1
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
2
|
de la Cruz-Ojeda P, Parras-Martínez E, Rey-Pérez R, Muntané J. In silico analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells. World J Gastroenterol 2025; 31:95207. [DOI: 10.3748/wjg.v31.i3.95207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.
AIM To define the long non-codingRNA-microRNA-mRNA (lncRNA-miRNA-mRNA) predicted signatures related to selected hallmarks of cancer (apoptosis, autophagy, cell stress, cell dedifferentiation and invasiveness) in RNAseq studies using Sorafenib-treated HepG2 and SNU449 cells. Various available software analyses allowed us to establish the lncRNA-miRNA-mRNA regulatory axes following treatment in HepG2 and SNU449 cells.
METHODS HepG2 and SNU449 cells were treated with Sorafenib (10 μmol/L) for 24 hours. Total RNA, including small and long RNA, was extracted with a commercial miRNeasy kit. RNAseq was carried out for the identification of changes in lncRNA-miRNA-mRNA regulatory axes.
RESULTS MALAT, THAP9-AS1 and SNGH17 appeared to coordinately regulate miR-374b-3p and miR-769-5p that led to upregulation of SMAD7, TIRARP, TFAP4 and FAXDC2 in HepG2 cells. SNHG12, EPB41 L4A-AS1, LINC01578, SNHG12 and GAS5 interacted with let-7b-3p, miR-195-5p and VEGFA in SNU449 cells. The axes MALAT1/hsa-mir-374b-3p/SMAD7 and MALAT1/hsa-mir-769-5p/TFAP4 were of high relevance for Sorafenib response in HepG2 cells, whereas PVT1/hsa-miR-195-5p/VEGFA was responsible for the differential response of SNU449 cells to Sorafenib treatment.
CONCLUSION Critical lncRNAs acting as sponges of miRNA were identified that regulated mRNA expression, whose proteins mainly increased the antitumor effectiveness of the treatment (SMAD7, TIRARP, TFAP4, FAXDC2 and ADRB2). However, the broad regulatory axis leading to increased VEGFA expression may be related to the side effect of Sorafenib in SNU449 cells.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Functional Genomics of Solid Tumors Laboratory, Centre de Recherche des Cordeliers, Paris 75006, France
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
- Biomedical Research Center for Hepatic and Digestive Diseases, CIBERehd, Madrid 28029, Spain
| | - Ester Parras-Martínez
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
| | - Raquel Rey-Pérez
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
| | - Jordi Muntané
- Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain
- Biomedical Research Center for Hepatic and Digestive Diseases, CIBERehd, Madrid 28029, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville 41009, Spain
| |
Collapse
|
3
|
Yi J, Zhang W, Li Y, Ren H, Xiang Y, Qiao C. Recent advances in crosstalk between immune cells and cancer cells with ferroptosis. Life Sci 2025; 360:123279. [PMID: 39608446 DOI: 10.1016/j.lfs.2024.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis and necrosis. Key hallmarks include iron-dependent lipid peroxidation, glutathione depletion, and intracellular iron accumulation, all of which are counteracted by specific cellular defenses. However, the immunosuppressive effects of ferroptosis induction in cancer immunotherapy remain unresolved. This review summarizes the recent advancements in ferroptosis research, focusing on its defensive mechanisms. It analyzes how ferroptosis affects both cancer and immune cells, highlighting its potential inhibitory effects on anti-tumor immunity and possible promotion of pro-tumor immune responses. Finally, this review briefly introduces case studies that combined ferroptosis induction with immunotherapy, offering novel perspectives for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Yi
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wanting Zhang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - He Ren
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Yuhang Xiang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Fan G, Dai L, Xie T, Li L, Tang L, Han X, Shi Y. Spatial analyses revealed CXCL5 and SLC6A14 as the markers of microvascular invasion in intrahepatic cholangiocarcinoma. Hepatol Commun 2025; 9:e0597. [PMID: 39670859 PMCID: PMC11637745 DOI: 10.1097/hc9.0000000000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a critical prognostic factor in intrahepatic cholangiocarcinoma (ICC), strongly associated with postoperative recurrence. However, the phenotypic features and spatial organization of MVI remain inadequately understood. METHODS We performed a spatial transcriptomic analysis on 29,632 spots from six ICC samples, manually delineating MVI clusters using the cloupe software. Key biomarkers were identified and validated in an independent cohort of 135 ICC patients. Functional and survival analyses were conducted to assess clinical relevance, and cell-cell communication pathways were investigated. RESULTS MVI regions exhibited heightened proliferation, angiogenesis, and epithelial-mesenchymal transition, driven by increased expression of transcription factors SOX10, ZEB1, and SNAI2. CXCL5 and SLC6A14 were identified as potential MVI biomarkers and showed high expression in tumor-invasive areas. Serum CXCL5 demonstrated strong predictive power for vascular invasion (AUC = 0.92) and intrahepatic metastasis (AUC = 0.96). High expression of both CXCL5 and SLC6A14 was associated with the worst survival outcomes. MVI regions were enriched with immunosuppressive MRC1+ macrophages and exhibited elevated immune checkpoint expression, including HAVCR2 and TIGHT, indicative of immune resistance. Cell-cell communication analysis revealed CXCL5-CXCR2 and LGALS9-HAVCR2 as key ligand-receptor pairs contributing to the immunosuppressive microenvironment. CONCLUSIONS This study identifies CXCL5 and SLC6A14 as key biomarkers of MVI, highlighting their roles in tumor proliferation, immune resistance, and poor clinical outcomes. These findings provide valuable insights into the spatial organization of MVI and its contribution to ICC progression, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Xiaohong Han
- Department of Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| |
Collapse
|
5
|
Yu Y, Lu XH, Mu JS, Meng JY, Sun JS, Chen HX, Yan Y, Meng K. N6-methyladenosine-modified long non-coding RNA KIF9-AS1 promotes stemness and sorafenib resistance in hepatocellular carcinoma by upregulating SHOX2 expression. World J Gastroenterol 2024; 30:5174-5190. [DOI: 10.3748/wjg.v30.i48.5174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent and aggressive tumor. Sorafenib is the first-line treatment for patients with advanced HCC, but resistance to sorafenib has become a significant challenge in this therapy. Cancer stem cells play a crucial role in sorafenib resistance in HCC. Our previous study revealed that the long non-coding RNA (lncRNA) KIF9-AS1 is an oncogenic gene in HCC. However, the role of KIF9-AS1 in drug resistance and cancer stemness in HCC remains unclear. Herein, we aimed to investigate the function and mechanism of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC.
AIM To describe the role of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC and elucidate the underlying mechanism.
METHODS Tumor tissue and adjacent non-cancerous tissue samples were collected from HCC patients. Sphere formation was quantified via a tumor sphere assay. Cell viability, proliferation, and apoptosis were evaluated via Cell Counting Kit-8, flow cytometry, and colony formation assays, respectively. The interactions between the lncRNA KIF9-AS1 and its downstream targets were confirmed via RNA immunoprecipitation and coimmunoprecipitation. The tumorigenic role of KIF9-AS1 was validated in a mouse model.
RESULTS Compared with that in normal controls, the expression of the lncRNA KIF9-AS1 was upregulated in HCC tissues. Knockdown of KIF9-AS1 inhibited stemness and attenuated sorafenib resistance in HCC cells. Mechanistically, N6-methyladenosine modification mediated by methyltransferase-like 3/insulin-like growth factor 2 mRNA-binding protein 1 stabilized and increased the expression of KIF9-AS1. Additionally, KIF9-AS1 increased the stability and expression of short stature homeobox 2 by promoting ubiquitin-specific peptidase 1-induced deubiquitination. Furthermore, depletion of KIF9-AS1 alleviated sorafenib resistance in a xenograft mouse model of HCC.
CONCLUSION The N6-methyladenosine-modified lncRNA KIF9-AS1 promoted stemness and sorafenib resistance in HCC by upregulating short stature homeobox 2 expression.
