126
|
Andrieux C, Biasutti S, Barrieu J, Morganx P, Morisson M, Coustham V, Panserat S, Houssier M. Identification of different critical embryonic periods to modify egg incubation temperature in mule ducks. Animal 2021; 16:100416. [PMID: 34954551 DOI: 10.1016/j.animal.2021.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Egg incubation of mule ducks, mainly used for fatty liver production, is one of the critical phases in this sector. Based on hatching rate, the best incubation parameters have already been well described for poultry, but the literature on ducks is lacking. In this study, we tested different incubation conditions by varying two important factors, temperature and relative humidity, in mule ducks. These variations were applied at different periods during embryogenesis in order to measure the impact of environmental disturbances on different zootechnical performances. The temperature was increased by 1.5 °C (16 h/24) and the relative humidity was set up to 65%, during 10 days. Six 10-day developmental windows were tested, from embryonic day 9 to embryonic day 14. Our results are in line with previous reports showing that increasing incubation temperature, even when relative humidity is adjusted, can have a negative impact on duck embryonic mortality up to 24.5% for the condition E10-E20 (P < 10-5). However, the hatchability can be maintained at the level of the control groups when these modifications are applied on the latest windows (from the 11th embryonic day). Sex ratio, hatching BW, and internal temperature are also sensitive to these incubation changes, and their modification could have a major impact on later zootechnical performance. These results should contribute to the development or embryonic temperature programming approaches, especially for the fatty liver production industry.
Collapse
|
127
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
|
128
|
Yolk platelets impede nuclear expansion in Xenopus embryos. Dev Biol 2021; 482:101-113. [PMID: 34906546 DOI: 10.1016/j.ydbio.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
During metazoan early embryogenesis, the intracellular properties of proteins and organelles change dynamically through rapid cleavage. In particular, a change in the nucleus size is known to contribute to embryonic development-dependent cell cycle and gene expression regulation. Here, we compared the nuclear sizes of various blastomeres from developing Xenopus embryos and analyzed the mechanisms that control the nuclear expansion dynamics by manipulating the amount of intracellular components in a cell-free system. Nuclear expansion was slower in blastomeres from vegetal hemispheres during a longer interphase than in those from animal hemispheres. Furthermore, upon recapitulating interphase events by manipulating the concentration of yolk platelets, which are originally rich in the vegetal blastomeres, in cell-free cytoplasmic extracts, nuclear expansion and DNA replication became slower than that in normal yolk-free conditions. Under these conditions, the supplemented yolk platelets accumulated around the nucleus in a microtubule-dependent manner and impeded the organization of the endoplasmic reticulum network. Overall, we propose that yolk platelets around the nucleus reduce membrane supply from the endoplasmic reticulum to the nucleus, resulting in slower nuclear expansion and cell cycle progression in the yolk-rich vegetal blastomeres.
Collapse
|
129
|
Sun M, Tao B, Luo T, Gao G, Shang A. Type 1.5 Split Cord Malformation : A New Theory of Pathogenesis. J Korean Neurosurg Soc 2021; 65:138-144. [PMID: 34802216 PMCID: PMC8752888 DOI: 10.3340/jkns.2020.0360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 11/27/2022] Open
Abstract
To report two cases of type 1.5 split cord malformation (SCM), a subtype of SCM with combined characteristics of types I and II and to review the relevant literature and propose a new possible pathogenetic theory for type 1.5 SCM. A 52-year-old woman had hemicords within a single dural sac with a dorsal bony septum at the L5 level. A 9-year-old boy had hemicords within a single dural sac with a ventral bony septum and fibrous extension at the L3 level. Both patients underwent microsurgical treatments for removing the bony septum, detethering the spinal cord, and sectioning the filum terminale. The surgical procedure revealed an extradural partial bony septum and hemicords within an intact single dural sac in each patient. Both patients were discharged from the hospital without de novo nerve dysfunction. Published cases have validated that types I and II SCM can overlap. We recommend recent type 1.5 SCM as a normative terminology for this overlapping SCM and report two rare cases of this SCM. We propose an associated pathogenesis consisting of uneven distribution and regression to explain type 1.5 SCM. Furthermore, we postulate that the amount of condensing meninx primitiva might determine whether the left bony septum has fibrous extensions to the opposite dura in type 1.5 SCM.
