1
|
Wang X, Hu M, Wu W, Lou X, Gao R, Ma T, Dheen ST, Cheng J, Xiong J, Chen X, Wang J. Indole derivatives ameliorated the methamphetamine-induced depression and anxiety via aryl hydrocarbon receptor along "microbiota-brain" axis. Gut Microbes 2025; 17:2470386. [PMID: 39996473 PMCID: PMC11864316 DOI: 10.1080/19490976.2025.2470386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
In addition to the high neurotoxicity, depression, and anxiety are the most prominent characteristics of methamphetamine (Meth) withdrawal. Studies to date on the issue of Meth-associated depression and anxiety are focused on the brain, however, whether peripheral homeostasis, especially the "microbiota-gut" axis participates in these adverse outcomes, remains poorly understood. In the current study, with the fecal microbiota transplantation (FMT) assay, the mice received microbiota from Meth withdrawal mice displayed marked depression and anxiety behaviors. The 16S rRNA sequencing results showed that Meth withdrawal contributed to a striking reduction of Akkermansia, Bacteroides, Faecalibaculum, Desulfovibrio, and Anaerostipes, which are known to be associated with tryptophan (TRP) metabolism. Noteworthily, the substantial decreases of the indole derivatives from the TRP metabolic pathway, including IAA, IPA, ILA, IET, IArA, IAld, and TRM were observed in the serum of both Meth abusing humans and mice during Meth withdrawal with the UHPLC-MS/MS analysis. Combining the high and low TRP diet mouse model, the mice with high TRP diet obviously impeded Meth-associated depression and anxiety behaviors, and these results were further strengthened by the evidence that administration of IPA, IAA, and indole dramatically ameliorated the Meth induced aberrant behaviors. Importantly, these protective effects were remarkably counteracted in aryl hydrocarbon receptor knockout (AhR KO) mice, underlining the key roles of microbiota-indoles-AhR signaling in Meth-associated depression and anxiety. Collectively, the important contribution of the present work is that we provide the first evidence that peripheral gut homeostasis disturbance but not limited to the brain, plays a key role in driving the Meth-induced depression and anxiety in the periods of withdrawal, especially the microbiota and the indole metabolic disturbance. Therefore, targeting AhR may provide novel insight into the therapeutic strategies for Meth-associated psychological disorders.
Collapse
Affiliation(s)
- Xi Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miaoyang Hu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Lou
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tengfei Ma
- Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jie Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Xiong
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Shi Y, Hu Y, Gan Y, Mi Z, Luo S, Lei J, Fang Q, Li H. Tabersonine ameliorates depressive-like behavior by inhibiting NLRP3 inflammasome activation in a mouse model. Neuropharmacology 2025; 273:110432. [PMID: 40147640 DOI: 10.1016/j.neuropharm.2025.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Depression, a common mental disorder, is intimately linked to neuroinflammation. In the central nervous system, microglia, the principal cells involved in immunity, are crucial in neuroinflammation and closely associated with the pathogenesis of depression. Several studies have demonstrated that depressive-like behaviors could be ameliorated by improving brain inflammation. Notably, natural products occupy a critical position in the study of antidepressants. Herein, we explored the antidepressant effects of tabersonine (Tab), a natural inhibitor of NLRP3. Tab significantly improved depressive-like behaviors and anxiety in lipopolysaccharide (LPS)-treated mice. To further elucidate mechanisms underlying the antidepressant actions of Tab, BV2 microglial cells were exposed to LPS and ATP in vitro. Tab effectively inhibited NLRP3 inflammasome activation, subsequent Caspase-1 cleavage, and interleukin-1β secretion both in the hippocampi of mice in vivo and BV2 cells in vitro. Additionally, Tab strongly decreased the concentrations of the proinflammatory cytokines interleukin-1β, tumor necrosis factor, and interleukin-6 in BV2 cell culture supernatants and sera of mice. Further studies indicated that Tab improved LPS-induced neuronal loss, as indicated by a significant rise in the quantity of Nissl-positive cells within the hippocampal regions CA1, CA3, and dentate gyrus. Importantly, Tab counteracted the LPS-induced microglial activation in the hippocampus. Our results indicate that Tab significantly improves LPS-triggered depressive-like behaviors and reverses injuries to hippocampal microglia and neurons, implying its potential as a therapeutic agent for depression.
Collapse
Affiliation(s)
- Yan Shi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Yue Hu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Yaoxue Gan
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Zhaoyu Mi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Shuting Luo
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Jia Lei
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Qian Fang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, 410006, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Zhang Y, Jiao X, Qi X, Wang G, Ma Y. Edaravone ameliorates inflammation in ischemic stroke mouse by regulating the CYP1A1 pathway through gut microbiota. Exp Neurol 2025; 390:115263. [PMID: 40258529 DOI: 10.1016/j.expneurol.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Inflammation is one of the main contributors to post-stroke injuries, and the disorders of the gut-brain axis post-stroke can further induce inflammation. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, EDA) is widely utilized neuroprotective medication for ischemic stroke in Japan, China, India, and other countries. However, the effects of EDA on peripheral inflammation and gut-brain axis repair post-stroke have not been revealed yet. In this study, we employed network pharmacology to identify the potential anti-inflammatory targets and signaling pathways that EDA may influence in the treatment of ischemic stroke. Then, we used 16S rDNA sequencing and molecular docking techniques to determine whether the anti-inflammatory effects of EDA are dependent on the gut-brain axis. Using morphological and molecular biology methods, we investigate how EDA reduces inflammatory response after ischemic stroke through gut microbiota and its metabolites. We demonstrated that EDA alleviated central and peripheral inflammation and rescued gut microbiota dysbiosis post-stroke. Meanwhile, EDA also improved intestinal histological features and decreased intestinal inflammation of post-stroke. The network pharmacology, 16S rDNA sequencing, and molecular docking results revealed that EDA could bind with the ESR1 and thereby regulate the expression of CYP1A1. Furthermore, EDA regulated CYP1A1-related metabolism and decreased the level of 20-HETE post-stroke through gut microbiota. Our study confirmed that EDA alleviated central and peripheral inflammation post-stroke by inhibiting CYP1A1 and CYP1A1-related metabolic through gut microbiota. CYP1A1 was a candidate target for treating ischemic stroke.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaojing Jiao
- Department of Pharmacy, Chinese medicine hospitals Changji Hui Autonomous Prefecture, Changji, Xinjiang 831400, China
| | - Xiaoying Qi
- Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, Zhejiang 315000, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
4
|
Cen Z, Lv S, Li Q, Zhang J, Mei S, Hu X, Yang A. Acute exposure to antimony elicits endocrine disturbances, leading to PCOS and ovarian fibrosis in female zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110198. [PMID: 40174734 DOI: 10.1016/j.cbpc.2025.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Antimony (Sb) is an estrogenic metal. Exogenous exposure to Sb can affect estrogen levels and their receptor expression in organisms, exerting estrogen-disrupting effects and even inducing polycystic ovary syndrome (PCOS), which is accompanied by the progression of ovarian fibrosis. To investigate the pathological mechanism of this reproductive damage caused by Sb exposure, we exposed female zebrafish to Sb solution for 18 days for acute toxicity experiments. The results showed that Sb exposure affected the changes of GnRH, FSH, LH, E2 and T levels on the HPG axis, which disrupted the balance of sex steroid hormones in the internal environment of zebrafish and progression of PCOS. Furthermore, Sirius red staining revealed significant fibrosis in the ovarian tissues of Sb-exposed female zebrafish. This study adopted transcriptome sequencing and Western Blotting to explore the mechanisms of action. The biological processes and signaling pathways potentially associated with Sb-induced ovarian fibrosis were predicted by using GO annotation and KEGG pathway enrichment analysis, such as ECM receptors, TGF-β/Smad and WNT/β-catenin. The experiment results showed that Sb induced up-regulation of the transcription levels of the pro-fibrotic factors tgf-β3, wnt10a, ctnnb1, and β-catenin protein expression, suggesting the activation of the WNT/β-catenin pathways and TGF-β/Smad. Sb exposure led to up-regulation of ECM-related genes col2a1a, itgb1b.2, lamc1, fn1a and up-regulation of fibrosis markers α-SMA, Fn1a, col4a2 protein expression, Therefore, we hypothesized that Sb exposure activates the TGF-β/Smad and WNT/β-catenin pathways, leading to abnormal ECM deposition and promoting the progression of ovarian fibrosis in zebrafish.
Collapse
Affiliation(s)
- Zhongqian Cen
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Shenghan Lv
- Guizhou Fishery Science Research Institute, Guiyang 550025, China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - ShiXue Mei
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Lee JE, Sridharan B, Kim D, Sung Y, Park JH, Lim HG. Continuous glucose monitoring: Minimally and non-invasive technologies. Clin Chim Acta 2025; 575:120358. [PMID: 40379197 DOI: 10.1016/j.cca.2025.120358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
This paper highlights technological advancements in non-invasive blood glucose monitoring against the backdrop of increasing global prevalence of diabetes. Traditional monitoring methods, primarily invasive methods face limitations in providing continuous glucose level data, which is essential for effective and timely diagnosis of disease stage and for determining the optimal therapeutic strategy. Recent non-invasive technologies encompass optical, acoustic, electromagnetic, and chemical approaches. These technologies exploit the intrinsic properties of glucose, such as its optical absorption coefficients, to offer promising avenues for less intrusive blood glucose monitoring. Despite these advancements, challenges in achieving high accuracy persist due to interference from substances like water and other blood components. This underlines the need for sophisticated algorithms and sensor designs for accurate glucose estimation. Further research is required to integrate various sensing techniques and advanced data processing to enhance accuracy and user-friendliness. In conclusion, while significant progress has been made, developing a reliable, convenient, and accessible method for non-invasive glucose monitoring is crucial for transforming diabetes management and improving patients' quality of life.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Daehun Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeongho Sung
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin Hyeong Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hae Gyun Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
6
|
Adil O, Shamsi MH. Transformative biomedical devices to overcome biomatrix effects. Biosens Bioelectron 2025; 279:117373. [PMID: 40120290 PMCID: PMC11975494 DOI: 10.1016/j.bios.2025.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The emergence of high-performance biomedical devices and sensing technologies highlights the technological advancements in the field. Recently during COVID-19 pandemic, biosensors played an important role in medical diagnostics and disease monitoring. In the past few decades, biosensors have made impressive advances in terms of sensing capability, methodology, and applications, and modern biosensors show higher performance and functionality compared to traditional biosensing platforms. Currently, various biomedical devices are already in the market or on the verge of commercialization, such as disposable paper-based devices, lab-on-a-chip devices, wearable sensors, and artificial intelligence-assisted systems, all contributing to the evolution of digital health. Despite the promising features of detection methods for developing practical biosensors, there are substantial barriers to the commercialization of biomedical devices. An important challenge is the matrix effect in the detection of clinical samples. Although achieving low limit of detection values under controlled laboratory conditions is feasible, maintaining performance in real clinical samples is difficult. Matrix molecules present in these samples can interact with analytes, potentially affecting sensitivity, specificity, and sensor response. Approaches to reduce nonspecific adsorption and cross-reactivity are imperative for improving sensor performance. The detection of diagnostic biomarkers in complex biological matrices often requires laborious sample preparation, which may affect accuracy and precision. In this review, we highlight the recent efforts to detect analytes in real samples, both invasively and noninvasively, and underline technological advancements that mitigate the biomatrix effects. We also discuss commercially available biosensors and technologies promising commercial success, highlighting their potential effect on healthcare and diagnostics.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA; Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA.