Collapse
Affiliation(s)
- Yong Yu
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Xiang-Hong Lu
- Department of Intensive Care Medicine, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jin-Song Mu
- Department of Intensive Care Medicine, The Fifth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100039, China
| | - Jiang-Yun Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jiang-Shan Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Hai-Xu Chen
- Institute of Geriatrics and National Clinical Research Center of Geriatrics Disease, The Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ke Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
6
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
7
|
Guan X, Bu F, Fu Y, Zhang H, Xiang H, Chen X, Chen T, Wu X, Wu K, Liu L, Dong X. Immunogenic peptides putatively from intratumor microbes: Opportunities for colorectal cancer treatment. iScience 2024; 27:111338. [PMID: 39640572 PMCID: PMC11617993 DOI: 10.1016/j.isci.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Recent evidence has confirmed the presence of intratumor microbes, yet their impact on the immunopeptidome remains largely unexplored. Here we introduced an integrated strategy to identify the immunopeptidome originated from intratumor microbes. Analyzing 10 colorectal cancer (CRC) patients, we identified 154 putative microbe-derived human leukocyte antigen (HLA)-I ligands. Predominantly bacterial in origin, these peptides were notably abundant in Fusobacterium nucleatum, the most prevalent bacterium differentiating between normal and tumor tissues. We discovered 20 peptides originating from F. nucleatum, thirteen of which, including two peptides shared across multiple patients, were tumor specific. Validation experiments confirmed that the putative microbe-derived peptide could activate CD8+ T cell responses. Our findings indicate that HLA-I molecules are capable of presenting intratumor microbe-derived peptides in CRC, potentially contributing to CD8+ T cell-mediated immunity and suggesting potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Fanyu Bu
- BGI Research, Hangzhou 310030, China
| | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Haibo Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | | | - Xinle Chen
- BGI Research, Hangzhou 310030, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Tai Chen
- BGI Research, Changzhou 213299, China
| | - Xiaojian Wu
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Kui Wu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Xuan Dong
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| |
Collapse
|
8
|
Wang Z, Shi Y, Xiong G, Han M, Chen X. The prognostic impact of preoperative CA19-9 on resectable cholangiocarcinoma: a comprehensive systematic review and meta-analysis. Discov Oncol 2024; 15:773. [PMID: 39692970 DOI: 10.1007/s12672-024-01683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND This study aimed to determine the prognostic survival impact of preoperative carbohydrate CA19-9 levels in resectable cholangiocarcinoma. METHODS PubMed, Web of Science, Cochrane, and Embase databases were searched for articles published through April 28, 2023. The relationship between preoperative serum carbohydrate antigen 19-9 and the prognosis of patients with resectable cholangiocarcinoma was analyzed. Heterogeneity between studies was assessed by means of the I2 statistic. We also performed subgroup analyses based on anatomical site of the tumor, geographic region, time of occurrence, and different levels of CA19-9. A random effects model was performed to express effect sizes as Hazard Ratio (HR) with 95% confidence intervals (CIs). RESULTS A total of 60 original studies were eligible for inclusion, with a total of 15,031 patients with all sites, including 9014 males. The overall Hazard Ratio for all studies was 1.90 (95% CI 1.74-2.07, p < 0.001, Z = 14.59). Publication bias was suggested by the Begg's test (p = 0.014 < 0.05), and the overall HR was 1.66 (95% CI 1.53-1.80, p < 0.001, Z = 12.027) after the trim-and-filling method. Subgroup analyses showed that intrahepatic cholangiocarcinoma (HR = 2.00, 95% CI 1.79-2.23), extrahepatic cholangiocarcinoma (HR = 1.65, 95% CI 1.49-1.82), hilar cholangiocarcinoma (HR = 1. 82, 95% CI 1.60-2.07), and distal cholangiocarcinoma (HR = 1.66, 95% CI 1.27-2.15) were predicted to be linked with prognosis. Elevated CA19-9 levels were associated with an increased risk of death. CONCLUSIONS This meta-analysis showed that elevated CA19-9 levels were correlated with a poor prognosis in cholangiocarcinoma. In future, more distal and hilar cholangiocarcinoma should be included in statistical studies to improve the accuracy of our conclusions.
Collapse
Affiliation(s)
- Zhicong Wang
- Department of Hepatobiliary Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yabo Shi
- Department of General Surgery, Yellow River Sanmenxia Hospital, Sanmenxia, 472000, China
| | - Ganwei Xiong
- The First People's Hospital of Xiushui County, Jiujiang, 332400, China
| | - Mengxi Han
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaoliang Chen
- Department of Hepatobiliary Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| |
Collapse
|
9
|
Wu J, Zhang C, Zhang Y, He R, Wang Q, Zhang L, Hu J, Wan R. Prediction model establishment of prognosis factors for distant metastasis of hepatocellular carcinoma based on the SEER database. Cancer Epidemiol 2024; 94:102729. [PMID: 39675259 DOI: 10.1016/j.canep.2024.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Distant metastasis in hepatocellular carcinoma (HCC) is an important indicator of poor patient prognosis. Identifying patients who are at high risk of metastasis early on is essential for creating personalized treatment plans, yet currently, there is a scarcity of effective predictive tools. OBJECTIVE To investigate the effects of different factors on distant metastasis in HCC patients and to establish a clinical prediction model for predicting distant metastasis in HCC patients. METHODS Our study retrospectively examined 22,318 patients diagnosed with confirmed HCC from the SEER database. Prognostic factors for developing distant metastases in HCC patients were identified by univariate and multivariate logistic regression analyses. Utilizing data from a multivariate logistic regression analysis, we created a nomogram. Its predictive precision was evaluated by analyzing the calibration curve, the area under the curve (AUC) of the receiver operating characteristic curve, decision curve assessment (DCA), and Kaplan-Meier (KM) curve analysis of overall survival. Finally,the nomogram was visualized with an online calculator. RESULTS We identified six independent prognostic factors: ethnicity, marital status, tumor size, survival time, surgery, and radiotherapy. The nomogram constructed from these six factors showed good calibration, discrimination, and clinical application value after calibration curve analysis, receiver operating characteristic curve analysis and DCA curve analysis. Besides, KaplanMeier survival curves also demonstrated that this nomogram had predictive accuracy. CONCLUSION In this research, a nomogram model was created to accurately predict distant metastasis risk in patients with HCC. This study provides guidance for optimizing individual therapies and making better clinical decisions.
Collapse
Affiliation(s)
- Jixuan Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Youjia Zhang
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Rui He
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qin Wang
- Dazhou Vocational College of Chinese Medicine, Dazhou, Dazhou 635000, China
| | - Lei Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Hu
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
10
|
Jiang F, Dang Y, Zhang Z, Yan Y, Wang Y, Chen Y, Chen L, Zhang J, Liu J, Wang J. Association of intratumoral microbiome diversity with hepatocellular carcinoma prognosis. mSystems 2024:e0076524. [PMID: 39660866 DOI: 10.1128/msystems.00765-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
The evidence that intratumoral microbiomes, as a rising hallmark of cancer, have a profound impact on cancer phenotypes is increasingly compelling. However, the impact of the composition and diversity of the intratumoral microbiome on the prognosis of patients undergoing surgical resection for hepatocellular carcinoma (HCC) remains incompletely understood. In this study, we revealed a high abundance of bacteria in the neoplastic tissues. The presence of bacterial lipopolysaccharide and lipoteichoic acid was detected alongside tumor-associated immune cells. By utilizing 16S rRNA gene sequencing, we identified a specific intratumoral microbiome signature that was highly predictive of the prognosis for HCC patients who underwent surgical resection. Specifically, the presence of Intestinimonas, Brachybacterium, and Rothia were identified as independent risk factors for the overall survival of HCC patients who underwent surgical resection.IMPORTANCEAlthough some studies have shown an abundance of bacteria in hepatocellular carcinoma (HCC), there is still limited understanding of the composition and diversity of the intratumoral microbiome that is favorable or adverse to the prognosis of HCC patients. Our results indicated that a greater abundance of bacteria could be observed in the neoplastic tissues than in nonneoplastic tissues. Bacterial cell wall components largely coincided with tumor-associated immune cells. The bacteria in the long overall survival (LOS) group were associated with metabolism and cytokine‒cytokine receptor interaction pathways, while bacteria in the short overall survival (SOS) group were associated with proinflammatory and cell proliferation pathways. Notably, specific taxa could independently predict HCC prognosis. Based on these findings, intratumoral microbiomes facilitate the use of precision medicine in clinical practice.
Collapse
Affiliation(s)
- Fengle Jiang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yuan Dang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Zheting Zhang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yanan Yan
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yi Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lihong Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jialiang Zhang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Jingfeng Liu
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianmin Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| |
Collapse
|
11
|
Guo S, Zhang Q, Ge H, Wang H. Baicalin plays a protective role by regulating ferroptosis in multiple diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03704-5. [PMID: 39661143 DOI: 10.1007/s00210-024-03704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Ferroptosis is a new kind of cell death discovered in recent years, usually accompanied by a large number of lipid peroxidation and iron accumulation in the process of cell death. Ferroptosis has been proven to play an important role in various diseases, including ischemic reperfusion injury, cancer, and neurodegeneration. Therefore, the regulation of ferroptosis will have a vital impact on the occurrence and development of diseases. Baicalin is a flavonoid compound extracted and isolated from the dried roots of Scutellaria baicalensis Georgi, a plant in the family Lamiaceae. It has various biological activities such as antioxidant, anti-proliferative, anti-inflammatory, anti-thrombotic, and regulates apoptosis and ferroptosis. Recently, increasing evidence indicates that baicalin regulation of ferroptosis is involved in multiple diseases. However, the relevant mechanisms are not yet fully understood. Here, we summarized the role of baicalin regulation of ferroptosis in different kinds of diseases, and conducted an in-depth analysis of the relevant mechanisms, hoping to provide the theoretical references for future related researches.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Hangwei Ge
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Jing R, Wu N, Zhang Q, Liu J, Zhao Y, Zeng S, Wu S, Wu Y, Yi S. DPP4 promotes an immunoenhancing tumor microenvironment through exhausted CD8+ T cells with activating IL13-IL13RA2 axis in papillary thyroid cancer. Int Immunopharmacol 2024; 145:113760. [PMID: 39662266 DOI: 10.1016/j.intimp.2024.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is among the most prevalent forms of endocrine malignancy with a rapid rise in incidence rates worldwide; however, the composition and characteristics of its immune microenvironment is poorly understand. Here, this work investigated the precise function of Dipeptidyl peptidase 4 (DPP4) in tumor-infiltrated T cells within PTC by investigating its role in cytokine-mediated signaling pathways. METHODS TCGA and GEO data as well as human PTC specimens confirmed the expression of DPP4 in PTC. The CIBERSORT and TIMER tool were used to analyze the distribution of tumor-infiltrating immune cells in PTC. CD8+ T cells from PTC patient's peripheral blood were cultured and used in a three-dimensional model for direct co-culture with PTC tumors to investigate DPP4 function. RESULTS Bioinformatic analyses has uncovered a significant upregulation of DPP4, which enhances the survival and migration of PTC cells in vitro. DPP4 upregulation significantly correlated with advanced grades, stages, and poor progression-free survival. DPP4 influences immune function and the exhaustion of CD8+ T cells through the IL13-IL13RA2 axis. The inhibition of DPP4 reduces CD8+ T cell exhaustion and IL13 secretion, while also blocking the IL13-IL13RA2 axis, thereby promoting the mesenchymal-to-epithelial transition of PTC cells. CONCLUSION Blocking DPP4 leads to the conversion of exhausted CD8+ T cells with decreased IL13 level, resulting in downregulation of IL13RA2 to promote mesenchymal-to-epithelial transition of PTC cells. This highlights DPP4 as a potential therapeutic target, particularly between CD8+ T cells and PTC cells via IL13-IL13RA2 axis, and represents a novel avenue for combined immunotherapy in PTC.
