201
|
Fan M, Park A, Nephew KP. CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-alpha. Mol Endocrinol 2005; 19:2901-14. [PMID: 16037132 DOI: 10.1210/me.2005-0111] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In estrogen target cells, estrogen receptor-alpha (ERalpha) protein levels are strictly regulated. Although receptor turnover is a continuous process, dynamic fluctuations in receptor levels, mediated primarily by the ubiquitin-proteasome pathway, occur in response to changing cellular conditions. In the absence of ligand, ERalpha is sequestered within a stable chaperone protein complex consisting of heat shock protein 90 (Hsp90) and cochaperones. However, the molecular mechanism(s) regulating ERalpha stability and turnover remain undefined. One potential mechanism involves CHIP, the carboxyl terminus of Hsc70-interacting protein, previously shown to target Hsp90-interacting proteins for ubiquitination and proteasomal degradation. In the present study, a role for CHIP in ERalpha protein degradation was investigated. In ER-negative HeLa cells transfected with ERalpha and CHIP, ERalpha proteasomal degradation increased, whereas ERalpha-mediated gene transcription decreased. In contrast, CHIP depletion by small interference RNA resulted in increased ERalpha accumulation and reporter gene transactivation. Transfection of mutant CHIP constructs demonstrated that both the U-box (containing ubiquitin ligase activity) and the tetratricopeptide repeat (TPR, essential for chaperone binding) domains within CHIP are required for CHIP-mediated ERalpha down-regulation. In addition, coimmunoprecipitation assays demonstrated that ERalpha and CHIP associate through the CHIP TPR domain. In ERalpha-positive breast cancer MCF7 cells, CHIP overexpression resulted in decreased levels of endogenous ERalpha protein and attenuation of ERalpha-mediated gene expression. Furthermore, the ERalpha-CHIP interaction was stimulated by the Hsp90 inhibitor geldanamycin (GA), resulting in enhanced ERalpha degradation; this GA effect was further augmented by CHIP overexpression but was abolished by CHIP depletion. Finally, ERalpha dissociation from CHIP by various ERalpha ligands, including 17beta-estradiol, 4-hydroxytamoxifen, and ICI 182,780, interrupted CHIP-mediated ERalpha degradation. These results demonstrate a role for CHIP in both basal and GA-induced ERalpha degradation. Furthermore, based on our observations that CHIP promotes ERalpha degradation and attenuates receptor-mediated gene transcription, we suggest that CHIP, by modulating ERalpha stability, contributes to the regulation of functional receptor levels, and thus hormone responsiveness, in estrogen target cells.
Collapse
|
202
|
Abstract
The beta-catenin pathway has been conclusively demonstrated to regulate differentiation and patterning in multiple model systems. In thyroid cancer, alterations are often seen in proteins that regulate beta-catenin, including those of the RAS, PI3K/AKT, and peroxisome proliferation activated receptor-gamma (PPARgamma) pathways, and evidence from the literature suggests that beta-catenin may play a direct role in the dedifferentiation commonly observed in late-stage disease. RET/PTC rearrangements are frequent in thyroid cancer and appear to be exclusive from mutational events in RAS and BRAF. Activation of AKT by phosphatidylinositide-3 kinase (PI3K), a RAS effector, results in GSK3beta phosphorylation and deactivation and subsequent beta-catenin upregulation in thyroid cancer. Activating mutations in beta-catenin, which have been demonstrated in late-stage thyroid tumors, correlate with beta-catenin nuclear localization and poor prognosis. We hypothesize that activation of the RAS, PI3K/AKT, and PPARgamma pathways ultimately impinges upon beta-catenin. We further propose that if mutations in BRAF, RAS, and RET/PTC rearrangements are mutually exclusive in certain thyroid tumors or tumor types, as has already been shown for papillary thyroid cancer, then these interconnected pathways may cooperate in the initiation and promotion of the disease. We believe that clinical benefit for thyroid cancer patients could be derived from disrupting the middle or distal pathway effectors of these pathways, such as AKT or beta-catenin.
Collapse
|
203
|
Balch C, Montgomery JS, Paik HI, Kim S, Kim S, Huang THM, Nephew KP. New anti-cancer strategies: Epigenetic therapies and biomarkers. FRONT BIOSCI-LANDMRK 2005; 10:1897-931. [PMID: 15769674 DOI: 10.2741/1668] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epigenetics is the study of chromatin modifications that affect gene expression without altering DNA nucleotide sequences. This review highlights a prominent role for epigenetic therapies, particularly those that reverse aberrant DNA methylation and histone acetylation, in the potential treatment of cancer. Administration of such therapies to reverse epigenetic "silencing" of tumor suppressors, including genes involved in chemotherapy responses, could prove useful in the management of cancer patients. In this review, we summarize recent advances in the use of methyltransferase and histone deacetylase inhibitors and possible synergistic combinations of these to achieve maximal tumor suppressor gene re-expression. Moreover, when used in combination with conventional chemotherapeutic agents, epigenetic-based therapies may provide a means to resensitize drug-resistant tumors to established treatments. As specific, aberrant epigenetic modifications are frequently associated with distinct cancer types, and likely occur early in tumorigenesis, these have potential utility as biomarkers. Finally, future directions are addressed, including alternative epigenetic targets, gene-specific modifications, and the use of bioinformatics.