| |
Collapse
|
7
|
Ma X, Wang W, Mao Q. Short-chain chlorinated paraffins induce hippocampal damage and glycerophospholipids disruption contributing to neurobehavioral deficits in mice. Food Chem Toxicol 2025; 201:115444. [PMID: 40220883 DOI: 10.1016/j.fct.2025.115444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Short-chain chlorinated paraffins (SCCPs), a class of widely used industrial chemicals, have raised significant health concerns due to their persistence, bioaccumulation, and potential neurotoxicity. This study investigated the neurotoxic effects of SCCPs on the hippocampus and their impact on brain glycerophospholipid metabolism in mice. Behavioral tests revealed that 50 mg/kg SCCPs exposure significantly reduced spontaneous activity and impaired learning and memory. Pathological examination showed neuronal damage, including nuclear pyknosis and cytoplasmic vacuolization, in the hippocampus. Biochemical analyses indicated elevated oxidative stress markers (reactive oxygen species, malondialdehyde) and decreased antioxidant levels (glutathione, superoxide dismutase), alongside reduced levels of neurotransmitters (5-Hydroxytryptamine, dopamine, brain-derived neurotrophic factor). Lipidomics analysis identified significant alterations in glycerophospholipid metabolites, such as decreased levels of phosphatidylcholine and phosphatidylserine. Immunohistochemistry demonstrated downregulation of tight junction proteins (Claudin-1, ZO-1), suggesting blood-brain barrier disruption. These findings highlight SCCPs' potential to induce hippocampal oxidative stress, neurotransmitter dysregulation, decreased claudin-1 expression and glycerophospholipid metabolism disruption, contributing to neurobehavioral deficits. This study provides insights into the mechanisms of SCCPs-induced neurotoxicity and emphasizes their potential implications for brain health.
Collapse
Affiliation(s)
- Xi Ma
- Department of Integrated TCM & Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430000, China; Wuhan University of Science and Technology, Wuhan, 430000, China
| | - Wenzhu Wang
- Department of Nephrology, Changshan County People's Hospital, Changshan, 324200, China
| | - Qingju Mao
- Department of Integrated TCM & Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430000, China; Wuhan University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
8
|
Li Q, Li R, Ge B, Luo X, Xu J, Fu L, Kong Y, Yang JY, Li S. Anticonvulsant effect of Stachydrine on pentylenetetrazole-induced kindling seizure mouse model via Notch and NMDAR signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119975. [PMID: 40374044 DOI: 10.1016/j.jep.2025.119975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stachydrine (STA), the principal bioactive alkaloid of Leonurus japonicus (Motherwort/"Yi Mu Cao"), may derive its ethnopharmacological relevance for epilepsy management from the botanical origin-Motherwort's documented traditional use in treating seizures and other neurological cardiovascular diseases. AIM OF THE STUDY To validate STA's ethnomedicinal claim an anticonvulsant by mechanistically interrogating its dual modulation of Notch1-driven neuroinflammation and NMDA receptor-mediated excitotoxicity, which are two key hallmarks of chronic epileptogenesis. MATERIALS AND METHODS Male C57BL/6 mice were divided into three groups to evaluate the neuroprotective and an anticonvulsant effects of STA in the PTZ-induced seizure model: Control group, PTZ group, and PTZ + STA group. Behavioral seizure scoring and cognitive tests were integrated with EEG recordings to assess neuronal synchronization. Molecular mechanisms were dissected via hippocampal immunohistochemistry and Western blotting. RESULTS Our results showed that daily oral administration of STA for a duration of 25 days significantly reduced seizure scores. EEG recordings indicated that STA treatment resulted in a notable reduction in both total brainwave power and firing amplitude within the groups receiving STA. Furthermore, STA administration provided cognitive protection against kindling-associated deficits, as demonstrated by improved alteration behavior and recognition index in Y-maze and object recognition tests. STA administration reduced neuronal loss and glial cell activation. Additionally, significant downregulation of NMDA receptor subunits, CAMK2, caspase-3, Notch1, and Hes1 expression levels was observed following STA administration. CONCLUSION These findings suggest that STA provides neuroprotection against PTZ-induced epilepsy by modulating the Notch and NMDA receptor pathways, thus addressing neuroinflammation and apoptosis resulting from excitotoxicity.
Collapse
Affiliation(s)
- Qifa Li
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ruipeng Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Biying Ge
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiaoqin Luo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jing Xu
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lei Fu
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
9
|
Sun YG, Yu ZK, Chen X, Zhang SY, Wu WJ, Liu K, Cheng L. circHIPK2 promotes malignant progression of laryngeal squamous cell carcinoma through the miR-889-3p/MCTS1/IL-6 axis. Transl Oncol 2025; 56:102390. [PMID: 40222337 PMCID: PMC12018564 DOI: 10.1016/j.tranon.2025.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck with a poor prognosis. The role of circRNAs in LSCC remains largely unknown. In this study, quantitative real-time PCR (qRT-PCR), Sanger sequencing and fluorescence in situ hybridization were undertaken to detect the expression, localization, and clinical significance of circHIPK2 in LSCC tissues and TU686 and TU212 cells. The functions of circHIPK2 in LSCC were explored through proliferation analysis, EdU staining, colony formation assay, wound healing assay, and Transwell assay. The regulatory mechanisms underpinning circHIPK2, miR-889-3p, and MCTS1 were investigated using luciferase assay, Western blotting, and qRT-PCR. We found that LSCC tissues and cells demonstrated high expression of circHIPK2 that was closely associated with the malignant progression and poor prognosis of LSCC. Knockdown of circHIPK2 inhibited the proliferation and migration of LSCC cells in vitro. Mechanistic studies showed that circHIPK2 competitively bound to miR-889-3p, elevated MCTS1 level, promoted IL-6 secretion, and ultimately accelerated the malignant progression of LSCC. In conclusion, an axis involving circHIPK2, miR-889-3p, MCTS1 and IL-6 regulates the malignant progression of LSCC. circHIPK2 expression may serve as a novel diagnostic and prognostic biomarker for LSCC.
Collapse
Affiliation(s)
- Yang-Guang Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zhen-Kun Yu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Xi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Si-Yao Zhang
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Wan-Juan Wu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Kai Liu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Allergology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
10
|
Wang H, Liu D, Ge X, Wang Y, Zhou X. Mycobacterium bovis Mb3523c protein regulates host ferroptosis via chaperone-mediated autophagy. Autophagy 2025; 21:1335-1352. [PMID: 39968901 DOI: 10.1080/15548627.2025.2468139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
The occurrence of necrosis during Mycobacterium bovis (M. bovis) infection is regarded as harmful to the host because it promotes the spread of M. bovis. Ferroptosis is a controlled type of cell death that occurs when there is an excessive buildup of both free iron and harmful lipid peroxides. Here, we demonstrate that the mammalian cell entry (Mce) 4 family protein Mb3523c triggers ferroptosis to promote M. bovis pathogenicity and dissemination. Mechanistically, Mb3523c, through its Y237 and G241 site, interacts with host HSP90 protein to stabilize the LAMP2A on the lysosome to promote the chaperone-mediated autophagy (CMA) pathway. Then, GPX4 is delivered to lysosomes for destruction via the CMA pathway, eventually inducing ferroptosis to promote M. bovis transmission. In summary, our findings offer novel insights into the molecular mechanisms of pathogen-induced ferroptosis, demonstrating that targeting the GPX4-dependent ferroptosis through blocking the M. bovis Mb3523c-host HSP90 interface represents a potential therapeutic strategy for tuberculosis (TB).Abbreviations: CFU: colony-forming units; CMA: chaperone-mediated autophagy; Co-IP: co-immunoprecipitation; Fer-1: ferrostatin-1; GPX4: glutathione peroxidase 4; HSP90: heat shock protein 90; LDH: lactate dehydrogenase; Mce: mammalian cell entry; MOI: multiplicity of infection; Nec-1: necrostatin-1; PI: propidium iodide; RCD: regulated cell death.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Dingpu Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xin Ge
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Liu W, Fu D, Di C, Sun J, Liu P. Autophagy is involved in Salmonella Typhimurium-induced ferroptosis in macrophages. Vet Microbiol 2025; 305:110538. [PMID: 40311251 DOI: 10.1016/j.vetmic.2025.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
Salmonella is one of the most common zoonotic pathogens, posing a significant threat to both animal and human health. Our previous study demonstrated that autophagy plays a crucial role in restricting the intracellular growth of Salmonella. This study aims to investigate the effect of autophagy in Salmonella Typhimurium (S. Typhimurium)-induced ferroptosis. First, we found that S. Typhimurium induced lipid peroxidation by increasing intracellular Fe2 + levels, promoting lipid oxidation, and inhibiting the antioxidant pathway. S. Typhimurium-induced lipid peroxidation led to ferroptosis in macrophages. Further results revealed that S. Typhimurium triggered ferritin degradation by NCOA4-mediated ferritinophagy. Additionally, S. Typhimurium-induced chaperone-mediated autophagy (CMA) degraded GPX4 through TAK1-HSC70 signaling pathway. Notably, GPX4 is involved in intracellular S. Typhimurium release. Overall, autophagy was essential for S. Typhimurium induced-ferroptosis, TAK1 not only facilitated autophagy to eliminate intracellular bacteria but also promoted bacterial release.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Daobin Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Chuanyuan Di
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| |
Collapse
|
12
|
Li D, Huo X, Shen L, Qian M, Wang J, Mao S, Chen W, Li R, Zhu T, Zhang B, Liu K, Wu F, Bai Y. Astrocyte heterogeneity in ischemic stroke: Molecular mechanisms and therapeutic targets. Neurobiol Dis 2025; 209:106885. [PMID: 40139279 DOI: 10.1016/j.nbd.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in adults, bringing a significant economic burden to the society and families. Despite significant advancements in stroke treatment, focusing solely on neurons is insufficient for improving disease progression and prognosis. Astrocytes are the most ubiquitous cells in the brain, and they undergo morphological and functional changes after brain insults, which has been known as astrocyte reactivity. Transcriptomics have shown that reactive astrocytes (RA) are heterogeneous, and they can be roughly classified into neurotoxic and neuroprotective types, thereby affecting the development of central nervous system (CNS) diseases. However, the relationship between stroke and reactive astrocyte heterogeneity has not been fully elucidated, and regulating the heterogeneity of astrocytes to play a neuroprotective role may provide a new perspective for the treatment of stroke. Here we systematically review current advancements in astrocyte heterogeneity following ischemic stroke, elucidate the molecular mechanisms underlying their activation, and further summarize promising therapeutic agents and molecular targets capable of modulating astrocyte heterogeneity.
