1
|
Dimitriyev MS, Feng X, Thomas EL, Grason GM. Nonaffinity of Liquid Networks and Bicontinuous Mesophases. PHYSICAL REVIEW LETTERS 2024; 132:218201. [PMID: 38856277 DOI: 10.1103/physrevlett.132.218201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/21/2024] [Accepted: 03/28/2024] [Indexed: 06/11/2024]
Abstract
Amphiphiles self-assemble into a variety of bicontinuous mesophases whose equilibrium structures take the form of high-symmetry cubic networks. Here, we show that the symmetry-breaking distortions in these systems give rise to anomalously large, nonaffine collective deformations, which we argue to be a generic consequence of "mass equilibration" within deformed networks. We propose and study a minimal "liquid network" model of bicontinuous networks, in which acubic distortions are modeled by the relaxation of residually stressed mechanical networks with constant-tension bonds. We show that nonaffinity is strongly dependent on the valency of the network as well as the degree of strain-softening or strain-stiffening tension in the bonds. Taking diblock copolymer melts as a model system, liquid network theory captures quantitative features of two bicontinuous phases based on comparison with self-consistent field theory predictions and direct experimental characterization of acubic distortions, which are likely to be pronounced in soft amphiphilic systems more generally.
Collapse
Affiliation(s)
- Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Xueyan Feng
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China 200438
| | - Edwin L Thomas
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
2
|
Cang Y, Sainidou R, Rembert P, Matyjaszewski K, Bockstaller M, Graczykowski B, Fytas G. Architecture Controls Phonon Propagation in All-Solid Brush Colloid Metamaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304157. [PMID: 37972268 DOI: 10.1002/smll.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Brillouin light scattering and elastodynamic theory are concurrently used to determine and interpret the hypersonic phonon dispersion relations in brush particle solids as a function of the grafting density with perspectives in optomechanics, heat management, and materials metrology. In the limit of sparse grafting density, the phonon dispersion relations bear similarity to polymer-embedded colloidal assembly structures in which phonon dispersion can be rationalized on the basis of perfect boundary conditions, i.e., isotropic stiffness transitions across the particle interface. In contrast, for dense brush assemblies, more complex dispersion characteristics are observed that imply anisotropic stiffness transition across the particle/polymer interface. This provides direct experimental validation of phonon propagation changes associated with chain conformational transitions in dense particle brush materials. A scaling relation between interface tangential stiffness and crowding of polymer tethers is derived that provides a guideline for chemists to design brush particle materials with tailored phononic dispersion characteristics. The results emphasize the role of interfaces in composite materials systems. Given the fundamental relevance of phonon dispersion to material properties such as thermal transport or mechanical properties, it is also envisioned that the results will spur the development of novel functional hybrid materials.
Collapse
Affiliation(s)
- Yu Cang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Rebecca Sainidou
- Laboratoire Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, Le Havre, F-76600, France
| | - Pascal Rembert
- Laboratoire Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, Le Havre, F-76600, France
| | - Krzysztof Matyjaszewski
- Chemistry Department, Carnegie Mellon University, 4400 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Michael Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Electronic Structure and Laser, FORTH, N. Plastira 100, Heraklion, 70013, Greece
| |
Collapse
|
3
|
Lin IM, Tsai RS, Chou YT, Chiang YW. Photonic Crystal Reflectors with Ultrahigh Sensitivity and Discriminability for Detecting Extremely Low-Concentration Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45249-45259. [PMID: 37699537 DOI: 10.1021/acsami.3c06946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Developing a facile, intuitive, ultrahigh-sensitive sensor to detect harmful substances in water is critical. Here, an ultrahigh-sensitive sensor is fabricated using a quaternized lamellae-structured polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer (BCP), capable of detecting the heavily used surfactants including sodium dodecyl sulfate (SDS) and sodium methyl sulfate (SMS) through direct visualization of the structural color change. Two distinct detecting mechanisms, including unexpected blue-shifting and red-shifting reflectance wavelengths, are found for low and high concentrations of the SDS surfactant, respectively, due to concentration-dependent compatibility between the quaternized P2VP (QP2VP) block chains and SDS molecules. As the SDS concentration is low (0-1 mM), the QP2VP chains undergo the counter anionic exchange with the hydrophobic alkyl chains of the SDS, resulting in a blue shift toward colorlessness. In contrast, as the SDS concentration is high (>1 mM), the nanoaggregation of the SDS molecules in the layered QP2VP microdomain leads to enhanced hydration nature and increased lamellar periodicity with the red-shifting reflectance wavelength. In contrast, SMS with weaker hydrophobicity results in unchanged and red-shifting reflectance wavelengths at low and high concentrations. Inspired by this, detecting the extremely low-concentration SDS surfactant (0.01 mM) by direct visualization is achieved. The structural color change for surfactant detection also exhibits excellent reversibility and discriminability, providing a straightforward method of detecting anionic surfactants.
Collapse
Affiliation(s)
- I-Ming Lin
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Rong-Sheng Tsai
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yu-Ting Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
4
|
Zhang Y, Yin M, Xu B. Elastocapillary rolling transfer weaves soft materials to spatial structures. SCIENCE ADVANCES 2023; 9:eadh9232. [PMID: 37611102 PMCID: PMC10446489 DOI: 10.1126/sciadv.adh9232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Spatial structures of soft materials have attracted great attention because of emerging applications in wearable electronics, biomedical devices, and soft robotics, but there are no facile technologies available to assemble the soft materials into spatial structures. Here, we report a mechanical transfer route enabled by the rotational motion of curved substrates relative to the soft materials on liquid surface. This transfer can weave soft materials into a broad variety of spatial structures with controllable global weaving chirality and orders and could also produce local ear-like folds with programmable numbers and distributions. We further prove that multiple pieces of soft materials in different forms including wire, ribbon, and large-area film can be woven onto curved substrates with various three-dimensional geometry shapes. Application demonstrations on the woven freestanding spatial structures with on-demand weaving patterns and orders have been conducted to show the temperature-driven multimodal actuating functionalities for programmable robotic postures.
Collapse
Affiliation(s)
| | | | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Cang Y, Sainidou R, Rembert P, Magnabosco G, Still T, Vogel N, Graczykowski B, Fytas G. Origin of the Acoustic Bandgaps in Hypersonic Colloidal Phononics: The Role of the Elastic Impedance. J Phys Chem B 2022; 126:6575-6584. [PMID: 35997523 PMCID: PMC9442645 DOI: 10.1021/acs.jpcb.2c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
How phonons propagate in nanostructures determines the flow of elastic and thermal energy in dielectric materials. However, a reliable theoretical prediction of the phonon dispersion relation requires experimental verification both near to and far from the Brillouin zone of the nanostructure. We report on the experimental hypersonic phonon dispersion of hard (SiO2) and soft (polymer) fcc colloidal crystals infiltrated in liquid polydimethylsiloxane with different elastic impedance contrast using Brillouin light spectroscopy. We discuss the distinct differences with first-principles full elastodynamic calculations involving a multiple-scattering theory. Interparticle contacts strongly impact the long-wavelength speed of sound and the nature of the particle vibration resonance-induced hybridization hypersonic bandgap. The absence of the order-induced Bragg bandgap in SiO2 and its presence in soft opals cannot be fully accounted for by the theory, limiting its predictive power. Bridging the elasticity of the two colloidal crystals with suitable SiO2 core-shell (polymer) particles reveals an unprecedented crossover behavior in the dispersion relation. In view of many conversational parameters, the control tuning of phonon propagation in soft matter-based hypersonic phononics remains challenging.