Collapse
|
204
|
Jin VX, Leu YW, Liyanarachchi S, Sun H, Fan M, Nephew KP, Huang THM, Davuluri RV. Identifying estrogen receptor alpha target genes using integrated computational genomics and chromatin immunoprecipitation microarray. Nucleic Acids Res 2004; 32:6627-35. [PMID: 15608294 PMCID: PMC545447 DOI: 10.1093/nar/gkh1005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The estrogen receptor alpha (ERalpha) regulates gene expression by either direct binding to estrogen response elements or indirect tethering to other transcription factors on promoter targets. To identify these promoter sequences, we conducted a genome-wide screening with a novel microarray technique called ChIP-on-chip. A set of 70 candidate ERalpha loci were identified and the corresponding promoter sequences were analyzed by statistical pattern recognition and comparative genomics approaches. We found mouse counterparts for 63 of these loci and classified 42 (67%) as direct ERalpha targets using classification and regression tree (CART) statistical model, which involves position weight matrix and human-mouse sequence similarity scores as model parameters. The remaining genes were considered to be indirect targets. To validate this computational prediction, we conducted an additional ChIP-on-chip assay that identified acetylated chromatin components in active ERalpha promoters. Of the 27 loci upregulated in an ERalpha-positive breast cancer cell line, 20 having mouse counterparts were correctly predicted by CART. This integrated approach, therefore, sets a paradigm in which the iterative process of model refinement and experimental verification will continue until an accurate prediction of promoter target sequences is derived.
Collapse
|
205
|
Leu YW, Yan PS, Fan M, Jin VX, Liu JC, Curran EM, Welshons WV, Wei SH, Davuluri RV, Plass C, Nephew KP, Huang THM. Loss of Estrogen Receptor Signaling Triggers Epigenetic Silencing of Downstream Targets in Breast Cancer. Cancer Res 2004; 64:8184-92. [PMID: 15548683 DOI: 10.1158/0008-5472.can-04-2045] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Alterations in histones, chromatin-related proteins, and DNA methylation contribute to transcriptional silencing in cancer, but the sequence of these molecular events is not well understood. Here we demonstrate that on disruption of estrogen receptor (ER) α signaling by small interfering RNA, polycomb repressors and histone deacetylases are recruited to initiate stable repression of the progesterone receptor (PR) gene, a known ERα target, in breast cancer cells. The event is accompanied by acquired DNA methylation of the PR promoter, leaving a stable mark that can be inherited by cancer cell progeny. Reestablishing ERα signaling alone was not sufficient to reactivate the PR gene; reactivation of the PR gene also requires DNA demethylation. Methylation microarray analysis further showed that progressive DNA methylation occurs in multiple ERα targets in breast cancer genomes. The results imply, for the first time, the significance of epigenetic regulation on ERα target genes, providing new direction for research in this classical signaling pathway.
Collapse
|
206
|
Balch C, Huang THM, Brown R, Nephew KP. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 2004; 191:1552-72. [PMID: 15547525 DOI: 10.1016/j.ajog.2004.05.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is the most lethal of all gynecologic neoplasms. Early-stage malignancy is frequently asymptomatic and difficult to detect and thus, by the time of diagnosis, most women have advanced disease. Most of these patients, although initially responsive, eventually develop and succumb to drug-resistant metastases. The success of typical postsurgical regimens, usually a platinum/taxane combination, is limited by primary tumors being intrinsically refractory to treatment and initially responsive tumors becoming refractory to treatment, due to the emergence of drug-resistant tumor cells. This review highlights a prominent role for epigenetics, particularly aberrant DNA methylation and histone acetylation, in both intrinsic and acquired drug-resistance genetic pathways in ovarian cancer. Administration of therapies that reverse epigenetic "silencing" of tumor suppressors and other genes involved in drug response cascades could prove useful in the management of drug-resistant ovarian cancer patients. In this review, we summarize recent advances in the use of methyltransferase and histone deacetylase inhibitors and possible synergistic combinations of these to achieve maximal tumor suppressor gene re-expression. Moreover, when used in combination with conventional chemotherapeutic agents, epigenetic-based therapies may provide a means to resensitize ovarian tumors to the proven cytotoxic activities of conventional chemotherapeutics.
Collapse
|
207
|
Fan M, Nakshatri H, Nephew KP. Inhibiting Proteasomal Proteolysis Sustains Estrogen Receptor-α Activation. Mol Endocrinol 2004; 18:2603-15. [PMID: 15284335 DOI: 10.1210/me.2004-0164] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen receptor-alpha (ER alpha) is a ligand-dependent transcription factor that mediates physiological responses to 17 beta-estradiol (E2). Ligand binding rapidly down-regulates ER alpha levels through proteasomal proteolysis, but the functional impact of receptor degradation on cellular responses to E2 has not been fully established. In this study, we investigated the effect of blocking the ubiquitin-proteasome pathway on ER alpha-mediated transcriptional responses. In HeLa cells transfected with ER alpha, blocking either ubiquitination or proteasomal degradation markedly increased E2-induced expression of an ER-responsive reporter. Time course studies further demonstrated that blocking ligand-induced degradation of ER alpha resulted in prolonged stimulation of ER-responsive gene transcription. In breast cancer MCF7 cells containing endogenous ER alpha, proteasome inhibition enhanced E2-induced expression of endogenous pS2 and cathepsin D. However, inhibiting the proteasome decreased expression of progesterone receptor (PR), presumably due to the heterogeneity of the PR promoter, which contains multiple regulatory elements. In addition, in endometrial cancer Ishikawa cells overexpressing steroid receptor coactivator 1, 4-hydroxytamoxifen displayed full agonist activity and stimulated ER alpha-mediated transcription without inducing receptor degradation. Collectively, these results demonstrate that proteasomal degradation is not essential for ER alpha transcriptional activity and functions to limit E2-induced transcriptional output. The results further indicate that promoter context must be considered when evaluating the relationship between ER alpha transcription and proteasome inhibition. We suggest that the transcription of a gene driven predominantly by an estrogen-responsive element, such as pS2, is a more reliable indicator of ER alpha transcription activity than a gene like PR, which contains a complex promoter requiring cooperation between ER alpha and other transcription factors.
