1
|
Lathion T, Deorukhkar N, Egger C, Nozary H, Piguet C. Molecular Fe(II)-Ln(III) dyads for luminescence reading of spin-state equilibria at the molecular level. Dalton Trans 2024. [PMID: 39311462 PMCID: PMC11418352 DOI: 10.1039/d4dt01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Due to the primogenic effect, the valence shells of divalent iron Fe(II) ([Ar]3d6) and trivalent lanthanides Ln(III) ([Xe]4fn) are compact enough to induce spin-state equilibrium for the 3d-block metal and atom-like luminescence for the 4f-block partner in Fe(II)-Ln(III) dyads. In the specific case of homoleptic pseudo-octahedral [Fe(II)N6] units, programming spin crossover (SCO) around room temperature at normal pressure requires the design of unsymmetrical didentate five-membered ring chelating N∩N' ligands, in which a five-membered (benz)imidazole heterocycle (N) is connected to a six-membered pyrimidine heterocycle (N'). Benefiting from the trans influence, the facial isomer fac-[Fe(II)(N∩N')3]2+ is suitable for inducing SCO properties at room temperature in solution. Its connection to luminescent [LnN6O3] chromophores working as non-covalent podates in the triple-stranded [Fe(II)Ln(L10)3]5+ helicates (Ln = Nd, Eu) controls the facial arrangement around Fe(II). The iron-based SCO behaviour of the 3d-4f complex mirrors that programmed in the mononuclear scaffold. Because of the different electronic structures of high-spin and low-spin [Fe(II)N6] units, their associated absorption spectra are different and modulate the luminescence of the appended lanthanide luminophore via intramolecular intermetallic energy transfers. It thus becomes possible to detect the spin state of the Fe(II) center, encoded by an external perturbation (i.e. writing), by lanthanide light emission (i.e. reading) in a single molecule and without disturbance. Shifting from visible emission (Ln = Eu) to the near-infrared domain (Ln = Nd) further transforms a wavy emitted signal intensity into a linear one, a protocol highly desirable for future applications in data storage and thermometry.
Collapse
Affiliation(s)
- Timothée Lathion
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
- CNRS - CBM Rue Charles Sadron CS 80054, 45071 Orleans, Cedex 2, France
| | - Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
2
|
Orellana-Silla A, Turo-Cortés R, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Thermal and Light-Induced Spin Transitions in 3D Hofmann-type Frameworks Built on Nonlinear 3-Substituted Pyridine and Pyrimidine Pillaring Ligands. Inorg Chem 2024; 63:17305-17315. [PMID: 39235325 DOI: 10.1021/acs.inorgchem.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Integration of spin crossover (SCO) properties in 3D frameworks made up of cyano-bimetallic layers connected through pillaring organic ligands, the so-called Hofmann-type coordination polymers (HCPs)- represents an important source of multifunctional advanced materials. Typically, these 3D structures are constituted by 4-substituted pyridine-based linear pillars which afford HCPs with regular pcu topology. Here, we have investigated the suitability of the 3-substituted pyridine and pyrimidine bis-monodentate ligands 2,5-di(pyridin-3-yl)aniline (3-dpyan) and 2,5-di(pyrimidin-5-yl)aniline (bpmdan) as alternative building blocks to explore new structural topologies and functionalities. In this context, we have prepared the compounds Fe(3-dpyan)[Ag(CN)2]2·2MeOH (1Ag·2MeOH), Fe(3-dpyan)[Ag(CN)2]2···0.35NO2Bz·MeOH (1Ag·0.35NO2Bz·MeOH), Fe(3-dpyan)[Au(CN)2]2·NO2Bz (1Au·NO2Bz), and Fe(bpmdan)[Ag(CN)2]2·CH3Bz (2Ag·CH3Bz) (MeOH = methanol, NO2Bz = nitrobenzene, CH3Bz = toluene). Our structural studies have revealed that 1Ag·2MeOH and 1Ag·0.35NO2Bz·MeOH exhibit isomorphous doubly interpenetrated 3D structures strongly differing from the unusual noninterpenetrated ones exhibited by 1Au·NO2Bz and 2Ag·CH3Bz. Temperature-dependent magnetic susceptibility measurements have shown that all the reported compounds exhibit thermal-induced SCO properties, and moreover, three of them display Light Induced Excited Spin State Trapping at low temperatures (LIESST effect). The studied compounds show a wide diversity of SCO behaviors, ranging from abrupt complete one-step SCO centered at 253 K (1Au·NO2Bz) to gradual and incomplete multistepped SCO centered at 120 K (1Ag·0.35NO2Bz·MeOH). This assorted SCO properties are discussed and correlated to the acquired chemical and structural information.