Collapse
Affiliation(s)
- Yu Cang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- School
of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu
Road 100, Shanghai 200092, China
| | - Rebecca Sainidou
- Laboratoire
Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, F-76600 Le Havre, France
| | - Pascal Rembert
- Laboratoire
Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, F-76600 Le Havre, France
| | - Giulia Magnabosco
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Tim Still
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Electronic Structure and Laser, FO.R.T.H, N. Plastira 100, /0013, Heraklion 71110, Greece
| |
Collapse
|
7
|
Xing Z, Lu H, Shu DW, Fu YQ. Non-Euclidean geometry model for chemo-mechanical coupling in self-assembled polymers towards dynamic elasticity. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Esmek FM, Erichlandwehr T, Brkovic N, Pranzner NP, Teuber JP, Fernandez-Cuesta I. Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices. NANOTECHNOLOGY 2022; 33:385301. [PMID: 35696945 DOI: 10.1088/1361-6528/ac780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
We present the fabrication of three-dimensional inlets with gradually decreasing widths and depths and with nanopillars on the slope, all defined in just one lithography step. In addition, as an application, we show how these micro- and nanostructures can be used for micro- and nanofluidics and lab-on-a-chip devices to facilitate the flow and analyze single molecules of DNA. For the fabrication of 3D inlets in a single layer process, dose-modulated electron beam lithography was used, producing depths between 750 nm and 50 nm along a 30 μm long inlet, which is additionally structured with nanometer-scale pillars randomly distributed on top, as a result of incomplete exposure and underdevelopment of the resist. The fabrication conditions affect the slope of the inlet, the nanopillar density and coverage. The key parameters are the dose used for the electron beam exposure and the development conditions, like the developer's dilution, stirring and development time. The 3D inlets with nanostructured pillars were integrated into fluidic devices, acting as a transition between micro and nanofluidic structures for pre-stretching and unfolding DNA molecules, avoiding the intrusion of folded molecules and clogging the analysis channel. After patterning these structures in silicon, they can be replicated in polymer by UV nanoimprinting. We show here how the inlets with pillars slow down the molecules before they enter the nanochannels, resulting in a 3-fold decrease in speed, which would translate to an improvement in the resolution for DNA optical mapping.
Collapse
Affiliation(s)
- Franziska M Esmek
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Tim Erichlandwehr
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Nico Brkovic
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Nathalie P Pranzner
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Jeremy P Teuber
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Irene Fernandez-Cuesta
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
- Hamburg Centre for Ultrafast Imaging, Germany
| |
Collapse
|
9
|
Reddy A, Dimitriyev MS, Grason GM. Medial packing and elastic asymmetry stabilize the double-gyroid in block copolymers. Nat Commun 2022; 13:2629. [PMID: 35552400 PMCID: PMC9098509 DOI: 10.1038/s41467-022-30343-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
Triply-periodic networks are among the most complex and functionally valuable self-assembled morphologies, yet they form in nearly every class of biological and synthetic soft matter building blocks. In contrast to simpler assembly motifs – spheres, cylinders, layers – networks require molecules to occupy variable local environments, confounding attempts to understand their formation. Here, we examine the double-gyroid network phase by using a geometric formulation of the strong stretching theory of block copolymer melts, a prototypical soft self-assembly system. The theory establishes the direct link between molecular packing, assembly thermodynamics and the medial map, a generic measure of the geometric center of complex shapes. We show that “medial packing” is essential for stability of double-gyroid in strongly-segregated melts, reconciling a long-standing contradiction between infinite- and finite-segregation theories. Additionally, we find a previously unrecognized non-monotonic dependence of network stability on the relative entropic elastic stiffness of matrix-forming to tubular-network forming blocks. The composition window of stable double-gyroid widens for both large and small elastic asymmetry, contradicting intuitive notions that packing frustration is localized to the tubular domains. This study demonstrates the utility of optimized medial tessellations for understanding soft-molecular assembly and packing frustration via an approach that is readily generalizable far beyond gyroids in neat block copolymers. Double-gyroid networks assemble in diverse soft materials, yet the molecular packing that underlies their complex structure remains obscure. Here, authors advance a theory that resolves a long-standing puzzle about their formation in block copolymers.
Collapse
Affiliation(s)
- Abhiram Reddy
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
10
|
Isozaki Y, Higashiharaguchi S, Kaenko N, Yamazaki S, Taniguchi T, Takashi K, Ueda Y, Motokawa R. Polymer Photonic Crystals Prepared by Triblock Copolymerization-Induced in situ Microphase Separation. CHEM LETT 2022. [DOI: 10.1246/cl.220089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuka Isozaki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Seiya Higashiharaguchi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Naoya Kaenko
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shun Yamazaki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuo Taniguchi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Karatsu Takashi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Ueda
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| |
Collapse
|
11
|
Ahn J, Park J. Optimal Design of Surface Relief Grating for High‐Resolution Two‐Photon Interference Lithography. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinseong Ahn
- School of Materials Science and Engineering Department of Energy Engineering Convergence Kumoh National Institute of Technology Gumi Gyeongbuk 39177 Republic of Korea
| | - Junyong Park
- School of Materials Science and Engineering Department of Energy Engineering Convergence Kumoh National Institute of Technology Gumi Gyeongbuk 39177 Republic of Korea
| |
Collapse
|
12
|
Kang HS, Park C, Eoh H, Lee CE, Ryu DY, Kang Y, Feng X, Huh J, Thomas EL, Park C. Visualization of nonsingular defect enabling rapid control of structural color. SCIENCE ADVANCES 2022; 8:eabm5120. [PMID: 35275730 PMCID: PMC8916736 DOI: 10.1126/sciadv.abm5120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stimuli-interactive structural color (SC) of a block copolymer (BCP) photonic crystal (PC) uses reversible alteration of the PC using external fluids and applied forces. The origin of the diffusional pathways of a stimulating fluid into a BCP PC has not been examined. Here, we directly visualize the vertically oriented screw dislocations in a one-dimensional lamellar BCP PC that facilitate the rapid response of visible SC. To reveal the diffusional pathway of the solvent via the dislocations, BCP lamellae are swollen with an interpenetrated hydrogel network, allowing fixation of the swollen state and subsequent microscopic examination. The visualized defects are low-energy helicoidal screw dislocations having unique, nonsingular cores. Location and areal density of these dislocations are determined by periodic concentric topographic nanopatterns of the upper surface-reconstructed layer. The nonsingular nature of the interlayer connectivity in the core region demonstrates the beneficial nature of these defects on sensing dynamics.
Collapse
Affiliation(s)
- Han Sol Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hongkyu Eoh
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Chang Eun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Youngjong Kang
- Department of Chemistry, Research Institute for Natural Sciences Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Xuenyan Feng
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
- Corresponding author. (C.P.); (E.L.T.); (J.H.)
| | - Edwin L. Thomas
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
- Corresponding author. (C.P.); (E.L.T.); (J.H.)