Collapse
Affiliation(s)
- Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minjie Qian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jindou Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shijie Mao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Runheng Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Beicheng Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunxuan Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feifei Wu
- Laboratory for Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Cai J, Zhao J, Peng R, Yu H, He Y, Zhou Q, Wang Y, Xie P. NLRP3 in the dorsal raphe nucleus manipulates the depressive-like behaviors. Brain Res Bull 2025; 227:111405. [PMID: 40447162 DOI: 10.1016/j.brainresbull.2025.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/24/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
Major depressive disorder is one of the most common psychiatric disorders, and the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in depression. Dorsal raphe nucleus (DRN), as the main origin of producing serotonin in the brain, is an important functional brain region in depressive disorders. However, the relationship between NLRP3 in the DRN and depression has not been clarified in previous studies. So, we focus on demonstrating the role of NLRP3 expressed in DRN in depression. In this study, the male C57BL/6 J mice were exposed to chronic unpredictable mild stimulation and the expression and cellular localization of NLRP3 in DRN were analyzed. Subsequently, the mice were treated with the NLRP3 inhibitor MCC950 to inhibit NLRP3 inflammasome, and the expression of NLRP3 was knocked down in certain cells within the DRN of NLRP3fl/fl mice to investigate the role of NLRP3 in regulating depressive phenotype. Compared with the control group, the expression of NLRP3 in DRN of CUMS group was significantly increased, especially in the microglia and neuron. Furthermore, treatment with the NLRP3 inhibitor induced a significant antidepressant effect, and the depressive phenotype of NLRP3fl/fl mice was rescued after knocking down NLRP3 in the microglia or neuron. In addition, the expression levels of related molecules in the NLRP3 inflammasome pathway were significantly higher in the CUMS group compared to the control group. These results illustrated that NLRP3 played an important role in regulating depressive phenotype in DRN, and suggested a new therapy target for depression.
Collapse
Affiliation(s)
- Junchao Cai
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiarong Zhao
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Peng
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Heming Yu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong He
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qigang Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Chongqing Institute for Brain and Intelligence, Chongqing 401336, China.
| |
Collapse
|
14
|
Zhang L, Zhang D, Xu B, Tian Z, Chen S, Yang X, Li X, Nie Y, Li W, Wang P, Jiang F, Wu Y, Li G. Medium-Chain Chlorinated Paraffins Altered Neurobehavior and Induced Neuroinflammation Associated with Disordered Intestinal Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40405434 DOI: 10.1021/acs.jafc.5c04398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Chlorinated paraffins, derivatives of chlorinated n-alkanes, are widely used in agricultural and industrial applications. With the restriction of short-chain chlorinated paraffins (SCCPs), the use of medium-chain chlorinated paraffins (MCCPs) has sharply increased. MCCPs have recently been detected in foods and animal brains, raising concerns about their health effects. However, their impact on intestinal homeostasis and the nervous system is poorly understood. In this study, neurobehavioral, metabolomics, histopathology, inflammatory responses, gut microbiota, and derived metabolites were evaluated after CP-52 (a commercially prevalent MCCP) exposure. The results showed that CP-52 induced abnormal behaviors, reduced gray matter thickness, activated astrocytes, and triggered neuroinflammation. Concurrently, CP-52 significantly altered gut microbiota, reduced short-chain fatty acid (SCFAs) levels, and promoted intestinal inflammation, potentially contributing to neuroinflammation via the microbiota-gut-brain axis. These findings will provide important insights into the safety assessment of MCCPs.
Collapse
Affiliation(s)
- Luyao Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Danyang Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bufan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhaoqing Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shasha Chen
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Xinhua Yang
- Shandong Dong'e Oriental Ass Hide Glue Co., Ltd, Liaocheng 252299, China
| | - Xiangyu Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Panpan Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fan Jiang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
15
|
Wen J, Liu J, Wan L, Sun Y, Wang F. Crosstalk between N6-methyladenosine modification and ncRNAs in rheumatic diseases: therapeutic and diagnostic implications. Inflamm Res 2025; 74:79. [PMID: 40402257 DOI: 10.1007/s00011-025-02034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND In eukaryotic cells, N6-methyladenosine (m6A) is the most prevalent RNA methylation modification and plays a fundamental role in regulating diverse biological processes through the modulation of non-coding RNA (ncRNA) expression and activity. The role of m6A modification in developing rheumatic diseases is crucial but remains inadequately studied. METHODS Characterized by pain and inflammation, rheumatic diseases like rheumatoid arthritis (RA), osteoarthritis (OA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE) are autoimmune disorders. Recent findings emphasize the importance of m6A modifications and non-coding RNAs in the biological processes underlying rheumatic diseases. RESULTS This review elucidates the fundamental concept of m6A modification and the associated research methodologies. Subsequently, it systematically consolidates modern knowledge on the influence of m6A regulators and m6A modification-related ncRNAs on rheumatic diseases, incorporating perspectives on traditional Chinese medicine interventions. CONCLUSIONS Offering a comprehensive overview of m6A-related ncRNAs in the context of rheumatic diseases, this review proposes new therapeutic avenues by targeting m6A modification pathways.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China.
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China.
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| | - Yue Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| | - Fanfan Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| |
Collapse
|
16
|
Bakal V, Gusliakova O, Kartashova A, Saveleva M, Plastun V, Demina P, Kozhevnikov I, Serdobintsev A, Prikhozhdenko E. Synthesis of silver nanoparticles on polyacrylonitrile nonwoven substrates with the silver mirror reaction for effective SERS detection of 4-MBA and glucose. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40396395 DOI: 10.1039/d5ay00341e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
We present a simple, fast, and efficient method for the production of silver nanoparticles (AgNP) for surface-enhanced Raman spectroscopy (SERS) applications. The method utilizes the classical silver mirror reaction, with ascorbic acid serving as the reducing agent, to produce AgNP on polyacrylonitrile non-woven substrates. Different protocols were used to functionalize the substrates with AgNP in situ. Optimization of the substrate modification procedure led to SERS-substrates with an enhancement factor (EF) of up to 106 (4-MBA detection) for samples treated with 1 M solutions of AgNO3 and NH3·H2O. The obtained substrates were further modified with glucose oxidase (GOx), and glucose sensing was carried out in a concentration range from 0.5 mM to 10 mM. Machine learning models, such as random forest and gradient boosting, were used for the analysis of Raman data. The resulting substrates have potential applications in various fields of analytical chemistry.
Collapse
Affiliation(s)
- Viktoriia Bakal
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Olga Gusliakova
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Anastasia Kartashova
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Mariia Saveleva
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Valentina Plastun
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Polina Demina
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Ilya Kozhevnikov
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Alexey Serdobintsev
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Ekaterina Prikhozhdenko
- Science Medical Centre, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| |
Collapse
|
17
|
Wylie W, Mellios N, Bourgeois JA. Circular RNA and Neuropsychiatric Practice: A Scoping Review of the Literature and Discussion of Unmet Clinical Needs. J Neuropsychiatry Clin Neurosci 2025:appineuropsych20240086. [PMID: 40384036 DOI: 10.1176/appi.neuropsych.20240086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Circular RNA (circRNA) is a recently characterized species of RNA that is highly enriched in the human brain, differentially expressed in neuropsychiatric disorders, and readily detectable in the peripheral circulation. These characteristics make circRNA an attractive candidate biomarker for neuropsychiatric illness and suggest it as a potential missing link in the understanding of the specific biological underpinnings of neuropsychiatric illness. In this scoping review, the authors summarize the literature on circRNA in neuropsychiatric disorders and add clinical context. The authors searched PubMed, PsycInfo, Embase, the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials for articles describing research on circRNA and mental disorders published in or after 2012. The authors included peer-reviewed studies with substantive discussions of circRNA and mental disorders that included human participants or cell lines. Only studies written in English or with English translations were considered. Seventy-eight studies met the authors' inclusion criteria. Common and serious neuropsychiatric illnesses were well represented among these studies, including schizophrenia, major depressive disorder, and major neurocognitive disorder. Many studies identified altered circRNA levels in peripheral blood and specific brain regions that were both sensitive to and specific for neuropsychiatric disorders. Few studies discussed the role that circRNA-based diagnostic tests might play in clinical practice, and research on prognostic, therapeutic, or monitoring biomarkers was limited. Although circRNAs have the potential to change the understanding and treatment of neuropsychiatric disorders, the research field would benefit from more clinician involvement in this area to identify and address urgent clinical needs.
Collapse
Affiliation(s)
- William Wylie
- Department of Psychiatry and Behavioral Sciences (Wylie) and Department of Neurosciences (Mellios), University of New Mexico, Albuquerque; Circular Genomics Inc., Albuquerque (Mellios); Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento (Bourgeois)
| | - Nikolaos Mellios
- Department of Psychiatry and Behavioral Sciences (Wylie) and Department of Neurosciences (Mellios), University of New Mexico, Albuquerque; Circular Genomics Inc., Albuquerque (Mellios); Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento (Bourgeois)
| | - James Alan Bourgeois
- Department of Psychiatry and Behavioral Sciences (Wylie) and Department of Neurosciences (Mellios), University of New Mexico, Albuquerque; Circular Genomics Inc., Albuquerque (Mellios); Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento (Bourgeois)
| |
Collapse
|
18
|
Wang S, Guo L, Wang C. Potential Risk Factors of Susceptibility to Recurrent Depression. Brain Res Bull 2025:111374. [PMID: 40389099 DOI: 10.1016/j.brainresbull.2025.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/10/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent and recurrent neuropsychiatric disorder associated with alterations in the BicC family RNA binding protein 1 (BICC1). However, the potential risk factors that regulate BICC1 and affect susceptibility to recurrent depression remain unclear. METHODS Herein, we firstly tested the heat shock protein 90 (HSP90), hypoxia-inducible factor 1-alpha (HIF1α), and BICC1 in the serum of the patients that were in first-episode or recurrent depression, as well as their controls. Then, through re-exposure to chronic unpredictable mild stress (CUMS) in mice, an animal model of recurrent depression was assessed. And the expression of HSP90, HIF1α, and BICC1 in the prefrontal cortex (PFC) were analyzed. RESULTS We found that HSP90, HIF1α, and BICC1 were significantly increased in the serum of depressed patients, especially in those with recurrent depression, indicating that these molecules may serve as specific pathogenetic risk factors for depression, especially depression recurrence. In addition, the recurrent depression mice model was found to be accompanied by a significant increase in expression of HSP90, HIF1α and BICC1 in the prefrontal cortex (PFC). CONCLUSIONS The current study identified HSP90, HIF1α, and BICC1 as novel potential risk factors that affect susceptibility to recurrent depression.
Collapse
Affiliation(s)
- Shuzhuo Wang
- School of Basic Medical Science, Health Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China
| | - Lei Guo
- School of Basic Medical Science, Health Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China.
| | - Chuang Wang
- School of Basic Medical Science, Health Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China.
| |
Collapse
|
19
|
Kang L, Liu Y, Zheng G, Hu Z, Yang F. CircNTRK2 promotes the progression of nasopharyngeal carcinoma via sponging miR-384 to regulate SOX4 expression. Arch Biochem Biophys 2025; 770:110469. [PMID: 40383466 DOI: 10.1016/j.abb.2025.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Circular RNAs (circRNAs) have been reported to function critical roles in the pathogenesis and progression of nasopharyngeal carcinoma (NPC). The role of circNTRK2 (circbase ID: hsa_circ_0139142) remains dimness in this disease. This study aimed to investigate the effects and underlying mechanism of circNTRK2 in NPC. GSE143797 was downloaded from the Gene Expression Omnibus (GEO) database, and differently expressed circRNAs were analyzed by the GEO2R method. CircNTRK2 expression was confirmed in human NPC tumor tissues and cell lines by real-time PCR. Loss-of-function studies were used to explore the influence of circNTRK2 on the proliferation, invasion, apoptosis, and epithelial-mesenchymal transition (EMT) of NPC cells. Then, bioinformatic analysis, luciferase reporter assay, biotinylated miRNA pull-down assay, real-time PCR, and Western blotting were applied to clarify the detailed mechanism. We found that circNTRK2 was highly expressed in NPC tissues and cells. Silencing of circNTRK2 inhibited proliferation, invasion and EMT, but facilitated apoptosis of NPC cells in vitro. Also, downregulation of circNTRK2 suppressed tumor growth in a xenograft mouse model. CircNTRK2 directly targeted and negatively mediated miR-384 expression. SOX4 was a target gene of miR-384 in NPC. Both miR-384 inhibitor and SOX4 upregulation could reverse the effects of circNTRK2 knockdown on the proliferation, invasion, EMT, and apoptosis of NPC cells. Whereas miR-384 mimics and SOX4 knockdown abrogated the influences of circNTRK2 upregulation on NPC cells. In conclusion, circNTRK2 promoted NPC progression via sponging miR-384 and inhibiting miR-384 activity, leading to the upregulation of SOX4. This study indicated that circNTRK2 might be a potential target for the treatment of NPC.
