201
|
Mathieu R, Lim J, Simpson P, Prasannan S, Fairweather N, Matthews S. Resonance assignment and topology of a clostridial repetitive oligopeptide (CROP) region of toxin A from Clostridium difficile. JOURNAL OF BIOMOLECULAR NMR 2003; 25:83-84. [PMID: 12567004 DOI: 10.1023/a:1021990314599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
202
|
Florin-Robertsson E. Developing a manufacturing process and analyses for a recombinant protein drug. ARBEITEN AUS DEM PAUL-EHRLICH-INSTITUT (BUNDESAMT FUR SERA UND IMPFSTOFFE) ZU FRANKFURT A.M 2003:149-50. [PMID: 15119032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
203
|
Nakano M, Kawano Y, Kawagish M, Hasegawa T, Iinuma Y, Oht M. Two-dimensional analysis of exoproteins of methicillin-resistant Staphylococcus aureus (MRSA) for possible epidemiological applications. Microbiol Immunol 2002; 46:11-22. [PMID: 11911184 DOI: 10.1111/j.1348-0421.2002.tb02671.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We applied two-dimensional gel electrophoresis (2-DE) to the total exoproteins secreted from pathogenic MRSA strains and identified major protein spots by N-terminal amino acid sequence analysis. In approximately 300 to 500 spots visualized on each gel, various exoproteins and cell-associated proteins were identified and their sites on the gels confirmed for construction of a reference map. Major exotoxins such as enterotoxins SEA, SEB, and SEC,, toxic shock syndrome toxin-1 (TSST-1), and hemolysins were distributed in the region of pI 6.8 to 8.1 and MW 21 to 35 kDa. Although the differences between calculated and observed values of pI and MW were relatively small in each exoprotein, those of several proteins including alpha-hemolysin and SEB were considerably deviated from the positions of the expected values. Some exoproteins were detected as multiple spots. These included beta-hemolysin, enterotoxins SEA, SEB, and SEC3, glutamic acid-specific endopeptidase, glycerophosphoryl diester phosphodiesterase and triacylglycerol lipase. The multiple spots of these exoproteins may be generated by the action of own proteases. Certain similarities of 2-DE patterns among strains belonging to the same coagulase types were observed. On the basis of 2-DE image analysis, coagulase type II strains secreted somewhat larger amounts of SEB and SEC3 as well as TSST-1 than the strains belonging to other coagulase types. Taken together, 2-DE analysis of exoproteins is applicable to epidemiological studies for MRSA, as compared with pulsed field gel electrophoresis of restricted chromosomal DNA.
Collapse
|
204
|
Petersson K, Thunnissen M, Forsberg G, Walse B. Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Structure 2002; 10:1619-26. [PMID: 12467569 DOI: 10.1016/s0969-2126(02)00895-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although the biological properties of staphylococcal enterotoxin A (SEA) have been well characterized, structural insights into the interaction between SEA and major histocompatibilty complex (MHC) class II have only been obtained by modeling. Here, the crystal structure of the D227A variant of SEA in complex with human MHC class II has been determined by X-ray crystallography. SEA(D227A) exclusively binds with its N-terminal domain to the alpha chain of HLA-DR1. The ability of one SEA molecule to crosslink two MHC molecules was modeled. It shows that this SEA molecule cannot interact with the T cell receptor (TCR) while a second SEA molecule interacts with MHC. Because of its relatively low toxicity, the D227A variant of SEA is used in tumor therapy.