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Corresponding author. (C.P.); (E.L.T.); (J.H.)
| |
Collapse
|
13
|
Liontos G, Manesi GM, Moutsios I, Moschovas D, Piryazev AA, Bersenev EA, Ivanov DA, Avgeropoulos A. Synthesis, Molecular Characterization, and Phase Behavior of Miktoarm Star Copolymers of the ABn and AnB (n = 2 or 3) Sequences, Where A Is Polystyrene and B Is Poly(dimethylsiloxane). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George Liontos
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece
| | - Gkreti-Maria Manesi
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece
| | - Ioannis Moutsios
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece
| | - Dimitrios Moschovas
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexey A. Piryazev
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Egor A. Bersenev
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Dimitri A. Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse─IS2M, CNRS UMR7361, 15 Jean Starcky, 68057 Mulhouse, France
| | - Apostolos Avgeropoulos
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
14
|
Alim MA, Abdullah MZ, Aziz MSA, Kamarudin R, Gunnasegaran P. Recent Advances on Thermally Conductive Adhesive in Electronic Packaging: A Review. Polymers (Basel) 2021; 13:3337. [PMID: 34641155 PMCID: PMC8512300 DOI: 10.3390/polym13193337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
The application of epoxy adhesive is widespread in electronic packaging. Epoxy adhesives can be integrated with various types of nanoparticles for enhancing thermal conductivity. The joints with thermally conductive adhesive (TCA) are preferred for research and advances in thermal management. Many studies have been conducted to increase the thermal conductivity of epoxy-based TCAs by conductive fillers. This paper reviews and summarizes recent advances of these available fillers in TCAs that contribute to electronic packaging. It also covers the challenges of using the filler as a nano-composite. Moreover, the review reveals a broad scope for future research, particularly on thermal management by nanoparticles and improving bonding strength in electronic packaging.
Collapse
Affiliation(s)
- Md. Abdul Alim
- School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia; (M.A.A.); (R.K.)
| | - Mohd Zulkifly Abdullah
- School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia; (M.A.A.); (R.K.)
| | - Mohd Sharizal Abdul Aziz
- School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia; (M.A.A.); (R.K.)
| | - R. Kamarudin
- School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia; (M.A.A.); (R.K.)
| | - Prem Gunnasegaran
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| |
Collapse
|
15
|
Moriceau G, Kilchoer C, Djeghdi K, Weder C, Steiner U, Wilts BD, Gunkel I. Photonic Particles Made by the Confined Self-Assembly of a Supramolecular Comb-Like Block Copolymer. Macromol Rapid Commun 2021; 42:e2100522. [PMID: 34523759 DOI: 10.1002/marc.202100522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Approaches that enable the preparation of robust polymeric photonic particles are of interest for the development of nonfading and highly reflective pigments for applications such as paints and display technologies. Here, the preparation of photonic particles that display structural color in both, aqueous suspension and the dry solid state is reported. This is achieved by exploiting the confined self-assembly of a supramolecular comb-like block copolymer (BCP) that microphase separates into a well-ordered lamellar morphology with dimensions that promote a photonic bandgap in the visible range. The comb-like BCP is formed by robust ionic interactions between poly(styrene-b-4-vinyl-pyridine) (PS-b-P4VP) BCP and dodecylbenzene sulfonic acid (DBSA), which selectively interacts with P4VP blocks. The components are combined in chloroform, and an aqueous emulsion is prepared. Evaporation of the organic solvent leads to the formation of solid microparticles with an onion-like 3D morphology. These photonic pigments display brilliant colors with reflectance spectra featuring pronounced optical bandgaps across the entire visible wavelength range with a peak reflectivity of 80-90%.
Collapse
Affiliation(s)
- Guillaume Moriceau
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Cédric Kilchoer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Kenza Djeghdi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| |
Collapse
|
16
|
Selkirk A, Prochukhan N, Lundy R, Cummins C, Gatensby R, Kilbride R, Parnell A, Baez Vasquez J, Morris M, Mokarian-Tabari P. Optimization and Control of Large Block Copolymer Self-Assembly via Precision Solvent Vapor Annealing. Macromolecules 2021; 54:1203-1215. [PMID: 34276069 PMCID: PMC8280752 DOI: 10.1021/acs.macromol.0c02543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The self-assembly of ultra-high molecular weight (UHMW) block copolymers (BCPs) remains a complex and time-consuming endeavor owing to the high kinetic penalties associated with long polymer chain entanglement. In this work, we report a unique strategy of overcoming these kinetic barriers through precision solvent annealing of an UHMW polystyrene-block-poly(2-vinylpyridine) BCP system (M w: ∼800 kg/mol) by fast swelling to very high levels of solvent concentration (ϕs). Phase separation on timescales of ∼10 min is demonstrated once a thickness-dependent threshold ϕs value of ∼0.80-0.86 is achieved, resulting in lamellar feature spacings of over 190 nm. The threshold ϕs value was found to be greater for films with higher dry thickness (D 0) values. Tunability of the domain morphology is achieved through controlled variation of both D 0 and ϕs, with the kinetically unstable hexagonal perforated lamellar (HPL) phase observed at ϕs values of ∼0.67 and D 0 values of 59-110 nm. This HPL phase can be controllably induced into an order-order transition to a lamellar morphology upon further increase of ϕs to 0.80 or above. As confirmed by grazing-incidence small-angle X-ray scattering, the lateral ordering of the lamellar domains is shown to improve with increasing ϕs up to a maximum value at which the films transition to a disordered state. Thicker films are shown to possess a higher maximum ϕs value before transitioning to a disordered state. The swelling rate is shown to moderately influence the lateral ordering of the phase-separated structures, while the amount of hold time at a particular value of ϕs does not notably enhance the phase separation process. These large period self-assembled lamellar domains are then employed to facilitate pattern transfer using a liquid-phase infiltration method, followed by plasma etching, generating ordered, high aspect ratio Si nanowall structures with spacings of ∼190 nm and heights of up to ∼500 nm. This work underpins the feasibility of a room-temperature, solvent-based annealing approach for the reliable and scalable fabrication of sub-wavelength nanostructures via BCP lithography.
Collapse
Affiliation(s)
- Andrew Selkirk
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Nadezda Prochukhan
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Ross Lundy
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Cian Cummins
- CNRS,
Bordeaux INP, LCPO, UMR 5629 and CNRS, Centre de Recherche Paul Pascal,
UMR 5031, Université de Bordeaux, Pessac F-33600, France
| | - Riley Gatensby
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Rachel Kilbride
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Andrew Parnell
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Jhonattan Baez Vasquez
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Michael Morris
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Parvaneh Mokarian-Tabari
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| |
Collapse
|
17
|
Liu S, Li Q, Li Y, Zhang J, Pan X, Zhu J, Zhu X. Controllable Radical Polymerization of Selenide Functionalized Vinyl Monomers and Its Application in Redox Responsive Photonic Crystals. Macromol Rapid Commun 2021; 42:e2000764. [PMID: 33544949 DOI: 10.1002/marc.202000764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Selenium-containing monomer (p-phenylseleno) styrene (p-PhSeSt) is polymerized by reversible addition-fragmentation chain transfer polymerization. Polymer, (P(p-PhSeSt)), with controlled molecular weight and narrow molecular weight is obtained. The selenide moiety in obtained P(p-PhSeSt) can be selectively oxidized to selenoxide or selenone groups by H2 O2 or NaClO, respectively. These oxidized groups can be further reduced to selenide by Na2 S2 O4 . The structure changing of polymers during such redox cycle is characterized by nuclear magnetic resonance, X-ray photoelectron spectroscopy, and size exclusion chromatography. Properties, such as thermal performance, glass transition temperature, water contact angles, and refractive indices, of the resulting polymers are systematically investigated before and after oxidation. In addition, SiO2 inverse opal photonic crystal (IOPC) is fabricated by sacrificial polymer colloidal template method. Owing to changes of the RIs of P(p-PhSeSt) after selective oxidation, the predictable change of PC bandgap as a redox-responsive PC sensor is successfully realized, which provides new perspectives for modulating photonic crystals.
