1
|
Li H, Duan J, Zhang T, Fu Y, Xu Y, Miao H, Ge X. miR-16-5p aggravates sepsis-associated acute kidney injury by inducing apoptosis. Ren Fail 2024; 46:2322688. [PMID: 38445373 PMCID: PMC10919310 DOI: 10.1080/0886022x.2024.2322688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a common disease in pediatric intensive care units (ICU) with high morbidity and mortality. The newly discovered results indicate that microRNAs (miRNAs) play an important role in the diagnosis and treatment of S-AKI and can be used as markers for early diagnosis. In this study, the expression level of miR-16-5p was found to be significantly upregulated about 20-fold in S-AKI patients, and it also increased by 1.9 times in the renal tissue of S-AKI mice. Receiver operating characteristic (ROC) curve analysis showed that miR-16-5p had the highest predictive accuracy in the diagnosis of S-AKI (AUC = 0.9188). In vitro, the expression level of miR-16-5p in HK-2 cells treated with 10 μg/mL lipopolysaccharide (LPS) increased by more than 2 times. In addition, LPS-exposed renal tissue and HK-2 cells lead to upregulation of inflammatory cytokines IL-6, IL-1β, TNF-a, and kidney damage molecules kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL). However, inhibition of miR-16-5p significantly mitigated LPS expose-mediated kidney injury and inflammation. Furthermore, LPS-exposed HK-2 cells increased more than 1.7-fold the expression levels of Bax and caspase-3, decreased 3.2-fold the expression level of B-cell lymphoma-2 (Bcl-2), and significantly promoted the occurrence of apoptosis. MiR-16-5p mimic further increased LPS-induced apoptosis in HK-2 cells. Nevertheless, inhibition of miR-16-5p significantly attenuated this effect. In summary, up-regulation of miR-16-5p expression can significantly aggravate renal injury and apoptosis in S-AKI, which also proves that miR-16-5p can be used as a potential biomarker to promote early identification of S-AKI.
Collapse
Affiliation(s)
- Han Li
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Key Laboratory of Children’s Major Disease Research, Jiangsu, PR China
| | - Junyan Duan
- Department of Pediatrics, Changzhou Second Peoples Hospital Affiliated to Nanjing Medical University, Changzhou, PR China
| | - Tongtong Zhang
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yingjie Fu
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yue Xu
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hongjun Miao
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xuhua Ge
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Key Laboratory of Children’s Major Disease Research, Jiangsu, PR China
| |
Collapse
|
2
|
Mascia G, Brugada J, Barca L, Benenati S, Della Bona R, Scarà A, Russo V, Arbelo E, Di Donna P, Porto I. Prognostic significance of electrophysiological study in drug-induced type-1 Brugada syndrome: a brief systematic review. J Cardiovasc Med (Hagerstown) 2024; 25:775-780. [PMID: 39347725 DOI: 10.2459/jcm.0000000000001665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Risk stratification in drug-induced type-1 Brugada syndrome (BrS) patients is challenging. The role of electrophysiological study (EPS) is debated as the majority of drug-induced type-1 BrS patients would not be studied according to the latest recommendations. METHODS A complete systematic literature search was performed to gauge the EPS role in this population. Three subgroups were defined: positive-EPS group, negative-EPS group, no-EPS group. RESULTS Among 1318 drug-induced type-1 BrS patients, no significant difference in the incidence rate of arrhythmic events was observed between groups (I2 = 45%, P for subgroup difference = 0.10) during a mean follow-up of 5.1 years, also considering symptomatic status. CONCLUSION In long-term follow-up of drug-induced type-1 BrS patients, EPS does not seem to aid prognostic stratification.