Collapse
|
208
|
Berry NB, Cho YM, Harrington MA, Williams SD, Foley J, Nephew KP. Transcriptional targeting in ovarian cancer cells using the human epididymis protein 4 promoter. Gynecol Oncol 2004; 92:896-904. [PMID: 14984958 DOI: 10.1016/j.ygyno.2003.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Limitations of current ovarian cancer gene therapies include lack of specificity and transduction of normal tissues. One strategy toward overcoming these limitations is to direct gene therapy specifically to ovarian cancer cells by using tissue- and tumor-specific promoters. The whey-acidic protein human epididymis protein 4 (HE4) is frequently overexpressed in ovarian cancer, suggesting that the HE4 promoter is highly transcriptionally active in the disease. The objective of this study was to isolate the HE4 promoter and examine its ability to selectively activate reporter gene expression in an ovarian cancer-specific manner. METHODS To investigate transcriptional targeting in ovarian cancer gene therapy, we isolated a region of the HE4 promoter from -530 to +122 (pHE4-652; relative to the ATG start site of HE4) and placed it upstream of a luciferase reporter gene plasmid to generate pHE4-652-luc. The activity of the pHE4-652-luc reporter construct was characterized in transient transfection assays in a panel of epithelial ovarian cancer cell lines (SKOV-3, SKOV-3x, CP70, HeyC2, A2780, A2780CP, OVCAR-3), non-ovarian tumor cell lines, and primary cultures of normal cells. The activity of two other candidate gene therapy promoters, human telomerase reverse transcriptase (hTERT) and OSP1, was also characterized in these cell lines. RESULTS The HE4 promoter was active in 5/7 ovarian cancer cell lines with the range of activity spanning 0.06- to 3-fold that observed for a positive control, cotransfected reporter construct (SV-40-luc). Minimal pHE4-652 promoter activity, defined as < or =5% of the activity detected with the SV-40-luc construct, was observed in the non-ovarian tumor cell lines and normal cells. The hTERT and the OSP1 promoters were active in the ovarian cancer lines. hTERT activity was highest in the CP70 cell line, and OSP1 activity was highest in the SKOV-3x cell line. Modest OSP1 and hTERT promoter activity was observed in normal cell lines and in selected non-ovarian cancer cell lines. CONCLUSION This is the first report using the pHE4-652 promoter to drive specific reporter gene expression in epithelial ovarian cancer cell lines, and we are continuing to develop this promoter for use in transcriptional targeting in ovarian cancer gene therapy.
Collapse
|
209
|
Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS, Nephew KP, Huang THM. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res 2003; 63:2164-71. [PMID: 12727835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
We developed a novel microarray system to assess gene expression, DNA methylation, and histone acetylation in parallel, and to dissect the complex hierarchy of epigenetic changes in cancer. An integrated microarray panel consisting of 1507 short CpG island tags located at the 5'-end regions (including the first exons) was used to assess effects of epigenetic treatments on a human epithelial ovarian cancer cell line. Treatment with methylation (5-aza-2'-deoxycytidine) or deacetylation (trichostatin A) inhibitors alone resulted in up-regulation of 1.9 or 1.1% of the genes analyzed; however, the combined treatment resulted in synergistic reactivation of more genes (10.4%; P < 0.001 versus either treatment alone). On the basis of either primary or secondary responses to the treatments, genes were identified as methylation-dependent or -independent. Synergistic reactivation of the methylation-dependent genes by 5-aza-2'-deoxycytidine plus trichostatin A revealed a functional interaction between methylated promoters and deacetylated histones. Increased expression of some methylation-independent genes was associated with enhanced histone acetylation, but up-regulation of most of the genes identified using this technology was because of events downstream of the epigenetic cascade. We demonstrate proof of principle for using the triple microarray system in analyzing the dynamic relationship between transcription factors and promoter targets in cancer genomes.
Collapse
|
210
|
Fan M, Bigsby RM, Nephew KP. The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. Mol Endocrinol 2003; 17:356-65. [PMID: 12554766 DOI: 10.1210/me.2002-0323] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Steroid hormone receptors, including estrogen receptor-alpha (ERalpha), are ligand-activated transcription factors, and hormone binding leads to depletion of receptor levels via preteasome-mediated degradation. NEDD8 (neural precursor cell-expressed developmentally down-regulated) is an ubiquitin-like protein essential for protein processing and cell cycle progression. We recently demonstrated that ubiquitin-activating enzyme (Uba)3, the catalytic subunit of the NEDD8-activating enzyme, inhibits ERalpha transcriptional activity. Here we report that Uba3-mediated inhibition of ERalpha transactivation function is due to increased receptor protein turnover. Coexpression of Uba3 with ERalpha increased receptor degradation by the 26S proteasome. Inhibition of NEDD8 activation and conjugation diminished polyubiquitination of ERalpha and blocked proteasome-mediated degradation of receptor protein. The antiestrogen ICI 182,780 is known to induce ER degradation. In human MCF7 breast cancer cells modified to contain a disrupted NEDD8 pathway, ICI 182,780 degradation of ERalpha was impaired, and the antiestrogen was ineffective at inhibiting cell proliferation. This study provides the first evidence linking nuclear receptor degradation with the NEDD8 pathway and the ubiquitin-proteasome system, suggesting that the two pathways can act together to modulate ERalpha turnover and cellular responses to estrogens. Based on our observation that an intact NEDD8 pathway is essential for the antiproliferation activity of the ICI 182,780 in ERalpha positive breast cancer cells, we propose that disruptions in the NEDD8 pathway provide a mechanism by which breast cancer cells acquire antiestrogen resistance while retaining expression of ERalpha.