Collapse
Affiliation(s)
- Ren Jing
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Nan Wu
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Qian Zhang
- Respiratory Medicine, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518118, PR China
| | - Jinlin Liu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Ying Zhao
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Shan Zeng
- Department of Pathology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Shaojie Wu
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Yang Wu
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China.
| | - Shijian Yi
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China.
| |
Collapse
|
13
|
Bannister ME, Chatterjee DA, Shetty S, Patten DA. The Role of Macrophages in Hepatocellular Carcinoma and Their Therapeutic Potential. Int J Mol Sci 2024; 25:13167. [PMID: 39684877 DOI: 10.3390/ijms252313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant clinical burden globally and is predicted to continue to increase in incidence for the foreseeable future. The treatment of HCC is complicated by the fact that, in the majority of cases, it develops on a background of advanced chronic inflammatory liver disease. Chronic inflammation can foster an immunosuppressive microenvironment that promotes tumour progression and metastasis. In this setting, macrophages make up a major immune component of the HCC tumour microenvironment, and in this review, we focus on their contribution to HCC development and progression. Tumour-associated macrophages (TAMs) are largely derived from infiltrating monocytes and their potent anti-inflammatory phenotype can be induced by factors that are found within the tumour microenvironment, such as growth factors, cytokines, hypoxia, and extracellular matrix (ECM) proteins. In general, experimental evidence suggest that TAMs can exhibit a variety of functions that aid HCC tumour progression, including the promotion of angiogenesis, resistance to drug therapy, and releasing factors that support tumour cell proliferation and metastasis. Despite their tumour-promoting profile, there is evidence that the underlying plasticity of these cells can be targeted to help reprogramme TAMs to drive tumour-specific immune responses. We discuss the potential for targeting TAMs therapeutically either by altering their phenotype within the HCC microenvironment or by cell therapy approaches by taking advantage of their infiltrative properties from the circulation into tumour tissue.
Collapse
Affiliation(s)
- Megan E Bannister
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| | - Devnandan A Chatterjee
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Lou Y, Yan J, Liu Q, Miao M, Shao Y. Biological functions and molecular mechanisms of exosome-derived circular RNAs and their clinical implications in digestive malignancies: the vintage in the bottle. Ann Med 2024; 56:2420861. [PMID: 39484707 PMCID: PMC11536637 DOI: 10.1080/07853890.2024.2420861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are identified as a novel family of endogenous RNA molecules through 'back-splicing' and covalently linked at the 5' and 3' ends. Emerging researches have demonstrated circRNAs are stable and abundant in exosomes called exosomal circRNAs (exo-circRNA). MATERIALS AND METHODS We searched recent studies and references to summary the research progress of exosomal circRNA. RESULTS Recent studies have revealed that exosome-derived circRNAs including exo-CDR1as, exo-circRanGAP1, exo-circIAR play vital roles in cell proliferation and apoptosis, epithelial mesenchymal transition, invasion and metastasis, angiogenesis, immune evasion, cellular crosstalk, cancer cachexia through a variety of biological mechanisms, such as serving as microRNA sponges, interacting with RNA binding proteins, regulating gene transcription, N6-Methyladenosine modification and so on. Due to their characteristics of origin, structure, properties and biological functions, exo-circRNAs are expected to apply in precious diagnosis and prognostic indicators, improving drug and radiation resistance and sensitivity, becoming biological therapeutic targets. CONCLUSION We summarize the update of digestive malignancies associated exo-circRNAs in biogenesis, biological functions, molecular mechanisms, clinical implications, potential applications and experimental technique in order to effectively promote transformation and application in the future.
Collapse
Affiliation(s)
- Yuanyan Lou
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qingqing Liu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Min Miao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Lu Y, Liu Z, Zheng Y, Liu X, Liu X, Chen N, Mao K, Lin W. Analysis of the implication of steroid 5 alpha-reductase 3 on prognosis and immune microenvironment in Liver Hepatocellular Carcinoma. Ann Med 2024; 56:2408463. [PMID: 39340288 PMCID: PMC11441025 DOI: 10.1080/07853890.2024.2408463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION This study combined the bioinformatics and in vitro experiment-related technologies to analyze the impact of steroid 5 alpha-reductase 3 (SRD5A3) on the prognosis and immune microenvironment of Liver Hepatocellular Carcinoma (LIHC). METHOD Gene expression and clinical data were obtained from public databases. The prognosis was evaluated using survival, multifactor Cox, enrichment, and mutation analyses. This was then verified through in vitro experiments. RESULTS The expression level of SRD5A3 in LIHC tissues was significantly higher than that in the adjacent tissues. Kaplan-Meier survival analysis showed that high SRD5A3 expression was associated with poor overall survival (OS) and short progression-free survival in patients with LIHC. Multivariate Cox regression analysis revealed that positive SRD5A3 expression was an independent risk factor for OS in patients with LIHC. Expression of SRD5A3 was negatively correlated with immune cell infiltration of CD4+ T, CD8+ T, and B cells. GO and KEGG enrichment analyses showed that SRD5A3 was significantly enriched in signaling- and tumor metastasis-related pathways. Nomogram and calibration curve showed that the predicted performance of the model was consistent with the actual results. In vitro results confirmed that SRD5A3 knockdown inhibited the migration, invasion, and proliferation of LIHC cells. CONCLUSIONS SRD5A3 is actively expressed in LIHC, and positive expression of SRD5A3 is an independent risk factor for different prognoses in patients with LIHC. SRD5A3 can promote the proliferation, migration, and invasion of liver cancer cells and is related to short immune infiltration in patients with LIHC.
Collapse
Affiliation(s)
- Yuming Lu
- Department of Biostatistics, College of Science, City University of Hong Kong, Hong Kong, China
| | - Ziwei Liu
- School of Nursing, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Zheng
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Xuesong Liu
- Department of Immunology, BinZhou Medical University, Binzhou, Shandong, China
| | - XiaoQin Liu
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Nanguan Chen
- Luoding Hospital of Traditional Chinese Medicine, Luoding, Guangdong, China
| | - Kai Mao
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Weida Lin
- Department of Hepatobiliary Pancreatic Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| |
Collapse
|
16
|
Fu P, Wang C, Zheng S, Gong L. Differences in gut microbiota and metabolites between wrestlers with varying precompetition weight control effect. Physiol Genomics 2024; 56:845-854. [PMID: 39432050 DOI: 10.1152/physiolgenomics.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
This study intended to analyze the effects of body weight control by the diet, training adaptation, and gut microbiota metabolites of wrestlers in the week leading up to competition. According to the weight difference of wrestlers from the target weight 1 wk before the competition, those whose weight control effectiveness is less than 2 kg were classified as the CW group, whereas more than 2 kg were classified as the CnW group. The body weight, body composition, and diet of wrestlers were recorded; urine samples were taken for standard urine testing, and stool samples were collected for the analysis of gut microbiota and metabolites. The data showed that the relative values of carbohydrate and fat energy in the CnW group were significantly higher than those of the CW group, but the relative values of protein energy were significantly lower. The white blood cells, occult blood, and protein appeared in urine in the CnW group. The microbiota with higher abundance values in the CnW group were positively correlated with the relative value of carbohydrate energy, while the abundance value of Streptococcus was negatively correlated, and the functional prediction of differential bacteria was related to riboflavin and selencompound metabolism. The differential metabolites of CW/CnW group were functionally enriched in the processes of lipid and amino acid metabolism. Overall, the extent of weight control in wrestlers was correlated with sensible dietary patterns, adaptability to training load, and distinct gut microbiota and metabolites.NEW & NOTEWORTHY The purpose of this study is to observe the differences in precompetition diet structure, adaptability to training, gut microbiota, and metabolites of wrestlers with different weight control effects and analyze the correlation between them, aiming to provide scientific guidance and advice on weight control for wrestlers.