Collapse
|
205
|
Gampfer JM, Samstag A, Waclavicek M, Wolf HM, Eibl MM, Gulle H. Epitope mapping of neutralizing TSST-1 specific antibodies induced by immunization with toxin or toxoids. Vaccine 2002; 20:3675-84. [PMID: 12399195 DOI: 10.1016/s0264-410x(02)00400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toxic shock syndrome toxin-1 (TSST-1), a superantigen produced by Staphylococcus aureus, is a potent stimulator of the immune system. T-cells are activated by crosslinking of MHC class II molecules on antigen presenting cells with T-cell receptors (TCR). TSST-1 is associated with the majority of the cases of menstrual staphylococcal toxic shock, a severe and life-threatening multisystem disorder. Even though antibody mediated protection has been studied, information on antibody specificity directed to individual antigenic determinants of the protein is incomplete. To obtain immunogens with low toxicity, we generated a double-site mutant (dmTSST-1), modified at solvent-exposed residues predicted to be important for both MHC class II and TCR binding, and detoxified recombinantly expressed TSST-1 (rTSST-1) as well as native TSST-1 (nTSST-1) isolated from Staphylococcus aureus by treatment with formaldehyde. Rabbits were immunized with rTSST-1, nTSST-1, dmTSST-1, and formaldehyde inactivated toxoids. The sera obtained were used to map the antigen-reactive regions of the molecule and to identify specificities of antibodies induced by immunization with the different antigens. To detect linear antigenic epitopes of TSST-1 the reactivity of the sera with 11-meric peptides having an overhang of four residues, covering the entire molecule of TSST-1, have been studied. We found that sera of TSST-1 immunized rabbits predominantly reacted with N-terminal residues 1-15, while sera generated with formaldehyde inactivated toxoid recognized a total of 7 regions located at the N- and C-terminus and internal sites of TSST-1. Despite different specificities all sera were able to inhibit TSST-1 induced proliferation of human mononuclear cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/chemistry
- Antibody Specificity
- Antigens, Bacterial/blood
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Toxins
- Enterotoxins/chemistry
- Enterotoxins/genetics
- Enterotoxins/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitope Mapping/methods
- Female
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed/genetics
- Mutagenesis, Site-Directed/immunology
- Polyethylene/immunology
- Polyethylene/metabolism
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Rabbits
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Staphylococcal Vaccines/administration & dosage
- Staphylococcal Vaccines/immunology
- Superantigens
- Toxoids/immunology
- Vaccines, Synthetic/genetics
Collapse
|
206
|
Ménard LP, Dubreuil JD. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit Rev Microbiol 2002; 28:43-60. [PMID: 12003040 DOI: 10.1080/1040-840291046687] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1) is a small protein that was first detected more than a decade ago in an enteroaggregative E. coli (EAEC) strain isolated from the stools of a diarrheic child. The EAST1 gene, astA, is not solely present in EAEC, but also in other categories of diarrheagenic E. coli. Strains expressing EAST1 have been shown to induce diarrhea principally in humans, although they have also been associated with piglets and calves. EAST1 toxin has been proposed as a virulence factor implicated in the mechanism of pathogenesis of EAEC and could play a role in the pathogenicity of other enteropathogens as well. This toxin is often compared to E. coli STa enterotoxin because they share some physical and mechanistic similarities. This review summarizes the various observations on EAST1 since its discovery.
Collapse
|
207
|
Bernardi A, Potenza D, Capelli AM, García-Herrero A, Cañada FJ, Jiménez-Barbero J. Second-generation mimics of ganglioside GM1 oligosaccharide: a three-dimensional view of their interactions with bacterial enterotoxins by NMR and computational methods. Chemistry 2002; 8:4598-612. [PMID: 12561103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
As a step to delineate a strategy of ligand design for cholera toxin (CT), NMR studies were performed on several mimics of the GM1 ganglioside oligosaccharide. The conformation of these analogues was investigated first in solution and then upon binding to cholera toxin by transferred nuclear Overhauser effect (TR-NOE) measurements. It was demonstrated that CT selects a conformation similar to the global minima of the free saccharides from the ensemble of presented conformations. No evidence of major conformational distortions was obtained, but one or two of the available conformers of the hydroxyacid side chain appear to be selected in the bound state. The NMR data were interpreted with the aid of computer models, generated and analyzed by using a combination of different approaches (MacroModels' MC/EM and MC/SD, Autodock, and GRID). Analysis of the NMR data supported by computational studies allowed us to interpret the experimental observations and to derive workable models of the ligand:toxin complexes. These models suggest that the higher affinity of the (R)-lactic acid derivative 3 may stem from lipophilic interactions with a hydrophobic area in the toxin binding site located in the vicinity of the sialic acid side chain binding region of the CT:GM1 complex, and formed by the side chain of Ile-58 and Lys-34. Thus, the models obtained have allowed us to make useful design suggestions for the improvement of ligand affinity.