Collapse
|
211
|
Abstract
Hypermethylation of CpG islands, an epigenetic event that is not accompanied by changes in DNA sequence, represents an alternative mechanism to deletions or mutations to inactivate tumor suppressor genes. Recent evidence supports the notion that CpG island hypermethylation, by silencing key cancer-related genes, plays a major causal role in cancer. However, a long-standing issue in the field is the sequence of molecular events leading to epigenetic gene silencing. A new model has been proposed that chromatin remodeling, as a result of histone deacetylation and methylation, is the primary event in abrogating transcriptional initiation; subsequently, CpG island hypermethylation establishes a permanent state of gene silencing. Accumulating evidence indicates that CpG island hypermethylation is an early event in cancer development and, in some cases, may precede the neoplastic process. Because of their heritable nature, hypermethylated CpG islands leave 'molecular footprints' in evolving cancer cells and can be used as molecular markers to reconstruct epigenetic progression during tumorigenesis. Furthermore, hypermethylated CpG islands are proving to be useful for molecular classification of different cancer types.
Collapse
|
212
|
Bailey JA, Nephew KP. Strain differences in tamoxifen sensitivity of Sprague-Dawley and Fischer 344 rats. Anticancer Drugs 2002; 13:939-47. [PMID: 12394257 DOI: 10.1097/00001813-200210000-00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Why some women are at increased risk for the development of endometrial carcinoma while taking the antiestrogen tamoxifen (Tam) for breast cancer treatment or prevention is unknown. Various strains of rodents display differences in sensitivity to compounds with estrogenic activity, but whether differences in Tam sensitivity exist in rodent strains has not been investigated. In the present study, we investigated whether rat strain differences in reproductive tract sensitivity to Tam and estrogen exist between Fischer 344 (F344) and Sprague Dawley (SD) rats. Immature (21-23 day; 6/group), ovariectomized F344 and SD rats were treated with vehicle (control), 17beta-estradiol (E2) [1 x 10 (-6) to 1.0 micro g/kg body weight (BW)] or 4-OH tamoxifen (4-OHT) (1 x 10 (-4) to 10 mg/kg BW) for 2 days and then sacrificed on day 3. Reproductive tracts were collected, weighed, and examined for changes in histomorphology and expression of ER and nuclear receptor co-regulators (SRC1, p300, CARM1, GRIP1, SPA, REA and Uba3). Treatment with E (1 x 10(-5) micro g/kg BW) increased ( <0.05) uterine epithelial cell height in F344 but not SD rats, demonstrating increased sensitivity of the F344 strain to E. Conversely, treatment with 1 x 10(-3) mg/kg BW 4-OHT increased ( <0.05) uterine weight and epithelial cell height in SD but not F344 rats, demonstrating that the SD strain is more sensitive to the antiestrogen. Northern and Western blot and immunohistochemical analysis revealed that ER expression levels in the SD and F344 uterus were not different. Expression of receptor co-regulators was higher in the uterus compared to the vagina regardless of strain and higher CARM1 expression was seen in SD uterus compared to F344 rats. Understanding differences in Tam sensitivity may help us to better understand why some women develop endometrial cancer while taking Tam and be beneficial in treatment decisions for breast cancer patients.
Collapse
|
213
|
Wei SH, Chen CM, Strathdee G, Harnsomburana J, Shyu CR, Rahmatpanah F, Shi H, Ng SW, Yan PS, Nephew KP, Brown R, Huang THM. Methylation microarray analysis of late-stage ovarian carcinomas distinguishes progression-free survival in patients and identifies candidate epigenetic markers. Clin Cancer Res 2002; 8:2246-52. [PMID: 12114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
PURPOSE The purpose of this study was to profile methylation alterations of CpG islands in ovarian tumors and to identify candidate markers for diagnosis and prognosis of the disease. EXPERIMENTAL DESIGN A global analysis of DNA methylation using a novel microarray approach called differential methylation hybridization was performed on 19 patients with stage III and IV ovarian carcinomas. RESULTS Hierarchical clustering identified two groups of patients with distinct methylation profiles. Tumors from group 1 contained high levels of concurrent methylation, whereas group 2 tumors had lower tumor methylation levels. The duration of progression-free survival after chemotherapy was significantly shorter for patients in group 1 compared with group 2 (P < 0.001). Differential methylation in tumors was independently confirmed by methylation-specific PCR. CONCLUSIONS The data suggest that a higher degree of CpG island methylation is associated with early disease recurrence after chemotherapy. The differential methylation hybridization assay also identified a select group of CpG island loci that are potentially useful as epigenetic markers for predicting treatment outcome in ovarian cancer patients.