Collapse
Affiliation(s)
- Lin Kang
- Department of Pathology, HeBei General Hospital, ShiJiazhuang City, 050000, China
| | - Yang Liu
- Department of Pathology, HeBei General Hospital, ShiJiazhuang City, 050000, China
| | - Guona Zheng
- Department of Pathology, HeBei General Hospital, ShiJiazhuang City, 050000, China
| | - Zhijuan Hu
- Department of Pathology, HeBei General Hospital, ShiJiazhuang City, 050000, China
| | - Fan Yang
- Department of Pathology, HeBei General Hospital, ShiJiazhuang City, 050000, China.
| |
Collapse
|
20
|
He WT, Huang JW, Zhang YT, Trevathan E, Qian Z, Boyd R, Elliott M, Lin LZ, Gui ZH, Liu RQ, Hu LW, Dong GH. Chlorinated paraffins exposure in particulate matter increase the risk of attention-deficit/hyperactivity disorder symptoms in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126120. [PMID: 40157481 DOI: 10.1016/j.envpol.2025.126120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Chlorinated paraffins (CPs), widely distributed environmental and industrial pollutants, have been linked to impaired neurodevelopment. However, evidence for this potential association between CP exposure and the risk of Attention-Deficit Hyperactivity Disorder (ADHD) and subtypes is lacking. To investigate this possible association between chlorinated paraffins exposure and the risk of ADHD and its subtypes in children and adolescents, a large cross-sectional study was conducted in the Pearl River Delta (PRD) in China involving 122,965 completed questionnaires. Particle matters <2.5 μm (PM2.5) samples and PM2.5-bound short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in the PRD were collected and detected. Generalized linear mixed models (GLMM) and restricted cubic spline (RCS) models were used to estimate the association between CP exposure and ADHD symptoms and subtypes, as well as dose-response relationships. Quantile g-computation models (qgcomp) were performed to explore further the joint effects of a mixture of CPs exposure on ADHD symptoms and subtypes. A total of 7139 participants (5.8 %) were diagnosed with ADHD. GLMM analysis found that an interquartile range (IQR) increase in ∑CP concentrations was associated with the risk of ADHD after adjusting the covariates, and the odds ratio and corresponding 95 % confidence interval was 1.57 (1.54, 1.61). The RCS model showed a monotone-increased dose-response association between CP exposure and ADHD symptoms. Qgcomp model analysis indicated that SCCPs and MCCPs were the major contributors to the risk of ADHD symptoms. Furthermore, girls exhibited a significantly higher risk of developing ADHD and it subtypes compared to boys following exposure to CPs. Above all, our findings suggest that PM2.5-bound CP exposure may increase the risk of ADHD symptoms and subtypes, and provide novel evidence for atmospheric environmental risk factors for ADHD.
Collapse
Affiliation(s)
- Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Edwin Trevathan
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Ri'enna Boyd
- George Warren Brown School of Social Work, Washington University in Saint Louis, Saint Louis, MO 63105, USA
| | - Michael Elliott
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
21
|
Yang XY, Wang HQ, Wang ZZ, Chen NH. Linking depression and neuroinflammation: Crosstalk between glial cells. Eur J Pharmacol 2025; 995:177408. [PMID: 39984011 DOI: 10.1016/j.ejphar.2025.177408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
The inflammatory hypothesis is one of the more widely accepted pathogenesis of depression. Glia plays an important immunomodulatory role in neuroinflammation, mediating interactions between the immune system and the central nervous system (CNS). Glial cell-driven neuroinflammation is not only an important pathological change in depression, but also a potential therapeutic target. This review discusses the association between depression and glial cell-induced neuroinflammation and elucidates the role of glial cell crosstalk in neuroinflammation. Firstly, we focus on the role of glial cells in neuroinflammation in depression and glial cell interactions; secondly, we categorize changes in different glial cells in animal models of depression and depressed patients, focusing on how glial cells mediate inflammatory responses and exacerbate depressive symptoms; Thirdly, we review how conventional and novel antidepressants affect the phenotype and function of glial cells, thereby exerting anti-inflammatory activity; finally, we discuss the role of the gut-brain axis in glial cell function and depression, and objectively analyze the problems that remain in current antidepressant therapy. This review aims to provide an objective analysis of how glial cell cross-talk may mediate neuroinflammation and thereby influence pathologic progression of depression. It is concluded that a novel therapeutic strategy may be to ameliorate glial cell-mediated inflammatory responses.
Collapse
Affiliation(s)
- Xue-Ying Yang
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Qin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China.
| |
Collapse
|
22
|
Lu P, Bai X, Guo L, Tuoheti K, Zhan S, Liu T. M1 macrophage inhibits ferroptosis in Pseudomonas aeruginosa-induced kidney epithelial cell injury through the iNOS/ NO pathway without thiol. Front Cell Dev Biol 2025; 13:1597160. [PMID: 40438143 PMCID: PMC12116577 DOI: 10.3389/fcell.2025.1597160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
Instruction Pseudomonas aeruginosa (PA) is one of the common pathogens of urinary tract infection. It can lead to urosepsis and renal damage. However, the mechanism by which P. aeruginosa affects epithelial cells is not clear. Methods HK2 cells were treated with extracted PA supernatant (PA.sup). Different pathway inhibitors were added, and similar treatments were applied to HK2 cells co-cultured with macrophages. Cell viability, ferroptosis-related markers, and lipid peroxidation levels were measured. Results We found that PA induced lipid peroxidation using its specially secreted 15-lipoxygenase (ploxA), thereby triggering ferroptosis in epithelial cells. And PA can also damage the GPx4/GSH defense system of epithelial cells. This effect is not through the proteasome pathway but through activating lysosomal chaperone-mediated autophagy (CMA) to reduce the host's GPx4 expression. Then macrophages inhibited lipid peroxidation and protected cells lacking GPx4/GSH through iNOS/NO•. Discussion We demonstrated that NO• produced by macrophages can remotely prevent PA-induced ferroptosis of renal epithelial cells. When iNOS, which is responsible for NO• production, is pharmacologically inhibited, the antiferroptotic effect of NO• is reduced. In conclusion, our study reveals an intercellular mechanism for inhibiting ferroptosis, which may provide a new strategy for the host to combat P. aeruginosa -induced ferroptosis.
Collapse
Affiliation(s)
- Peixiang Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kuerban Tuoheti
- Department of Urology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shanzhi Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Wang T, Liu X, Feng X, Zhang Z, Lv R, Feng W, Zhou Y, Liao X, Tang H, Xu M. GPX4 degradation contributes to heat stress-induced liver injury via chaperone-mediated autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119988. [PMID: 40368268 DOI: 10.1016/j.bbamcr.2025.119988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/19/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Heat stress (HS) is a significant health concern that adversely affects both human and animal health, particularly impacting liver function due to its central metabolic role. This study investigated the mechanisms underlying HS-induced liver injury, focusing on the role of ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation and cellular iron accumulation. Using mouse and cellular HS models, the results demonstrated that HS induced liver injury through ferroptosis, as evidenced by increased levels of malondialdehyde (MDA), oxidized glutathione (GSSG), and iron, alongside decreased glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) effectively mitigated HS-induced liver damage, reducing oxidative stress and restoring GPX4 levels. Furthermore, HS promoted the lysosomal degradation of GPX4 via the chaperone-mediated autophagy (CMA) pathway, which was regulated by heat shock cognate protein 70 (HSC70) and lysosome-associated membrane protein 2A (LAMP2A). Knockdown of LAMP2A in hepatocytes significantly suppressed HS-induced GPX4 degradation, confirming the critical role of CMA in this process. Inhibition of CMA using Apoptozole, an HSC70 inhibitor, or Bafilomycin A1 (Baf-A1), a lysosomal inhibitor, further attenuated HS-induced ferroptosis and liver injury. These findings highlight the critical role of CMA-mediated GPX4 degradation in HS-induced ferroptosis and liver injury, providing potential therapeutic targets for mitigating HS-related liver damage.
Collapse
Affiliation(s)
- Ting Wang
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Liu
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinyu Feng
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenyu Zhang
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ruiyi Lv
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenhong Feng
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yukun Zhou
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueyu Liao
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoming Tang
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ming Xu
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Li B, Ming R. Knockdown of YTHDF2 mitigates OGD-induced microglial inflammation by preventing m 6A-dependent PARP14 degradation. J Neuroimmunol 2025; 405:578636. [PMID: 40383033 DOI: 10.1016/j.jneuroim.2025.578636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/26/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Neuroinflammation is a key pathological factor in ischemic brain diseases, contributing to the initiation and progression of these conditions. The function of the m6A reader protein YTHDF2 in regulating neuroinflammation across various neurological contexts. To elucidate the role and regulatory mechanism of YTHDF2 in inflammation under ischemic-like conditions, this study employed an in vitro model, exposing microglia to oxygen-glucose deprivation (OGD) to mimic the stress environment. And through YTHDF2 knockdown, we investigated its effect on OGD-induced inflammation. The results demonstrated that YTHDF2 knockdown significantly suppressed the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in OGD-treated microglia. Mechanistic analysis revealed that YTHDF2 interacts with Parp14 mRNA under OGD conditions, reducing its RNA stability via m6A-dependent mechanisms, which in turn decreases Poly (ADP-ribose) polymerase family, member 14 (PARP14) protein expression. Additionally, YTHDF2 knockdown after OGD promoted a PARP14-driven phenotypic switch in microglia from the pro-inflammatory M1 state to the anti-inflammatory M2 state, resulting in diminished inflammation. These findings offer new insights into the regulatory function of YTHDF2 in OGD-induced microglial inflammation and propose m6A modification as a potential therapeutic target for alleviating neuroinflammation.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China..