Collapse
|
208
|
Bagley KC, Abdelwahab SF, Tuskan RG, Fouts TR, Lewis GK. Cholera toxin and heat-labile enterotoxin activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cyclic AMP-dependent pathway. Infect Immun 2002; 70:5533-9. [PMID: 12228279 PMCID: PMC128358 DOI: 10.1128/iai.70.10.5533-5539.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cholera toxin (CT) and heat-labile enterotoxin (LT) are powerful mucosal adjuvants whose cellular targets and mechanism of action are unknown. There is emerging evidence that dendritic cells (DC) are one of the principal cell types that mediate the adjuvant effects of these toxins in vivo. Here we investigate the effects of CT and LT on the maturation of human monocyte-derived DC (MDDC) in vitro. We found that an enzymatically active A domain is necessary for both CT and LT to induce the maturation of MDDC and that this activation is strictly cyclic AMP (cAMP) dependent. ADP-ribosylation-defective derivatives of these toxins failed to induce maturation of MDDC, whereas dibutyryl-cyclic-3',5'-AMP and Forskolin mimic the maturation of MDDC induced by CT and LT. In addition, an inhibitor of cAMP-dependent kinases, Rp-8-Br-cAMPs, blocked the ability of CT, LT, and Forskolin to activate MDDC. CT, LT, dibutyryl-cyclic-3',5'-AMP, and Forskolin also dominantly inhibit interleukin 12 and tumor necrosis factor alpha production by MDDC in the presence of saturating concentrations of lipopolysaccharide. Taken together, these results show that the effects of CT and LT on MDDC are mediated by cAMP.
Collapse
|
209
|
Mori Y, Borgan MA, Ito N, Sugiyama M, Minamoto N. Sequential analysis of nonstructural protein NSP4s derived from Group A avian rotaviruses. Virus Res 2002; 89:145-51. [PMID: 12367757 DOI: 10.1016/s0168-1702(02)00112-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We determined the NSP4 sequences of turkey rotavirus strains Ty-1 and Ty-3 and a chicken rotavirus, strain Ch-1, and compared these sequences with those of a pigeon rotavirus, strain PO-13, and mammalian rotaviruses. The turkey strains and PO-13 were found to be closely related (90-97% homologies). Ch-1 NSP4 was distinctly different from other avian rotavirus NSP4s, with 78-79% homologies. The NSP4 sequences of avian rotaviruses were found to be 6-7 amino acids shorter than those of all mammalian strains and to have considerably low identities (31-37%) with them. Therefore, it seems highly likely that the NSP4 genes of avian rotaviruses are classified into two NSP4 genotypes distinct from those of mammalian rotaviruses. The enterotoxin domain in NSP4 is conserved in terms of its sequential and structural properties despite extremely low homologies in the full lengths of NSP4s in avian and mammalian rotaviruses.
Collapse
|
210
|
Rössle SC, Bisch PM, Lone YC, Abastado JP, Kourilsky P, Bellio M. Mutational analysis and molecular modeling of the binding of Staphylococcus aureus enterotoxin C2 to a murine T cell receptor Vbeta10 chain. Eur J Immunol 2002; 32:2172-8. [PMID: 12209629 DOI: 10.1002/1521-4141(200208)32:8<2172::aid-immu2172>3.0.co;2-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the role of the beta chain HV4 region in the binding of a Vbeta10 T cell receptor to superantigen S. aureus enterotoxin C2 (SEC2)/MHC class II complexes. Residues 6971 of the Cw3/1.1 TCR Vbeta10 chain, derived from an H-2K(d)-restricted cytotoxic clone, were individually changed to alanine using site-directed mutagenesis, and mutated TCR beta chains were transfected along with the wild-type TCR alpha chain into a TCR alpha(-)beta(-) T hybridoma. SEC2/MHC recognition was measured by IL-2 production. Alanine substitutions in the HV4beta region, either did not affect (Ser69 and Lys71), or increased the recognition of SEC2/HLA-DR1 complex (Asp70), arguing against a general and direct role for the HV4beta region in superantigenrecognition. A theoretical-computational model of the SEC2/TCR Vbeta10 chain complex was constructed and predicted the presence of a unique salt bridge between Vbeta Asp30 and SEC2 Lys103. A perfect correlation was found between the likely presence of this salt bridge and the capacity of the HV4beta and previously obtained CDR1beta alanine mutants to induce an equal or greater response than the wild-type TCR.