Collapse
|
214
|
Fan M, Long X, Bailey JA, Reed CA, Osborne E, Gize EA, Kirk EA, Bigsby RM, Nephew KP. The activating enzyme of NEDD8 inhibits steroid receptor function. Mol Endocrinol 2002; 16:315-30. [PMID: 11818503 DOI: 10.1210/mend.16.2.0778] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coregulator proteins, coactivators and corepressors, have a profound influence on steroid receptor activity and play a role in regulating receptor levels. To identify novel coregulators of nuclear receptors, we used the ligand-binding and hinge region of ERalpha as bait in a yeast two-hybrid screen of a cDNA library derived from rat uterine luminal epithelium. We report the cloning and characterization of a cDNA encoding a protein homologous to yeast and human ubiquitin-activating enzyme 3 (Uba3), the catalytic subunit of the activating enzyme of the ubiquitin-like NEDD8 (neural precursor cellexpressed developmentally down-regulated) conjugation pathway (known as neddylation). Sequence analysis revealed that Uba3 contains multiple nuclear receptor (NR)-interacting motifs (NR boxes), which are known to mediate interactions between coregulatory proteins and ligand-activated NRs. Yeast two-hybrid and glutathione-S-transferase pull-down assays demonstrated that Uba3 directly interacts with ligand-occupied ERalpha and ERbeta. Transient transfection of Uba3 in mammalian cells inhibited ER-mediated transactivation in a time-dependent fashion; Uba3 had no effect on the initial events of transcriptional activation by liganded ER, but it blocked the progressive increase in target gene expression during continuous stimulation. Uba3 also inhibited transactivation by AR and PR in mammalian cells but had no effect on a steroid receptor-independent transactivation pathway. An enzymatically silent form of Uba3 did not inhibit ER-induced transcription, and a Uba3-binding fragment of amyloid precursor protein-binding protein, the other subunit of the NEDD8-activating enzyme, partially overcame Uba3-mediated inhibition, demonstrating that the neddylation activity of Uba3 is required for its inhibition of steroid receptor transactivation. Thus, Uba3 inhibits transcription induced by steroid hormone receptors through a novel mechanism that involves the neddylation pathway. Understanding the mechanisms controlling hormone responsiveness of target tissues, such as the uterus and mammary gland, may lead to novel insights of therapeutic intervention.
Collapse
|
215
|
Ahluwalia A, Yan P, Hurteau JA, Bigsby RM, Jung SH, Huang TH, Nephew KP. DNA methylation and ovarian cancer. I. Analysis of CpG island hypermethylation in human ovarian cancer using differential methylation hybridization. Gynecol Oncol 2001; 82:261-8. [PMID: 11531277 DOI: 10.1006/gyno.2001.6291] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to examine CpG island methylation patterns in ovarian cancer and determine whether epigenetic information can be related to clinical data of patients. CpG island (CpGI) hypermethylation is commonly associated with cancer progression, but little is currently known about the role of methylation in ovarian cancer. METHODS Differential methylation hybridization (DMH) analysis at 742 loci was performed to determine methylation signatures for 20 primary epithelial ovarian carcinomas (Stages II, III, and IV adenocarcinomas, serous papillary), 6 ovarian cancer cell lines, and normal ovarian surface epithelial cells. RESULTS Between 23 and 108 methylated CpGIs were seen in the ovarian carcinomas. Fewer (P < 0.05) methylated CpGIs were observed in the ovarian cancer cell lines; however, a number of CpGIs were commonly hypermethylated in both the cell lines and the tumor samples. A methylation signature, consisting of frequently (P < 0.05) methylated CpGIs, was determined for the samples. The observed pattern of methylation in ovarian cancers included several (11) CpGI tags that were previously reported to be hypermethylated in human breast cancer. CONCLUSIONS Epigenetic signatures in ovarian cancer were determined using DMH. This proof-of-concept study lays the foundation for genome-wide screening of methylation to examine epigenotype-phenotype relationships in ovarian cancer.
Collapse
|
216
|
Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP. DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol 2001; 82:299-304. [PMID: 11531283 DOI: 10.1006/gyno.2001.6284] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether expression of the enzymes that catalyze cytosine CpG island methylation, DNA methyltransferases, DNMT1, DNMT3a, and DNMT3b is altered in human ovarian cancer. Aberrations in DNA methylation are common in cancer and have important roles in tumor initiation and progression. Tumors that display frequent and concurrent inactivation of multiple genes by methylation are designated as having a CpG Island methylator phenotype, or CIMP. To date, colon, gastric, and most recently ovarian cancers meet the CIMP criteria for cancer. We hypothesized that altered expression of DNA methyltransferases can result in hypermethylation events seen in CIMP cancers. METHODS DNMT1, DNMT3a, and DNMT3b mRNA levels in eight ovarian cancer cells lines (Hey, HeyA8, HeyC2, OVCAR-3, SK-OV-3, PA-1, A2780, and A2780-P5) were compared to DNMT expression in normal ovarian surface epithelial cells using semi-quantitative reverse transcription-polymerase chain reaction. RESULTS In HeyA8 and HeyC2 ovarian cancer cells, DNMT1 expression levels were up to threefold higher (P < 0.05) than in normal ovarian surface epithelial cells. SK-OV-3 and PA-1 displayed increased DNMT3b expression (P < 0.05) compared to normal ovarian surface epithelial cells. Transcript levels for DNMT3a, however, were similar in cancer and normal ovarian cells. CONCLUSIONS We observed differential expression of the DNMT genes in some ovarian cancer cell lines and conclude that alterations in DNMT expression might contribute to the CIMP phenotype in ovarian cancer. However, based on the lack of aberrant DNMT expression in some of the cancer cell lines examined, we further suggest that another mechanism(s), in addition to DNMT overexpression, accounts for methylation anomalies commonly observed in ovarian cancer.