| | - Ruixi Ming
- Institute of Comparative Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
25
|
Zhang Z, Tan R, Xiong Z, Feng Y, Chen L. Dysregulation of autophagy during photoaging reduce oxidative stress and inflammatory damage caused by UV. Front Pharmacol 2025; 16:1562845. [PMID: 40421222 PMCID: PMC12104874 DOI: 10.3389/fphar.2025.1562845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Photoaging, the premature aging of skin due to chronic ultraviolet (UV) exposure, is a growing concern in dermatology and cosmetic science. While UV radiation is known to induce DNA damage, oxidative stress, and inflammation in skin cells, recent research unveils a promising countermeasure: autophagy. This review explores the intricate relationship between autophagy and photoaging, highlighting how this cellular recycling process can mitigate UV-induced damage. We begin by examining the differential impacts of UVA and UVB radiation on skin cells and the role of oxidative stress in accelerating photoaging. Next, we delve into the molecular mechanisms of autophagy, including its various forms and regulatory pathways. Central to this review is the discussion of autophagy's protective functions, such as the clearance of damaged organelles and proteins, and its role in maintaining genomic integrity. Furthermore, we address the current challenges in harnessing autophagy for therapeutic purposes, including the need for selective autophagy inducers and a deeper understanding of its context-dependent effects. By synthesizing recent advancements and proposing future research directions, this review underscores the potential of autophagy modulation as a novel strategy to prevent and treat photoaging. This comprehensive analysis aims to inspire further investigation into autophagy-based interventions, offering new hope for preserving skin health in the face of environmental stressors.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Run Tan
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zuanyu Xiong
- Department of Medical Aesthetics, Nanbu People‘s Hospital, Nanchong, China
| | - Yanyan Feng
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
26
|
Do SD, Rhee JS. Exposure to short-chain chlorinated paraffins induces mortality in marine medaka larvae through neurotoxicity and oxidative stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138531. [PMID: 40354700 DOI: 10.1016/j.jhazmat.2025.138531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Despite the strict regulation of short-chain chlorinated paraffins (SCCPs), they continue to be detected in marine environments and organisms worldwide. However, their toxicity to marine fish has been scarcely studied. In this study, the effect of different concentrations of SCCPs (0-1000 μg L⁻1) on the early life stages of the marine medaka Oryzias melastigma was evaluated. The impacts of SCCPs on the embryonic stage of O. melastigma were considered negligible, while significant growth retardation was observed during the larval stages after 13 days of exposure, with the median lethal concentration (LC50) determined as 227 μg L⁻1. Exposure to SCCPs for 4 days resulted in melanosome dispersion, immobilization, disruption of feeding activity, and an increase in acetylcholinesterase activity, suggesting that SCCPs induce neurotoxicity in the cholinergic system, leading to mortality through starvation. Dose-dependent DNA damage, fluctuations in mitochondrial respiration, and increases in intracellular reactive oxygen species content and apoptosis were observed after 4 days of exposure, indicating strong induction of oxidative stress. In addition, potential endocrine disruption was observed, as SCCPs significantly decreased cortisol content and modulated the mRNA expressions of genes involved in the hypothalamic-pituitary-interrenal axis. Taken together, exposure to SCCPs resulted in mortality and growth retardation, primarily through neurotoxicity and oxidative stress in marine medaka larvae.
Collapse
Affiliation(s)
- Seong Duk Do
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
27
|
Silva JP, Corrales WA, Catalán J, Olave FA, González-Mori PI, Alarcón M, Guarnieri T, Aliaga E, Maracaja-Coutinho V, Fiedler JL. Comprehensive Analysis of circRNA Expression and circRNA-miRNA-mRNA Networks in the Ventral Hippocampus of the Rat: Impact of Chronic Stress and Biological Sex. ACS Chem Neurosci 2025; 16:1720-1737. [PMID: 40257053 DOI: 10.1021/acschemneuro.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
This study provides new insights into how sex and chronic stress influence circRNA expression in the rat ventral hippocampus, a region critical for emotional processing. We identified 206 sex-biased circRNAs and 194 stress-responsive circRNAs, highlighting distinct expression profiles. Parental genes of male circRNAs were primarily enriched in synaptic transmission pathways, while those of female circRNAs were associated with axon guidance, emphasizing sex-specific molecular differences. Chronic stress also triggered miRNA changes unique to each sex, revealing divergent regulatory mechanisms. The identified circRNA-miRNA-mRNA axes, modulated under stress, appear to regulate the translation of numerous potential mRNA targets. In males, stress positively regulated neuroprotective pathways, suggesting a compensatory response to mitigate stress-induced damage. In contrast, females exhibited a broader translational network that favored mRNA expression without distinct pathway-specific actions. However, the smaller repressed network in females─characterized by a higher circRNA-to-miRNA and mRNA ratio─may indicate a more selective and targeted regulatory mechanism, with many interactions linked to anti-inflammatory processes. Coexpression analysis revealed two male-specific modules with altered activity under stress. These were associated with processes such as reticulum stress and actin dynamics, the latter linked to dendritic spine loss and depressive-like behaviors, extensively documented in chronically stressed male rats. Conversely, females displayed an activated stress-responsive module, promoting axon guidance and long-term potentiation, which may contribute to improved cognitive outcomes. Among the identified circRNAs, rno-Gabrg3_0001 emerged as stress-sensitive in males. This circRNA exhibited predicted miRNA binding sites and interactions with proteins involved in vesicle trafficking, forming part of a highly active module enriched in genes related to ion transport and membrane protein localization. Overall, these findings uncover sex-dependent regulatory mechanisms driving transcriptomic changes under chronic stress, deepening our understanding of ventral hippocampal molecular functions. Investigating these regulatory networks, which differentially affect the male and female ventral hippocampus, could inform the development of sex-specific therapeutic strategies for stress-related disorders.
Collapse
Affiliation(s)
- Juan Pablo Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Wladimir A Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Julia Catalán
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Felipe A Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Pablo I González-Mori
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Matías Alarcón
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Tatiana Guarnieri
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Esteban Aliaga
- School of Medícal Technology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca 3460000, Chile
| | - Vinicius Maracaja-Coutinho
- Unidad de Genómica Avanzada─UGA, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Advanced Center for Chronic Diseases─ACCDiS, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática─CM2B2, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia 8380492, Santiago, Chile
| |
Collapse
|
28
|
Li J, Liu M, Fan M, Tian Q, Wang J, Du Y, Yu J, Li X, Yang L, Zhao M, Gao Y, Sun T. Nuciferine ameliorates blood-brain barrier disruption post-ischemic stroke via inhibiting the JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156829. [PMID: 40347924 DOI: 10.1016/j.phymed.2025.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Ischemic stroke frequently results in the compromise of the blood-brain barrier (BBB), a pathological occurrence strongly linked to the impairment of cerebral microvascular endothelial cells and the disintegration of tight junction (TJ) proteins. Nuciferine, a naturally occurring aporphine alkaloid extracted from the leaves of Nelumbo nucifera, exhibits favorable pharmacokinetic characteristics, including the capacity to traverse the BBB, and has demonstrated neuroprotective potential in IS models. Nevertheless, the specific mechanisms by which nuciferine modulates BBB integrity following ischemia, and the molecular pathways involved, remain inadequately understood. PURPOSE This study probed into the protective function of nuciferine against BBB disruption following IS and the molecular pathways involved in its therapeutic action. METHODS In vivo, a photothrombotic focal cerebral ischemia mouse model was established and evaluated through neurological scoring, blood flow measurement, and 2,3,5-triphenyltetrazolium chloride staining. BBB disruption was assessed utilizing Evans Blue dye and endogenous immunoglobulin G extravasation. nuciferine (10, 20, 40 mg/kg, intragastric administration, daily for 7 days) was administered post-ischemia. In vitro, oxygen-glucose deprivation (OGD, 2 h)-induced bEnd.3 cell model was employed and treated with nuciferine (10, 20, and 40 μM, 24 h) to uncover the related mechanisms. RESULTS Our findings revealed that nuciferine effectively preserved BBB integrity and prevented cerebral edema post-photothrombotic. Mechanistically, nuciferine restored the expression of ZO-1, occludin, and claudin-5, both in photothrombotic and OGD models. Meanwhile, it showed the protective effect on OGD-induced endothelial cells injury by inhibiting apoptosis and mitochondrial dysfunction. Importantly, nuciferine targeted Janus kinase 2 and suppressed p-JAK2 and p-STAT3 in IS model. CONCLUSIONS Our findings present novel evidence that nuciferine improves the BBB integrity following IS through blocking the JAK2/STAT3 pathway. Through demonstrating the targeted suppression of JAK2 activation by nuciferine, this work contributes to a more nuanced understanding of how this pathway influences endothelial barrier function in ischemic conditions. Our results offer a conceptual basis for the continued exploration of Nuciferine as a potential therapeutic agent to address BBB dysfunction in the post-stroke setting.
Collapse
Affiliation(s)
- Jiamin Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minglei Fan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Qinqin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jian Wang
- Department of Neurosurgery, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yaya Du
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
29
|
Dantio CD, Fasoranti DO, Teng C, Li X. Seizures in brain tumors: pathogenesis, risk factors and management (Review). Int J Mol Med 2025; 55:82. [PMID: 40116082 PMCID: PMC11964414 DOI: 10.3892/ijmm.2025.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Seizures in the context of brain tumors are a relatively common symptom, with higher occurrence rates observed in glioneuronal tumors and gliomas. It is a serious burden that can have a significant impact on the quality of life (QoL) of patients and influence the disease's prognosis. Brain tumor‑related epilepsy (BTRE) is a challenging entity because the pathophysiological mechanisms are not fully understood yet. Nonetheless, neuroinflammation is considered to play a pivotal role. Next to neuroinflammation, findings on the pathogenesis of BTRE have established that certain genetic mutations are involved, of which the most known would be IDH mutations in gliomas. Others discussed more thoroughly in the present review include genes such as PTEN, TP53, IGSF3, and these findings all provide fresh and fascinating insights into the pathogenesis of BTRE. Treatment for BTRE presents unique challenges, mainly related to burdens of polytherapy, debated necessity of anti‑epileptic prophylaxis, and overall impact on the QoL. In fact, there are no established anti‑seizure medications (ASMs) of choice for BTRE, nor is there any protocol to guide the use of these medications at every step of disease progression. Treatment strategies aimed at the tumor, that is surgical procedures, radio‑ and chemotherapy appear to influence seizure control. Conversely, some ASMs have also shown antitumor properties. The present review summarizes and retrospectively analyzes the literature on the pathogenesis and management of BTRE to provide an updated comprehensive understanding. Furthermore, the challenges and opportunities for developing future therapies aimed at BTRE are discussed.
Collapse
Affiliation(s)
- Cyrille D. Dantio
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Deborah Oluwatosin Fasoranti
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Xian Z, Tian L, Yao Z, Cao L, Jia Z, Li G. Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression. Mol Neurobiol 2025; 62:5484-5500. [PMID: 39551913 DOI: 10.1007/s12035-024-04614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common post-transcriptional RNA modifications, which plays a critical role in various bioprocesses such as immunological processes, stress response, cell self-renewal, and proliferation. The abnormal expression of m6A-related proteins may occur in the central nervous system, affecting neurogenesis, synapse formation, brain development, learning and memory, etc. Accumulating evidence is emerging that dysregulation of m6A contributes to the initiation and progression of psychiatric disorders including depression. Until now, the specific pathogenesis of depression has not been comprehensively clarified, and further investigations are warranted. Stress, inflammation, neurogenesis, and synaptic plasticity have been implicated as possible pathophysiological mechanisms underlying depression, in which m6A is extensively involved. Considering the extensive connections between depression and neurofunction and the critical role of m6A in regulating neurological function, it has been increasingly proposed that m6A may have an important role in the pathogenesis of depression; however, the results and the specific molecular mechanisms of how m6A methylation is involved in major depressive disorder (MDD) were varied and not fully understood. In this review, we describe the underlying molecular mechanisms between m6A and depression from several aspects including inflammation, stress, neuroplasticity including neurogenesis, and brain structure, which contain the interactions of m6A with cytokines, the HPA axis, BDNF, and other biological molecules or mechanisms in detail. Finally, we summarized the perspectives for the improved understanding of the pathogenesis of depression and the development of more effective treatment approaches for this disorder.