Collapse
Affiliation(s)
- Shaoxiang Liu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Qilong Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingying Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiandong Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiulin Zhu
- Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and RIRI Science, Soochow University, Suzhou, 215123, P. R. China.,Global Institute of Software Technology, Suzhou, 215163, P. R. China
| |
Collapse
|
18
|
Ntetsikas K, Moschovas D, Zapsas G, Moutsios I, Tsitoni K, Manesi GM, Nabiullin AF, Hadjichristidis N, Ivanov DA, Avgeropoulos A. Synthesis, characterization and self-assembly of linear and miktoarm star copolymers of exclusively immiscible polydienes. Polym Chem 2021. [DOI: 10.1039/d1py00258a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Model linear PB1,4-b-PI3,4 and the corresponding miktoarm star copolymers PB1,4(PI3,4)n=2,3 were synthesized by anionic polymerization/selective chlorosilane chemistry, molecularly characterized and the morphological/thermal properties were reported.
Collapse
|
19
|
Antonioli D, Chiarcos R, Gianotti V, Terragno M, Laus M, Munaò G, Milano G, De Nicola A, Perego M. Inside the brush: partition by molecular weight in grafting to reactions from melt. Polym Chem 2021. [DOI: 10.1039/d1py01303c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A substantial partition by molecular weight takes place during the grafting to reactions.
Collapse
Affiliation(s)
- Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Margherita Terragno
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Antonio De Nicola
- Dipartimento di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, via G. Paolo II 134, 84084, Fisciano, SA, Italy
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
20
|
Lu B, Bondon A, Touil I, Zhang H, Alcouffe P, Pruvost S, Liu C, Maazouz A, Lamnawar K. Role of the Macromolecular Architecture of Copolymers at Layer–Layer Interfaces of Multilayered Polymer Films: A Combined Morphological and Rheological Investigation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Lu
- Key Laboratory of Materials Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Arnaud Bondon
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Villeurbanne F-69621, France
| | - Ibtissam Touil
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Villeurbanne F-69621, France
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
| | - Pierre Alcouffe
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1 (UCBL), Villeurbanne F-69622, France
| | - Sébastien Pruvost
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Villeurbanne F-69621, France
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Abderrahim Maazouz
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Villeurbanne F-69621, France
- Hassan II Academy of Science and Technology, Rabat 10100, Morocco
| | - Khalid Lamnawar
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Villeurbanne F-69621, France
| |
Collapse
|
21
|
Electroplated Functional Materials with 3D Nanostructures Defined by Advanced Optical Lithography and Their Emerging Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electroplating has been favored to date as a surface treatment technology in various industries in the development of semiconductors, automobiles, ships, and steel due to its advantages of being a simple, solution-based process, with low cost and high throughput. Recently, classical electroplating has been reborn as an advanced manufacturing process for functional materials by combining it with unconventional optical three-dimensional (3D) nanofabrication techniques capable of generating polymer templates with high-resolution 3D periodic nanostructures. The bottom-up filling behavior of electroplating rising from a seed layer makes it possible to densely fill the nanoporous network of the template with heterogeneous inorganic materials. At this time, understanding and optimizing the process parameters (e.g., additive, current density, type of current waveform, etc.) of electroplating is critical for defect control. In addition, since electroplating is generally performed near room temperature, unlike other thin film deposition techniques, structural damage to the polymer template by heat during electroplating is almost negligible. Based on the excellent compatibility of electroplating and optical 3D nanofabrication, innovative functional materials with 3D periodic nanostructures targeting electrochemical or energy-related applications have been created. In this mini review, a strategy for producing functional materials with 3D periodic nanostructures through a templating process will be covered, and the recent cases of successful applications to electrodes for energy storage devices, electrocatalysts, and thermoelectric materials will be summarized. We will also discuss technical issues that need to be considered in the process to improve the quality of the resulting functional materials with 3D nanoarchitectures.
Collapse
|
22
|
Isarn I, Ferrando F, Serra À, Urbina C. Novel BN‐epoxy/anhydride composites with enhanced thermal conductivity. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Isaac Isarn
- Department of Mechanical Engineering Universitat Rovira i Virgili Tarragona Spain
| | - Francesc Ferrando
- Department of Mechanical Engineering Universitat Rovira i Virgili Tarragona Spain
| | - Àngels Serra
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Tarragona Spain
| | - Cristina Urbina
- Department of Mechanical Engineering Universitat Rovira i Virgili Tarragona Spain
| |
Collapse
|
23
|
Clough JM, Weder C, Schrettl S. Mechanochromism in Structurally Colored Polymeric Materials. Macromol Rapid Commun 2020; 42:e2000528. [PMID: 33210385 DOI: 10.1002/marc.202000528] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Mechanochromic effects in structurally colored materials are the result of deformation-induced changes to their ordered nanostructures. Polymeric materials which respond in this way to deformation offer an attractive combination of characteristics, including continuous strain sensing, high strain resolution, and a wide strain-sensing range. Such materials are potentially useful for a wide range of applications, which extend from pressure-sensing bandages to anti-counterfeiting devices. Focusing on the materials design aspects, recent developments in this field are summarized. The article starts with an overview of different approaches to achieve mechanochromic effects in structurally colored materials, before the physical principles governing the interaction of light with each of these materials types are summarized. Diverse methodologies to prepare these polymers are then discussed in detail, and where applicable, naturally occurring materials that inspired the design of artificial systems are discussed. The capabilities and limitations of structurally colored materials in reporting and visualizing mechanical deformation are examined from a general standpoint and also in more specific technological contexts. To conclude, current trends in the field are highlighted and possible future opportunities are identified.
Collapse
Affiliation(s)
- Jess M Clough
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| |
Collapse
|
24
|
Ostanin IA, Oganov AR, Magnanimo V. Collapse modes in simple cubic and body-centered cubic arrangements of elastic beads. Phys Rev E 2020; 102:032901. [PMID: 33075924 DOI: 10.1103/physreve.102.032901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
Collapse modes in compressed simple cubic (SC) and body-centered cubic (BCC) periodic arrangements of elastic frictionless beads were studied numerically using the discrete element method. Under pure hydrostatic compression, the SC arrangement tends to transform into a defective hexagonal close-packed or amorphous structure. The BCC assembly exhibits several modes of collapse, one of which, identified as cI16 structure, is consistent with the behavior of BCC metals Li and Na under high pressure. The presence of a deviatoric stress leads to the transformation of the BCC structure into face-centered cubic (FCC) one via the Bain path. The observed effects expand the knowledge on possible packings of soft elastic spheres and transformations between them, while providing an unexpected link with the mechanical behavior of certain atomic systems.