Collapse
|
211
|
Merritt EA, Zhang Z, Pickens JC, Ahn M, Hol WGJ, Fan E. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J Am Chem Soc 2002; 124:8818-24. [PMID: 12137534 DOI: 10.1021/ja0202560] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multivalent ligand design constitutes an attractive avenue to the inhibition of receptor recognition and other biological events mediated by oligomeric proteins with multiple binding sites. One example is the design of multivalent receptor blockers targeting members of the AB(5) bacterial toxin family. We report here the synthesis and characterization of a pentavalent inhibitor for cholera toxin and Escherichia coli heat-labile enterotoxin. This inhibitor is an advance over the symmetric pentacyclen-derived inhibitor described in our earlier work in that it presents five copies of m-nitrophenyl-alpha-D-galactoside (MNPG) rather than five copies of beta-D-galactose. The approximately 100-fold higher single-site affinity of MNPG for the toxin receptor binding site relative to galactose is found to yield a proportionate increase in the affinity and IC50 measured for the respective pentavalent constructs. We show by dynamic light scattering that inhibition of receptor binding by the pentavalent inhibitor is due to 1:1 inhibitor:toxin association rather than to inhibitor-mediated aggregation. This 1:1 association is in complete agreement with a 1.46 A resolution crystal structure of the pentavalent inhibitor:toxin complex, which shows that the favorable single-site binding interactions of MNPG are retained by the five arms of the 5256 Da pentavalent MNPG-based inhibitor and that the initial segment of the linking groups interacts with the surface of the toxin B pentamer.
Collapse
|
212
|
Chi YI, Sadler I, Jablonski LM, Callantine SD, Deobald CF, Stauffacher CV, Bohach GA. Zinc-mediated dimerization and its effect on activity and conformation of staphylococcal enterotoxin type C. J Biol Chem 2002; 277:22839-46. [PMID: 11934896 DOI: 10.1074/jbc.m201932200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcal enterotoxins are superantigen exotoxins that mediate food poisoning and toxic shock syndrome in humans. Despite their structural and functional similarities, superantigens display subtle differences in biological properties and modes of receptor binding as a result of zinc atoms bound differently in their crystal structures. For example, the crystal structures of the staphylococcal enterotoxins in the type C serogroup (SECs) contain a zinc atom coordinated by one aspartate and two histidine residues from one molecule and another aspartate residue from the next molecule, thus forming a dimer. This type of zinc ligation and zinc-mediated dimerization occurs in several SECs, but not in most other staphylococcal enterotoxin serogroups. This prompted us to investigate the potential importance of zinc in SEC-mediated pathogenesis. Site-directed mutagenesis was used to replace SEC zinc binding ligands with alanine. SEC mutants unable to bind zinc did not have major conformational alterations although they failed to form dimers. Zinc binding was not essential for T cell stimulation, emesis, or lethality although in general the mutants were less pyrogenic. Thus the zinc atom in SECs might represent a non-functional heavy atom in an exotoxin group that has diverged from related bacterial toxins containing crucial zinc atoms.
Collapse
|
213
|
Andersen PS, Schuck P, Sundberg EJ, Geisler C, Karjalainen K, Mariuzza RA. Quantifying the energetics of cooperativity in a ternary protein complex. Biochemistry 2002; 41:5177-84. [PMID: 11955066 DOI: 10.1021/bi0200209] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of complexes involving more than two proteins is critical for many cellular processes, including signal transduction, transcriptional control, and cytoskeleton remodeling. Energetically, these interactions cannot always be described simply by the additive effects of the individual binary reactions that make up the overall complex. This is due, in large part, to cooperative interactions between separate protein domains. Thus, a full understanding of multiprotein complexes requires the quantitative analysis of cooperativity. We have used surface plasmon resonance techniques and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable to other systems involving cooperativity.
Collapse
|
214
|
Wolfe HR, Waldman SA. A comparative molecular field analysis (COMFA) of the structural determinants of heat-stable enterotoxins mediating activation of guanylyl cyclase C. J Med Chem 2002; 45:1731-4. [PMID: 11931628 DOI: 10.1021/jm010208a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heat-stable enterotoxin binds to and activates guanylyl cyclase C (GC-C), regulating fluid and electrolyte secretion in intestinal epithelial cells. A COMFA model was developed to predict the primary interactions between GC-C agonists and their receptor. This model predicts that the amide backbone of Cys(5)-Cys(6)-Glu(7)-Leu(8), the beta carbon atoms of Cys(5)-Cys(6), and the side chains of Pro(12), Ala(13), and Ala(15) comprise the primary interactions of GC-C agonists with the receptor surface.