Collapse
Affiliation(s)
- Giuseppe Mascia
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Josep Brugada
- Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Deu
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona
- IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart - ERN GUARD-Heart
| | - Luca Barca
- Department of Internal Medicine, University of Genoa, Genova
| | | | - Roberta Della Bona
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonio Scarà
- Department of Cardiology, San Carlo di Nancy Hospital, Rome
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania, Monaldi Hospital, Naples, Italy
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona
- IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart - ERN GUARD-Heart
| | - Paolo Di Donna
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Italo Porto
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genoa, Genova
| |
Collapse
|
3
|
Kwok SY, Ho S, Shih FY, Yeung PK, Cheng SSW, Poon WM, Lo IFM, Luk HM. Molecular autopsy in Chinese sudden cardiac death in the young. Am J Med Genet A 2024; 194:e63797. [PMID: 38958565 DOI: 10.1002/ajmg.a.63797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Inherited cardiovascular conditions are significant causes of sudden cardiac death in the young (SCDY), making their investigation using molecular autopsy and prevention a public health priority. However, the molecular autopsy data in Chinese population is lacking. The 5-year result (2017-2021) of molecular autopsy services provided for victims of SCDY (age 1-40 years) was reviewed. The outcome of family cascade genetic screening and clinical evaluation was reviewed. A literature review of case series reporting results of molecular autopsy on SCDY in 2016-2023 was conducted. Among the 41 decedents, 11 were found to carry 13 sudden cardiac death (SCD)-causative genetic variants. Likely pathogenic (LP) variants were identified in the DSP, TPM1, TTN, and SCN5A genes. Cascade genetic testing identified four family members with LP variants. One family member with familial TPM1 variant was found to have hypertrophic cardiomyopathy upon clinical evaluation. This study provided insight into the genetic profile of molecular autopsy in a Chinese cohort of SCDY. The detection of important SCD-causative variants through molecular autopsy has facilitated family cascade screening by targeted genetic testing and clinical evaluation of at-risk family members. A literature review of the current landscape of molecular autopsy in the investigation of SCDY was conducted.
Collapse
Affiliation(s)
- Sit-Yee Kwok
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Stephanie Ho
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Fong-Ying Shih
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Pak-Kwan Yeung
- Department of Health, Forensic Pathology Service, Kowloon, Hong Kong SAR
| | - Shirley S W Cheng
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Wai-Ming Poon
- Department of Health, Forensic Pathology Service, Kowloon, Hong Kong SAR
| | - Ivan F M Lo
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Ho-Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| |
Collapse
|
4
|
Bottillo I, Giordano C, Ciccone MP, Pignataro MG, Albi F, Parisi G, Formicola D, Grotta S, Ranocchi F, Giuli MV, Checquolo S, Masuelli L, Re F, Majore S, d'Amati G, Grammatico P. Dilated cardiomyopathy due to a novel combination of TTN and BAG3 genetic variants: From acute heart failure to subclinical phenotypes. Cardiovasc Pathol 2024; 73:107675. [PMID: 39059779 DOI: 10.1016/j.carpath.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is defined as left ventricular enlargement accompanied by systolic dysfunction not explained by abnormal loading conditions or coronary heart disease. The DCM clinical spectrum is broad, ranging from subclinical to severe presentation with progression to end stage heart failure. To date, different genetic loci have been found to have moderate/definitive evidence for causality in DCM and pathogenic variants in the TTN gene represent the main genetic determinant. Here, we describe a family in which the co-occurrence of two genetic hits, one in the TTN and one in the BAG3 gene, was associated with heterogeneous clinical presentation ranging from subclinical phenotypes to acute cardiogenic shock mimicking fulminant myocarditis. We hypothesize that at least some specific BAG3 genotypes could be related to DCM presenting with acute heart failure and suggest that patients and relatives carrying BAG3 pathogenic variants should be addressed to a tertiary-level heart care center.
Collapse
Affiliation(s)
- Irene Bottillo
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Maria Pia Ciccone
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Fiammetta Albi
- Cardiology Division, Cardiac Arrhythmia Center and Cardiomyopathies Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Gabriella Parisi
- Department of Clinical Microbiology and Virology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Daniela Formicola
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Simona Grotta
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Federico Ranocchi
- Cardiac Surgery and Heart Transplantation Unit, San Camillo Hospital, Rome, Italy
| | - Maria Valeria Giuli
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Saula Checquolo
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Re
- Cardiology Division, Cardiac Arrhythmia Center and Cardiomyopathies Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
5
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2024:10.1038/s41569-024-01074-2. [PMID: 39394525 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Ding R, Cao W, Chen Y, Zhu Y, Yin D. SnRNA-seq reveals differential functional transcriptional pathway alterations in three mutant types of dilated cardiomyopathy. Int J Biol Macromol 2024:136353. [PMID: 39395510 DOI: 10.1016/j.ijbiomac.2024.136353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, characterized by ventricular dilation, thinning of the ventricular walls, and systolic dysfunction in either the left or both ventricles, often accompanied by fibrosis. Human cardiac tissue is composed of various cell types, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), macrophages, lymphocytes and so on. In DCM patients, these cells frequently undergo functional and phenotypic changes, contributing to contractile dysfunction, inflammation, fibrosis, and cell death, thereby increasing the risk of heart failure. This study focuses on DCM patients with mutations (LMNA, RBM20, and TTN) and analyzes functional changes in subpopulations of four cardiac cell types. The study involves functional annotation of subpopulations within each cell type and explores the association between gene mutations and specific functions and pathways. Additionally, the SCENIC method is employed of a particular cell subpopulation with significant functional importance, aiming to identify key transcriptional regulators in specific cell states. By analyzing the expression levels of ligand-receptor pairs in vCM4, vFB2, EC5.0, T cells, and NK cells across the DCM mutant genotypes, we predicted their signaling pathways and communications. This research provides insights into the molecular mechanisms of DCM and potential therapeutic targets.