Collapse
Affiliation(s)
- Igor A Ostanin
- Multi-Scale Mechanics (MSM), Faculty of Engineering Technology, CSMM, MESA+, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia
| | - Vanessa Magnanimo
- Multi-Scale Mechanics (MSM), Faculty of Engineering Technology, CSMM, MESA+, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Lewis RM, Jackson GL, Maher MJ, Kim K, Narayanan S, Lodge TP, Mahanthappa MK, Bates FS. Grain Growth and Coarsening Dynamics in a Compositionally Asymmetric Block Copolymer Revealed by X-ray Photon Correlation Spectroscopy. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Grayson L. Jackson
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | | | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | | | | | | |
Collapse
|
26
|
Shen X, Du J, Sun J, Guo J, Hu X, Wang C. Transparent and UV Blocking Structural Colored Hydrogel for Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39639-39648. [PMID: 32805949 DOI: 10.1021/acsami.0c10763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Usually, materials with perfect structures possess excellent properties, but it is not always the case. Here, a new approach is reported to construct structural colored hydrogel films with excellent ultraviolet (UV) blocking performance for contact lenses. The theoretical simulation predicts that with perfect periodic structures, the hydrogel films can strongly reflect incident light in a narrow visible wavelength range and thus exhibit extraordinarily brilliant colors. However, such hydrogel films cannot effectively block UV light. By slightly breaking the structural periodicity (quasi-periodic structure), strong diffuse scattering or pseudoabsorption of light can occur for all of the wavelengths shorter than a structural characteristic length, leading to perfect UV blocking. According to the theoretical prediction, a structural colored hydrogel film with nearly periodic polystyrene sphere arrays in poly(hydroxyethyl methacrylate) hydrogel matrix is fabricated; this hydrogel film possesses brilliant colors and perfect UV blocking, and the core particle composition and size have been investigated in detail for the optimized properties of contact lenses. Meanwhile, the cell proliferation assay proves the cytocompatibility of the hydrogel for real application. Regarding its unique optical characteristics, the as-prepared structural colored hydrogel shows great promise in the fields of UV-protective equipment, medical device, soft robot, sensor, and so on.
Collapse
Affiliation(s)
- Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiayuan Du
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xinhua Hu
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Geng K, Arumugam V, Xu H, Gao Y, Jiang D. Covalent organic frameworks: Polymer chemistry and functional design. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101288] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Vishnu Chandar J, Shanmugan S, Mutharasu D, Khairudin M, Marsilla KIK, Azlan AA. Impact of aluminum oxide nanopowder on thermal, optical and surface properties of polysiloxane-aluminum oxide composites as elastomeric thermal pad for light emitting diode application. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- J. Vishnu Chandar
- School of Mechanical Engineering, Universiti Sains Malaysia (USM), Nibong Tebal, Malaysia
| | - S. Shanmugan
- School of Physics, Universiti Sains Malaysia (USM), Minden, Malaysia
| | - D. Mutharasu
- Materials Center of Excellence (MCoE), Packaging Engineering, Western Digital Corporation, Malaysia
| | - M. Khairudin
- School of Mechanical Engineering, Universiti Sains Malaysia (USM), Nibong Tebal, Malaysia
| | - K. I. K. Marsilla
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), Nibong Tebal, Malaysia
| | - A. A. Azlan
- School of Physics, Universiti Sains Malaysia (USM), Minden, Malaysia
| |
Collapse
|
29
|
Kang HS, Han SW, Park C, Lee SW, Eoh H, Baek J, Shin DG, Park TH, Huh J, Lee H, Kim DE, Ryu DY, Thomas EL, Koh WG, Park C. 3D touchless multiorder reflection structural color sensing display. SCIENCE ADVANCES 2020; 6:eabb5769. [PMID: 32832673 PMCID: PMC7439647 DOI: 10.1126/sciadv.abb5769] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 05/21/2023]
Abstract
The development of a lightweight, low-power, user-interactive three-dimensional (3D) touchless display in which a human stimulus can be detected and simultaneously visualized in noncontact mode is of great interest. Here, we present a user-interactive 3D touchless sensing display based on multiorder reflection structural colors (SCs) of a thin, solid-state block copolymer (BCP) photonic crystal (PC). Full-visible-range SCs are developed in a BCP PC consisting of alternating lamellae, one of which contains a chemically cross-linked, interpenetrated hydrogel network. The absorption of a nonvolatile ionic liquid into the domains of the interpenetrated network allows for further manipulation of SC by using multiple-order photonic reflections, giving rise to unprecedented visible SCs arising from reflective color mixing. Furthermore, by using a hygroscopic ionic liquid ink, a printable 3D touchless interactive display is created where 3D position of a human finger is efficiently visualized in different SCs as a function of finger-to-display distance.
Collapse
Affiliation(s)
- Han Sol Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Won Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hongkyu Eoh
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghyeok Baek
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Gap Shin
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tae Hyun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dae-Eun Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Edwin L. Thomas
- Material Science and Nano Engineering, Rice University, Houston, TX 77005-1892, USA
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Corresponding author. (C.P.); (W.-G.K.)
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Corresponding author. (C.P.); (W.-G.K.)
| |
Collapse
|
30
|
Sodium Alginate Cross-Linkable Planar 1D Photonic Crystals as a Promising Tool for Pb2+ Detection in Water. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to its high toxicity, Pb2+ pollution is a serious threat for human health and environments. However, in situ real-time detection of Pb2+ pollution is difficult and laboratory instruments are usually required. Then, the possibility to monitor water quality without laboratory instruments could lead to the extensive assessment of polluted water sources, especially in rural environments and developing countries where large lead concentrations are often found in surface water. Consequently, new simple colorimetric sensors are highly interesting in the field. In this work we report for the first time disposable polymer planar 1D photonic crystals made of poly (N-vinylcarbazole) as high refractive index medium and sodium alginate as low refractive index and active medium for the detection of Pb2+ in water. The detection relies on the ionic exchange occurring into the alginate matrix. This process effectively induces a physical cross-linking phenomenon, which inhibits water solubilization of the polymer. In turn, this affects the spectral response of the planar 1D photonic crystals modifying its color.
Collapse
|
31
|
Guo T, Yu X, Zhao Y, Yuan X, Li J, Ren L. Structure Memory Photonic Crystals Prepared by Hierarchical Self-Assembly of Semicrystalline Bottlebrush Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Guo
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoliang Yu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yunhui Zhao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Junyu Li
- DSM DMSC R&D Solutions, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Lixia Ren
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
32
|
Mao Y, He Q, Zhao X. Designing complex architectured materials with generative adversarial networks. SCIENCE ADVANCES 2020; 6:eaaz4169. [PMID: 32494641 PMCID: PMC7182413 DOI: 10.1126/sciadv.aaz4169] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/27/2020] [Indexed: 05/19/2023]
Abstract
Architectured materials on length scales from nanometers to meters are desirable for diverse applications. Recent advances in additive manufacturing have made mass production of complex architectured materials technologically and economically feasible. Existing architecture design approaches such as bioinspiration, Edisonian, and optimization, however, generally rely on experienced designers' prior knowledge, limiting broad applications of architectured materials. Particularly challenging is designing architectured materials with extreme properties, such as the Hashin-Shtrikman upper bounds on isotropic elasticity in an experience-free manner without prior knowledge. Here, we present an experience-free and systematic approach for the design of complex architectured materials with generative adversarial networks. The networks are trained using simulation data from millions of randomly generated architectures categorized based on different crystallographic symmetries. We demonstrate modeling and experimental results of more than 400 two-dimensional architectures that approach the Hashin-Shtrikman upper bounds on isotropic elastic stiffness with porosities from 0.05 to 0.75.