Collapse
|
130
|
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176:80-91. [PMID: 34555455 DOI: 10.1016/j.freeradbiomed.2021.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.
Collapse
|
131
|
Iurato G, Igamberdiev AU. Étienne Geoffroy Saint-Hilaire as a predecessor of the epigenetic concept of evolution. Biosystems 2021; 210:104571. [PMID: 34743000 DOI: 10.1016/j.biosystems.2021.104571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
The contribution of Étienne Geoffroy Saint-Hilaire (1772-1844) to evolutionary biology is reviewed in commemoration of his 250th birthday. Geoffroy's views on saltational changes during embryogenesis of animals characterize him as a predecessor of the epigenetic concept of evolution, which is now developing in the frames of the extended evolutionary synthesis or evo-devo. While Lamarck distinguished between the two modes of evolution, one within the same level of organization and the other characterized by the transition to a more complex organization, Geoffroy Saint-Hilaire attempted to explain the second mode by the changes in embryogenesis triggered by environmental influences. In this regard, he placed the phenomenon of complexification in the centre of the evolutionary context. Geoffroy Saint-Hilaire can be considered also as an early predecessor of the cell theory. His ideas about the unique plan of structure for animal species and of the fundamental connections that establish the homology of anatomical parts represent an important contribution to the evolutionary concept.
Collapse
|
132
|
Shimizu K, Kotajima D, Fukao K, Mogi F, Horiuchi R, Kataoka C, Kagami Y, Fujita M, Miyanishi N, Kashiwada S. Exposure of silver nanocolloids causes glycosylation disorders and embryonic deformities in medaka. Toxicol Appl Pharmacol 2021; 430:115714. [PMID: 34543669 DOI: 10.1016/j.taap.2021.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022]
Abstract
Silver nanomaterials such as silver nanocolloids (SNC) contribute to environmental pollution and have adverse ecological effects on aquatic organisms. In particular, chemical exposure of fish during embryogenesis leads to deformities and puts the population at risk. Although glycans and glycosylation are known to be important for proper morphology in embryogenesis, little glycobiology-based research has examined morphological disorders caused by environmental pollutants. This study addressed the glycobiological effects of SNC exposure on medaka embryogenesis. After exposure of medaka embryos to SNC, deformities such as small heads and deformed eyes were observed. The expression of five glycan-related genes (alg2, gnsb, b4galt2, b3gat1a, and b3gat2) was significantly altered, with changes depending on the embryonic stage at exposure, with more severe deformities with exposure at earlier stages. In situ hybridization analyses indicated that the five genes were expressed mainly in the head region; exposure of SNC suppressed alg2 and gnsb and enhanced b4galt2 and b3gat1a expression relative to controls on day 7. Loss (siRNA)- and gain (RNA overexpression)-of-function experiments confirmed that alg2, gnsb, and b4galt2 are essential for embryogenesis. The effects of SNC exposure on glycan synthesis were estimated by glycan structure analysis. In the medaka embryo, high mannose-type glycans were dominant, and SNC exposure altered glycan synthesis. The alteration was more significant when exposure occurred at an early stage of medaka embryogenesis. Thus, SNC exposure causes embryonic deformities in medaka embryos through disordered glycosylation.