Collapse
|
215
|
Shupp JW, Jett M, Pontzer CH. Identification of a transcytosis epitope on staphylococcal enterotoxins. Infect Immun 2002; 70:2178-86. [PMID: 11895985 PMCID: PMC127880 DOI: 10.1128/iai.70.4.2178-2186.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 12/07/2001] [Accepted: 01/16/2002] [Indexed: 01/16/2023] Open
Abstract
Staphylococcal enterotoxins (SE) are exoproteins produced by Staphylococcus aureus that act as superantigens and have been implicated as a leading cause of food-borne disease and toxic shock. Little is known about how these molecules penetrate the gut lining and gain access to both local and systemic immune tissues. To model movement in vitro of staphylococcal enterotoxins, we have employed a monolayer system composed of crypt-like human colonic T-84 cells. SEB and SEA showed comparable dose-dependent transcytosis in vitro, while toxic shock syndrome toxin (TSST-1) exhibited increased movement at lower doses. Synthetic peptides corresponding to specific regions of the SEB molecule were tested in vitro to identify the domain of the protein involved in the transcytosis of SE. A toxin peptide of particular interest contains the amino acid sequence KKKVTAQELD, which is highly conserved across all SE. At a toxin-to-peptide ratio of 1:10, movement of SEB across the monolayers was reduced by 85%. Antisera made against the SEB peptide recognized native SEB and also inhibited SEB transcytosis. Finally, the conserved 10-amino-acid peptide inhibited transcytosis of multiple staphylococcal enterotoxins, SEA, SEE, and TSST-1. These data demonstrate that this region of the staphylococcal enterotoxins plays a distinct role in toxin movement across epithelial cells. It has implications for the prevention of staphylococcal enterotoxin-mediated disease by design of a peptide vaccine that could reduce systemic exposure to oral or inhaled superantigens. Since the sequence identified is highly conserved, it allows for a single epitope blocking the transcytosis of multiple SE.
Collapse
|
216
|
Krupka HI, Segelke BW, Ulrich RG, Ringhofer S, Knapp M, Rupp B. Structural basis for abrogated binding between staphylococcal enterotoxin A superantigen vaccine and MHC-IIalpha. Protein Sci 2002; 11:642-51. [PMID: 11847286 PMCID: PMC2373479 DOI: 10.1110/ps.39702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 11/14/2001] [Accepted: 11/26/2001] [Indexed: 10/17/2022]
Abstract
Staphylococcal enterotoxins (SEs) are superantigenic protein toxins responsible for a number of life-threatening diseases. The X-ray structure of a staphylococcal enterotoxin A (SEA) triple-mutant (L48R, D70R, and Y92A) vaccine reveals a cascade of structural rearrangements located in three loop regions essential for binding the alpha subunit of major histocompatibility complex class II (MHC-II) molecules. A comparison of hypothetical model complexes between SEA and the SEA triple mutant with MHC-II HLA-DR1 clearly shows disruption of key ionic and hydrophobic interactions necessary for forming the complex. Extensive dislocation of the disulfide loop in particular interferes with MHC-IIalpha binding. The triple-mutant structure provides new insights into the loss of superantigenicity and toxicity of an engineered superantigen and provides a basis for further design of enterotoxin vaccines.
Collapse
|
217
|
Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 2002; 277:6143-52. [PMID: 11741922 DOI: 10.1074/jbc.m103939200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between model lipid membranes and the binding component (Ib) of the ADP-ribosylating iota-toxin of Clostridium perfringens was studied in detail. Ib had to be activated by trypsin to result in channel formation in artificial lipid bilayers. The channels formed readily by Ib had a small single-channel conductance of about 85 picosiemens in 1 m KCl. Channel function was blocked in single-channel and multichannel experiments by the enzymatic component Ia in a pH-dependent manner. The strong Ia-mediated channel block of Ib occurred only when the pH was at least lowered to pH 5.6. The single-channel conductance showed a linear dependence on the bulk aqueous KCl concentration, which indicated that the channel properties were more general than specific. Zero current membrane potential measurements suggested the Ib channel has an approximately 6-fold higher permeability for potassium ions than for chloride. The selectivity ratio changed for salts composed of cations and anions of different mobility in the aqueous phase, again suggesting that Ib formed a water-filled general diffusion pore. Asymmetric addition of activated Ib to lipid bilayer membranes resulted in an asymmetric voltage dependence, indicating its full orientation within the membrane. Titration experiments with chloroquine and different tetraalkylammonium ions suggested that the Ib channel was blocked by these compounds but had only a weak affinity to them. In vivo measurements using Vero cells demonstrate that chloroquine and related molecules also did not efficiently block intoxication of the cells by iota-toxin. The possible role of Ib in the translocation of iota-toxin across the target cell membrane is discussed.