Collapse
Affiliation(s)
- Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, China
| | - Cuiping Wang
- College of Sports and Health Sciences, Xi'an Physical Education University, Xi'an, China
| | - Shuai Zheng
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
17
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
18
|
Pan Y, Zeng W, Liang T, Nie X, Liu K, Chen H, Luo N, Zhu X, Tian K, Chen Y. RNF38 promotes gilteritinib resistance in acute myeloid leukemia via inducing autophagy by regulating ubiquitination of LMX1A. Cell Biol Toxicol 2024; 40:105. [PMID: 39604755 PMCID: PMC11602842 DOI: 10.1007/s10565-024-09936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Gilteritinib is a commonly used targeted drug for acute myeloid leukemia (AML), but the emergence of gilteritinib resistance greatly reduces the therapeutic effect. RING finger protein 38 (RNF38), a protein with RING Finger domain and E3 ubiquitin ligase activity, has been implicated in tumorigenesis and drug resistance. However, the role and mechanism of RNF38 in the gilteritinib resistance of AML remains unclear. METHODS Normal AML cells were treated with gilteritinib to construct gilteritinib-resistant cells (MV4-11/Gilteritinib and MOLM-13/Gilteritinib). CCK8 assay, TUNEL staining and EdU assay were used to assess gilteritinib resistance, cell apoptosis and proliferation. The protein levels of autophagy-related markers, RNF38 and LIM homeobox transcription factor 1 alpha (LMX1A) were determined by western blot. Also, RNF38 and LMX1A mRNA levels were tested using qRT-PCR. Autophagic flux was assessed using mRFP-GFP-LC3 labeling, and autophagosome numbers was counted under transmission electron microscopy. Co-IP assay was employed to analyze interaction between RNF38 and LMX1A. The effects of LMX1A and RNF38 on AML tumorigenesis were analyzed by in vivo experiments. RESULTS In gilteritinib-resistant AML cells, autophagy-related markers, mRFP-GFP-LC3 signals and autophagosome numbers were significantly enhanced. Autophagy inhibitor 3-MA could suppress gilteritinib resistance in AML cells. RNF38 knockdown inhibited gilteritinib resistance and autophagy in AML cells. Mechanistically, RNF38 reduced LMX1A expression by inducing its ubiquitination. RNF38 overexpression reversed the inhibitory effect of LMX1A on gilteritinib resistance and autophagy in AML cells, as well as AML tumor growth in vivo, while these effects could be abolished by proteasome inhibitor MG132. CONCLUSIONS RNF38 induced autophagy to promote gilteritinib resistance in AML by increasing the ubiquitination of LMX1A.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Autophagy/drug effects
- Humans
- Drug Resistance, Neoplasm/drug effects
- Animals
- Cell Line, Tumor
- Ubiquitination/drug effects
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Mice
- Pyrazines/pharmacology
- Aniline Compounds/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Xenograft Model Antitumor Assays
- Mice, Nude
Collapse
Grants
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 2022B967, 2021B363 Science and Technology Program of Jiangxi Provincial Administration of Traditional Chinese Medicine
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- 202212543, 202410096 Science and Technology Plan Project of Jiangxi Provincial Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
- GZWJW202402160 Science and Technology Plan Project of Ganzhou Health Care Commission
Collapse
Affiliation(s)
- Yiyun Pan
- Department of Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China
- Suzhou Medical College of Soochow University, Suzhou City, 215123, Jiangsu Province, P.R. China
- The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Ganzhou City, 341000, Jiangxi Province, P.R. China
| | - Wen Zeng
- Department of Surgical Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China
| | - Ting Liang
- Department of Pathology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China
| | - Xiaoming Nie
- Department of Surgical Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China
| | - Kang Liu
- Department of Thoracic Surgery, Fuyang Sixth People's Hospital, Fuyang City, 236000, Anhui Province, P.R. China
| | - Hailong Chen
- Department of Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China
| | - Nengping Luo
- Department of Pharmacy, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China
| | - Xiaodan Zhu
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China
| | - Keqiang Tian
- Department of Surgical Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China.
| | - Yijian Chen
- Suzhou Medical College of Soochow University, Suzhou City, 215123, Jiangsu Province, P.R. China.
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, P.R. China.
- The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Ganzhou City, 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
19
|
Zhu X, Li T, Wang Q, Yan K, Ma S, Lin Y, Zeng G, Liu J, Cao J, Wang D. Dual-Synergistic Nanomodulator Alleviates Exosomal PD-L1 Expression Enabling Exhausted Cytotoxic T Lymphocytes Rejuvenation for Potentiated iRFA-Treated Hepatocellular Carcinoma Immunotherapy. ACS NANO 2024; 18:32818-32833. [PMID: 39528907 DOI: 10.1021/acsnano.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The tumor immunosuppressive microenvironment (TME) induced by incomplete radiofrequency ablation (iRFA) in hepatocellular carcinoma (HCC) is a critical driver of tumor progression and metastasis. Herein, we proposed a therapeutic strategy aimed at remodeling the post-iRFA TME by targeting exosome biogenesis, secretion, and PD-L1 expression, thereby rejuvenating cytotoxic T lymphocyte function to mitigate the progression and metastasis of HCC. Leveraging the versatile properties of polydopamine nanomodulators, we have engineered a tailored delivery platform for GW4869 and amlodipine (AM), enabling precise and tumor-specific release of these therapeutic agents. Initially, GW4869, a neutral sphingomyelinase inhibitor, synergized with AM, an intracellular calcium modulator, to suppress exosome biogenesis and secretion. Subsequently, AM triggered the autophagic degradation of PD-L1. In vitro and in vivo experiments demonstrated that this synergistic approach significantly enhanced the robust activation and proliferation of various functional T-cell subsets following iRFA, particularly CD8+T cells, IFN-γ+ CD8+ cytotoxic T cells, natural killer cells, and innate lymphoid cells. Concurrently, it effectively reduced the infiltration of immunosuppressive cell types, including regulatory T cells and myeloid-derived suppressor cells. This favorable remodeling of the TME substantially inhibited the progression and metastasis of HCC post-iRFA. Collectively, our study presented a promising paradigm for enhancing HCC treatment efficacy by integrating radiofrequency ablation with advanced immune modulation strategies.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
| | - Tinghua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Kangning Yan
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Shanshan Ma
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Yuan Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Guichun Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No.22 Shuangyong Road, Nanning 530021, P. R. China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University, No. 71 Hedi Road, Nanning 530021, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, No.87 Dingjiaqiao, Nanjing 224001, P. R. China
| |
Collapse
|
20
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
21
|
Jiang Y, Le F, Huang S, Chen X, Deng Z. MLN4924 Suppresses head and neck squamous cell carcinoma progression by inactivating the mTOR signaling pathway via the NEDD8/CUL4/TSC2 axis. Int J Biochem Cell Biol 2024; 177:106696. [PMID: 39566655 DOI: 10.1016/j.biocel.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with a five-year survival rate below 50 %. Standard treatments for HNSCC include surgery, radiotherapy, chemotherapy, and targeted therapies, but they still have significant limitations. Neddylation, a post-translational modification involving the attachment of NEDD8 (neural precursor cells expressed developmentally down-regulated 8) to proteins, is frequently dysregulated in HNSCC, thereby promoting tumor growth. MLN4924, also known as Pevonedistat, is a Neddylation inhibitor that has shown promise in suppressing HNSCC cell proliferation and invasion, establishing it as a potential therapeutic option. However, its precise molecular mechanism remains unclear. This study aims to investigate the mechanism of MLN4924 in HNSCC. This study examined the effects of MLN4924 on HNSCC and its associated molecular pathways. Bioinformatic analysis indicated that NEDD8, a critical component of the Neddylation pathway, is linked to poor prognosis and the mTOR (mammalian target of rapamycin) signaling pathway in HNSCC. MLN4924 significantly suppressed cell migration, invasion, and the epithelial-mesenchymal transition (EMT) pathway, and downregulated NEDD8 expression. Mechanistic studies demonstrated that MLN4924 inhibited the binding of NEDD8 to cullin4 (CUL4) and prevented the Neddylation of tuberous sclerosis complex 2 (TSC2), leading to the inactivation of the mTOR pathway. These findings were confirmed in vivo, where MLN4924 effectively inhibited tumor growth. Overall, MLN4924 disrupted Neddylation pathway and stabilized TSC2, thereby inactivating the mTOR pathway. The study provided a theoretical basis for the clinical potential of MLN4924 in improving treatment outcomes for HNSCC patients, offering a novel strategy for addressing this challenging disease.
