructed using a volume-filling method and a stochastic model at respective time points. The obtained values for the airway diameter and length were interpolated via the Akima spline to avoid unboundedness. A 1D energy balance equation considering the effects of wall compliance and parenchymal inertance was solved using the efficient aggregation-based algebraic multigrid solver, a sparse matrix solver, reducing the computational costs by around 90% when compared with the generalized minimal residual solver. In the Vtidal versus displacement in the basal direction (z-coordinate), the inspiration curve was lower than the expiration curve, leading to relative hysteresis. The dynamic deformation model was the major factor influencing the difference in the workload in the central and terminal airways. In contrast, wall compliance and parenchymal inertance appeared only marginally to affect the pressure and workload. The integrated 1D model mimicked dynamic deformation by predicting airway diameter and length at each time point, describing the effects of wall compliance and parenchymal inertance. This computationally efficient model could be utilized to assess breathing mechanism as an alternative to pulmonary function tests.NEW & NOTEWORTHY This study introduces a one-dimensional (1D) computational fluid dynamics (CFD) model mimicking the realistic changes in diameter and length in whole airways and reveals differences in lung deformation between healthy and asthmatic subjects. Utilizing computational models, the effects of parenchymal inertance and airway wall compliance are investigated by changing ventilation frequency and airway wall elastance, respectively.
Collapse
|
146
|
Cooper CB, Paine R, Curtis JL, Kanner RE, Martinez CH, Meldrum CA, Bowler R, O'Neal W, Hoffman EA, Couper D, Quibrera M, Criner G, Dransfield MT, Han MK, Hansel NN, Krishnan JA, Lazarus SC, Peters SP, Barr RG, Martinez FJ, Woodruff PG. Novel Respiratory Disability Score Predicts COPD Exacerbations and Mortality in the SPIROMICS Cohort. Int J Chron Obstruct Pulmon Dis 2020; 15:1887-1898. [PMID: 32821092 PMCID: PMC7417644 DOI: 10.2147/copd.s250191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale Some COPD patients develop extreme breathlessness, decreased exercise capacity and poor health status yet respiratory disability is poorly characterized as a distinct phenotype. Objective To define respiratory disability in COPD based on available functional measures and to determine associations with risk for exacerbations and death. Methods We analyzed baseline data from a multi-center observational study (SPIROMICS). This analysis includes 2332 participants (472 with severe COPD, 991 with mild/moderate COPD, 726 smokers without airflow obstruction and 143 non-smoking controls). Measurements We defined respiratory disability by ≥4 of 7 criteria: mMRC dyspnea scale ≥3; Veterans Specific Activity Questionnaire <5; 6-minute walking distance <250 m; St George’s Respiratory Questionnaire activity domain >60; COPD Assessment Test >20; fatigue (FACIT-F Trial Outcome Index) <50; SF-12 <20. Results Using these criteria, respiratory disability was identified in 315 (13.5%) participants (52.1% female). Frequencies were severe COPD 34.5%; mild-moderate COPD 11.2%; smokers without obstruction 5.2% and never-smokers 2.1%. Compared with others, participants with disability had more emphysema (13.2 vs. 6.6%) and air-trapping (37.0 vs. 21.6%) on HRCT (P<0.0001). Using principal components analysis to derive a disability score, two factors explained 71% of variance, and a cut point −1.0 reliably identified disability. This disability score independently predicted future exacerbations (ß=0.34; CI 0.12, 0.64; P=0.003) and death (HR 2.97; CI 1.54, 5.75; P=0.001). Thus, participants with disability by this criterion had almost three times greater mortality compared to those without disability. Conclusion Our novel SPIROMICS respiratory disability score in COPD was associated with worse airflow obstruction as well as airway wall thickening, lung parenchymal destruction and certain inflammatory biomarkers. The disability score also proved to be an independent predictor of future exacerbations and death. These findings validate disability as an important phenotype in the spectrum of COPD.
Collapse
|
147
|
Rajaraman PK, Choi J, Hoffman EA, O'Shaughnessy PT, Choi S, Delvadia R, Babiskin A, Walenga R, Lin CL. Transport and deposition of hygroscopic particles in asthmatic subjects with and without airway narrowing. JOURNAL OF AEROSOL SCIENCE 2020; 146:105581. [PMID: 32346183 PMCID: PMC7187883 DOI: 10.1016/j.jaerosci.2020.105581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 05/30/2023]
Abstract
This study numerically investigates the effect of hygroscopicity on transport and deposition of particles in severe asthmatic lungs with distinct airway structures. The study human subjects were selected from two imaging-based severe asthmatic clusters with one characterized by non-constricted airways and the other by constricted airways in the lower left lobe (LLL). We compared the deposition fractions of sodium chloride (NaCl) particles with a range of aerodynamic diameters (1-8 μm) in cluster archetypes under conditions with and without hygroscopic growth. The temperature and water vapor distributions in the airways were simulated with an airway wall boundary condition that accounts for variable temperature and water vapor evaporation at the interface between the lumen and the airway surface liquid layer. On average, the deposition fraction increased by about 6% due to hygroscopic particle growth in the cluster subjects with constricted airways, while it increased by only about 0.5% in those with non-constricted airways. The effect of particle growth was most significant for particles with an initial diameter of 2 μm in the cluster subjects with constricted airways. The effect diminished with increasing particle size, especially for particles with an initial diameter larger than 4 μm. This suggests the necessity to differentiate asthmatic subjects by cluster in engineering the aerosol size for tailored treatment. Specifically, the treatment of severe asthmatic subjects who have constricted airways with inhalation aerosols may need submicron-sized hygroscopic particles to compensate for particle growth, if one targets for delivering to the peripheral region. These results could potentially inform the choice of particle size for inhalational drug delivery in a cluster-specific manner.