Collapse
|
218
|
Pickens JC, Merritt EA, Ahn M, Verlinde CLMJ, Hol WGJ, Fan E. Anchor-based design of improved cholera toxin and E. coli heat-labile enterotoxin receptor binding antagonists that display multiple binding modes. CHEMISTRY & BIOLOGY 2002; 9:215-24. [PMID: 11880036 DOI: 10.1016/s1074-5521(02)00097-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The action of cholera toxin and E. coli heat-labile enterotoxin can be inhibited by blocking their binding to the cell-surface receptor GM1. We have used anchor-based design to create 15 receptor binding inhibitors that contain the previously characterized inhibitor MNPG as a substructure. In ELISA assays, all 15 compounds exhibited increased potency relative to MNPG. Binding affinities for two compounds, each containing a morpholine ring linked to MNPG via a hydrophobic tail, were characterized by pulsed ultrafiltration (PUF) and isothermal titration calorimetry (ITC). Crystal structures for these compounds bound to toxin B pentamer revealed a conserved binding mode for the MNPG moiety, with multiple binding modes adopted by the attached morpholine derivatives. The observed binding interactions can be exploited in the design of improved toxin binding inhibitors.
Collapse
|
219
|
Hirst TR, Fraser S, Soriani M, Aman AT, de HL, Hearn A, Merritt E. New insights into the structure-function relationships and therapeutic applications of cholera-like enterotoxins. Int J Med Microbiol 2002; 291:531-5. [PMID: 11890554 DOI: 10.1078/1438-4221-00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholera toxin and E. coli heat-labile enterotoxin are structurally homologous proteins comprised of an enzymatically active A-subunit and five B-subunits that bind with high affinity to GM1-ganglioside receptors found on the surface of mammalian cells. The B-subunits have long been thought of simply as trafficking vehicles that trigger entry and subsequent delivery of the 'toxic' A-subunit into cells. Indeed, such is the capacity of the B-subunits to enter cells, that they have been developed as generic carriers for attachment and delivery of a variety of peptides into mammalian cells. However, the B-subunits also appear to possess discrete 'signalling functions', that induce both transcription factor and cell activation. These are thought to be directly responsible for the potent immunomodulatory properties of the B-subunits, and have resulted in their use as adjuvants and as agents to suppress inflammatory immune disorders. The relationship between the signalling properties of the B-subunits and their capacity to act as trafficking vehicles has remained unclear. In an effort to understand the structural requirements for these two functions, a set of mutant B-subunits, with amino acid substitutions at position His-57, have been generated and studied. Importantly, such mutant B-subunits retain an ability to bind with high affinity to GM1 and to traffic into cells, but have entirely lost their capacity to activate immune cell populations. Thus, while binding via GM1 appears to be sufficient to trigger cellular uptake it is not sufficient to activate signal transduction. The His-57 region is therefore speculated to be actively engaged in triggering signalling events, possibly via cognate interaction with other cell surface molecules.
Collapse
|
220
|
Baker MD, Papageorgiou AC, Titball RW, Miller J, White S, Lingard B, Lee JJ, Cavanagh D, Kehoe MA, Robinson JH, Acharya KR. Structural and functional role of threonine 112 in a superantigen Staphylococcus aureus enterotoxin B. J Biol Chem 2002; 277:2756-62. [PMID: 11704673 DOI: 10.1074/jbc.m109369200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial superantigens are potent T-cell stimulatory protein molecules produced by Staphylococcus aureus and Streptococcus pyogenes. Their superantigenic activity can be attributed to their ability to cross-link major histocompatibility complex class II molecules with T-cell receptors (TCRs) to form a tri-molecular complex. Each superantigen is known to interact with a specific V(beta) element of TCR. Staphylococcal enterotoxin B (SEB, a superantigen), a primary cause of food poisoning, is also responsible for a significant percentage of non-menstrual associated toxic shock syndrome in patients with a variety of staphylococcal infections. Structural studies have elucidated a binding cavity on the toxin molecule essential for TCR binding. To understand the crucial residues involved in binding, mutagenesis analysis was performed. Our analysis suggest that mutation of a conserved residue Thr(112) to Ser (T112S) in the binding cavity induces a selective reduction in the affinity for binding one TCR V(beta) family and can be attributed to the structural differences in the native and mutant toxins. We present a detailed comparison of the mutant structure determined at 2.0 A with the previously reported native SEB and SEB-TCR V(beta) complex structures.