Collapse
Affiliation(s)
- Rui Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Wenzhao Cao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yongbo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yanrui Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Dan Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Holbrook SE, Hicks AN, Martin PB, Hines TJ, Castro HP, Cox GA. Clinically relevant mouse models of severe spinal muscular atrophy with respiratory distress type 1. Hum Mol Genet 2024; 33:1800-1814. [PMID: 39128026 PMCID: PMC11457999 DOI: 10.1093/hmg/ddae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
Spinal Muscular Atrophy with Respiratory Distress (SMARD1) is a lethal infantile disease, characterized by the loss of motor neurons leading to muscular atrophy, diaphragmatic paralysis, and weakness in the trunk and limbs. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause a wide spectrum of motor neuron disease. Though mutations in IGHMBP2 are mostly associated with SMARD1, milder alleles cause the axonal neuropathy, Charcot-Marie-Tooth disease type 2S (CMT2S), and some null alleles are potentially a risk factor for sudden infant death syndrome (SIDS). Variant heterogeneity studied using an allelic series can be informative in order to create a broad spectrum of models that better exhibit the human variation. We previously identified the nmd2J mouse model of SMARD1, as well as two milder CMT2S mouse models. Here, we used CRISPR-Cas9 genome editing to create three new, more severe Ighmbp2 mouse models of SMARD1, including a null allele, a deletion of C495 (C495del) and a deletion of L362 (L362del). Phenotypic characterization of the IGHMBP2L362del homozygous mutants and IGHMBP2C495del homozygous mutants respectively show a more severe disease presentation than the previous nmd2J model. The IGHMBP2L362del mutants lack a clear denervation in the diaphragm while the IGHMBP2C495del mutants display a neurogenic diaphragmatic phenotype as observed in SMARD1 patients. Characterization of the Ighmbp2-null model indicated neo-natal lethality (median lifespan = 0.5 days). These novel strains expand the spectrum of SMARD1 models to better reflect the clinical continuum observed in the human patients with various IGHMBP2 recessive mutations.
Collapse
Affiliation(s)
- Sarah E Holbrook
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| | - Amy N Hicks
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Paige B Martin
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Timothy J Hines
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Harold P Castro
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| |
Collapse
|
8
|
Qu L, Duan X, Chen H. The effects of sodium-glucose cotransporter 2 inhibitors on the 'forgotten' right ventricle. ESC Heart Fail 2024. [PMID: 39370371 DOI: 10.1002/ehf2.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
With the progress in diagnosis, treatment and imaging techniques, there is a growing recognition that impaired right ventricular (RV) function profoundly affects the prognosis of patients with heart failure (HF), irrespective of their left ventricular ejection fraction (LVEF). In addition, right HF (RHF) is a common complication associated with various diseases, including congenital heart disease, myocardial infarction (MI), pulmonary arterial hypertension (PAH) and dilated cardiomyopathy (DCM), and it can manifest at any time after left ventricular assist devices (LVADs). The sodium-glucose cotransporter 2 (SGLT2) inhibition by gliflozins has emerged as a cornerstone medicine for managing type 2 diabetes mellitus (T2DM) and HF, with an increasing focus on its potential to enhance RV function. In this review, we aim to present an updated perspective on the pleiotropic effects of gliflozins on the right ventricle and offer insights into the underlying mechanisms. We can ascertain their advantageous impact on the right ventricle by discussing the evidence obtained in animal models and monumental clinical trials. In light of the pathophysiological changes in RHF, we attempt to elucidate crucial mechanisms regarding their beneficial effects, including alleviation of RV overload, reduction of hyperinsulinaemia and inflammatory responses, regulation of nutrient signalling pathways and cellular energy metabolism, inhibition of oxidative stress and myocardial fibrosis, and maintenance of ion balance. Finally, this drug class's potential application and benefits in various clinical settings are described, along with a prospective outlook on future clinical practice and research directions.