Collapse
|
133
|
Piorczynski TB, Lapehn S, Ringer KP, Allen SA, Johnson GA, Call K, Lucas SM, Harris C, Hansen JM. NRF2 activation inhibits valproic acid-induced neural tube defects in mice. Neurotoxicol Teratol 2021; 89:107039. [PMID: 34737154 DOI: 10.1016/j.ntt.2021.107039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 01/02/2023]
Abstract
Valproic acid (VPA) is a widely prescribed medication that has traditionally been used to treat epilepsy, yet embryonic exposure to VPA increases the risk of the fetus developing neural tube defects (NTDs). While the mechanism by which VPA causes NTDs is unknown, we hypothesize that VPA causes dysmorphogenesis through the disruption of redox-sensitive signaling pathways that are critical for proper embryonic development, and that protection from the redox disruption may decrease the prevalence of NTDs. Time-bred CD-1 mice were treated with 3H-1,2-dithiole-3-thione (D3T), an inducer of nuclear factor erythroid 2-related factor 2 (NRF2)-a transcription factor that activates the intracellular antioxidant response to prevent redox disruptions. Embryos were then collected for whole embryo culture and subsequently treated with VPA in vitro. The glutathione (GSH)/glutathione disulfide (GSSG) redox potential (Eh), a measure of the intracellular redox environment, was measured in the developing mouse embryos. Embryos treated with VPA exhibited a transiently oxidizing GSH/GSSG Eh, while those that received D3T pretreatment prior to VPA exposure showed no differences compared to controls. Moving to an in utero mouse model, time-bred C57BL/6 J dams were pretreated with or without D3T and then exposed to VPA, after which all embryos were collected for morphological analyses. The prevalence of open neural tubes in embryos treated with VPA significantly decreased with D3T pretreatment, as did the severity of the observed defects evaluated by a morphological assessment. These data show that NRF2 induction via D3T pretreatment protects against VPA-induced redox dysregulation and decreases the prevalence of NTDs in developing mouse embryos.
Collapse
|
134
|
Identification of Cell Autonomous and Non-Cell Autonomous Functions of Heparan Sulfate Glycosaminoglycan Chains by Creating Chimeric Mouse Embryos. Methods Mol Biol 2021. [PMID: 34626408 DOI: 10.1007/978-1-0716-1398-6_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell surface-tethered heparan sulfate glycosaminoglycan chains primarily function in a cell autonomous manner, while extracellular matrix-associated heparan sulfate glycosaminoglycan chains function in a non-cell autonomous manner. In addition, the cleaved forms of cell surface-tethered heparan sulfate chains enzymatically released by proteases and heparanases, called shedding, can contribute to non-cell autonomous mechanisms. The movement of heparan sulfate chains to surrounding cells mediated by transcytosis or filopodia also involves another non-cell autonomous mechanism. To determine cell autonomous or non-cell autonomous roles of heparan sulfate glycosaminoglycan chains during early embryogenesis, direct conclusions can be drawn by analyzing chimeric embryos which are composed of wild-type and heparan sulfate glycosaminoglycan chain-deficient cells. Here, we describe methods of production of these chimeric embryos and analysis of their cellular phenotypes with immunohistochemistry at a single-cell level.
Collapse
|
135
|
Li-Leger E, Feichtinger R, Flibotte S, Holzkamp H, Schnabel R, Moerman DG. Identification of essential genes in Caenorhabditis elegans through whole genome sequencing of legacy mutant collections. G3-GENES GENOMES GENETICS 2021; 11:6373896. [PMID: 34550348 PMCID: PMC8664450 DOI: 10.1093/g3journal/jkab328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
It has been estimated that 15%–30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III–V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.