Collapse
Affiliation(s)
- Alejandro Orellana-Silla
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - Rubén Turo-Cortés
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - Manuel Meneses-Sánchez
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - M Carmen Muñoz
- Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Carlos Bartual-Murgui
- Departamento de Química Física, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | - José Antonio Real
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| |
Collapse
|
3
|
Luo Y, Zhou RH, Shao Z, Liu D, Lu HH, Shang MJ, Zhao L, Liu T, Meng YS. Effects of mono- or di-fluoro-substitution on spin crossover behavior in a pair of Schiff base-like Fe II-coordination polymers. Dalton Trans 2024; 53:14692-14700. [PMID: 39157994 DOI: 10.1039/d4dt01103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Spin crossover (SCO) has long been a hot topic in the field of molecular magnetism owing to its unique bistability character. Rational control of thermal hysteresis and transition temperature (T1/2) is crucial for their practical applications, which rely on precise manipulation of the substituents of SCO coordinating ligands and molecular packing interactions. In this study, we designed two different bridging ligands (2-FDPB: 4,4'-(2-fluoro-1,4-phenylene)dipyridine; 2,3-FDPB: 4,4'-(2,3-difluoro-1,4-phenylene)dipyridine) featuring one and two fluoro substitution on the central benzene ring and applied a Schiff base-like equatorial tetradentate ligand {diethyl(E,E)-2,2'-[4,5-difluoro-1,2-phenyl-bis(iminomethylidyne)]bis(3-oxobutanoate)-(2-)-N,N',O3,O3'} (H2L) to coordinate with the FeII ion. Two FeII-coordination chain polymers [FeII(L)(2,3-FDPB)]·0.25CH2Cl2 (1) and [FeII(L)(2-FDPB)]·0.5CH3OH (2) were obtained. 1 crystallizes in the monoclinic P21/n space group with only one FeII center, while 2 crystallizes in the triclinic P1̄ space group with two independent FeII centers. Unlike the identical 2D layer stacking in 1, 2 exhibited alternating stacking of the extending 2D layers and meshed chains. Magnetic measurements revealed the typical thermally induced spin crossover behavior (SCO): 1 exhibited a 41 K-wide thermal hysteresis with transition temperatures of T1/2↑ = 245 K and T1/2↓ = 204 K, while 2 showed a higher transition temperature (T1/2 = 330 K) with no thermal hysteresis. Magneto-structural correlation studies suggest that the electron-withdrawing effect present in the fluoro substituents does not have a significant impact on the SCO behaviors. Despite the fluoro substituents having a similar atomic radius of hydrogen atoms, variations in the number of these substituents can alter the crystallization behavior of these complexes, which in turn affects the solvents, molecular stacking patterns, and intermolecular interactions, ultimately influencing the SCO behaviors.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Ren-He Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Zhen Shao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Dan Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Han-Han Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Meng-Jia Shang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
4
|
Fukushima R, Sekine Y, Zhang Z, Hayami S. Assembling Smallest Prussian Blue Analogs Using Chiral Hydrogen Bond-Donating Unit toward Complete Phase Transition. J Am Chem Soc 2024; 146:24238-24243. [PMID: 39038202 DOI: 10.1021/jacs.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Exploring methods for assembling functional materials at the molecular level may yield functional expressions derived from the assembly method. This study developed novel switchable molecular assemblies characterized by abrupt, complete phase transitions promoted via hydrogen bonding with a chiral carboxylic acid. These assemblies were prepared by aggregating discrete molecules that are unresponsive to external stimuli. Furthermore, enantiopure hydrogen-bond donor (HBD) molecules provide switchable compounds with cooperative and abrupt phase transitions, whereas the racemic mixture of the HBD provides a hydrogen-bonded one-dimensional compound with a broad and incomplete phase transition when structural disordering is observed. This study presents a novel strategy for observing metal-to-metal electron-transfer-coupled spin transitions via hydrogen-bond formation.