Collapse
Affiliation(s)
- Youfang Jiang
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, China; Department of head and neck Surgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Fei Le
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, China; Department of head and neck Surgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Shuangling Huang
- Department of neurosurgery, Jiangxi Cancer hospital, Nanchang Medical College, Nanchang, Jiangxi 330029, China
| | - Xuezhong Chen
- Department of Nuclear Medicine, First affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Ziqing Deng
- Department of General Surgery, The Third Hospital of Nanchang, Nanchang, Jiangxi 330000, China.
| |
Collapse
|
22
|
Cao YZ, Pan JY, Zheng GL, An C, Zuo MX. Hepatic arterial infusion chemotherapy combined with systemic therapy sequentially or simultaneously for advanced hepatocellular carcinoma. Cancer Immunol Immunother 2024; 74:24. [PMID: 39540963 PMCID: PMC11564491 DOI: 10.1007/s00262-024-03872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS The goal of this study was to compare the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC) combined with targeted therapy and PD-(L)1 blockade (triple therapy), either sequentially (SE) or simultaneously (SI), in the treatment of Barcelona Clinic Liver Cancer (BCLC) stage C hepatocellular carcinoma (HCC). APPROACH AND RESULTS From January 1, 2018, to June 1, 2022, 575 patients with BCLC stage C HCC who underwent SE or SI triple therapy were retrospectively enrolled. Propensity score matching (PSM; 1:1) was performed to eliminate possible confounder imbalances across cohorts. We used the Kaplan-Meier method and a log-rank test to compare the overall survival (OS) and progression-free survival (PFS) rates between the SI and SE groups. The tumor response and the incidence of adverse events (AEs) were reported. After PSM, 182 patients in each of the two groups were matched. The median OS in the SI group was significantly longer than that in the SE group (28.8 vs. 16.1 months; P = 0.002), and the median PFS was significantly improved in the SI versus SE group (9.6 vs. 7.0 months; P = 0.01). The objective response rate based on the mRECIST was higher in the SI group (58% vs. 37%; P < 0.001). The total incidences of grade 3-4 AEs were 111/182 (60.9%) and 128/182 (70.3%) in the SE and SI groups, respectively. No grade 5 AEs were reported in either group. CONCLUSIONS Simultaneous HAIC plus targeted therapy and PD-(L)1 blockade significantly improved outcomes compared to the sequential regimen in patients with BCLC stage C HCC, with no unexpected AEs. CLINICAL RELEVANCE STATEMENT The patients who received hepatic arterial infusion chemotherapy combined with targeted therapy and PD-(L)1 blockade simultaneously have a better prognosis than those who received it sequentially.
Collapse
Affiliation(s)
- Yu-Zhe Cao
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Jia-Yu Pan
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Guang-Lei Zheng
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Chao An
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China.
| | - Meng-Xuan Zuo
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Li X, Liu J, Zhao L, Gu H, He Y. Upregulation of multiple key molecules is correlated with poor prognosis and immune infiltrates in hepatocellular carcinoma by bulk and single-cell RNA-seq. Aging (Albany NY) 2024; 16:13371-13391. [PMID: 39537209 DOI: 10.18632/aging.206151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Recent discoveries in hepatocellular carcinoma (HCC) unveil key molecules. However, due to liver cancer's high heterogeneity, predicting patient prognosis is challenging. This study aims to construct a model for predicting HCC prognosis using multiple key genes. METHODS TCGA provided RNA expression and clinical data, differentially analyzed by DESeq2, edgeR, and Limma. The hub gene was pinpointed via CytoHubba's degree algorithm in Cytoscape. GO and KEGG analyses illuminated potential pathways. Single-cell sequencing detailed key gene expression in diverse cell types. The LASSO regression model predicted patient prognosis. RESULT In the RNA-seq analysis using three R packages, we identified 762 differentially expressed genes, with Cytoscape revealing ten key genes showing significant prognostic value (P < 0.05). GO and KEGG analyses highlighted key biological processes and pathways. IHC confirmed higher expression in cancer tissues. Reduced immune cell infiltration was observed in HCC tissues, and immune checkpoint analysis showed a strong correlation between PD1, CTLA4, and hub genes. Single-cell sequencing indicated higher expression of key genes in immune cells than hepatocytes. Cox analysis validated the riskScore as a reliable, independent prognostic marker (HR = 4.498, 95% CI: 2.526-8.007). CONCLUSIONS The results from differential analysis using three R packages are robust, revealing genes closely linked to immune cell infiltration in the tumor microenvironment. Additionally, a validated prognostic model for liver cancer was established based on key genes.
Collapse
Affiliation(s)
- Xutong Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiaying Liu
- Department of Infectious Diseases, Xingtai People’s Hospital, Xingtai, China
| | - Linyan Zhao
- Department of Gastroenterology, Nanyang Second General Hospital, Nanyang, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Cui B, Xu C, Xu Y, Chen A, Mao C, Chen Y. Causal relationship between ferroptosis-related gene HSPA5 and hepatocellular carcinoma: study based on mendelian randomization and mediation analysis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024:1-9. [PMID: 39532541 DOI: 10.3724/zdxbyxb-2024-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To explore the causal relationship between ferroptosis-related gene heat shock protein A5 (HSPA5) and hepatocellular carcinoma (HCC). METHODS A two-sample Mendelian randomization (MR) design was employed to evaluate the causal relationships among HSPA5, regulatory T cells (Tregs), and liver cancer. Single nucleotide polymorphisms (SNPs) associated with HSPA5, HCC and Tregs were selected as instrumental variables through publicly available genome-wide association studies (GWAS) databases. MR analysis was used to assess the direct effect of HSPA5 on HCC, followed by two-step MR to analyze the potential mediating role of Tregs. Reverse MR analysis was conducted with liver cancer as the exposure and HSPA5 as the outcome. Inverse variance weighting (IVW) was the primary method for testing causal associations in all MR analyses. Robustness of the results was confirmed through MR Egger, weighted median, weighted mode, and simple mode methods. Heterogeneity of instrumental variables was evaluated using Cochrane's Q statistic, while pleiotropy was tested by MR-Egger intercept and MR-PRESSO, with leave-one-out sensitivity analysis performed for robustness. Data from The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) were utilized to verify the expression levels of HSPA5 in liver cancer tissues and its correlation with Tregs to reveal the interaction mechanisms between HSPA5 and Tregs in HCC progression and their relationship with patient prognosis. RESULTS MR analysis showed a positive correlation between elevated HSPA5 expression and liver cancer risk (all P<0.01), while reverse MR analysis found no statistically significant association between liver cancer and HSPA5 (P>0.05). HSPA5 expression was significantly correlated with Tregs function (all P<0.05), and the enrichment of Tregs in the liver cancer microenvironment was positively associated with liver cancer progression (all P<0.05). Mediation analysis indicated that Tregs accounted for 5.00% and 7.45% of the mediation effect between HSPA5 and liver cancer. TCGA and HPA database analysis revealed that both HSPA5 mRNA and protein expression levels were higher in liver cancer tissues compared to normal tissues, and high HSPA5 expression was significantly associated with poor patient prognosis. Immune infiltration analysis confirmed a significant positive correlation between HSPA5 and Tregs, with high Tregs infiltration closely related to HCC progression. CONCLUSIONS Elevated HSPA5 expression is significantly associated with HCC development and poor prognosis. HSPA5 may promote HCC progression by regulating the function of Tregs in the tumor microenvironment.
Collapse
Affiliation(s)
- Bing Cui
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China.
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China.
| | - Yuan Xu
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Aqin Chen
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Chaoming Mao
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yuehua Chen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| |
Collapse
|
25
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00406-1. [PMID: 39532242 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
26
|
Ge Y, Zhang T. SNAP25 as a prognostic marker in transcriptome analysis of meningioma. Lab Med 2024:lmae085. [PMID: 39514545 DOI: 10.1093/labmed/lmae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Meningiomas are the most common intracranial tumors and their diagnosis relies mostly on neuroimaging and histology. However, the histology grades cannot predict the outcome exactly and some meningiomas tend to recur after resection of even benign tumors. Therefore, it is necessary to explore prognostic and diagnostic molecular targets. METHODS Differential expression analysis between meningiomas and meninges was performed based on the merged data of GSE43290 and GSE84263. Next, we performed gene set enrichment analysis (GSEA), immune cell infiltration analysis, protein-protein interaction analysis, and survival analysis using public data. The expression level of Synaptosome-associated-protein-25kDa (SNAP25) was verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting in meningioma tissues. RESULTS There were 263 upregulated and 592 downregulated genes identified in meningiomas by differential expression analysis. GSEA results revealed that meningiomas were negatively related to the pathway of soluble N-ethylmaleimide sensitive factor attachment protein receptor interactions in vascular transport and chemokine signaling. SNAP25 was characterized as a hub gene and downregulated in meningiomas. The Kaplan-Meier plot indicated that high expression of SNAP25 is a favorable factor. CONCLUSION SNAP25 was downregulated and identified as a potential prognostic marker in meningioma.