Collapse
Affiliation(s)
- Zhuohang Xian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liangjing Tian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhixuan Yao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhilin Jia
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Fu YQ, Zheng Y, Li ZL, Huang XY, Wang XW, Cui MY, Zhang YQ, Gao BR, Zhang C, Fan XX, Jian Y, Chen BH. SARM1 deletion inhibits astrogliosis and BBB damage through Jagged-1/Notch-1/NF-κB signaling to improve neurological function after ischemic stroke. Neurobiol Dis 2025; 208:106873. [PMID: 40089164 DOI: 10.1016/j.nbd.2025.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
Reactive astrogliosis is a critical process in the development of ischemic stroke. However, the precise mechanism by which reactive astrogliosis changes the pathogenesis of ischemic stroke remains elusive. Sterile alpha and TIR motif-containing 1 protein (SARM1) plays a key role in axonal degeneration and is involved in different cell death programs that regulate neuronal survival. The present study investigated the role of SARM1 in regulating reactive astrogliosis and neurological function after stroke in whole-body SARM1 knockout (SARM1-/-) mice. SARM1-/- mice showed significantly smaller infarction, slighter apoptosis, and fewer neurological function deficits 1-7 days after ischemic injury. Immunohistochemistry, western blot, and real-time PCR analyses revealed that compared with the wild-type (WT) mice, SARM1-/- mice exhibited reduced astrocytic proliferation, increased anti-inflammatory astrocytes, decreased glial scar formation in the infarct zone on day 7 after ischemic injury. SARM1 deletion also suppressed cerebral microvascular damage and blood-brain barrier (BBB) injury in ischemic brains. Mechanistically, SARM1 deletion inhibited the stroke-triggered activation of NF-κB signaling and decreased the expression of Jagged-1 and NICD in astrocytes. Overall, these findings provide the first line of evidence for a causative role of SARM1 protein in ischemia-induced reactive astrogliosis and ischemic neurovascular damage.
Collapse
Affiliation(s)
- Yan Qiong Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Yu Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Zhuo Li Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xin Yi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xiao Wan Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Mai Yin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, PR China
| | - Yun Qi Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Bing Rui Gao
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang 110000, Liaoning, PR China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xiao Xiao Fan
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China.
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, PR China.
| | - Bai Hui Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China.
| |
Collapse
|
32
|
Zuo G, Li M, Guo X, Wang L, Yao Y, Huang JA, Liu Z, Lin Y. Fu brick tea supplementation ameliorates non-alcoholic fatty liver disease and associated endotoxemia via maintaining intestinal homeostasis and remodeling hepatic immune microenvironment. Food Res Int 2025; 209:116207. [PMID: 40253128 DOI: 10.1016/j.foodres.2025.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent disorder of excessive fat accumulation and inflammation in the liver that currently lacks effective therapeutic interventions. Fu brick tea (FBT) has been shown to ameliorate liver damage and modulate gut microbiota dysbiosis in NAFLD, but the potential mechanisms have not been comprehensively elucidated, especailly whether its hepatoprotective effects are determined to depend on the homeostasis of gut microbiota, intestinal barrier function and hepatic immune microenvironment. In this study, our results further demonstrated that FBT not only alleviated NAFLD symptoms and related endotoxemia in high-fat diet (HFD)-fed rats, but also attenuated intestinal barrier dysfunction and associated inflammation, also confirmed in Caco-2 cell experiment. Meanwhile, FBT intervention significantly relieved HFD-induced gut microbiota dysbiosis, characterized by increased diversity and composition, particularly facilitating beneficial microbes, including short chain fatty acids (SCFAs) and bile acids producers, such as Blautia and Fusicatenibacter, and inhibiting Gram-negative bacteria, such as Prevotella_9 and Phascolarctobacterium. Also, the gut microbiota-dependent hepatoprotective effects of FBT were verified by fecal microbiota transplantation (FMT) experiment. Thus, the beneficial moulation of gut microbiota altered by FBT in levels of SCFAs, bile acids and lipopolysaccharides, intestinal barrier function and TLR4/NF-κB pathway contributed to alleviate liver steatosis and inflammation. Additionally, the hepatoprotective effects of FBT was further demonstrated by suppressing Kupffer cell activation and regulating lipid metabolism using an ex vivo model of liver organoid. Therefore, FBT supplementation can maintain intenstinal homeostasis and remodel hepatic immune microenvironment to prevent NAFLD and associated endotoxemia.
Collapse
Affiliation(s)
- Gaolong Zuo
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Menghua Li
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaoli Guo
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Ling Wang
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Yanyan Yao
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
33
|
Zhang L, Li X, Gao H, Chang W, Li P. Gut microbiota-lncRNA/circRNA crosstalk: implications for different diseases. Crit Rev Microbiol 2025; 51:499-513. [PMID: 38967384 DOI: 10.1080/1040841x.2024.2375516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The gut microbiota features an abundance of diverse microorganisms and represents an important component of human physiology and metabolic homeostasis, indicating their roles in a wide array of physiological and pathological processes in the host. Maintaining balance in the gut microbiota is critical for normal functionality as microbial dysbiosis can lead to the occurrence and development of diseases through various mechanisms. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are non-coding RNAs that perform important regulatory functions for many processes. Furthermore, the gut microbiota and lncRNAs/circRNAs are known to interact in a range of both physiological and pathological activities. In this article, we review existing research relevant to the interaction between the gut microbiota and lncRNAs/circRNAs and investigate the role of their crosstalk in the pathogenesis of different diseases. Studies have shown that, the gut microbiota can target lncRNAs ENO1-IT1, BFAL1, and LINC00152 to regulate colorectal cancer development via various signaling pathways. In addition, the gut microbiota can influence mental diseases and lung tumor metastasis by modulating circRNAs such as circNF1-419, circ_0001239, circHIPK2 and mmu_circ_0000730. These findings provide a theoretical basis for disease prevention and treatment and suggest that gut microbiota-lncRNA/circRNA crosstalk has high clinical value.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Yuan P, Li H, Zhang H, Fan S, Dai Y, Jia J, Shen J, Zhang Y, Li H, Sun G, Liu X, Tian Y, Kang X, Zhao Y, Li G. miR-200b-3p affects the proliferation and differentiation of chicken preadipocytes by modulating SESN1 expression through competition with CircADGRF5. Poult Sci 2025; 104:105068. [PMID: 40132317 PMCID: PMC11984591 DOI: 10.1016/j.psj.2025.105068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Excessive deposition of abdominal fat in chickens has a significant impact on the poultry industry, and there is increasing evidence that non-coding RNAs play a crucial role in fat development. In our previous RNA-seq study, miR-200b-3p was found to be differentially expressed during different developmental periods of fat in Gushi chickens. In this study, we report that miR-200b-3p can directly bind to the 3'UTR region of SESN1 to promote proliferation and inhibit differentiation of preadipocytes. Overexpression of SESN1 inhibits preadipocyte proliferation and promotes differentiation. In contrast, inhibition of SESN1 resulted in the opposite outcome. Interestingly, we also identified the circADGRF5/miR-200b-3p/SESN1 ceRNA network involved in the developmental process of preadipocytes. Furthermore, we validated a novel circRNA, circADGRF5, in this report and found that it regulates SESN1 expression through competitive binding with miR-200b-3p. In conclusion, these data suggest that miR-200b-3p directly targets SESN1 to regulate the proliferation and differentiation of preadipocytes, and circADGRF5 regulates SESN1 expression through competitive binding with miR-200b-3p.
Collapse
Affiliation(s)
- Pengtao Yuan
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Hongtai Li
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Hongyuan Zhang
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Shengxin Fan
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yaqi Dai
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Jiyu Jia
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Jingqi Shen
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yanhua Zhang
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Hong Li
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Guirong Sun
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Xiaojun Liu
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yadong Tian
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Xiangtao Kang
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, 450001, PR China.
| | - Guoxi Li
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| |
Collapse
|
35
|
Jia Y, Xu L, Leng S, Sun Y, Huang X, Wang Y, Ren H, Li G, Bai Y, Zhang Z, Han B, Shen L, Ju M, Chen L, Yao H. Nose-to-Brain Delivery of Circular RNA SCMH1-Loaded Lipid Nanoparticles for Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500598. [PMID: 40143778 DOI: 10.1002/adma.202500598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Ischemic stroke represents one of the leading cerebrovascular diseases with a high rate of mortality and disability globally. To date, there are no effective clinical drugs available to improve long-term outcomes for post-stroke patients. A novel nucleic acid agent circSCMH1 which can promote sensorimotor function recovery in rodent and nonhuman primate animal stroke models has been found. However, there are still delivery challenges to overcome for its clinical implementation. Besides, its effects on post-stroke cognitive functions remain unexplored. Herein, lipid nanoparticle circSCMH1@LNP1 is established to deliver circSCMH1 and explore its therapeutic efficacy comprehensively. Distribution experiments demonstrate that intranasal administration of circSCMH1@LNP1 significantly increases circSCMH1 distribution in the peri-infarct region and reduces its non-specific accumulation in other organs compared to intravenous injection. Therapeutic results indicate that circSCMH1@LNP1 promotes synaptic plasticity, vascular repair, neuroinflammation relief, and myelin sheath formation, thereby achieving enhanced sensorimotor and cognitive function recovery in post-stroke mice. In conclusion, this research presents a simple and effective LNP system for efficient delivery of circSCMH1 via intranasal administration to repair post-stroke brain injury. It is envisioned that this study may bridge a crucial gap between basic research and translational application, paving the way for clinical implementation of novel circSCMH1 in post-stroke patient management.
Collapse
Affiliation(s)
- Yanpeng Jia
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Lian Xu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Shuo Leng
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Yan Sun
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Xinxin Huang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Guanlong Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Zhongkun Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Lehui Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China
| |
Collapse
|
36
|
Yu X, Yang T, Wu D, Xu C, Li Z, Sun A, Gao S, Li H, Fan Z, Huang R. PARP14 inhibits microglial activation via NNT to alleviate depressive-like behaviors in mice. Brain Behav Immun 2025; 126:235-246. [PMID: 39978699 DOI: 10.1016/j.bbi.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Microglial inflammation has been implicated in the pathophysiology of major depressive disorder; however, the underlying biological mechanisms remain inadequately understood. Consequently, we conducted a screening of the Poly ADP-ribose (PAR) polymerase (PARP) family expression in the hippocampus of chronic unpredictable stress (CUS) mouse models and investigated the specific role of PARP14 in microglial inflammation and its association with depression. Here, this study demonstrated the elevated PARP14 expression in the hippocampus of CUS mice. The knockdown of PARP14 in the hippocampus did not mitigate depressive-like behaviors in mice, whereas overexpression of PARP14 significantly mitigated these behaviors. Furthermore, PARP14 was abundant in microglia, and microglial-targeted PARP14 overexpression significantly alleviated depressive-behaviors in CUS, reduced microglial activation, and inhibited the central inflammatory responses. Mechanistically, PARP14 positively regulated nicotinamide nucleotide transhydrogenase (NNT) expression in microglia, and the inflammatory response of microglia induced by PARP14 knockdown was suppressed through NNT overexpression. Additionally, deficiency in NNT led to an accumulation of reactive oxygen species (ROS) and subsequent microglial inflammation, which was effectively inhibited by the ROS inhibitor N-Acetylcysteine. These findings suggest that PARP14 alleviates depressive-like behaviors in mice by inhibiting microglial activation via NTT-mediated clearance of ROS.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Tingting Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Di Wu
- Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Chenxue Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhuoran Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ao Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shulei Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Heng Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Fan
- Deparment of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Rongrong Huang
- Deparment of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
37
|
Wang C, Yang G, Huang J, Tian Y, Leung CK, Miao L, Wang H, Li Y, Huang Y, Teng H, Liu L, Li J, Zeng X. Methamphetamine and HIV-1 Tat Protein Synergistically Induce Endoplasmic Reticulum Stress to Promote TRIM13-Mediated Neuronal Autophagy. Mol Neurobiol 2025; 62:6150-6165. [PMID: 39714526 DOI: 10.1007/s12035-024-04667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Co-exposure to methamphetamine (METH) abuse and HIV infection exacerbates central nervous system damage. However, the underlying mechanisms of this process remain poorly understood. This study aims to explore the roles of neuronal autophagy in the synergistic damage to the central nervous system caused by METH and HIV proteins. Models of METH and HIV-1 Tat protein (Tat) co-exposure were established using tree shrews, primary neurons, and SH-SY5Y cells. Co-exposure to METH and Tat significantly increased the distance traveled, mean velocity, and stereotyped behaviors of tree shrews in the open field test. Western blot analysis revealed that co-exposure to METH and Tat markedly increased the expression of endoplasmic reticulum stress (ERS)-associated proteins (p-ERK, IRE1, ATF6, and Bip) and autophagy markers (ATG7, ATG5, Beclin1, and LC3II). Conversely, co-exposure to METH and Tat significantly downregulated the expressions of p62 and TRIM13. Immunofluorescence staining demonstrated that pretreatment with the ERS inhibitor 4-PBA or siRNA-TRIM13 rescued the abnormal behaviors induced by METH and Tat co-exposure in tree shrews and restored the expression of ERS-related and autophagy-related proteins. Additionally, TRIM13 was found to interact with autophagy-related proteins, including p62, Beclin1, and LC3II by immunoprecipitation assays. Our findings suggest for the first time that METH and Tat synergistically induce neuronal autophagy through ERS pathways, with TRIM13 playing a pivotal regulatory role in this process.