Collapse
Affiliation(s)
- Riku Fukushima
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Zhongyue Zhang
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
5
|
Zhang Y, Torres-Cavanillas R, Yan X, Zeng Y, Jiang M, Clemente-León M, Coronado E, Shi S. Spin crossover iron complexes with spin transition near room temperature based on nitrogen ligands containing aromatic rings: from molecular design to functional devices. Chem Soc Rev 2024; 53:8764-8789. [PMID: 39072682 DOI: 10.1039/d3cs00688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During last decades, significant advances have been made in iron-based spin crossover (SCO) complexes, with a particular emphasis on achieving reversible and reproducible thermal hysteresis at room temperature (RT). This pursuit represents a pivotal goal within the field of molecular magnetism, aiming to create molecular devices capable of operating in ambient conditions. Here, we summarize the recent progress of iron complexes with spin transition near RT based on nitrogen ligands containing aromatic rings from molecular design to functional devices. Specifically, we discuss the various factors, including supramolecular interactions, crystal packing, guest molecules and pressure effects, that could influence its cooperativity and the spin transition temperature. Furthermore, the most recent advances in their implementation as mechanical actuators, switching/memories, sensors, and other devices, have been introduced as well. Finally, we give a perspective on current challenges and future directions in SCO community.
Collapse
Affiliation(s)
- Yongjie Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Xinxin Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yixun Zeng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Mengyun Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Shengwei Shi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan, 430056, China
| |
Collapse
|
6
|
Dürrmann A, Hörner G, Baabe D, Heinemann FW, de Melo MAC, Weber B. Cooperative spin crossover leading to bistable and multi-inert system states in an iron(III) complex. Nat Commun 2024; 15:7321. [PMID: 39183211 PMCID: PMC11345420 DOI: 10.1038/s41467-024-51675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Cooperativity among spin centres has long been the royal road in spin crossover (SCO) research to impose magnetic bistability in terms of thermal hysteresis. In this work we access magnetic multi-inert states of the iron(III) compound {FeL2[B(Ph)4]} ≡ FeB at low temperature, in addition to thermal bistability. The packing of the low-spin and high-spin forms of crystalline FeB differs only marginally what ultimately leads to structural conservatism. This indicates that the SCO-immanent breathing of the complex cation is almost fully compensated by the anion matrix. The unique cooling rate dependence of the residual low-temperature magnetisation in FeB unveils continuous switching between the trapped high-spin (ON) and the relaxed low-spin state (OFF). The macroscopic ratio of the spin states (ON:OFF) can be adjusted as a simple function of the cooling rate. That is, cooperative spin crossover can be the source of bistable and multi-inert system states in the very same material.
Collapse
Affiliation(s)
- Andreas Dürrmann
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Gerald Hörner
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig, Germany
| | - Frank W Heinemann
- Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, Erlangen, Germany
| | | | - Birgit Weber
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany.
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany.
| |
Collapse
|
7
|
Kuppusamy SK, Mizuno A, Kämmerer L, Salamon S, Heinrich B, Bailly C, Šalitroš I, Wende H, Ruben M. Lattice solvent- and substituent-dependent spin-crossover in isomeric iron(II) complexes. Dalton Trans 2024; 53:10851-10865. [PMID: 38826041 DOI: 10.1039/d4dt00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (ϕ), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Asato Mizuno
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lea Kämmerer
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Soma Salamon
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel UAR2042 CNRS-Université de Strasbourg, 1 rue Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Heiko Wende
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| |
Collapse
|
8
|
Ji T, Su S, Wu S, Hori Y, Shigeta Y, Huang Y, Zheng W, Xu W, Zhang X, Kiyanagi R, Munakata K, Ohhara T, Nakanishi T, Sato O. Development of an Fe II Complex Exhibiting Intermolecular Proton Shifting Coupled Spin Transition. Angew Chem Int Ed Engl 2024; 63:e202404843. [PMID: 38622084 DOI: 10.1002/anie.202404843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
In this study, we investigated reversible intermolecular proton shifting (IPS) coupled with spin transition (ST) in a novel FeII complex. The host FeII complex and the guest carboxylic acid anion were connected by intermolecular hydrogen bonds (IHBs). We extended the intramolecular proton transfer coupled ST phenomenon to the intermolecular system. The dynamic phenomenon was confirmed by variable-temperature single-crystal X-ray diffraction, neutron crystallography, and infrared spectroscopy. The mechanism of IPS was further validated using density functional theory calculations. The discovery of IPS-coupled ST in crystalline molecular materials provides good insights into fundamental processes and promotes the design of novel multifunctional materials with tunable properties for various applications, such as optoelectronics, information storage, and molecular devices.