Collapse
|
217
|
Cárdenas H, Burke KA, Bigsby RM, Pope WF, Nephew KP. Estrogen receptor beta in the sheep ovary during the estrous cycle and early pregnancy. Biol Reprod 2001; 65:128-34. [PMID: 11420232 DOI: 10.1095/biolreprod65.1.128] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Objectives were to sequence and examine the expression of the estrogen receptor beta (ERbeta) in the sheep ovary. The sequence of the ovine ERbeta (oERbeta) was determined using reverse-transcription polymerase chain reaction (RT-PCR) and cloning techniques. The reading frame of oERbeta contained 527 amino acids and exhibited high overall homology with cow (98%), rat (88%), and human (88%) ERbeta. In addition, an oERbeta isoform having a 139-base pair deletion (oERbeta1) was identified. The predicted amino acid sequence of this isoform is lacking the ligand-binding and carboxyl-terminal transactivation domains. The oERbeta protein and mRNA were determined in ovaries obtained from ewes on Days 0 (first day of estrus), 2, 6, and 10 of the estrous cycle and Day 30 of gestation. Immunohistochemistry showed that oERbeta protein was located in granulosa cells, the ovarian surface epithelium, endothelium, and Day 2 corpus luteum (CL). Weak immunostaining for ERbeta was detected in the theca interna. Relative steady-state amounts of oERbeta mRNA in the CL were determined using semiquantitative RT-PCR. Amounts of oERbeta mRNA were greater (P < 0.05) during CL formation (Day 2) than at later stages. The oERbeta to oERbeta1 mRNA ratio was lower (P < 0.05) on Day 2 than on Day 10 or Day 30 due to a decrease in amounts of oERbeta1. Results indicate that the oERbeta is a 527-amino acid protein expressed in specific cells of the ovary. Changes in relative amounts of full-length oERB and a deletion isoform in CL occurred during the estrous cycle, suggesting that these two types of ERbeta might regulate estrogen actions during early CL development in sheep.
Collapse
|
218
|
Long X, Burke KA, Bigsby RM, Nephew KP. Effects of the xenoestrogen bisphenol A on expression of vascular endothelial growth factor (VEGF) in the rat. Exp Biol Med (Maywood) 2001; 226:477-83. [PMID: 11393178 DOI: 10.1177/153537020122600514] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bisphenol-A (BPA) is used to produce polymers for production of polycarbonate and epoxy resins that are used in food containers and dental appliances. BPA binds to estrogen receptors and induces estrogenic activity in a number of biological systems. We recently reported that although Fisher 344 (F344) and Sprague-Dawley (S-D) rat strains exhibit different sensitivities to BPA at the level of vaginal epithelial cell proliferation, there was no difference in immediate early proto-oncogene expression between the two animal strains. In the present study we investigated the effects of BPA on expression of another estrogen-target gene, vascular endothelial growth factor (VEGF), in the uterus, vagina, and pituitary of F344 and S-D rats. Adult rats were ovariectomized and treated with BPA by intraperitoneal injection at concentrations of 0.02 to 150 mg/kg body wt. Expression of VEGF was monitored by RNase protection assay at 2 hr after treatment. There was a significant effect of dose of BPA on the type of VEGF isoform expressed in the uterus, vagina, and pituitary. BPA induced greater (P < 0.01) levels of VEGF164 and VEGF120+188 than VEGF110 levels. The lowest BPA dose that had a significant (P< 0.05) effect on VEGF expression compared with vehicle treatment was 37.5 mg/kg body wt.; dose-response curves did not differ between strains. This is the first report that the primary response of the uterus, vagina, and pituitary to BPA includes rapid induction of VEGF expression. Due to the capacity of VEGF to engage pleiotropic signaling pathways in other cellular systems, we suggest that modulation of VEFG may play a role in establishing the response of estrogen-target organs to estrogenic xenobiotics.
Collapse
|
219
|
Hlaing M, Nam K, Lou J, Pope WF, Nephew KP. Evidence for expression of estrogen receptor cofactor messenger ribonucleic acid in the ovary and uterus of domesticated animals (sheep, cow and pig). Life Sci 2001; 68:1427-38. [PMID: 11388694 DOI: 10.1016/s0024-3205(01)00937-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Expression levels of estrogen receptor cofactors (coactivators or corepressors) in specific tissue compartments and cells are thought to influence the expression of estrogen responsive genes and thereby influence overall hormonal responsiveness of target tissues. To date, the presence of cofactors has been reported in tissues from humans, rats and mice. We analyzed the presence and distribution of messenger ribonucleic acids (mRNAs) encoding several transcriptional cofactors in the ovary and uterus of three domestic animal species, the sheep, cow and pig. Northern analysis for cofactors SRC-1, GRIP1, RAC3, p300, RIP140, and SPA showed expression in ovaries from all three species. In addition, lower expression of SRC-1, GRIP1, RAC3, p300, and RIP140 mRNAs was observed during the luteal phase (day 10-12 of the estrous cycle) than at estrus (day 0); however, SPA transcript levels remained unchanged. We then examined expression of mRNAs for changing (SRC-1, RIP140) and constitutively expressed (SPA) cofactors in ovine ovaries. SRC-1 and RIP140 transcripts in corpus luteum were lower compared to the surrounding ovarian tissue. SPA mRNA expression, however, was similar in corpus luteum and surrounding tissues. To determine which ovarian cell types express SRC-1, RIP140, and SPA, in situ hybridization was performed on sheep ovaries. Silver grains corresponding to these cofactors were seen in ovarian granulosa, theca and stromal cells, but appeared to be most abundant in the granulosa cells. Expression of SRC-1 and RIP140 in corpus luteum, however, was reduced compared to expression in follicular cells. Finally, we examined cofactor expression in ovine, bovine, and porcine uterus. Northern blot analysis for SRC-1, GRIP1, RAC3, p300, and RIP140 mRNAs showed higher expression in extracts of the endometrium compared to whole uterus. We provide the first evidence for the presence of estrogen receptor cofactor mRNAs in the ovary and uterus of three domestic animal species. We suggest that coactivators are conserved among species and associated with hormonal responsiveness of reproductive tract tissues in sheep, cow and pig.