Collapse
Affiliation(s)
- Yu Ge
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200011, China
| |
Collapse
|
27
|
Liu S, Yang S, Xu M, Zhou Q, Weng J, Hu Z, Xu M, Xu W, Yi Y, Shi Y, Dong Q, Hung MC, Ren N, Zhou C. WWOX tuning of oleic acid signaling orchestrates immunosuppressive macrophage polarization and sensitizes hepatocellular carcinoma to immunotherapy. J Immunother Cancer 2024; 12:e010422. [PMID: 39500530 PMCID: PMC11552608 DOI: 10.1136/jitc-2024-010422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/13/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are therapeutically effective for hepatocellular carcinoma (HCC) but are individually selective. This study examined the role of specific common fragile sites (CFSs) related gene in HCC immunotherapy. METHODS We analyzed HCC tissues using next-generation sequencing and flow cytometry via time-of-flight technology. A humanized orthotopic HCC mouse model, an in vitro co-culture system, untargeted metabolomics and a DNA pulldown assay were used to examine the function and mechanism of WWOX in the tumor immune response. RESULTS WWOX was the most upregulated CFS-related gene in HCC patients responsive to ICIs. WWOX deficiency renders HCC resistant to PD-1 treatment in humanized orthotopic HCC mouse model. Macrophage infiltration is increased and CD8 T-cell subset infiltration is decreased in WWOX-deficient HCC patients. HCC-derived oleic acid (OA) promotes macrophage conversion to an immunosuppressive phenotype. Mechanistically, WWOX deficiency promoted OA synthesis primarily via competitive binding of NME2 with KAT1, which promoted acetylation of NME2 at site 31 and inhibited NME2 binding to the SCD5 promoter region. Pharmacological blockade of SCD5 enhanced the antitumor effects of anti-PD-1 therapy. CONCLUSIONS WWOX is a key factor for immune escape in HCC patients, which suggests its use as a biomarker for stratified treatment with ICIs in clinical HCC patients.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shiguang Yang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhiqiu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
28
|
Kang G, Song H, Bo L, Liu Q, Li Q, Li J, Pan P, Wang J, Jia Y, Sun H, Ma X. Nicotine promotes M2 macrophage polarization through α5-nAChR/SOX2/CSF-1 axis in lung adenocarcinoma. Cancer Immunol Immunother 2024; 74:11. [PMID: 39487876 PMCID: PMC11531455 DOI: 10.1007/s00262-024-03866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
α5-nicotinic acetylcholine receptor (α5-nAChR) plays a vital part in lung adenocarcinoma (LUAD). However, it is not comprehensively understood that how the α5-nAChR affects LUAD. Through diverse bioinformatics analyses and immunohistochemistry, the expressions of α5-nAChR and SOX2 as well as their relations were dissected. α5-nAChR regulated the differentiation of monocytes into M2 macrophages by targeting the STAT3/SOX2/CSF-1 signaling in the coculture system by western blotting and ChIP. α5-nAChR-mediated macrophage-mediated LUAD cell migration via SOX2/CSF-1 signaling in the cocultured medium. Correlations of α5-nAChR, SOX2 and M2 phenotype tumor-associated macrophages (TAMs) were validated in mouse LUAD models and clinical samples. α5-nAChR expression was connected to SOX2 expression, smoking and bad prognosis of LUAD among clinical samples. Nicotine-induced SOX2 expression was mediated by α5-nAChR via STAT3. Additionally, SOX2-mediated macrophage colony-stimulating factor (CSF-1) expression contributed to LUAD progression in vitro. Furthermore, α5-nAChR expression was strongly linked to pSTAT3, SOX2 and M2 macrophage marker CD206 expression and negatively correlated with M1 macrophage marker CD86 expression in vivo. It is indicated that M2 macrophages are mediated by the new α5-nAChR /SOX2/CSF-1 axis in nicotine-related LUAD, which is a potential therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Guiyu Kang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
- Department of Clinical Laboratory, The 960 Hospital of PLA, Jinan, China
| | - Hui Song
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Bo
- Department of Clinical Laboratory, The 960 Hospital of PLA, Jinan, China
| | - Qi Liu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Qiang Li
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Jingtan Li
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Pan Pan
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Jingting Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China.
- Department of Medical Laboratory, Weifang Medical University, Weifang, China.
| |
Collapse
|
29
|
Lin J, Huang J, Tan C, Wu S, Lu X, Pu J. LncRNA MEG3 suppresses hepatocellular carcinoma by stimulating macrophage M1 polarization and modulating immune system via inhibiting CSF-1 in vivo/vitro studies. Int J Biol Macromol 2024; 281:136459. [PMID: 39396590 DOI: 10.1016/j.ijbiomac.2024.136459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by a complex tumor microenvironment (TME), and long non-coding RNAs (lncRNAs) MEG3 emerged as regulators of macrophage polarization with a negative relationship with colony-stimulating factor 1 (CSF-1). Few studies are on the interplay among MEG3, CSF-1, T helper cells (Th), and the programmed cell death protein 1 and its ligands (PD-1/PD-Ls) in TME of HCC.MEG3 expression in THP-1 macrophages, monitored polarization, and PD-1/PD-Ls expression were through flow cytometry, WB, and RT-qPCR. In co-cultures, the interaction of MEG3, macrophage, and HCC was assayed by ELISA. The invasive and migratory of HCC were assessed through experiments such as CCK-8, clonogenic assay, wound healing, and Transwell. A xenograft mouse model of HCC was established, administered with MEG3 overexpression (OE) or knockdown (KD) constructs, and monitored tumor growth. In vitro, MEG3 OE induced a robust M1 macrophage phenotype, evidenced by elevated expression of M1 markers and a significant increase in Th1 cytokines, with a concomitant decrease in Th2 cytokines. This was paralleled by reduced CSF-1 and PD-1/PD-Ls expression. In contrast, MEG3 KD promoted an M2 phenotype with increased CSF-1 and PD-1/PD-Ls expression, and an upregulation of Th2 cytokines. MEG3 OE inhibited the growth, invasion, and migration of HCC, while the opposite was observed when MEG3 was downregulated. In vivo, MEG3 OE resulted in significantly reduced tumor growth, with decreased PD-1/PD-Ls expression on macrophages and enhanced Th1 response. Conversely, MEG3 KD promoted tumor growth with increased PD-1/PD-Ls and a Th2-skewed immune response. MEG3 modulates the TME by affecting TAMs through CSF-1, thereby influencing the balance of Th1/Th2 cells and altering the expression of PD-1/PD-L1s. This study demonstrates that targeting MEG3 is an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jiajie Lin
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000,China
| | - Junling Huang
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise, 533000, Guangxi Province, China
| | - Chuan Tan
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YoujiangMedical University for Nationalities, Baise, Guangxi 533000, China
| | - Xianzhe Lu
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000,China.
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
30
|
Li J, Cheng X, Huang D, Cui R. The regulatory role of mitotic catastrophe in hepatocellular carcinoma drug resistance mechanisms and its therapeutic potential. Biomed Pharmacother 2024; 180:117598. [PMID: 39461015 DOI: 10.1016/j.biopha.2024.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianwang Li
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China.
| | - Xiaozhen Cheng
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Denggao Huang
- Department of Central Laboratory, Xiangya School of Medicine Affiliated Haikou Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Ronghua Cui
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| |
Collapse
|
31
|
Bian J, Shao R, Li J, Zhu J, Shao A, Liu C, Lu LV, Pan H, Shi Y, Fang N. Mechanism research of non-coding RNA in immune checkpoint inhibitors therapy. Cancer Sci 2024; 115:3520-3531. [PMID: 39136293 PMCID: PMC11531961 DOI: 10.1111/cas.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 11/05/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies for tumors of different systems have attained significant achievements and have changed the current situation of tumor treatment due to their therapeutic characteristics of high specificity and low side effects. The immune checkpoint Programmed death 1/Programmed cell death-Ligand 1 (PD-1/PD-L1) axis exerts a vital role in the immune escape of tumor cells. As a result, it has become a key target for tumor immunotherapy. Therefore, to perfect research into potential regulatory factors for the PD-1/PD-L1 axis, in order to understand and illustrate tumor ICI therapy mechanisms, is a significant goal. Moreover, ncRNA has been verified to regulate the PD-1/PD-L1 axis in the tumor immune microenvironment to regulate tumor genesis and development. ncRNAs can improve or decrease the efficacy of ICI therapy by modulating PD-L1 expression. This review aimed to investigate the mechanisms of action of ncRNA in regulating the PD-1/PD-L1 axis in ICI therapy, to provide more efficient immunotherapy for tumors of different systems.