Collapse
Affiliation(s)
- Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Yizhen Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China
| | - Liu Liu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.
| |
Collapse
|
38
|
Nan J, Xia C, Zhang J, Xie Y, Shi S, Yang W, Yu M, Chen Y, Zhang J. Gadolinium-ceria hybrid system enables synergistic alleviation of oxidative stress and metabolic thrombo-inflammation for efficient ischemic stroke treatment. Biomaterials 2025; 322:123379. [PMID: 40318605 DOI: 10.1016/j.biomaterials.2025.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Ischemic stroke is a primary cause of global death and long-term disability. However, current neuroprotective drugs are far from satisfactory in clinical practice. Compelling evidence has emerged that targeting conjoined multiple factors can bring comprehensive treatment. Herein, we report an image-guided gadolinium-ceria nanoparticle-immobilized small therapeutic molecules (ML265) hybrid system for targeted mitigation of oxidative stress and disruption of metabolic reprogramming in cerebral thrombo-inflammation post ischemic stroke. Sub-10 nm hybrid nanotherapeutics sufficiently extravasate through the blood brain barrier (BBB) to pathological brain area. ML265 effectively obstructs the dimerization of metabolic enzyme (pyruvate kinase muscle 2, PKM2) via NF-κB signaling pathway, thus resulting in a significant reduction in the infiltration of neutrophils, monocytes and macrophages companied with declined production of inflammatory cytokines. Concomitantly, the incorporation of gadolinium into ceria nanoparticles allows enhanced antioxidant capability in alleviation of overproduced radicals, and also confers magnetic resonance imaging (MRI) of the injured brain tissue. The therapy is shown to substantially improve the brain recovery in murine ischemic stroke model. Complemented with great tolerance, this strategy offers a safe and effective strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Jin Nan
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China; National Center for Neurological Disorders, Shanghai, 200040, PR China
| | - Chundongqiu Xia
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China; National Center for Neurological Disorders, Shanghai, 200040, PR China
| | - Jingyi Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China; National Center for Neurological Disorders, Shanghai, 200040, PR China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Shuyu Shi
- Shanghai Jiao Tong University, Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai, 200127, PR China
| | - Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China; National Center for Neurological Disorders, Shanghai, 200040, PR China.
| |
Collapse
|
39
|
Han X, Wang D, Chen L, Song H, Zheng X, Zhang X, Zhao S, Liang J, Xu T, Hu Z, Sun L. MSC transplantation ameliorates depression in lupus by suppressing Th1 cell-shaped synaptic stripping. JCI Insight 2025; 10:e181885. [PMID: 40048256 PMCID: PMC12016924 DOI: 10.1172/jci.insight.181885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, can cause psychiatric disorders, particularly depression, via immune activation. Human umbilical cord mesenchymal stromal cell (hUCMSC) transplantation (MSCT) has been shown to ameliorate immune dysfunction in SLE by inducing immune tolerance. However, whether MSCT can relieve the depressive symptoms in SLE remains incompletely understood. Here, we demonstrate that MSCT relieved early-onset depression-like behavior in both genetically lupus-prone (MRL/lpr) and pristane-induced lupus mice by rescuing impaired hippocampal synaptic connectivity. Transplanted hUCMSCs targeted Th1 cell-derived IFN-γ to inhibit neuronal JAK/STAT1 signaling and downstream CCL8 expression, reducing phagocytic microglia apposition to alleviate synaptic engulfment and neurological dysfunction in young (8-week-old) lupus mice. Systemic delivery of exogenous IFN-γ blunted MSCT-mediated alleviation of synaptic loss and depressive behavior in lupus mice, suggesting that the IFN-γ/CCL8 axis may be an effective therapeutic target and that MSCT is a potential therapy for lupus-related depression. In summary, transplanted hUCMSCs can target systemic immunity to ameliorate psychiatric disorders by rescuing synaptic loss, highlighting the active role of neurons as intermediaries between systemic immunity and microglia in this process.
Collapse
Affiliation(s)
- Xiaojuan Han
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Chen
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiulan Zheng
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Xin Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shengnan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
40
|
Jiang H, Zhou Y, Zhang W, Li H, Ma W, Ji X, Zhou C. Molecular mechanisms of endothelial-mesenchymal transition and its pathophysiological feature in cerebrovascular disease. Cell Biosci 2025; 15:49. [PMID: 40253404 PMCID: PMC12008988 DOI: 10.1186/s13578-025-01393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
The phenomenon of endothelial-mesenchymal transition (EndMT), a distinct subtype of epithelial-mesenchymal transition (EMT), has garnered significant attention from scholars. EndMT refers to the process whereby endothelial cells (ECs) transform into mesenchymal cells in response to various stimuli, resulting in the loss of their original characteristics. This process has diverse implications in both physiological and pathological states. Under physiological conditions, EndMT plays a crucial role in the development of the cardiovascular system. Conversely, under pathological conditions, EndMT has been identified as a pivotal factor in the development of cardiovascular diseases. Nonetheless, a comprehensive overview of EndMT in cerebrovascular disease is currently lacking. Here, we discuss the heterogeneity of EndMT occurrence and the regulatory factors involved in its development and analyze the feasibility of EndMT as a therapeutic target, aiming to provide a solid theoretical foundation and evidence to address diseases caused by pathological EndMT.
Collapse
Affiliation(s)
- Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
41
|
Liu H, Li X, Wang G, Ren Y, Fan Z, Tang X. Circ_0000190 inhibits the progression of triple negative breast cancer by regulating miR-301a/MEOX2 pathway. Am J Cancer Res 2025; 15:1559-1577. [PMID: 40371159 PMCID: PMC12070081 DOI: 10.62347/amti5713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Circular RNA (circRNA) and microRNA (miRNA) play critical roles in regulating proliferation, apoptosis, and invasion in triple-negative breast cancer (TNBC) cells. To investigate their functional significance, we employed quantitative real-time PCR (qRT-PCR) to assess the differential expression of circ_0000190, miR-301a, and mesenchyme homeobox 2 (MEOX2) between TNBC cell lines and normal breast epithelial cells. Subsequently, we established overexpression and knockdown systems for these molecules to examine their effects on TNBC cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT). Additionally, we evaluated the impact of circ_0000190 overexpression on tumor growth using a mouse xenograft model, measuring tumor volume and weight. Our findings revealed that circ_0000190 and MEOX2 expression were significantly downregulated (P<0.05) in TNBC cells compared to normal breast epithelial cells, whereas miR-301a was upregulated (P<0.05). Knockdown of circ_0000190 promoted TNBC cell proliferation, migration, invasion, and EMT, while suppressing apoptosis. Mechanistically, circ_0000190 functioned as a molecular sponge for miR-301a, and its overexpression significantly inhibited miR-301a expression (P<0.001). Notably, miR-301a mimics partially reversed the suppressive effects of circ_0000190 overexpression on proliferation, migration, invasion, and EMT, as well as its pro-apoptotic effects (P<0.001). Furthermore, we identified MEOX2 as a direct target of miR-301a. MEOX2 knockdown attenuated the inhibitory effects of miR-301a silencing on proliferation, migration, invasion, and EMT, while also counteracting its pro-apoptotic function. In vivo experiments demonstrated that circ_0000190 overexpression significantly reduced tumor volume and weight (P<0.001), concomitant with elevated MEOX2 mRNA and protein levels (P<0.001) and decreased miR-301a expression (P<0.001). In conclusion, our study elucidates that circ_0000190 suppresses TNBC progression by downregulating miR-301a and upregulating MEOX2, forming a competitive endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA.
Collapse
Affiliation(s)
- Heng Liu
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University; Beijing Maternal and Child Health Care Hospital Beijing, China
| | - Xiunan Li
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University; Beijing Maternal and Child Health Care Hospital Beijing, China
| | - Gangyue Wang
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University; Beijing Maternal and Child Health Care Hospital Beijing, China
| | - Yu Ren
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University; Beijing Maternal and Child Health Care Hospital Beijing, China
| | - Zhenlie Fan
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University; Beijing Maternal and Child Health Care Hospital Beijing, China
| | - Xin Tang
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University; Beijing Maternal and Child Health Care Hospital Beijing, China
| |
Collapse
|
42
|
Stopa V, Dafou D, Karagianni K, Nossent AY, Farrugia R, Devaux Y, Sopic M. Epitranscriptomics in atherosclerosis: Unraveling RNA modifications, editing and splicing and their implications in vascular disease. Vascul Pharmacol 2025; 159:107496. [PMID: 40239855 DOI: 10.1016/j.vph.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Atherosclerosis remains a leading cause of morbidity and mortality worldwide, driven by complex molecular mechanisms involving gene regulation and post-transcriptional processes. Emerging evidence highlights the critical role of epitranscriptomics, the study of chemical modifications occurring on RNA molecules, in atherosclerosis development. Epitranscriptomics provides a new layer of regulation in vascular health, influencing cellular functions in endothelial cells, smooth muscle cells, and macrophages, thereby shedding light on the pathogenesis of atherosclerosis and presenting new opportunities for novel therapeutic targets. This review provides a comprehensive overview of the epitranscriptomic landscape, focusing on key RNA modifications such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ), RNA editing mechanisms including A-to-I and C-to-U editing and RNA isoforms. The functional implications of these modifications in RNA stability, alternative splicing, and microRNA biology are discussed, with a focus on their roles in inflammatory signaling, lipid metabolism, and vascular cell adaptation within atherosclerotic plaques. We also highlight how these modifications influence the generation of RNA isoforms, potentially altering cellular phenotypes and contributing to disease progression. Despite the promise of epitranscriptomics, significant challenges remain, including the technical limitations in detecting RNA modifications in complex tissues and the need for deeper mechanistic insights into their causal roles in atherosclerotic pathogenesis. Integrating epitranscriptomics with other omics approaches, such as genomics, proteomics, and metabolomics, holds the potential to provide a more holistic understanding of the disease.