Collapse
|
220
|
Burke KA, Schroeder DM, Abel RA, Richardson SC, Bigsby RM, Nephew KP. Immunohistochemical detection of estrogen receptor alpha in male rat spinal cord during development. J Neurosci Res 2000; 61:329-37. [PMID: 10900080 DOI: 10.1002/1097-4547(20000801)61:3<329::aid-jnr11>3.0.co;2-a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The alpha subtype of the estrogen receptor (ERalpha) is present in nociceptive and parasympathetic regions of the adult rat spinal cord. The pattern of ERalpha expression in the rat spinal cord during development, however, is unknown. We used a polyclonal antibody (ER-21) to examine the expression of ERalpha in male rat lumbosacral spinal cords at embryonic day (E) 17, E21 (the day before birth), postnatal day (P) 1 (the day of birth), P8, P17, P21, and P36. At E17, ERalpha immunoreactivity (ERalpha-ir) was observed predominantly in ependymal cells. Perinatally, ERalpha-ir was also present in neurons in dorsal root ganglia and in fibers capping and within laminae I and II. By P8, ERalpha-ir was absent in ependymal cells, but ERalpha-ir fibers were dense in laminae I and II and in sympathetic and parasympathetic areas. ERalpha-ir was also present in neurons in the dorsal horns. To determine whether ERalpha-ir fibers in laminae I and II were processes of spinal neurons or primary afferents, dorsal rhizotomies were performed on P17 and P21 animals. Unilateral transection of the lumbosacral dorsal roots virtually eliminated ERalpha-ir fibers in the ipsilateral superficial laminae, demonstrating that the majority of ERalpha-ir fibers in these laminae were primary afferents. We show for the first time that ERalpha-ir is present in neurons and fibers of male prenatal and postnatal spinal cord. The presence of ERalpha in neuronal nuclei and processes may reflect diverse roles and novel mechanisms of action for 17 beta-estradiol in development of spinal sensory and autonomic circuitry.
Collapse
|
221
|
Nephew KP, Ray S, Hlaing M, Ahluwalia A, Wu SD, Long X, Hyder SM, Bigsby RM. Expression of estrogen receptor coactivators in the rat uterus. Biol Reprod 2000; 63:361-7. [PMID: 10906038 DOI: 10.1095/biolreprod63.2.361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Nuclear receptor coactivators associate in a ligand-dependent manner with estrogen receptors (ER) and other nuclear receptors, and they enhance ligand-dependent transcriptional activation. This study examined basal coactivator expression in rat uterus to investigate if expression of these genes is regulated by estradiol-17 beta or tamoxifen. Ovariectomized mature and immature rats were injected with estradiol-17 beta, tamoxifen, or vehicle (i.e., sesame oil) alone. Uteri were collected and analyzed for changes in coactivator mRNA expression using Northern blot and in situ hybridization analyses. Constitutive uterine mRNA expression of switch protein for antagonist (SPA), SRC-1, GRIP1, RAC3, RIP140, and p300 mRNAs was observed in control uteri, and treatment with ER ligands did not alter coactivator mRNA levels. The data suggest that expression of these coactivator genes is not sensitive to estradiol or tamoxifen in the rat uterus. No cell type-specific pattern of expression was apparent in uterine sections from mature and immature rats; however, silver grains were more abundant in luminal and glandular epithelial cells compared with the stroma and myometrium, indicating that coactivator mRNA levels vary among the uterine compartments. Thus, to our knowledge, we show for the first time that there is constitutive expression of several uterine nuclear receptor coactivators in a physiological setting that remains insensitive to estrogenic regulation. Furthermore, we speculate that higher constitutive levels of coactivator expression in glandular and luminal epithelial cells may be associated with increased hormonal responsiveness by these uterine compartments.
Collapse
|
222
|
Puga A, Barnes SJ, Chang C, Zhu H, Nephew KP, Khan SA, Shertzer HG. Activation of transcription factors activator protein-1 and nuclear factor-kappaB by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 2000; 59:997-1005. [PMID: 10692565 DOI: 10.1016/s0006-2952(99)00406-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD; dioxin), the prototype agonist of the aromatic hydrocarbon (Ah) receptor, is a potent tumor promoter as well as a complete liver carcinogen that produces an oxidative stress response in rodents and in cultured cell lines. It has been proposed that TCDD promotes neoplastic transformation through oxidative signal transduction pathways, which results in activation of immediate-early response transcription factors. To set the stage for a test of this hypothesis, we evaluated the effect of TCDD treatment on the activation of several transcription factors, including those in the nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) families, which are activated by changes in the redox state of cells. In an extension of prior results, we found that TCDD treatment produced a sustained overexpression of AP-1 for at least 72 hr in wild-type mouse hepatoma Hepa-1 cells, but not in the Ah receptor-deficient derivative c35 or in cytochrome P450-1A1 (CYP1A1)-negative c37 cells. In addition, TCDD treatment caused a significant increase in the DNA binding activity of NF-kappaB, but not in the activities of the other transcription factors tested. AP-1 and NF-kappaB activation were blocked by the thiol antioxidant N-acetylcysteine and by nordihydroguaiaretic acid, an antioxidant and lipooxygenase inhibitor and an inhibitor of the epoxygenase activity of CYP1A1, and did not take place in c35, c37, or in Ah nuclear translator-deficient c4 cells. Hence, sustained activation of these two transcription factors by TCDD is likely to result from a CYP1A1-dependent and Ah receptor complex-dependent oxidative signal. Electrophoretic mobility supershift analyses with specific antibodies showed that most of the increase in NF-kappaB binding activity could be accounted for by increases in p50/p50 complexes. Since these complexes are known to repress NF-kappaB-dependent gene transcription, our results delineate a second molecular mechanism, in addition to the recently found block of tumor necrosis factor-alpha-mediated p50/p65 activation, that may be responsible for the immunosuppresive effects of TCDD.