Collapse
Affiliation(s)
- Jie Bian
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Rui Shao
- Department of PathologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Juan Li
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Jing‐Feng Zhu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Ai‐Zhong Shao
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Chao Liu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - L. V. Lu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Hui‐Wen Pan
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Yi‐Jun Shi
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Na Fang
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| |
Collapse
|
32
|
Liu J, Wang H, Zhang S, Liu J. Identification of shared and disease-specific intratumoral microbiome-host gene associations in gastrointestinal tumors. Physiol Genomics 2024; 56:699-710. [PMID: 39250148 DOI: 10.1152/physiolgenomics.00036.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Intratumoral microbiota and host genes interact to promote gastrointestinal disorders, but how the two interact to influence host tumorigenesis remains unclear. Here, we utilized a machine learning-based framework to jointly dissect the paired intratumoral microbiome and host transcriptome profiles in patients with colon adenocarcinoma, hepatocellular carcinoma, and gastric cancer. We identified associations between intratumoral microbes and host genes that depict shared as well as cancer type-specific patterns. We found that a common set of host genes and pathways implicated in cell proliferation and energy metabolism are associated with cancer type-specific intratumoral microbes. In addition, we also found that intratumoral microbes that have been implicated in three gastrointestinal tumors, such as Lachnoclostridium, are correlated with different host pathways in each tumor, indicating that similar microbes can influence host tumorigenesis in a cancer type-specific manner by regulation of different host genes. Our study reveals patterns of association between intratumoral microbiota and host genes in gastrointestinal tumors, providing new insights into the biology of gastrointestinal tumors.NEW & NOTEWORTHY Our study constitutes a pivotal advancement in elucidating the intricate relationship between the intratumoral microbiome and host gene regulation, thereby gaining insights into the pivotal role that the intratumoral microbiome plays in the etiology of gastrointestinal tumors.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Hongyan Wang
- Department of Pathology, Daqing Oilfield General Hospital, Daqing, People's Republic of China
| | - Shuai Zhang
- Department of Neurology, Shanghai Anda Hospital, Shanghai, People's Republic of China
| | - Jinyang Liu
- Geneis Beijing Company, Limited., Beijing, People's Republic of China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, People's Republic of China
| |
Collapse
|
33
|
Han X, Zheng J, Zhang L, Zhao Z, Cheng G, Zhang W, Qu P. Endometrial microbial dysbiosis and metabolic alteration promote the development of endometrial cancer. Int J Gynaecol Obstet 2024; 167:810-822. [PMID: 38837368 DOI: 10.1002/ijgo.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Emerging evidence suggests that the endometrial microbiome plays important roles in the development of endometrial cancer (EC). Here, we evaluate stage-specific roles of microbial dysbiosis and metabolic disorders in patients with EC, patients with endometrial hyperplasia (EH), and patients afflicted with benign uterine conditions (CK). METHODS This prospective cohort study included 33 women with EC, 15 women with endometrial EH, and 15 women with benign uterine conditions (CK) from November 2022 to September 2023. Different typical endometrial samples were imaged with a scanning electron microscope and a transmission electron microscope. The endometrial microbiome was assessed by sequencing the V3-V4 region of the 16S rRNA gene and the ITS1 to fill the gap in relation to the study of the uterine fungal microbiome. Moreover, liquid chromatography-mass spectrometry-based metabolomics was used to identify and quantify metabolic changes among these groups. RESULTS The endometrial microbiome revealed that there is a structural microbiome shift and an increase in the α-diversity in the EC and EH cases, distinguishable from the benign cases, especially the fungal community structure. The fungal microbiome from patients with EC and EH was altered relative to controls and dominated by Penicillium sp. By contrast, Sarocladium was more abundant in controls. Significant differences were observed in the composition and content of compounds between benign cases and EC, especially estradiol-like metabolism-related substances. Altered microbiota was correlated with the concentrations of interleukin-6 (IL-6), IL-11, transforming growth factor-beta, and β-glucuronidase activity especially the relative abundance increase of Penicillium sp. CONCLUSIONS This study suggested that the endometrial microbiome is complicit in modulating the development of EC such as estrogen activity and a pro-inflammatory response. Our work provides a new insight into the endometrial microbiome from a perspective of stages, which opens up new avenues for EC prognosis and therapy.
Collapse
Affiliation(s)
- Xinxin Han
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Jia Zheng
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Lizhi Zhang
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Zhongwei Zhao
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Guangyan Cheng
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
34
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
35
|
Chi ZC. Progress in research of ferroptosis in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:699-715. [DOI: 10.11569/wcjd.v32.i10.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic and oxidation-damaged regulated cell death caused by iron accumulation, lipid peroxidation, and subsequent plasma membrane rupture. Ferroptosis is the main cause of tissue damage caused by iron overload and lipid peroxidation. With the deepening of the research in recent years, the understanding of the occurrence and treatment of tumors has made a major breakthrough, which brings new strategies for anti-cancer treatment. This paper reviews the relationship between ferroptosis and gastrointestinal tumors, the research of ferroptosis in cancer prevention and treatment, and the role of ferroptosis in the prevention and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
36
|
Hang Y, Huang J, Ding M, Shen Y, Zhou Y, Cai W. Extracellular vesicles reshape the tumor microenvironment to improve cancer immunotherapy: Current knowledge and future prospects. Int Immunopharmacol 2024; 140:112820. [PMID: 39096874 DOI: 10.1016/j.intimp.2024.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor immunotherapy has revolutionized cancer treatment, but limitations remain, including low response rates and immune complications. Extracellular vesicles (EVs) are emerging as a new class of therapeutic agents for various diseases. Recent research shows that changes in the amount and composition of EVs can reshape the tumor microenvironment (TME), potentially improving the effectiveness of immunotherapy. This exciting discovery has sparked clinical interest in using EVs to enhance the immune system's response to cancer. In this Review, we delve into the world of EVs, exploring their origins, how they're generated, and their complex interactions within the TME. We also discuss the crucial role EVs play in reshaping the TME during tumor development. Specifically, we examine how their cargo, including molecules like PD-1 and non-coding RNA, influences the behavior of key immune cells within the TME. Additionally, we explore the current applications of EVs in various cancer therapies, the latest advancements in engineering EVs for improved immunotherapy, and the challenges faced in translating this research into clinical practice. By gaining a deeper understanding of how EVs impact the TME, we can potentially uncover new therapeutic vulnerabilities and significantly enhance the effectiveness of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Yu Hang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JingYi Huang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Ding
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhua Shen
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YaoZhong Zhou
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China.
| | - Wan Cai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
37
|
Davis RJ, Talatala ERR, Wu H, Zhang Y, Park JS, Gelbard A. PD-L1 Acts Independently of PD-1 as a Marker of Pathologic Fibroblasts in Laryngotracheal Stenosis. Otolaryngol Head Neck Surg 2024. [PMID: 39441651 DOI: 10.1002/ohn.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Laryngotracheal stenosis (LTS) describes fibrotic airway obstruction that is life-threatening without treatment. Targeted therapies are needed as an adjunct to surgical management. We have previously observed the upregulation of immune checkpoint programmed cell death (PD)-1 and its ligand, PD-L1, in patients with LTS. This study aims to determine whether PD-1 and PD-L1 play a role in the pathophysiology of LTS. STUDY DESIGN Basic science. SETTING Laboratory. METHODS Fibroblasts derived from the subglottic scar of 5 iSGS patients were cultured ex vivo with transforming growth factor β (TGFβ), PD-L1 agonist (PD-1), and PD-L1 blockade (anti-PD-L1). PD-L1, TGFβ receptor II (TGFβRII), and Collagen-1 expression were quantified by flow cytometry. A validated chemomechanical injury model of subglottic stenosis was applied in PD-1 knockout and wild-type (WT) mice, and subglottic thickening was assessed by histologic analysis. RESULTS TGFβ significantly increased the expression of PD-L1 and Collagen-1 in human airway scar fibroblasts (P < .05). PD-1 knockout mice demonstrated no significant difference in subglottic airway fibrosis compared to WT mice. Ex vivo PD-L1 modulation had no impact on fibroblast Collagen-1 expression. PD-L1 high-intensity fibroblasts expressed greater Collagen-1 and TGFβRII compared to PD-L1 low-intensity fibroblasts. CONCLUSION PD-1 knockout does not protect mice from the development of laryngotracheal fibrosis. However, its ligand, PD-L1 is highly expressed on pathologic fibroblasts unique to scar, characterized by high Collagen-1 and TGFβRII expression. PD-L1 is also upregulated in conjunction with Collagen-1 by TGFβ stimulation. PD-L1 may act independently of PD-1 to sensitize fibroblasts to TGFβ, suggesting direct targeting of PD-L1 may have therapeutic potential in LTS.
Collapse
Affiliation(s)
- Ruth J Davis
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward Ryan R Talatala
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hongmei Wu
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yueli Zhang
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason S Park
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander Gelbard
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Chen Y, Zhu X, Wang J, Hu J, Zhang J, Zhang X, Han L, Yu H, Hu H, Fei K, Zhang P, Zhang L. MAZ promotes tumor proliferation and immune evasion in lung adenocarcinoma. Oncogene 2024:10.1038/s41388-024-03194-y. [PMID: 39424990 DOI: 10.1038/s41388-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most dominant histological subtype of lung cancer and one of the most lethal malignancies. The identification of novel therapeutic targets is required for the treatment of LUAD. Here, we showed that MYC-associated zinc-finger protein (MAZ) is upregulated in LUAD tissues. MAZ expression levels are inversely correlated with patient survival. Silencing of MAZ decreased tumor proliferation and the expression of pro-tumorigenic chemokines and Galectin-9 (Gal-9), an immune checkpoint molecule. The pro-tumorigenic chemokines and Gal-9 induce immune suppression by recruitment of myeloid cells and inhibition of T cell activation, respectively. Mechanistically, MAZ transcriptionally regulates KRAS expression and activates its downstream AKT-NF-κB signaling pathway, which is crucial for tumor progression and immune evasion. Additionally, in vivo animal models and bioinformatic analyses indicated that MAZ suppression could enhance the efficacy of immune checkpoint blockade (ICB) therapy for LUAD. Overall, our results suggest that MAZ plays an important role in regulating cell proliferation and immune evasion via KRAS/AKT/NF-κB signaling in LUAD. Our findings offer a candidate molecular target for LUAD therapy, with implications for improving the efficacy of ICB therapy.