Collapse
|
136
|
Hao Z, Zhang Z, Xiang D, Venglat P, Chen J, Gao P, Datla R, Weijers D. Conserved, divergent and heterochronic gene expression during Brachypodium and Arabidopsis embryo development. PLANT REPRODUCTION 2021; 34:207-224. [PMID: 33950292 PMCID: PMC8360882 DOI: 10.1007/s00497-021-00413-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Developmental and transcriptomic analysis of Brachypodium embryogenesis and comparison with Arabidopsis identifies conserved and divergent phases of embryogenesis and reveals widespread heterochrony of developmental gene expression. Embryogenesis, transforming the zygote into the mature embryo, represents a fundamental process for all flowering plants. Current knowledge of cell specification and differentiation during plant embryogenesis is largely based on studies of the dicot model plant Arabidopsis thaliana. However, the major crops are monocots and the transcriptional programs associated with the differentiation processes during embryogenesis in this clade were largely unknown. Here, we combined analysis of cell division patterns with development of a temporal transcriptomic resource during embryogenesis of the monocot model plant Brachypodium distachyon. We found that early divisions of the Brachypodium embryo were highly regular, while later stages were marked by less stereotypic patterns. Comparative transcriptomic analysis between Brachypodium and Arabidopsis revealed that early and late embryogenesis shared a common transcriptional program, whereas mid-embryogenesis was divergent between species. Analysis of orthology groups revealed widespread heterochronic expression of potential developmental regulators between the species. Interestingly, Brachypodium genes tend to be expressed at earlier stages than Arabidopsis counterparts, which suggests that embryo patterning may occur early during Brachypodium embryogenesis. Detailed investigation of auxin-related genes shows that the capacity to synthesize, transport and respond to auxin is established early in the embryo. However, while early PIN1 polarity could be confirmed, it is unclear if an active response is mounted. This study presents a resource for studying Brachypodium and grass embryogenesis and shows that divergent angiosperms share a conserved genetic program that is marked by heterochronic gene expression.
Collapse
|
137
|
da Silva JN, Simas DLR, Soares AR, Duarte HM, Moraes J, Conceição CC, da Silva RM, da Silva Vaz I, Logullo C. Glucose metabolomic profile during embryogenesis in the tick Rhipicephalus microplus. Metabolomics 2021; 17:79. [PMID: 34463832 DOI: 10.1007/s11306-021-01830-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Metabolomic approaches can assess the actual state of an organism's energy metabolism during a specific morphological event, providing a more accurate insight into the correlations between physiology and metabolic regulation. METHODS The study of the metabolomic profile aim to identify the largest possible number of biomolecules in a certain organism or specific structures. For this purpose, mass spectrometry (MS) and chromatography have been used in the present study. OBJECTIVES In this context, the aim of the present work is to evaluate the glucose metabolomic profile during embryogenesis in Rhipicephalus microplus tick, investigating the dynamics of nutrient utilization during tick embryo formation, as well as the control of glucose metabolism. RESULTS We show that glycogen reserves are preferentially mobilized to sustain the energy-intensive process of embryogenesis. Subsequently, the increase in concentration of specific amino acids indicates that protein degradation would provide carbons to fuel gluconeogenesis, supplying the embryo with sufficient glucose and glycogen during development. CONCLUSION Altogether, these results demonstrated the presence of a very refined catabolic and anabolic control during embryogenesis in R. microplus tick, suggesting the pronounced gluconeogenesis as a strategy to secure embryo development. Moreover, this research contributes to the understanding of the mechanisms that control glucose metabolism during tick embryogenesis and may aid the identification of putative targets for novel chemical or immunological control methods, which are essential to improve the prevention of tick infestations.
Collapse
|
138
|
Abstract
Peppers have a prominent role in traditional cuisine of many different countries all around the world. This is why pepper is one of the most important crops worldwide. Production of doubled haploid (DH) pepper plants has been assessed by different approaches, but at present, the most efficient and universal method is by far anther culture, based on the use of the Dumas de Vaulx et al. protocol published in 1981, and adapted to the particularities of each specific pepper background. In this chapter, we present a method to produce pepper DHs by anther culture, based on the Dumas de Vaulx et al. protocol, but including a number of modifications which, in our experience, allow for a more efficient production DH plants in different pepper genotypes.