Collapse
|
148
|
Smith BM, Kirby M, Hoffman EA, Kronmal RA, Aaron SD, Allen NB, Bertoni A, Coxson HO, Cooper C, Couper DJ, Criner G, Dransfield MT, Han MK, Hansel NN, Jacobs DR, Kaufman JD, Lin CL, Manichaikul A, Martinez FJ, Michos ED, Oelsner EC, Paine R, Watson KE, Benedetti A, Tan WC, Bourbeau J, Woodruff PG, Barr RG. Association of Dysanapsis With Chronic Obstructive Pulmonary Disease Among Older Adults. JAMA 2020; 323:2268-2280. [PMID: 32515814 PMCID: PMC7284296 DOI: 10.1001/jama.2020.6918] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022]
Abstract
Importance Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD), yet much of COPD risk remains unexplained. Objective To determine whether dysanapsis, a mismatch of airway tree caliber to lung size, assessed by computed tomography (CT), is associated with incident COPD among older adults and lung function decline in COPD. Design, Setting, and Participants A retrospective cohort study of 2 community-based samples: the Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study, which involved 2531 participants (6 US sites, 2010-2018) and the Canadian Cohort of Obstructive Lung Disease (CanCOLD), which involved 1272 participants (9 Canadian sites, 2010-2018), and a case-control study of COPD: the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), which involved 2726 participants (12 US sites, 2011-2016). Exposures Dysanapsis was quantified on CT as the geometric mean of airway lumen diameters measured at 19 standard anatomic locations divided by the cube root of lung volume (airway to lung ratio). Main Outcomes and Measures Primary outcome was COPD defined by postbronchodilator ratio of forced expired volume in the first second to vital capacity (FEV1:FVC) less than 0.70 with respiratory symptoms. Secondary outcome was longitudinal lung function. All analyses were adjusted for demographics and standard COPD risk factors (primary and secondhand tobacco smoke exposures, occupational and environmental pollutants, and asthma). Results In the MESA Lung sample (mean [SD] age, 69 years [9 years]; 1334 women [52.7%]), 237 of 2531 participants (9.4%) had prevalent COPD, the mean (SD) airway to lung ratio was 0.033 (0.004), and the mean (SD) FEV1 decline was -33 mL/y (31 mL/y). Of 2294 MESA Lung participants without prevalent COPD, 98 (4.3%) had incident COPD at a median of 6.2 years. Compared with participants in the highest quartile of airway to lung ratio, those in the lowest had a significantly higher COPD incidence (9.8 vs 1.2 cases per 1000 person-years; rate ratio [RR], 8.12; 95% CI, 3.81 to 17.27; rate difference, 8.6 cases per 1000 person-years; 95% CI, 7.1 to 9.2; P < .001) but no significant difference in FEV1 decline (-31 vs -33 mL/y; difference, 2 mL/y; 95% CI, -2 to 5; P = .30). Among CanCOLD participants (mean [SD] age, 67 years [10 years]; 564 women [44.3%]), 113 of 752 (15.0%) had incident COPD at a median of 3.1 years and the mean (SD) FEV1 decline was -36 mL/y (75 mL/y). The COPD incidence in the lowest airway to lung quartile was significantly higher than in the highest quartile (80.6 vs 24.2 cases per 1000 person-years; RR, 3.33; 95% CI, 1.89 to 5.85; rate difference, 56.4 cases per 1000 person-years; 95% CI, 38.0 to 66.8; P<.001), but the FEV1 decline did not differ significantly (-34 vs -36 mL/y; difference, 1 mL/y; 95% CI, -15 to 16; P=.97). Among 1206 SPIROMICS participants (mean [SD] age, 65 years [8 years]; 542 women [44.9%]) with COPD who were followed up for a median 2.1 years, those in the lowest airway to lung ratio quartile had a mean FEV1 decline of -37 mL/y (15 mL/y), which did not differ significantly from the decline in MESA Lung participants (P = .98), whereas those in highest quartile had significantly faster decline than participants in MESA Lung (-55 mL/y [16 mL/y ]; difference, -17 mL/y; 95% CI, -32 to -3; P = .004). Conclusions and Relevance Among older adults, dysanapsis was significantly associated with COPD, with lower airway tree caliber relative to lung size associated with greater COPD risk. Dysanapsis appears to be a risk factor associated with COPD.