Collapse
Affiliation(s)
- Tianchi Ji
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shengqun Su
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shuqi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yubo Huang
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Wenhuang Xu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryoji Kiyanagi
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Koji Munakata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Takashi Ohhara
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Takumi Nakanishi
- Institute for Materials Research, Tohoku University, 211 Katahira, Aoba Ward, Sendai, Miyagi, 980-8577, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
9
|
Visinescu D, Shylin SI, Shova S, Novitchi G, Popescu DL, Alexandru MG. New cyanido-bridged iron(II) spin crossover coordination polymers with an unusual ladder-like topology: an alternative to Hofmann clathrates. Dalton Trans 2024; 53:9062-9071. [PMID: 38738339 DOI: 10.1039/d4dt00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Two new cyanido-bridged {FeIIMII} double chains were obtained by reacting cyanido anions [M(CN)4]2- with complex cations [FeII(tptz)]2+ (preformed in situ by mixing a hydrated tetrafluoroborate salt of iron(II) and a tptz ligand, tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine) having the general formula [FeII(tptz)MII(CN)4]·2H2O·CH3CN, where M = Pd (1) or Pt (2). Additionally, two molecular complexes formulated as [FeII(tptz)2][MII(CN)4]·4.25H2O, where M = Pd (3) or Pt (4), were subsequently obtained from the same reaction, as secondary products. Single crystal X-ray analysis revealed that 1 and 2 are isostructural and crystallize in the P-1 triclinic space group. Their structure consists of a double-chain with a ladder-like topology, in which cyanido-based [M(CN)4]2- metalloligands coordinate, through three CN- ligands and three [FeII(tptz)]2+ complex cations. Compounds 3 and 4 are also isostructural and crystallize in the P1̄ triclinic space group, and the X-ray structural data show the formation of [FeII(tptz)2]2+ and [MII(CN)4]2- ionic units interconnected through H-bonds and π⋯π stacking supramolecular interactions. The static DC magnetic measurements recorded in the temperature range of 2-300 K showed that 1 and 2 exhibit incomplete spin transition on cooling, which is also confirmed by single crystal XRD analysis and Mössbauer spectroscopy. Compounds 3 and 4 are diamagnetic, most likely due to the encapsulation of Fe(II) in a tight pocket formed by two tptz ligands that preserve the low-spin state in the temperature range of 2-400 K.
Collapse
Affiliation(s)
- Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Sergii I Shylin
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, EMFL, CNRS 38042 Grenoble, France.
| | - Delia-Laura Popescu
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd 4-12, Bucharest 030018, Romania
| | - Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania.
| |
Collapse
|
10
|
Seredyuk M, Znovjyak K, Valverde-Muñoz FJ, Muñoz MC, Fritsky IO, Real JA. Rotational order-disorder and spin crossover behaviour in a neutral iron(II) complex based on asymmetrically substituted large planar ionogenic ligand. Dalton Trans 2024; 53:8041-8049. [PMID: 38652019 DOI: 10.1039/d4dt00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Octahedrally coordinated spin crossover (SCO) FeII complexes represent an important class of switchable molecular materials. This study presents the synthesis and characterisation of a novel complex, [FeII(ppt-2Fph)2]0·2MeOH, where ppt-2Fph is a new asymmetric ionogenic tridentate planar ligand 2-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl)pyridine. The complex exhibits a hysteretic thermally induced SCO transition at 285 K on cooling and at 293 K on heating, as well as light induced excited spin state trapping (LIESST) at lower temperatures with a relaxation T(LIESST) temperature of 73 K. Single crystal analysis in both spin states shows that the compound undergoes an unusual partial (25%) reversible order-disorder of the asymmetrically substituted phenyl group coupled to the thermal SCO. The highly cooperative SCO transition, analysed by structural energy framework analysis at the B3LYP/6-31G(d,p) theory level, revealed the co-existence of stabilising and destabilising energy variations in the lattice. The observed antagonism of intermolecular interactions and synchronous rotational disorder, which contributes to the overall entropy change, is suggested to be at the origin of the cooperative SCO transition.