Collapse
|
223
|
Nephew KP, Choi CM, Polek TC, McBride R, Bigsby RM, Khan SA, Husseinzadeh N. Expression of fos and jun proto-oncogenes in benign versus malignant human uterine tissue. Gynecol Oncol 2000; 76:388-96. [PMID: 10684716 DOI: 10.1006/gyno.1999.5696] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate expression of fos and jun proto-oncogenes in benign human uterine tissue compared with malignant uterine tissue. METHODS Forty-two endometrial tissue specimens were obtained at the time of hysterectomy. Tissue samples from different phases of the menstrual cycle and from postmenopausal patients were stained using immunohistochemical methods to detect Fos and Jun proteins, estrogen and progesterone receptor status, and Ki67 (detects a nuclear antigen associated with proliferating cells). Tissue was examined microscopically for nuclear staining in endometrial epithelium and stroma. The endometrium was based on the patient's last menstrual period, pathologic dating, and proliferative versus nonproliferative status as determined by Ki67. Benign and malignant specimens were subjected to Northern blot analysis to evaluate levels of expression of c-fos, c-jun, and jun-B mRNA. The pattern of c-fos mRNA expression in malignant samples was further evaluated using in situ hybridization. RESULTS In proliferative, secretory, postmenopausal, and progesterone-influenced, uterine specimens immunohistochemically stained and examined, the endometrial and stromal nuclei stained for both Fos and Jun in varying intensities. However, no pattern was found in the variation of intensity according to the phase of the endometrium. Similarly, in malignant and benign endometrial tissue examined by Northern blot and in situ hybridization analyses, expression of proto-oncogene mRNAs was readily detectable, but no statistical correlation between type of tissue examined, grade of adenocarcinoma, and stage of endometrial cancer was found in this study. CONCLUSIONS In rodent models, control of uterine cell proliferation is related to change in expression of fos and jun proto-oncogenes. Our results indicate that hormonal control is likely to be different in human endometrium and probably involves genes other than the proto-oncogenes under study. Expression of Fos and Jun do not correlate with endometrial cancer stage and grade.
Collapse
|
224
|
Long X, Steinmetz R, Ben-Jonathan N, Caperell-Grant A, Young PC, Nephew KP, Bigsby RM. Strain differences in vaginal responses to the xenoestrogen bisphenol A. ENVIRONMENTAL HEALTH PERSPECTIVES 2000; 108:243-7. [PMID: 10706531 PMCID: PMC1637966 DOI: 10.1289/ehp.00108243] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bisphenol A (BPA) is the monomer component of polycarbonate plastics and epoxy resins; human exposure derives from leachate in foodstuffs packaged in certain plastics or from epoxy-based dental appliances. BPA stimulates prolactin secretion in Fischer 344 (F344) rats but not in Sprague-Dawley (S-D) rats. The present studies were performed to determine if another classic estrogen target tissue, the rat vagina, responds to BPA in a strain-specific manner. In F344 rats BPA increased DNA synthesis in vaginal epithelium with a median effective dose (ED(50)) of 37.5 mg/kg body weight; DNA synthesis was not stimulated in S-D rats by any dose tested. Clearance of (3)H-BPA from blood followed the same time course in both strains of rats, with a half-life of 90 min. Scatchard analysis of [(3)H]estradiol binding showed no strain differences in concentration or affinity of the vaginal estrogen receptor. BPA increased the level of mRNA for the immediate early gene, c-fos, with similar dose-response curves in both rat strains. Thus, F344 and S-D rats exhibit differences in sensitivity to BPA at the level of cell proliferation in the vaginal epithelium. However, metabolic clearance of BPA and the early events that lead to the proliferative response, receptor-ligand interaction and induction of immediate early genes, show no strain differences. These observations suggest that differences in intermediate effects must account for the difference in sensitivity of the proliferative response to the xenoestrogen. Furthermore, these results point to the need for caution in choosing a suitable end point and animal model when seeking to test the estrogenic effects of xenobiotics.
Collapse
|
225
|
Long X, Steinmetz R, Ben-Jonathan N, Caperell-Grant A, Young PC, Nephew KP, Bigsby RM. Strain differences in vaginal responses to the xenoestrogen bisphenol A. ENVIRONMENTAL HEALTH PERSPECTIVES 2000; 108:243-247. [PMID: 10706531 DOI: 10.2307/3454441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) is the monomer component of polycarbonate plastics and epoxy resins; human exposure derives from leachate in foodstuffs packaged in certain plastics or from epoxy-based dental appliances. BPA stimulates prolactin secretion in Fischer 344 (F344) rats but not in Sprague-Dawley (S-D) rats. The present studies were performed to determine if another classic estrogen target tissue, the rat vagina, responds to BPA in a strain-specific manner. In F344 rats BPA increased DNA synthesis in vaginal epithelium with a median effective dose (ED(50)) of 37.5 mg/kg body weight; DNA synthesis was not stimulated in S-D rats by any dose tested. Clearance of (3)H-BPA from blood followed the same time course in both strains of rats, with a half-life of 90 min. Scatchard analysis of [(3)H]estradiol binding showed no strain differences in concentration or affinity of the vaginal estrogen receptor. BPA increased the level of mRNA for the immediate early gene, c-fos, with similar dose-response curves in both rat strains. Thus, F344 and S-D rats exhibit differences in sensitivity to BPA at the level of cell proliferation in the vaginal epithelium. However, metabolic clearance of BPA and the early events that lead to the proliferative response, receptor-ligand interaction and induction of immediate early genes, show no strain differences. These observations suggest that differences in intermediate effects must account for the difference in sensitivity of the proliferative response to the xenoestrogen. Furthermore, these results point to the need for caution in choosing a suitable end point and animal model when seeking to test the estrogenic effects of xenobiotics.
Collapse
|