Collapse
Affiliation(s)
- Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
43
|
Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W. Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 2025; 30:42. [PMID: 40197222 PMCID: PMC11978130 DOI: 10.1186/s11658-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury describes the pathological process wherein tissue damage, initially caused by insufficient blood supply (ischemia), is exacerbated upon the restoration of blood flow (reperfusion). This phenomenon can lead to irreversible tissue damage and is commonly observed in contexts such as cardiac surgery and stroke, where blood supply is temporarily obstructed. During ischemic conditions, the anaerobic metabolism of tissues and organs results in compromised enzyme activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading to increased oxidative stress and the accumulation of reactive oxygen species (ROS). This cascade ultimately triggers cell death through mechanisms such as autophagy and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukaryotic cells, facilitating the degradation and recycling of damaged, aged, or superfluous organelles and proteins via the lysosomal pathway. This process is essential for maintaining cellular homeostasis and adapting to diverse stress conditions. As a cellular self-degradation and clearance mechanism, autophagy exhibits a dualistic function: it can confer protection during the initial phases of cellular injury, yet potentially exacerbate damage in the later stages. This paper aims to elucidate the fundamental mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its effects on both organ-specific and systemic responses. By comprehending the dual mechanisms of autophagy and their implications for organ function, this study seeks to explore the potential for therapeutic interventions through the modulation of autophagy within clinical settings.
Collapse
Affiliation(s)
- Lingxuan Tang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weijie Wang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenwen Shi
- School of Nursing, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
44
|
Zhang X, Shi X, Liu Z. CircARID1B Promotes MPP +-Induced Death and Inflammation in Dopaminergic Neurons by Elevating MAVS Through Sequestering miR-143-3p. Cell Biochem Biophys 2025:10.1007/s12013-025-01705-6. [PMID: 40185987 DOI: 10.1007/s12013-025-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Increasing evidence has shown the involvement of abnormal circRNA in neurodegenerative disease progression, including Parkinson's disease (PD). Hence, this work focused on probing the function and mechanism of circARID1B on PD progression.1-Methyl-4-phenylpyridinium (MPP+)-induced human dopaminergic SK-N-AS neuroblastoma cell models were used to mimic PD injury in vitro. qRT-PCR and western blotting analyses were used to detect the levels of genes and proteins. Cell death was evaluated by cell counting kit-8 assay, flow cytometry, and lactate dehydrogenase (LDH) activity. Oxidative stress was analyzed by measuring the production of reactive oxygen species (ROS) and superoxide dismutase (SOD). Cell inflammation was determined by ELISA analysis. The binding between miR-143-3p and circARID1B or mitochondrial antiviral signaling protein (MAVS) was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A high circARID1B expression was observed in MPP+ treated SK-N-AS cells. Functionally, circARID1B deficiency suppressed MPP+-induced apoptosis, LDH release, oxidative stress and inflammatory response in SK-N-AS cells. Mechanistically, circARID1B bound to miR-143-3p, which was reduced in SK-N-AS cells after MPP+ treatment. Moreover, miR-143-3p inhibition reversed the protective effects of circARID1B silencing on MPP+-treated SK-N-AS cells. Subsequently, we confirmed miR-143-3p directly targeted MAVS. MAVS was increased in SK-N-AS cells after MPP+ treatment. Moreover, MAVS overexpression abolished miR-143-3p up-regulation-induced inhibition of cell apoptosis, LDH release, oxidative stress and inflammation. CircARID1B deficiency suppressed MPP+-induced neural death and inflammation by miR-143-3p/MAVS axis, which may offer an improved understanding of PD progression and be useful for the development of circRNA-based therapy in PD.
Collapse
Affiliation(s)
- Xuejie Zhang
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Xuan Shi
- Department of Gastroenterology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Zhining Liu
- Department of Ultrasound, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China.
| |
Collapse
|
45
|
Chen L, Xu H, Liu R, Yao Z, Xie Q, Zhang X. Circular RNA Vav3 mediated ALV-J inhibition of autophagy by modulating the gga-miR-375/CIP2A axis and activating AKT. Poult Sci 2025; 104:104923. [PMID: 39987600 PMCID: PMC11904538 DOI: 10.1016/j.psj.2025.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive neoplastic virus, the growth retardation and growth performance of chickens after infection. Circular RNAs (circRNAs) play a crucial role in various types of cancer. In a previous study, we showed that circ-Vav3 was significantly elevated in the tumor livers of avian leukosis-infected chickens. Autophagy is an essential cellular process, and circRNAs have been confirmed to be key players in autophagy regulation. In this study, we demonstrated that overexpression of circ-Vav3 inhibited autophagy. Specifically, circ-Vav3 functions as a sponge for gga-miR-375, resulting in increased expression of CIP2A, which is a target gene of gga-miR-375. CIP2A, in turn, hinders the fusion of autophagosomes with lysosomes, leading to incomplete autophagic flux, consequently, the inhibition of autophagy. Further study confirmed that overexpression of gga-miR-375 inhibits CIP2A expression and promotes autophagy by downregulating p-AKT. Additionally, we treated cells with rapamycin to induce autophagy and then cotransfected them with circ-Vav3 and gga-miR-375. The results demonstrated that cotransfection of circ-Vav3 and gga-miR-375 inhibited cellular autophagy. Moreover, cells cotransfected with circ-Vav3 and gga-miR-375 exhibited further autophagy inhibition after ALV-J infection, suggesting that circ-Vav3 is involved in inhibiting autophagy caused by ALV-J infection through the regulation of gga-miR-375/CIP2A/AKT. In conclusion, our results demonstrated that circ-Vav3 inhibited autophagy through the gga-miR-375/CIP2A/AKT pathway and mediated the suppression of ALV-J-induced autophagy.
Collapse
Affiliation(s)
- Liyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Ziqi Yao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China.
| |
Collapse
|
46
|
Zhang M, Wu J, Wang Y, Wu Y, Wan X, Jiang M, Bo Q, Chen J, Sun X. circSIRT2/miR-542-3p/VASH1 axis regulates endothelial-to-mesenchymal transition (EndMT) in subretinal fibrosis in age-related macular degeneration models. Aging Cell 2025; 24:e14443. [PMID: 39744871 PMCID: PMC11984685 DOI: 10.1111/acel.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 04/12/2025] Open
Abstract
Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era. The role of non-coding RNAs has been implicated in CNV; however, their roles in SRF have not been elucidated yet. Herein, we comprehensively investigated circular RNA (circRNA) profiles in the laser-induced mouse SRF model and the transforming growth factor-β (TGF-β) induced human umbilical vein endothelial cell (HUVEC) fibrosis model. A novel circRNA, circSIRT2, was identified, and its function in SRF and endothelial-to-mesenchymal transition (EndMT) regulation was investigated. circSIRT2 was consistently upregulated in fibrotic models in vivo and in vitro. circSIRT2 overexpression downregulated the fibrotic markers and inhibited the proliferation and migration of endothelial cells in vitro. circSIRT2 overexpression in vivo also reduced SRF area in mice. Mechanistically, circSIRT2 functioned by sponging miR-542-3p, which further upregulated the expression of vasohibin-1 (VASH1) and reduced SRF lesion development. Vitreous delivery of miR-542-3p and VASH1 in the mouse SRF model also confirmed the pro-fibrotic function of miR-542-3p and anti-fibrotic function of VASH1, respectively. In conclusion, circSIRT2 inhibited SRF by binding miR-542-3p, which stimulated the VASH1 expression and subsequently suppressed EndMT. The circSIRT2/miR-542-3p/VASH1 axis may serve as a promising therapeutic target for SRF in nAMD.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Jiali Wu
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Yimin Wang
- Department of Ophthalmology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Qiyu Bo
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
- Shanghai Key Laboratory of Fundus DiseasesShanghaiChina
- Shanghai Engineering Center for Visual Science and PhotomedicineShanghaiChina
| |
Collapse
|
47
|
Zhang N, Lin R, Gao W, Xu H, Li Y, Huang X, Wang Y, Jing X, Meng W, Xie Q. Curcumin Modulates PTPRZ1 Activity and RNA m6A Modifications in Neuroinflammation-Associated Microglial Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405263. [PMID: 39921492 PMCID: PMC12005744 DOI: 10.1002/advs.202405263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/15/2024] [Indexed: 02/10/2025]
Abstract
Neuroinflammation is often characterized by an overactive microglial response. Curcumin, known for its anti-inflammatory and antioxidant properties, can mitigate microglial hyperactivity following epileptic seizures. The study delves into the molecular mechanisms underlying curcumin's modulation of RNA post-transcriptional N (6)-methyladenosine (m6A) modification. It is found that curcumin interacts with the Z1-type protein tyrosine phosphatase receptor (PTPRZ1), maintaining its enzymatic activity and thus regulating the phosphorylation of the m6A-reader YTH domain-containing family protein 2 (YTHDF2). This modulation affects the expression of critical genes, resulting in reduced inflammatory responses. These findings highlight the importance of post-transcriptional modifications of RNA in the neuroprotective and anti-inflammatory effects of curcumin, offering new insights for the treatment of related diseases.
Collapse
Affiliation(s)
- Ninan Zhang
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijing100700China
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijing100700China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
| | - Ruifan Lin
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijing100700China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
| | - Wenya Gao
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijing100700China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
- University of Chinese Academy of SciencesBeijing100049China
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| | - Xianghong Jing
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijing100700China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing10019China
- University of Chinese Academy of SciencesBeijing100049China
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| | - Qi Xie
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijing100102China
| |
Collapse
|
48
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
49
|
Yue J, Liu Z, Wang L, Wang M, Pan G. Recent advances in bioactive hydrogel microspheres: Material engineering strategies and biomedical prospects. Mater Today Bio 2025; 31:101614. [PMID: 40104647 PMCID: PMC11919335 DOI: 10.1016/j.mtbio.2025.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Hydrogel microspheres are a class of hydrophilic polymeric particles in microscale, which has been developed as a new type of functional biomaterials for wide-range biomedical applications in recent years. This review provides a comprehensive overview of the preparation methods for hydrogel microspheres, including droplet microfluidics, electrospray and emulsion was first summarized. At the same time, we analyze the impacts of these methods on the properties of hydrogel microspheres and explore various functionalization strategies for enhancing their bioactivity and expanding their biomedical applications. In addition, we discuss the recent advances and the further prospect of hydrogel microspheres in life science applications, particularly in cell biology research, bioanalysis and detection, as well as tissue repair and regeneration. By synthesizing the latest developments, this review aims to offer valuable insights and strategies for optimizing hydrogel microspheres in diverse application scenarios and inspire future research and practical innovations.
Collapse
Affiliation(s)
- Junjiang Yue
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhengbiao Liu
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Lu Wang
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
50
|
Ding YH, Song XH, Chen JS. CircRNAs in Colorectal Cancer: Unveiling Their Roles and Exploring Therapeutic Potential. Biochem Genet 2025; 63:1219-1240. [PMID: 40029586 DOI: 10.1007/s10528-025-11068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is the most common malignancy of the digestive system. Although research into the causes of CRC's origin and progression has advanced over the past few decades, many details are still not fully understood. Circular RNAs (circRNAs), as a novel regulatory molecule, have been found to be closely involved in various key biological processes in CRC. CircRNAs also have been shown to encode proteins, which could offer new possibilities for therapeutic applications. This ability to produce tumor-specific proteins makes circRNA-based vaccines a potentially valuable approach for targeted cancer treatment. In this review, we summarize recent findings on the various roles of circRNAs in CRC and explore their potential in the development of protein-encoding circRNA vaccines for CRC therapy.
Collapse
Affiliation(s)
- Yi-Han Ding
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Xiao-Hang Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Jing-Song Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|