Collapse
Affiliation(s)
- Liangzhen Qu
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xueting Duan
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Han Chen
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Goh ESY, Chad L, Richer J, Bombard Y, Mighton C, Agatep R, Lacaria M, Penny B, Thomas MA, Zawati MH, MacFarlane J, Laberge AM, Nelson TN. Canadian College of Medical Geneticists: clinical practice advisory document - responsibility to recontact for reinterpretation of clinical genetic testing. J Med Genet 2024:jmg-2024-110330. [PMID: 39362754 DOI: 10.1136/jmg-2024-110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Advances in technology and knowledge have facilitated both an increase in the number of patient variants reported and variants reclassified. While there is currently no duty to recontact for reclassified genetic variants, there may be a responsibility. The purpose of this clinical practice advisory document is to provide healthcare practitioners guidance for recontact of previously identified and classified variants, suggest methods for recontact, and principles to consider, taking account patient safety, feasibility, ethical considerations, health service capacity and resource constraints. The target audience are practitioners who order genetic testing, follow patients who have undergone genetic testing and those analysing and reporting genetic testing. METHODS A multidisciplinary group of laboratory and ordering clinicians, patient representatives, ethics and legal researchers and a genetic counsellor from the Canadian Association of Genetic Counsellors reviewed the existing literature and guidelines on responsibility to recontact in a clinical context to make recommendations. Comments were collected from the Canadian College of Medical Geneticists (CCMG) Education, Ethics, and Public Policy, Clinical Practice and Laboratory Practice committees, and the membership at large. RESULTS Following incorporation of feedback, and external review by the Canadian Association of Genetic Counsellors and patient groups, the document was approved by the CCMG Board of Directors. The CCMG is the Canadian organisation responsible for certifying laboratory and medical geneticists who provide medical genetics services, and for establishing professional and ethical standards for clinical genetics services in Canada. CONCLUSION The document describes the ethical and practical factors and suggests a shared responsibility between patients, ordering clinician and laboratory practitioners.
Collapse
Affiliation(s)
- Elaine Suk-Ying Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Chad
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie Richer
- Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Ron Agatep
- Genomics, Shared Health Diagnostic Services, Winnipeg, Manitoba, Canada
| | - Melanie Lacaria
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Mary Ann Thomas
- Departments of Medical Genetics and Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Ma'n H Zawati
- Human Genetics, Centre of Genomics and Policy - McGill University, Montreal, Quebec, Canada
| | - Julie MacFarlane
- Screening Programs, Perinatal Services BC, Vancouver, British Columbia, Canada
| | - Anne-Marie Laberge
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Tanya N Nelson
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Fan H, Su J, Wang X, Wang H, Chen X, Sun Y, Jiang C, Liang P. Generation of an induced pluripotent stem cell line from a Brugada syndrome patient carrying SCN5A/c.3118G>C mutation. Stem Cell Res 2024; 80:103529. [PMID: 39121653 DOI: 10.1016/j.scr.2024.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Brugada syndrome (BrS) is a hereditary arrhythmia syndrome characterized by right bundle branch block on an electrocardiogram and persistent ST-segment elevation in the right precordial leads. In this study, we describe the establishment of an induced pluripotent stem cell (iPSC) line derived from a BrS patient carrying the novel heterogeneous missense mutation (c.3118G>C; p.G1040R) in the sodium channel protein type 5 subunit alpha (SCN5A) gene. Skin fibroblasts underwent reprogramming using a non-integrated Sendai viral method. Generated iPSC line exhibited embryonic stem cell-like morphology, maintained a normal karyotype, expressed pluripotency markers, and demonstrated the capacity to differentiate into three germ layers.