Collapse
Affiliation(s)
- Yunwei Mao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qi He
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
33
|
Fan Z, Yang Y, Zhang F, Xu Z, Zhao H, Wang T, Song H, Huang Y, Rogers JA, Zhang Y. Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908424. [PMID: 32100406 DOI: 10.1002/adma.201908424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Deterministic transformations of 2D patterns of materials into well-controlled 3D mesostructures serve as the basis for manufacturing methods that can bypass limitations of conventional 3D micro/nanofabrication. Here, guided mechanical buckling processes provide access to a rich range of complex 3D mesostructures in high-performance materials, from inorganic and organic semiconductors, metals and dielectrics, to ceramics and even 2D materials (e.g., graphene, MoS2 ). Previous studies demonstrate that iterative computational procedures can define design parameters for certain targeted 3D configurations, but without the ability to address complex shapes. A technical need is in efficient, generalized inverse design algorithms that directly yield sets of optimized parameters. Here, such schemes are introduced, where the distributions of thicknesses across arrays of separated or interconnected ribbons provide scalable routes to 3D surfaces with a broad range of targeted shapes. Specifically, discretizing desired shapes into 2D ribbon components allows for analytic solutions to the inverse design of centrally symmetric and even general surfaces, in an approximate manner. Combined theoretical, numerical, and experimental studies of ≈20 different 3D structures with characteristic sizes (e.g., ribbon width) ranging from ≈200 µm to ≈2 cm and with geometries that resemble hemispheres, fire balloons, flowers, concave lenses, saddle surfaces, waterdrops, and rodents, illustrate the essential ideas.
Collapse
Affiliation(s)
- Zhichao Fan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yiyuan Yang
- Departments of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- The State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hangbo Zhao
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Taoyi Wang
- Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Honglie Song
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yonggang Huang
- Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
34
|
Kleine TS, Frish JI, Pavlopoulos NG, Showghi SA, Himmelhuber R, Norwood RA, Pyun J. Refractive Index Contrast Polymers: Photoresponsive Systems with Spatial Modulation of Refractive Index for Photonics. ACS Macro Lett 2020; 9:416-421. [PMID: 35648555 DOI: 10.1021/acsmacrolett.9b00919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of an intriguing concept using optical polymers for photonics is reported to enable modulation of refractive index (RI) in solution cast thin films with precise spatial control. While extensive efforts in polymer science have focused on methods to prepare optically transparent polymers with high RI, the creation of photoresponsive polymer systems to spatially adjust the refractive index upon irradiation is a distinct technical challenge requiring development of materials amenable to this process. The ability to create refractive index contrast (i.e., a difference in RI between two domains) is a critical capability required in photonics for the fabrication of integrated photonics devices, such as, polymer waveguides. In this report, we detail the synthesis of optical polymers tailored to this application, termed Refractive Index Contrast (RIC) polymers, in which the RI of the material can be photopatterned where UV exposure in the presence of a photoacid generator resulted in a permanent increase of RI in the exposed regions thus creating regions of high RIC. This process creates the high RI core of waveguides in a single step and lends itself to rapid fabrication of photonic devices via direct laser writing. Waveguides made from RIC polymers were found to have propagation losses of ∼2 dB/cm at 1550 nm.
Collapse
Affiliation(s)
- Tristan S. Kleine
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Julie I. Frish
- Wyant College of Optical Sciences, University of Arizona, Tucson, 1630 East University Boulevard, Arizona 85721, United States
| | - Nicholas G. Pavlopoulos
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sasaan A. Showghi
- Wyant College of Optical Sciences, University of Arizona, Tucson, 1630 East University Boulevard, Arizona 85721, United States
| | - Roland Himmelhuber
- Wyant College of Optical Sciences, University of Arizona, Tucson, 1630 East University Boulevard, Arizona 85721, United States
| | - Robert A. Norwood
- Wyant College of Optical Sciences, University of Arizona, Tucson, 1630 East University Boulevard, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
- The Program for Chemical Convergence for Energy and Environment, School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
35
|
Müller M. Process-directed self-assembly of copolymers: Results of and challenges for simulation studies. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101198] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Doerk GS, Li R, Fukuto M, Yager KG. Wet Brush Homopolymers as “Smart Solvents” for Rapid, Large Period Block Copolymer Thin Film Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02296] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gregory S. Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
37
|
Huang Z, Zhao S, Su M, Yang Q, Li Z, Cai Z, Zhao H, Hu X, Zhou H, Li F, Yang J, Wang Y, Song Y. Bioinspired Patterned Bubbles for Broad and Low-Frequency Acoustic Blocking. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1757-1764. [PMID: 31818097 DOI: 10.1021/acsami.9b15683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bubble crystals in water are expected to achieve the broad and low-frequency acoustic band gaps that are crucial for acoustic blocking. However, preparing patterned bubble crystals in water remains a challenge because of the instability of bubbly liquids. Here, inspired by biological superhydrophobic systems, we report a simple and rapid approach to prepare patterned bubble arrays in water and their applications in low-frequency acoustic blocking. Patterned bubbles with the desired size, shape, and position can be prepared. Single-layer bubble arrays can block the sounds at low frequencies because of local resonance. By varying the size and distance of the bubbles without changing the thickness, the operating frequency can change from 9 to 1756 kHz. Besides, by preparing multilayer bubbles, broad and low-frequency acoustic band gaps can be achieved, with the generalized width of γ (ratio of the bandgap width to its start frequency) reaching 1.26. This method provides a feasible strategy to control acoustic waves at low frequencies for applications such as acoustic blocking, focusing, imaging, and detecting.
Collapse
Affiliation(s)
- Zhandong Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
| | - Qiang Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zheren Cai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Huanyu Zhao
- Institute of Engineering Mechanics , Beijing Jiaotong University , Beijing 100044 , People's Republic of China
| | - Xiaotian Hu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Haihua Zhou
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
| | - Fengyu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
| | - Jun Yang
- Department of Mechanical & Materials Engineering , Western University , London N6A 5B9 , Canada
| | - Yuesheng Wang
- Institute of Engineering Mechanics , Beijing Jiaotong University , Beijing 100044 , People's Republic of China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , P. R. China
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
38
|
Lova P, Megahd H, Comoretto D. All-polymer Planar Photonic Crystals as an Innovative Tool for the Analysis of Air. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The possibility to evaluate the molecular diffusivity in polymer thin films used for packaging and device encapsulation directly in-situ would represent a paradigm changer in the assesment of barrier properties and of air quality. Indeed, employing the packaging itself as a smart sensor could lead to waste reduction and mitigate food poisoning effects. In this work, we demonstrate a new technique that exploits simple UV-Vis reflectance spectroscopy to identify the kinetic of diffusion of small molecules in the vapor phase through polymer thin films and polymer multilayered structures. The new method allows then to assess the presence of the analyte in air and its diffusion coefficient in agreement with gravimetric data reported in literature.
Collapse
|
39
|
Takano K, Nyu T, Maekawa T, Seki T, Nakatani R, Komamura T, Hayakawa T, Hayashi T. Real-time and in situ observation of structural evolution of giant block copolymer thin film under solvent vapor annealing by atomic force microscopy. RSC Adv 2019; 10:70-75. [PMID: 35492547 PMCID: PMC9047986 DOI: 10.1039/c9ra09043f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
An instrumentation technique for real-time, in situ and real space observation of microphase separation was proposed for ultra-high molecular weight block copolymer thin films (1010 kg mol-1, domain spacing of 180 nm) under high solvent vapor swelling conditions. This is made possible by a combination of a homebuilt chamber which is capable of supplying sufficient amount of vapor, and force-distance curve measurements which gives real-time swollen film thickness and allow active feedback for controlling the degree of swelling. We succeeded in monitoring the domain coarsening of perpendicular lamellar structures in polystyrene-block-poly(methyl methacrylate) thin films for eight hours via tapping mode imaging. During the annealing process, the thickness reached a maximum of 8.5 times that of the original film. The series of temporal real space topographic images obtained via this method allowed us to study, for the first time, the growth exponent of the correlation length under solvent vapor annealing.