Collapse
|
139
|
Doubled Haploidy for Cow Cockle (Saponaria vaccaria L.). Methods Mol Biol 2021. [PMID: 34270076 DOI: 10.1007/978-1-0716-1331-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The production of doubled haploid (DH) plants from microspores is an important technique used in plant breeding and basic research. DH technology is a rapid method for developing homozygous lines, which can be used to accelerate crop improvement programs. Haploidy technology can also be used in mutagenesis, transformation, and basic research such as genomic, biochemical, and physiological studies. There is no general protocol that will result in the production of DH in all species, as differences occur among species and among genotypes within a species in terms of embryogenic response. Here we describe methodology for developing doubled haploids in cow cockle (Saponaria vaccaria L.).
Collapse
|
140
|
Production of Doubled Haploid Plants in Cucumber (Cucumis sativus L.) Through Anther Culture. Methods Mol Biol 2021. [PMID: 34270063 DOI: 10.1007/978-1-0716-1331-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
As in any other economically important crop, the possibility of producing fully homozygous, doubled haploid lines in cucumber allows for faster and cheaper breeding. At present, the fastest way to doubled haploidy is the production of cucumber haploid plants and duplication of their chromosomes to make them doubled haploid. In this chapter, we describe a complete protocol to successfully produce cucumber doubled haploid plants, including the evaluation of their ploidy level by flow cytometry. Briefly, this protocol involves a first step of anther culture to induce microspores to divide and proliferate forming calli. The calli produced are isolated from anthers and transferred first to a liquid medium and then to a solid medium to induce organogenesis. Organogenic shoots will eventually give rise to entire DH plants.
Collapse
|
141
|
Kurtar ES, Seymen M. Anther Culture in Cucurbita Species. Methods Mol Biol 2021; 2289:111-121. [PMID: 34270066 DOI: 10.1007/978-1-0716-1331-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Production of homozygous pure parental lines is the first stage of hybrid vegetable breeding. Unfortunately, producing pure lines takes a long time by classical breeding methods, especially in open-pollinated vegetable species, and this period can be up to 8-10 years. Recently, doubled haploid (DH) technology, as a set of biotechnological methods, has emerged as an alternative to classical breeding methods and allows for the generation of 100% homozygous pure double haploid lines in 1 or 2 years. Although haploid plants were successfully produced via irradiated pollen technique and gynogenesis in some Cucurbita species, haploid plants have not been obtained from some lines due to genotype dependency, and haploidy frequency is still not sufficient for use in a breeding program. Thus, anther culture technique has emerged as an alternative technique in the DH process. The main objective of this chapter is to provide explanatory information on anther culture technique applied in the Cucurbita genus. For this purpose , key points and details of methods and protocols of the anther culture technique are described in summer squash (Cucurbita pepo L.), pumpkin (Cucurbita moschata Duch.), and winter squash (Cucurbita maxima Duch.).
Collapse
|
142
|
Doubled Haploid Production in High- and Low-Response Genotypes of Rapeseed (Brassica napus) Through Isolated Microspore Culture. Methods Mol Biol 2021; 2288:129-144. [PMID: 34270009 DOI: 10.1007/978-1-0716-1335-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Rapeseed (Brassica napus) is one of the most important oilseed crops worldwide. It is also a model system to study the process of microspore embryogenesis, due to the high response of some B. napus lines, and to the refinements of the protocols. This chapter presents a protocol for the induction of haploid and DH embryos in B. napus through isolated microspore culture in two specific backgrounds widely used in DH research, the high response DH4079 line and the low response DH12075 line. We also present methods to identify the best phenological window to identify buds with microspores/pollen at the right developmental stage to induce this process. Methods to determine microspore/pollen viability and to check the ploidy by flow cytometry are also described.