Collapse
|
149
|
Kim T, Cho HB, Kim WJ, Lee CH, Chae KJ, Choi SH, Lee KE, Bak SH, Kwon SO, Jin GY, Choi J, Park EK, Lin CL, Hoffman EA, Choi S. Quantitative CT-based structural alterations of segmental airways in cement dust-exposed subjects. Respir Res 2020; 21:133. [PMID: 32471435 PMCID: PMC7260806 DOI: 10.1186/s12931-020-01399-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background Dust exposure has been reported as a risk factor of pulmonary disease, leading to alterations of segmental airways and parenchymal lungs. This study aims to investigate alterations of quantitative computed tomography (QCT)-based airway structural and functional metrics due to cement-dust exposure. Methods To reduce confounding factors, subjects with normal spirometry without fibrosis, asthma and pneumonia histories were only selected, and a propensity score matching was applied to match age, sex, height, smoking status, and pack-years. Thus, from a larger data set (N = 609), only 41 cement dust-exposed subjects were compared with 164 non-cement dust-exposed subjects. QCT imaging metrics of airway hydraulic diameter (Dh), wall thickness (WT), and bifurcation angle (θ) were extracted at total lung capacity (TLC) and functional residual capacity (FRC), along with their deformation ratios between TLC and FRC. Results In TLC scan, dust-exposed subjects showed a decrease of Dh (airway narrowing) especially at lower-lobes (p < 0.05), an increase of WT (wall thickening) at all segmental airways (p < 0.05), and an alteration of θ at most of the central airways (p < 0.001) compared with non-dust-exposed subjects. Furthermore, dust-exposed subjects had smaller deformation ratios of WT at the segmental airways (p < 0.05) and θ at the right main bronchi and left main bronchi (p < 0.01), indicating airway stiffness. Conclusions Dust-exposed subjects with normal spirometry demonstrated airway narrowing at lower-lobes, wall thickening at all segmental airways, a different bifurcation angle at central airways, and a loss of airway wall elasticity at lower-lobes. The airway structural alterations may indicate different airway pathophysiology due to cement dusts.
Collapse
|
150
|
Putcha N, Fawzy A, Matsui EC, Liu MC, Bowler RP, Woodruff PG, O'Neal WK, Comellas AP, Han MK, Dransfield MT, Wells JM, Lugogo N, Gao L, Talbot CC, Hoffman EA, Cooper CB, Paulin LM, Kanner RE, Criner G, Ortega VE, Barr RG, Krishnan JA, Martinez FJ, Drummond MB, Wise RA, Diette GB, Hersh CP, Hansel NN. Clinical Phenotypes of Atopy and Asthma in COPD: A Meta-analysis of SPIROMICS and COPDGene. Chest 2020; 158:2333-2345. [PMID: 32450244 DOI: 10.1016/j.chest.2020.04.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Little is known about the concordance of atopy with asthma COPD overlap. Among individuals with COPD, a better understanding of the phenotypes characterized by asthma overlap and atopy is needed to better target therapies. RESEARCH QUESTION What is the overlap between atopy and asthma status among individuals with COPD, and how are categories defined by the presence of atopy and asthma status associated with clinical and radiologic phenotypes and outcomes in the Genetic Epidemiology of COPD Study (COPDGene) and Subpopulation and Intermediate Outcome Measures in COPD Study (SPIROMICS)? STUDY DESIGN AND METHODS Four hundred three individuals with COPD from SPIROMICS and 696 individuals from COPDGene with data about specific IgEs to 10 common allergens and mixes (simultaneous assessment of combination of allergens in similar category) were included. Comparison groups were defined by atopic and asthma status (neither, atopy alone, atopic asthma, nonatopic asthma, with atopy defined as any positive specific IgE (≥0.35 KU/L) to any of the 10 allergens or mixes and asthma defined as self-report of doctor-diagnosed current asthma). Multivariable regression analyses (linear, logistic, and zero inflated negative binomial where appropriate) adjusted for age, sex, race, lung function, smoking status, pack-years smoked, and use of inhaled corticosteroids were used to determine characteristics of groups and relationship with outcomes (exacerbations, clinical outcomes, CT metrics) separately in COPDGene and SPIROMICS, and then adjusted results were combined using meta-analysis. RESULTS The prevalence of atopy was 35% and 36% in COPD subjects from SPIROMICS and COPDGene, respectively, and less than 50% overlap was seen between atopic status with asthma in both cohorts. In meta-analysis, individuals with nonatopic asthma had the most impaired symptom scores (effect size for St. George's Respiratory Questionnaire total score, 4.2; 95% CI, 0.4-7.9; effect size for COPD Assessment Test score, 2.8; 95% CI, 0.089-5.4), highest risk for exacerbations (incidence rate ratio, 1.41; 95% CI, 1.05-1.88) compared with the group without atopy or asthma. Those with atopy and atopic asthma were not at increased risk for adverse outcomes. INTERPRETATION Asthma and atopy had incomplete overlap among former and current smokers with COPD in COPDGene and SPIROMICS. Nonatopic asthma was associated with adverse outcomes and exacerbation risk in COPD, whereas groups having atopy alone and atopic asthma had less risk.
Collapse
|