Collapse
Affiliation(s)
- Kaori Takano
- JXTG Nippon Oil & Energy Corporation 8 Chidori-cho, Naka-ku Yokohama Kanagawa 231-0815 Japan
- Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8502 Japan
| | - Takashi Nyu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Tatsuhiro Maekawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Takashi Seki
- JXTG Nippon Oil & Energy Corporation 8 Chidori-cho, Naka-ku Yokohama Kanagawa 231-0815 Japan
| | - Ryuichi Nakatani
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Takahiro Komamura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
- JST-PRESTO 4-1-8 Hon-cho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
40
|
Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer. Nature 2019; 575:175-179. [DOI: 10.1038/s41586-019-1706-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/23/2019] [Indexed: 11/09/2022]
|
41
|
Vishnu Chandar J, Shanmugan S, Mutharasu D, Khairudin M, Azlan AA. Polysiloxane-graphite composites as thermal interface material for light emitting diode application: a study on impact of graphite nanopowder on thermal and surface properties. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1625392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. Vishnu Chandar
- School of Physics, Universiti Sains Malaysia (USM), Minden, Malaysia
| | - S. Shanmugan
- School of Physics, Universiti Sains Malaysia (USM), Minden, Malaysia
| | - D. Mutharasu
- Core Competency, Center for Innovation and Automation (CIA) lab, Western Digital Corporation, Sebarang Perai Selatan, Malaysia
| | - M. Khairudin
- School of Mechanical Engineering, Universiti Sains Malaysia (USM), Nibong Tebal, Malaysia
| | - A. A. Azlan
- School of Physics, Universiti Sains Malaysia (USM), Minden, Malaysia
| |
Collapse
|
42
|
Lova P, Giusto P, Di Stasio F, Manfredi G, Paternò GM, Cortecchia D, Soci C, Comoretto D. All-polymer methylammonium lead iodide perovskite microcavities. NANOSCALE 2019; 11:8978-8983. [PMID: 31017152 DOI: 10.1039/c9nr01422e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thanks to a high photoluminescence quantum yield, large charge carrier diffusion, and ease of processing from solution, perovskite materials are becoming increasingly interesting for flexible optoelectronic devices. However, their deposition requires wide range solvents that are incompatible with many other flexible and solution-processable materials, including polymers. Here, we show that methylammonium lead iodide (MAPbI3) films can be directly synthesized on all-polymer microcavities via simple addition of a perfluorinated layer which protects the polymer photonic structure from the perovskite processing solvents. The new processing provides microcavities with a quality factor Q = 155, that is in agreement with calculations and the largest value reported so far for fully solution processed perovskite microcavities. Furthermore, the obtained microcavity shows strong spectral and angular redistribution of the the MAPbI3 photoluminescence spectrum, which shows a 3.5 fold enhanced intensity with respect to the detuned reference. The opportunity to control and modify the emission of a MAPbI3 film via a simple spun-cast polymer structure is of great interest in advanced optoelectronic applications requiring high colour purity or emission directionality.
Collapse
Affiliation(s)
- Paola Lova
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, 16146 Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lova P, Manfredi G, Bastianini C, Mennucci C, Buatier de Mongeot F, Servida A, Comoretto D. Flory-Huggins Photonic Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16872-16880. [PMID: 30990014 DOI: 10.1021/acsami.9b03946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lack of cost-effective systems for the assessment of air pollutants is a concern for health and safety in urban and industrial areas. The use of polymer thin films as label-free colorimetric sensors featuring specific interactions with pollutants would then represent a paradigm shift in environmental monitoring and packaging technologies, allowing to assess air quality, formation of byproducts in closed environment, and the barrier properties of the polymers. To this end, all-polymer distributed Bragg reflectors represent a promising approach toward a reliable and cost-effective transduction of chemical stimuli and effective colorimetric label-free selective detectors. We show selectivity attained by specific interactions between the polymer and analytes. Such interactions drive the analyte intercalation through the polymer structure and its kinetics, converting it in a dynamic optical response which is at the basis of the Flory-Huggins photonic sensors. The multivariate analyses of the response kinetics also allow distinguishing binary mixtures. Additionally, we demonstrate that such optical responses can be used to esteem the diffusion coefficients of small molecules within polymer media via simple UV-vis spectroscopy retrieving data comparable to those obtained with state-of-the-art gravimetric procedures. Last, we assess the figures of merit of the sensors in terms of lower detection limit, sensitivity, and reversibility, demonstrating that such devices can pave the way to an innovative, simple, and low-cost detection method integrable to in situ assessment of barrier polymers used for the encapsulation of optoelectronic devices, food packaging, and goods storage in general.
Collapse
|
44
|
|
45
|
Li N, Lowe CR, Stevenson AC. One-step polymeric phononic crystal manufacture. ULTRASONICS 2019; 94:376-381. [PMID: 30007577 DOI: 10.1016/j.ultras.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
A versatile system to construct bulk polymeric phononic crystals by using acoustic waves is described. In order to fabricate this material, a customised cavity device fitted with a ∼2 MHz acoustic transducer and an acoustic reflector is employed for the acoustic standing wave creation in the device chamber. The polymer crystal is formed when the standing waves are created during the polymerisation process. The resulting crystals are reproduced into the shape of the tunable device cavity with a unique periodic feature. The separation is related to the applied acoustic wave frequency during the fabrication process and each unit cell composition was found to be made up to two material phases. To assess the acoustic properties of the polymer crystals their average acoustic velocity is measured relative to monomer solutions of different concentrations. It is demonstrated that one of the signature characteristics of phononic crystal, the slow wave effect, was expressed by this polymer. Furthermore the thickness of a unit cell is analysed from images obtained with microscope. By knowing the thickness the average acoustic velocity is calculated to be 1538 m/s when the monomer/cross-linker concentration is 1.5 M. This numerical calculation closely agrees with the predicted value for this monomer/cross-linker concentration of 1536 m/s. This work provides a methodology for rapid accessing a new type of adaptable phononic crystal based on flexible polymers.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Christopher R Lowe
- Cambridge Academy of Therapeutic Sciences, University of Cambridge, 17 Mill Lane, Cambridge, CB2 1RX, UK
| | - Adrian C Stevenson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
46
|
PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061209] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, the structure, electrical and thermal properties of ten polymer compositions based on polylactic acid (PLA), low-cost industrial graphene nanoplates (GNP) and multi-walled carbon nanotubes (MWCNT) in mono-filler PLA/MWCNT and PLA/GNP systems with 0–6 wt.% filler content were investigated. Filler dispersion was further improved by combining these two carbon nanofillers with different geometric shapes and aspect ratios in hybrid bi-filler nanocomposites. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy exhibited uniform dispersion of nanoparticles in a polymer matrix. The obtained results have shown that for the mono-filler systems with MWCNT or GNP, the electrical conductivity increased with decades. Moreover, a small synergistic effect was observed in the GNP/MWCNT/PLA bi-filler hybrid composites when combining GNP and CNT at a ratio of 3% GNP/3% CNT and 1.5% GNP:4.5% CNT, showing higher electrical conductivity with respect to the systems incorporating individual CNTs and GNPs at the same overall filler concentration. This improvement was attributed to the interaction between CNTs and GNPs limiting GNP aggregation and bridging adjacent graphene platelets thus, forming a more efficient network. Thermal conductivity increases with higher filler content; this effect was more pronounced for the mono-filler composites based on PLA and GNP due to the ability of graphene to better transfer the heat. Morphological analysis carried out by electron microscopy (SEM, TEM) and Raman indicated that the nanocomposites present smaller and more homogeneous filler aggregates. The well-dispersed nanofillers also lead to a microstructure which is able to better enhance the electron and heat transfer and maximize the electrical and thermal properties. The obtained composites are suitable for the production of a multifunctional filament with improved electrical and thermal properties for different fused deposition modelling (FDM) 3D printing applications and also present a low production cost, which could potentially increase the competitiveness of this promising market niche.