Collapse
|
143
|
Anther and Isolated Microspore Culture in Eggplant (Solanum melongena L.). Methods Mol Biol 2021. [PMID: 34270015 DOI: 10.1007/978-1-0716-1335-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Eggplant is one of the five important, worldwide-distributed solanaceous crops. The use of anther culture technology to produce pure, 100% homozygous doubled haploid lines for hybrid seed production is possible since 1982, where the first protocol of wide application to different eggplant materials was published. From then on, different improvements and adaptations to different materials have been made. In parallel, protocols to implement isolated microspore culture technology in eggplant have been developed principally in the last decade, which opens the door for a more efficient DH production in this species. In this chapter, two protocols, one for anther and other for isolated microspore culture in eggplant, are described. Some steps and materials are common to both approaches. A detailed description of each step from is provided.
Collapse
|
144
|
Doubled Haploidy for Fennel (Foeniculum vulgare Mill.) and Dill (Anethum graveolens L.). Methods Mol Biol 2021; 2288:103-111. [PMID: 34270007 DOI: 10.1007/978-1-0716-1335-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Doubled haploidy technology is a powerful tool to accelerate the breeding of new crop varieties. Protocols are not universal, as even species within the same family require a specific process. Here we describe methods for developing doubled haploids for fennel and dill, both Apiaceae species which are used for food, flavorings, and medicine.
Collapse
|
145
|
Shed-Microspore Culture in Ornamental Peppers for Doubled Haploid Plant Production. Methods Mol Biol 2021; 2288:251-266. [PMID: 34270016 DOI: 10.1007/978-1-0716-1335-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The shed-microspore culture technique is an alternative sub-method combining anther and isolated microspore culture to induce microspore embryogenesis. Recently, its effective use in different types of peppers has drawn attention, because it has a higher embryo yield potential compared to anther culture and is more practical than isolated microspore culture. In this chapter, a stepwise protocol for shed-microspore culture of ornamental pepper is described. This protocol includes the steps of donor plant growth conditions, the choice of suitable flower buds based on DAPI staining of microspores, application of a cold pretreatment to flower buds, surface sterilization of the buds, shed-microspore culture of anthers, stress treatments, regeneration of androgenic in vitro plantlets, their acclimatization and ploidy analysis, and in vivo chromosome doubling of the haploid plants.
Collapse
|
146
|
Nowotarski SH, Davies EL, Robb SMC, Ross EJ, Matentzoglu N, Doddihal V, Mir M, McClain M, Sánchez Alvarado A. Planarian Anatomy Ontology: a resource to connect data within and across experimental platforms. Development 2021; 148:271068. [PMID: 34318308 PMCID: PMC8353266 DOI: 10.1242/dev.196097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/28/2021] [Indexed: 12/23/2022]
Abstract
As the planarian research community expands, the need for an interoperable data organization framework for tool building has become increasingly apparent. Such software would streamline data annotation and enhance cross-platform and cross-species searchability. We created the Planarian Anatomy Ontology (PLANA), an extendable relational framework of defined Schmidtea mediterranea (Smed) anatomical terms used in the field. At publication, PLANA contains over 850 terms describing Smed anatomy from subcellular to system levels across all life cycle stages, in intact animals and regenerating body fragments. Terms from other anatomy ontologies were imported into PLANA to promote interoperability and comparative anatomy studies. To demonstrate the utility of PLANA as a tool for data curation, we created resources for planarian embryogenesis, including a staging series and molecular fate-mapping atlas, and the Planarian Anatomy Gene Expression database, which allows retrieval of a variety of published transcript/gene expression data associated with PLANA terms. As an open-source tool built using FAIR (findable, accessible, interoperable, reproducible) principles, our strategy for continued curation and versioning of PLANA also provides a platform for community-led growth and evolution of this resource. Summary: Description of the construction of an anatomy ontology tool for planaria with examples of its potential use to curate and mine data across multiple experimental platforms.