Collapse
Affiliation(s)
- Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jue Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Junjie Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xun Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lu Han
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
40
|
Qi XL, Luo GQ, Tuersun A, Chen M, Wu GB, Zheng L, Li HJ, Lou XL, Luo M. Construction of an endoplasmic reticulum stress and cuproptosis -related lncRNAs signature in chemosensitivity in hepatocellular carcinoma by comprehensive bioinformatics analysis. Heliyon 2024; 10:e38342. [PMID: 39398070 PMCID: PMC11471205 DOI: 10.1016/j.heliyon.2024.e38342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) and cuproptosis have remarkable effects on hepatocellular carcinoma (HCC) leading to a poor prognosis. The current study aimed to explore credible signature for predicting the prognosis of HCC based on ERS and cuproptosis-related lncRNAs. In our study, clinical and transcriptomic profiles of HCC patients were obtained from the Cancer Genome Atlas (TCGA) database. An ERS and cuproptosis-related lncRNA prognostic signature, including NRAV, SNHG3, LINC00839 and AC004687.1, was determined by correlation tests, Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) methods. Survival and predictive value were evaluated using Kaplan-Meier and receiver operating characteristic (ROC) curves, while calibration and nomograms curves were developed. Besides the enrichment analyses for ERS and cuproptosis-related lncRNAs, mutational status and immune status were assessed with TMB and ESTIMATE. Additionally, consensus cluster analysis was employed to compare cancer subtype differences, while drug sensitivity and immunologic efficacy were evaluated for further exploration. qRT-PCR and CCK-8 were utilized to verify the alteration of the prognostic lncRNAs expression and proliferation in vitro. High-risk groups exhibited poorer prognosis. The signature exhibited robust predictive value as an independent prognostic indicator and showed significant correlation with clinicopathological features. In the enriched analysis, biological membrane pathways were enriched. Low-risk patients had lower TMB and higher immune status. A cluster analysis revealed that cluster 2 had the best clinical immunological efficacy and most active immune function. In brief, our constructed signature with ERS and cuproptosis-related lncRNAs was associated survival outcomes of HCC, and can be used to predict the clinical classification and curative effect.
Collapse
Affiliation(s)
- Xiao-Liang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gu-Qing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Abudukadier Tuersun
- Department of General Surgery, Kashgar Prefecture Second People's Hospital of Xinjiang Uygur Autonomous Regions, Kashgar, Xinjiang, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Jie Li
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lou Lou
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
42
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
44
|
Muluh TA, Fu Q, Ai X, Wang C, Chen W, Zheng X, Wang W, Wang M, Shu XS, Ying Y. Targeting Ferroptosis as an Advance Strategy in Cancer Therapy. Antioxid Redox Signal 2024; 41:616-636. [PMID: 38959114 DOI: 10.1089/ars.2024.0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Significance: This study innovates by systematically integrating the molecular mechanisms of iron death and its application in cancer therapy. By deeply analyzing the interaction between iron death and the tumor microenvironment, the study provides a new theoretical basis for cancer treatment and directions for developing more effective treatment strategies. In addition, the study points to critical issues and barriers that need to be addressed in future research, providing valuable insights into the use of iron death in clinical translation. Recent Advances: These findings are expected to drive further advances in cancer treatment, bringing patients more treatment options and hope. Through this paper, we see the great potential of iron death in cancer treatment and look forward to more research results being translated into clinical applications in the future to contribute to the fight against cancer. Critical Issues: In today's society, cancer is still one of the major diseases threatening human health. Despite advances in existing treatments, cancer recurrence and drug resistance remain a severe problem. These problems increase the difficulty of treatment and bring a substantial physical and mental burden to patients. Therefore, finding new treatment strategies to overcome these challenges has become significant. Future Directions: The study delved into the molecular basis of iron death in tumor biology. It proposed a conceptual framework to account for the interaction of iron death with the tumor immune microenvironment, guide treatment selection, predict efficacy, explore combination therapies, and identify new therapeutic targets to overcome cancer resistance to standard treatments, peeving a path for future research and clinical translation of ferroptosis as a potential strategy in cancer therapy. Antioxid. Redox Signal. 41, 616-636. [Figure: see text].
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianqian Fu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaojiao Ai
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changfeng Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangyi Zheng
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Shanghai Waker Bioscience Co., Ltd., Shanghai, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
45
|
Han H, Zhao Z, He M, Guan G, Cao J, Li T, Han B, Zhang B. Global research trends in the tumor microenvironment of hepatocellular carcinoma: insights based on bibliometric analysis. Front Immunol 2024; 15:1474869. [PMID: 39411719 PMCID: PMC11473330 DOI: 10.3389/fimmu.2024.1474869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Objective This study aimed to use visual mapping and bibliometric analysis to summarize valuable information on the tumor microenvironment (TME)-related research on hepatocellular carcinoma (HCC) in the past 20 years and to identify the research hotspots and trends in this field. Methods We screened all of the relevant literature on the TME of HCC in the Web of Science database from 2003 to 2023 and analysed the research hotspots and trends in this field via VOSviewer and CiteSpace. Results A total of 2,157 English studies were collected. According to the prediction, the number of papers that were published in the past three years will be approximately 1,394, accounting for 64.63%. China published the most papers (n=1,525) and had the highest total number of citations (n=32,253). Frontiers In Immunology published the most articles on the TME of HCC (n=75), whereas, Hepatology was the journal with the highest total number of citations (n=4,104) and average number of citations (n=91). The four clusters containing keywords such as "cancer-associated fibroblasts", "hepatic stellate cells", "immune cells", "immunotherapy", "combination therapy", "landscape", "immune infiltration", and "heterogeneity" are currently hot research topics in this field. The keywords "cell death", "ferroptosis", "biomarkers", and "prognostic features" have emerged relatively recently, and these research directions are becoming increasingly popular. Conclusions We identified four key areas of focus in the study of the TME in HCC: the main components and roles in the TME, immunotherapy, combination therapy, and the microenvironmental landscape. Moreover, the result of our study indicate that effect of ferroptosis on the TME in HCC may become a future research trend.
Collapse
Affiliation(s)
- Hongmin Han
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyin Zhao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyang He
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ge Guan
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junning Cao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianxiang Li
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
46
|
Li X, Li Y, Tuerxun H, Zhao Y, Liu X, Zhao Y. Firing up "cold" tumors: Ferroptosis causes immune activation by improving T cell infiltration. Biomed Pharmacother 2024; 179:117298. [PMID: 39151313 DOI: 10.1016/j.biopha.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Immune checkpoint blocking (ICB), a tumor treatment based on the mechanism of T-cell activation, has shown high efficacy in clinical trials, but not all patients benefit from it. Immune checkpoint inhibitors (ICIs) do not respond to cold tumors that lack effective T-cell infiltration but respond well to hot tumors with sufficient T-cell infiltration. How to convert an unresponsive cold tumor into a responsive hot tumor is an important topic in cancer immunotherapy. Ferroptosis, a newly discovered immunogenic cell death (ICD) form, has great potential in cancer therapy. In the process of deeply understanding the mechanism of cold tumor formation, it was found that ferroptosis showed a powerful immune-activating effect by improving T-cell infiltration, and the combination of ICB therapy significantly enhanced the anti-tumor efficacy. This paper reviews the complex relationship between T cells and ferroptosis, as well as summarizes the various mechanisms by which ferroptosis enhances T cell infiltration: reactivation of T cells and reversal of immunosuppressive tumor microenvironment (TME), as well as recent advances of ICI in combination with targeted ferroptosis therapies, which provides guidance for better improving the ICB efficacy of cold tumors.
Collapse
Affiliation(s)
- Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
47
|
Yiu DCY, Lin H, Wong VWS, Wong GLH, Liu K, Yip TCF. Dipeptidyl peptidase-4 inhibitors are associated with improved survival of patients with diabetes mellitus and hepatocellular carcinoma receiving immunotherapy: Letter to the editor on "Statin and aspirin for chemoprevention of hepatocellular carcinoma: Time to use or wait further?". Clin Mol Hepatol 2024; 30:970-973. [PMID: 38964740 PMCID: PMC11540373 DOI: 10.3350/cmh.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024] Open
Affiliation(s)
- Dorothy Cheuk-Yan Yiu
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Huapeng Lin
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Ken Liu
- Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
48
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
49
|
Yu J, Xiang Y, Gao Y, Chang S, Kong R, Lv X, Yu J, Jin Y, Li C, Ma Y, Wang Z, Zhou J, Yuan H, Shang S, Hua F, Zhang X, Cui B, Li P. PKC α inhibitors promote breast cancer immune evasion by maintaining PD-L1 stability. Acta Pharm Sin B 2024; 14:4378-4395. [PMID: 39525583 PMCID: PMC11544271 DOI: 10.1016/j.apsb.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 11/16/2024] Open
Abstract
Protein kinase C α (PKCα) regulates diverse biological functions of cancer cells and is a promising therapeutic target. However, clinical trials of PKC-targeted therapies have not yielded satisfactory results. Recent studies have also indicated a tumor-suppressive role of PKCs via unclear molecular mechanisms. In this study, we found that PKCα inhibition enhances CD8+ T-cell-mediated tumor evasion and abolishes antitumor activity in immunocompetent mice. We further identified PKCα as a critical regulator of programmed cell death-ligand 1 (PD-L1) and found that it enhances T-cell-dependent antitumor immunity in breast cancer by interacting with PD-L1 and suppressing PD-L1 expression. We demonstrated that PKCα-mediated PD-L1 phosphorylation promotes PD-L1 degradation through β transducin repeat-containing protein. Notably, the efficacy of PKCα inhibitors was intensified by synergizing with anti-PD-L1 mAb therapy to boost antitumor T-cell immunity in vivo. Clinical analysis revealed that PKCα expression is positively correlated with T-cell function and the interferon-gamma signature in patients with breast cancer. This study demonstrated the antitumor capability of PKCα, identified potential therapeutic strategies to avoid tumor evasion via PKC-targeted therapies, and provided a proof of concept for targeting PKCα in combination with anti-PD-L1 mAb therapy as a potential therapeutic approach against breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Jiaojiao Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujin Xiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuzhen Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoxi Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinmei Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yunjie Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chenxi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiran Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhenhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jichao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
50
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|