Collapse
MESH Headings
- Amino Acids/chemistry
- Conserved Sequence
- Crystallography, X-Ray
- Enterotoxins/chemistry
- Flow Cytometry
- Genes, MHC Class II
- Humans
- Major Histocompatibility Complex
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/metabolism
- Threonine/chemistry
- Threonine/physiology
Collapse
|
221
|
Chen TR, Hsiao MH, Chiou CS, Tsen HY. Development and use of PCR primers for the investigation of C1, C2 and C3 enterotoxin types of Staphylococcus aureus strains isolated from food-borne outbreaks. Int J Food Microbiol 2001; 71:63-70. [PMID: 11764893 DOI: 10.1016/s0168-1605(01)00564-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus is a major food-borne pathogen in many countries. Enterotoxins produced by S. aureus strains include staphylococcal enterotoxins (SEs) A, B, C, D, E and G, H, I, etc. For SEC, in addition to the three major SEC subtypes, i.e., SEC1, C2 and C3, other molecular variants may exist. Although the detection methods and the distribution of SEA, B, C, D, E types of S. aureus in staphylococcal infections or food-borne outbreaks have been well documented, the differentiation method and the distribution of SEC subtypes in staphylococcal infections are rarely reported. In this study, four polymerase chain reaction (PCR) primers used in pairs (ENTC1/ENTCR, ENTC2/ENTCR and ENTC3/ENTCR) for the specific detection of SEC1, C2 and C3 genes of S. aureus strains were developed. When 39 SEC S. aureus strains isolated from fecal samples of randomly selected diarrheal patients associated with food-borne outbreaks in central Taiwan in 6 years (1995-2000) were analyzed, it was found that the major SEC subtypes for these S. aureus strains were SEC2 and C3.
Collapse
|
222
|
Nakajima H, Kiyokawa N, Katagiri YU, Taguchi T, Suzuki T, Sekino T, Mimori K, Ebata T, Saito M, Nakao H, Takeda T, Fujimoto J. Kinetic analysis of binding between Shiga toxin and receptor glycolipid Gb3Cer by surface plasmon resonance. J Biol Chem 2001; 276:42915-22. [PMID: 11557760 DOI: 10.1074/jbc.m106015200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shiga toxin (Stx) binds to the receptor glycolipid Gb3Cer on the cell surface and is responsible for hemolytic uremic syndrome. Stx has two isoforms, Stx1 and Stx2, and in clinical settings Stx2 is known to cause more severe symptoms, although the differences between the mechanisms of action of Stx1 and Stx2 are as yet unknown. In this study, the binding modes of these two isoforms to the receptor were investigated with a surface plasmon resonance analyzer to compare differences by real time receptor binding analysis. A sensor chip having a lipophilically modified dextran matrix or quasicrystalline hydrophobic layer was used to immobilize an amphipathic lipid layer that mimics the plasma membrane surface. Dose responsiveness was observed with both isoforms when either the toxin concentration or the Gb3Cer concentration was increased. In addition, this assay was shown to be specific, because neither Stx1 nor Stx2 bound to GM3, but both bound weakly to Gb4Cer. It was also shown that a number of fitting models can be used to analyze the sensorgrams obtained with different concentrations of the toxins, and the "bivalent analyte" model was found to best fit the interaction between Stxs and Gb3Cer. This shows that the interaction between Stxs and Gb3Cer in the lipid bilayer has a multivalent effect. The presence of cholesterol in the lipid bilayer significantly enhanced the binding of Stxs to Gb3Cer, although kinetics were unaffected. The association and dissociation rate constants of Stx1 were larger than those of Stx2: Stx2 binds to the receptor more slowly than Stx1 but, once bound, is difficult to dissociate. The data described herein clearly demonstrate differences between the binding properties of Stx1 and Stx2 and may facilitate understanding of the differences in clinical manifestations caused by these toxins.