Collapse
|
47
|
Abi Ghanem M, Khanolkar A, Wallen SP, Helwig M, Hiraiwa M, Maznev AA, Vogel N, Boechler N. Longitudinal eigenvibration of multilayer colloidal crystals and the effect of nanoscale contact bridges. NANOSCALE 2019; 11:5655-5665. [PMID: 30865190 DOI: 10.1039/c8nr08453j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Longitudinal contact-based vibrations of colloidal crystals with a controlled layer thickness are studied. These crystals consist of 390 nm diameter polystyrene spheres arranged into close packed, ordered lattices with a thickness of one to twelve layers. Using laser ultrasonics, eigenmodes of the crystals that have out-of-plane motion are excited. The particle-substrate and effective interlayer contact stiffnesses in the colloidal crystals are extracted using a discrete, coupled oscillator model. Extracted stiffnesses are correlated with scanning electron microscope images of the contacts and atomic force microscope characterization of the substrate surface topography after removal of the spheres. Solid bridges of nanometric thickness are found to drastically alter the stiffness of the contacts, and their presence is found to be dependent on the self-assembly process. Measurements of the eigenmode quality factors suggest that energy leakage into the substrate plays a role for low frequency modes but is overcome by disorder- or material-induced losses at higher frequencies. These findings help further the understanding of the contact mechanics, and the effects of disorder in three-dimensional micro- and nano-particulate systems, and open new avenues to engineer new types of micro- and nanostructured materials with wave tailoring functionalities via control of the adhesive contact properties.
Collapse
Affiliation(s)
- Maroun Abi Ghanem
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093 USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yu S, Dong S, Jiao X, Li C, Chen D. Ultrathin Photonic Polymer Gel Films Templated by Non-Close-Packed Monolayer Colloidal Crystals to Enhance Colorimetric Sensing. Polymers (Basel) 2019; 11:polym11030534. [PMID: 30960518 PMCID: PMC6473593 DOI: 10.3390/polym11030534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 01/04/2023] Open
Abstract
Responsive polymer-based sensors have attracted considerable attention due to their ability to detect the presence of analytes and convert the detected signal into a physical and/or chemical change. High responsiveness, fast response speed, good linearity, strong stability, and small hysteresis are ideal, but to gain these properties at the same time remains challenging. This paper presents a facile and efficient method to improve the photonic sensing properties of polymeric gels by using non-close-packed monolayer colloidal crystals (ncp MCCs) as the template. Poly-(2-vinyl pyridine) (P2VP), a weak electrolyte, was selected to form the pH-responsive gel material, which was deposited onto ncp MCCs obtained by controlled O₂ plasma etching of close-packed (cp) MCCs. The resultant ultrathin photonic polymer gel film (UPPGF) exhibited significant improvement in responsiveness and linearity towards pH sensing compared to those prepared using cp MCCs template, achieving fast visualized monitoring of pH changes with excellent cyclic stability and small hysteresis loop. The responsiveness and linearity were found to depend on the volume and filling fraction of the polymer gel. Based on a simple geometric model, we established that the volume increased first and then decreased with the decrease of template size, but the filling fraction increased all the time, which was verified by microscopy observations. Therefore, the responsiveness and linearity of UPPGF to pH can be improved by simply adjusting the etching time of oxygen plasma. The well-designed UPPGF is reliable for visualized monitoring of analytes and their concentrations, and can easily be combined in sensor arrays for more accurate detection.
Collapse
Affiliation(s)
- Shimo Yu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China.
| | - Shun Dong
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China.
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China.
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China.
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China.
| |
Collapse
|
49
|
Song DP, Zhao TH, Guidetti G, Vignolini S, Parker RM. Hierarchical Photonic Pigments via the Confined Self-Assembly of Bottlebrush Block Copolymers. ACS NANO 2019; 13:1764-1771. [PMID: 30620557 DOI: 10.1021/acsnano.8b07845] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hierarchical, structurally colored materials offer a wide variety of visual effects that cannot be achieved with standard pigments or dyes. However, their fabrication requires simultaneous control over multiple length-scales. Here we introduce a robust strategy for the fabrication of hierarchical photonic pigments via the confined self-assembly of bottlebrush block copolymers within emulsified microdroplets. The bottlebrush block copolymer self-assembles into highly ordered concentric lamellae, giving rise to a near perfect photonic multilayer in the solid state, with reflectivity up to 100%. The reflected color can be readily tuned across the whole visible spectrum by either altering the molecular weight or by blending the bottlebrush block copolymers. Furthermore, the developed photonic pigments are responsive, with a selective and reversible color change observed upon swelling in different solvents. Our system is particularly suited for the scalable production of photonic pigments, arising from their rapid self-assembly mechanism and size-independent color.
Collapse
Affiliation(s)
- Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Tianheng H Zhao
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Giulia Guidetti
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Silvia Vignolini
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Richard M Parker
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
50
|
Shen X, Wu P, Schäfer CG, Guo J, Wang C. Ultrafast assembly of nanoparticles to form smart polymeric photonic crystal films: a new platform for quick detection of solution compositions. NANOSCALE 2019; 11:1253-1261. [PMID: 30603749 DOI: 10.1039/c8nr08544g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photonic crystals (PCs) are an important subset of photonic materials with specific optical properties, which can be utilized for structural color printing, anti-counterfeiting technologies, chemical sensors and so on. However, the fabrication of scalable, high-quality and uniform photonic crystal films at room temperature still remains a big challenge. Herein, a fast, energy efficient and scalable process is reported for the first time. A high-quality polymeric photonic crystal film can be fabricated from the uniform core/shell particle slurry within several seconds by a calendering process. The obtained crystalline structure can be rapidly captured by photo-curing, and the resultant PC films show extremely strong iridescent tunable structural colors. Because the as-designed PC film matrix is sensitive to solutions with different solubility parameters, a prototype demo sensor is firstly set up for quick detection of the composition of the alcohol/H2O mixture as a model of white spirits, which has the feature of reversible and linear quantitative sensing performance. In addition, the as-prepared PC film is further developed as an inexpensive test strip showing quick detection of ethanol/octane mixtures (possessing different solubility parameters) as a model of ethanol gasoline. This facile, scalable and energy efficient fabrication procedure is exceedingly promising for high-throughput production, showing great potential for industrialization of PC sensors and detectors. The combination of uniform particles and a dispersion medium can be potentially designed for different stimuli responsive systems, which is beneficial for applications ranging from sensing, anti-counterfeiting, to some special optical devices.
Collapse
Affiliation(s)
- Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|