Collapse
Affiliation(s)
- Hangping Fan
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jun Su
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
12
|
Said AI, Ali AO, said AO, Abdillahi MA, Elmi HSA. Incidental diagnosis of Brugada syndrome in a patient initially presenting with acute coronary syndrome in resource-limited settings: A case report. ATENCIÓN PRIMARIA PRÁCTICA 2024; 6:100208. [DOI: 10.1016/j.appr.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
|
13
|
Marques P, Moloney PB, Ji C, Zulfiqar Ali Q, Ramesh A, Goldstein DB, Barboza K, Chandran I, Rong M, Selvarajah A, Qaiser F, Lira VST, Valiante TA, Bazil CW, Choi H, Devinsky O, Depondt C, O'Brien T, Perucca P, Sen A, Dugan P, Sands TT, Delanty N, Andrade DM. Do germline genetic variants influence surgical outcomes in drug-resistant epilepsy? Epilepsy Res 2024; 206:107425. [PMID: 39168079 DOI: 10.1016/j.eplepsyres.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE We retrospectively explored patients with drug-resistant epilepsy (DRE) who previously underwent presurgical evaluation to identify correlations between surgical outcomes and pathogenic variants in epilepsy genes. METHODS Through an international collaboration, we evaluated adult DRE patients who were screened for surgical candidacy. Patients with pathogenic (P) or likely pathogenic (LP) germline variants in genes relevant to their epilepsy were included, regardless of whether the genetic diagnosis was made before or after the presurgical evaluation. Patients were divided into two groups: resective surgery (RS) and non-resective surgery candidates (NRSC), with the latter group further divided into: palliative surgery (vagus nerve stimulation, deep brain stimulation, responsive neurostimulation or corpus callosotomy) and no surgery. We compared surgical candidacy evaluations and postsurgical outcomes in patients with different genetic abnormalities. RESULTS We identified 142 patients with P/LP variants. After presurgical evaluation, 36 patients underwent RS, while 106 patients were NRSC. Patients with variants in ion channel and synaptic transmission genes were more common in the NRSC group (48 %), compared with the RS group (14 %) (p<0.001). Most patients in the RS group had tuberous sclerosis complex. Almost half (17/36, 47 %) in the RS group had Engel class I or II outcomes. Patients with channelopathies were less likely to undergo a surgical procedure than patients with mTORopathies, but when deemed suitable for resection had better surgical outcomes (71 % versus 41 % with Engel I/II). Within the NRSC group, 40 underwent palliative surgery, with 26/40 (65 %) having ≥50 % seizure reduction after mean follow-up of 11 years. Favourable palliative surgery outcomes were observed across a diverse range of genetic epilepsies. SIGNIFICANCE Genomic findings, including a channelopathy diagnosis, should not preclude presurgical evaluation or epilepsy surgery, and appropriately selected cases may have good surgical outcomes. Prospective registries of patients with monogenic epilepsies who undergo epilepsy surgery can provide additional insights on outcomes.
Collapse
Affiliation(s)
- Paula Marques
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Caihong Ji
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Quratulain Zulfiqar Ali
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Archana Ramesh
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Karen Barboza
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ilakkiah Chandran
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marlene Rong
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Arunan Selvarajah
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Farah Qaiser
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Victor S T Lira
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Taufik A Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Carl W Bazil
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hyunmi Choi
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Orrin Devinsky
- New York University Langone Health Comprehensive Epilepsy Center, New York, NY, USA
| | - Chantal Depondt
- Department of Neurology, CUB Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Terence O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patricia Dugan
- New York University Langone Health Comprehensive Epilepsy Center, New York, NY, USA
| | - Tristan T Sands
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland.
| | - Danielle M Andrade
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Sarubbi B, Ciriello GD, Barretta F, Sorice D, Orlando A, Correra A, Colonna D, Uomo F, Mazzaccara C, D'Argenio V, Romeo E, Frisso G. Clinical presentation and genetic characterization of early-onset atrial fibrillation in patients affected by long QT syndrome: A single-center experience. J Cardiovasc Electrophysiol 2024; 35:1941-1951. [PMID: 39082327 DOI: 10.1111/jce.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Early-onset atrial fibrillation (AF) has already been observed in approximately 2% of patients with genetically proven long QT syndrome (LQTS). This frequency is higher than population-based estimates of early-onset AF. However, the concomitant expression of AF in LQTS is likely underestimated. The purpose of this study was to examine the clinical presentation, genetic background, and outcomes of a cohort of patients with LQTS and early-onset AF referred to a single tertiary center. METHODS Twenty-seven patients diagnosed with congenital LQTS were included in the study based on the documentation of early-onset (age ≤50 years) clinical or subclinical AF episodes in all available medical records, including standard electrocardiograms, wearable monitor or cardiac implantable electronic devices. RESULTS Seventeen patients experienced clinical AF during the follow-up period. Subclinical AF was detected in 10 patients through insertable or wearable cardiac monitors. In our series, the mean heart rate during AF episodes was found to be relatively low despite the patients' young age and the low or minimal effective doses of beta-blockers used for QTc interval control. All patients exhibiting LQTS and early-onset AF were genotype positive, carrying mutations in the KCNQ1 (66%), KCNH2, KCNE1, and SCN5A genes. Notably, most of these patients carried the same p.(R231C) mutation in the KCNQ1 gene (59%) and were from the same families, suggesting concurrent expression of familial AF and LQTS. CONCLUSION LQTS patients are prone to developing clinical and subclinical AF, even at a younger age. The occurrence of early-onset AF in the LQTS population could be more frequent than previously assumed. AF should be considered as a potential dysrhythmia related to LQTS. Our study emphasizes the importance of carefully researching clinical and/or subclinical episodes of AF through strict heart rhythm monitoring in the LQTS population.
Collapse
|