Collapse
|
223
|
Håkansson M, Antonsson P, Björk P, Svensson LA. Cooperative zinc binding in a staphylococcal enterotoxin A mutant mimics the SEA-MHC class II interaction. J Biol Inorg Chem 2001; 6:757-62. [PMID: 11713682 DOI: 10.1007/s007750100251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Accepted: 04/10/2001] [Indexed: 10/27/2022]
Abstract
The structure of a mutant form of staphylococcal enterotoxin A (SEA) has been determined to 2.1 A resolution. The studied SEA substitution H187-->A187 (SEAH187A) leads to an almost 10-fold reduction of the binding to major histocompatibility complex (MHC) class II. H187 is important for this interaction since it coordinates Zn2+. The zinc ion is thought to hold MHC class II and SEA together in a complex. Interestingly, only one of two molecules in the asymmetric unit binds Zn2+. H225, D227, a water molecule, and H44 from a symmetry-related molecule ligate Zn2+. The symmetry-related histidine is necessary for this substituted Zn2+ site to bind to Zn2+ at low zinc concentration (no Zn2+ added). Since a water molecule replaces the missing H187, H44 binds Zn2+ at the position where betaH81 from MHC class II probably will bind. Dynamic light scattering analysis reveals that in solution as well as in the crystal lattice the SEA(H187A) mutant forms aggregates. The substitution per se does not cause aggregation since wild-type SEA also forms aggregates. Addition of EDTA reduces the size of the aggregates, indicating a cross-linking function of Zn2+. In agreement with the biological function, the aggregation is weak (i.e. not revealed by gel filtration) and non-specific.
Collapse
|
224
|
Kumaran D, Eswaramoorthy S, Furey W, Sax M, Swaminathan S. Structure of staphylococcal enterotoxin C2 at various pH levels. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2001; 57:1270-5. [PMID: 11526318 DOI: 10.1107/s0907444901011118] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2001] [Accepted: 07/03/2001] [Indexed: 11/10/2022]
Abstract
The three-dimensional structure of staphylococcal enterotoxin C2 (SEC2), a toxin as well as a superantigen, has been determined at various pH levels from two different crystal forms, tetragonal (pH 5.0, 5.5, 6.0 and 6.5) and monoclinic (pH 8.0) at 100 and 293 K, respectively, by the molecular-replacement method. Tetragonal crystals belong to space group P4(3)2(1)2, with unit-cell parameters a = b = 42.68, c = 289.15 A (at pH 5.0), and monoclinic crystals to space group P2(1), with unit-cell parameters a = 43.3, b = 70.6, c = 42.2 A, beta = 90.3 degrees. SEC2 contains a zinc-binding motif, D+HExxH, and accordingly a Zn atom has been identified. The coordination of the zinc ion suggests that it may be catalytic zinc rather than structural, but there is so far no biological evidence that it possesses catalytic activity. However, superantigen staphylococcal exfoliative toxins A and B have been shown to have enzymatic activity after their fold was identified to be similar to that of serine protease. The structure and its conformation are similar to the previously reported structures of SEC2. Though it was expected that the zinc ion may be leached out, as the histidines coordinating the zinc ion are expected to be protonated below pH 6.0, zinc is present at all pH values. The coordination distances to zinc increase with decreasing pH, with the distances being the least at pH 8.0. The results of automated model building using the ARP/wARP program for different data sets collected at various pH values are discussed.
Collapse
|
225
|
Petersson K, Håkansson M, Nilsson H, Forsberg G, Svensson L, Liljas A, Walse B. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO J 2001; 20:3306-12. [PMID: 11432818 PMCID: PMC125526 DOI: 10.1093/emboj/20.13.3306] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The three-dimensional structure of a bacterial superantigen, Staphylococcus aureus enterotoxin H (SEH), bound to human major histocompatibility complex (MHC) class II (HLA-DR1) has been determined by X-ray crystallography to 2.6 A resolution (1HXY). The superantigen binds on top of HLA-DR1 in a completely different way from earlier co-crystallized superantigens from S.aureus. SEH interacts with high affinity through a zinc ion with the beta1 chain of HLA-DR1 and also with the peptide presented by HLA-DR1. The structure suggests that all superantigens interacting with MHC class II in a zinc-dependent manner present the superantigen in a common way. This suggests a new model for ternary complex formation with the T-cell receptor (TCR), in which a contact between the TCR and the MHC class II is unlikely.
Collapse
|