Collapse
|
147
|
Gavrilov-Zimin IA. Egg retention, viviparity and ovoviviparity in Paraneoptera. COMPARATIVE CYTOGENETICS 2021; 15:239-252. [PMID: 34394847 PMCID: PMC8354988 DOI: 10.3897/compcytogen.v15i3.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
This article is a second part of the themed issue "Aberrant cytogenetic and reproductive patterns in the evolution of Paraneoptera insects", prepared by the Russian-Bulgarian research team. Here, analysis of aberrations related to the egg development is provided based on literature data and the author's own investigations. Evolutionary aspects of ovoviviparity/viviparity are also briefly discussed. Material and methods, terminology and nomenclature of taxonomic names are listed in the first paper of the issue (Gavrilov-Zimin et al. 2021).
Collapse
|
148
|
Dondi C, Bertin B, Da Ponte JP, Wojtowicz I, Jagla K, Junion G. A polarized nucleus-cytoskeleton-ECM connection in migrating cardioblasts controls heart tube formation in Drosophila. Development 2021; 148:271094. [PMID: 34323270 DOI: 10.1242/dev.192146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
The formation of the cardiac tube is a remarkable example of complex morphogenetic processes conserved from invertebrates to humans. It involves coordinated collective migration of contralateral rows of cardiac cells. The molecular processes underlying the specification of cardioblasts (CBs) prior to migration are well established and significant advances have been made in understanding the process of lumen formation. However, the mechanisms of collective cardiac cells migration remain elusive. Here, we have identified CAP and MSP300 as novel actors involved during CB migration. They both exhibit highly similar temporal and spatial expression patterns in Drosophila migrating cardiac cells, and are necessary for the correct number and alignment of CBs, a prerequisite for the coordination of their collective migration. Our data suggest that CAP and MSP300 are part of a protein complex linking focal adhesion sites to nuclei via the actin cytoskeleton that maintains post-mitotic state and correct alignment of CBs.
Collapse
|
149
|
Triticale Isolated Microspore Culture for Doubled Haploid Production. Methods Mol Biol 2021. [PMID: 34270038 DOI: 10.1007/978-1-0716-1315-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Here, we describe a method of triticale isolated microspore culture for production of doubled haploid plants via androgenesis. We use this method routinely because it is highly efficient and works well on different triticale genotypes. To force microspores into becoming embryogenic, we apply a 21-day cold pretreatment. The shock of cold facilitates redirecting microspores from their predestined pollen developmental program into the androgenesis pathway. Ovaries are included in our culture methods to help with embryogenesis, and the histone deacytelase inhibitor Trichostatin A (TSA) is added to further improve androgenesis and increase our ability to recover green doubled haploid plants.
Collapse
|
150
|
Morita A, Satouh Y, Kosako H, Kobayashi H, Iwase A, Sato K. Clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins and preimplantation development. Development 2021; 148:270925. [PMID: 34269385 DOI: 10.1242/dev.199461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022]
Abstract
Fertilization triggers significant cellular remodeling through the oocyte-to-embryo transition. In this transition, the ubiquitin-proteasome system and autophagy are essential for the degradation of maternal components; however, the significance of degradation of cell surface components remains unknown. In this study, we show that multiple maternal plasma membrane proteins, such as the glycine transporter GlyT1a, are selectively internalized from the plasma membrane to endosomes in mouse embryos by the late two-cell stage and then transported to lysosomes for degradation at the later stages. During this process, large amounts of ubiquitylated proteins accumulated on endosomes. Furthermore, the degradation of GlyT1a with mutations in potential ubiquitylation sites was delayed, suggesting that ubiquitylation may be involved in GlyT1a degradation. The clathrin inhibitor blocked GlyT1a internalization. Strikingly, the protein kinase C (PKC) activator triggered the heterochronic internalization of GlyT1a; the PKC inhibitor markedly blocked GlyT1a endocytosis. Lastly, clathrin inhibition completely blocked embryogenesis at the two-cell stage and inhibited cell division after the four-cell stage. These findings demonstrate that PKC-dependent clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins during oocyte-to-embryo transition and early embryogenesis.
Collapse
|