Collapse
Affiliation(s)
- Maksym Seredyuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine.
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.
- Enamine Ltd., Winston Churchill Str. 78, 02094 Kyiv, Ukraine
| | - Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine.
| | - Francisco Javier Valverde-Muñoz
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - M Carmen Muñoz
- Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, E-46022, Valencia, Spain
| | - Igor O Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine.
| | - José Antonio Real
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
11
|
Hu XY, Cheng XL, Azam M, Liu FL, Sun D. Guest-Induced Reversible Single-Crystal-to-Single-Crystal Transformation Involving Displacement of 2D Layers and Spin Crossover Behavior Change in a Hofmann-Type Coordination Polymer. Inorg Chem 2024; 63:7746-7753. [PMID: 38609344 DOI: 10.1021/acs.inorgchem.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
A novel two-dimensional (2D) Hofmann-type coordination polymer, {FeII(PyHbim)2[Pd(CN)4]}·2CH3OH [1·2CH3OH, PyHbim = 2-(4-pyridyl)benzimidazole], has been synthesized, which can undergo a spontaneous guest exchange, transforming to 1·2H2O in a single-crystal-to-single-crystal (SCSC) manner, shifting from orthorhombic Cmmm to monoclinic C2/m involving the displacement of 2D layers. The solvent-induced SCSC transformation process was reversible and verified through powder X-ray diffraction (PXRD) and single-crystal X-ray crystallography analyses. Both 1·2CH3OH and 1·2H2O exhibit complete and abrupt spin crossover (SCO) behaviors in two steps, while their SCO temperature ranges drastically shift by ca.100 K, spanning room temperature, owing to different intermolecular interactions resulting from diverse interlayer packing manners and host-guest interactions. Besides, a structural phase transition is observed in 1·2CH3OH, contributing to the two-step spin transition.
Collapse
Affiliation(s)
- Xiao-Yang Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People's Republic of China
| | - Xiang-Long Cheng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People's Republic of China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Fu-Ling Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
12
|
Grunwald J, Torres J, Buchholz A, Näther C, Kämmerer L, Gruber M, Rohlf S, Thakur S, Wende H, Plass W, Kuch W, Tuczek F. Defying the inverse energy gap law: a vacuum-evaporable Fe(ii) low-spin complex with a long-lived LIESST state. Chem Sci 2023; 14:7361-7380. [PMID: 37416721 PMCID: PMC10321519 DOI: 10.1039/d3sc00561e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
The novel vacuum-evaporable complex [Fe(pypypyr)2] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like.
Collapse
Affiliation(s)
- Jan Grunwald
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany +49 431 880 1520 +49 431 880 1410
| | - Jorge Torres
- Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany +49 30 838 452098 +49 30 838 52098
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena 07743 Jena Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany +49 431 880 1520 +49 431 880 1410
| | - Lea Kämmerer
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen 47048 Duisburg Germany
| | - Manuel Gruber
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen 47048 Duisburg Germany
| | - Sebastian Rohlf
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany
| | - Sangeeta Thakur
- Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany +49 30 838 452098 +49 30 838 52098
| | - Heiko Wende
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen 47048 Duisburg Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena 07743 Jena Germany
| | - Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany +49 30 838 452098 +49 30 838 52098
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany +49 431 880 1520 +49 431 880 1410
| |
Collapse
|
13
|
Resines-Urien E, Fernandez-Bartolome E, Martinez-Martinez A, Gamonal A, Piñeiro-López L, Costa JS. Vapochromic effect in switchable molecular-based spin crossover compounds. Chem Soc Rev 2023; 52:705-727. [PMID: 36484276 DOI: 10.1039/d2cs00790h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coordination complexes based on transition metal ions displaying [Ar]3d4-3d7 electronic configurations can undergo the likely most spectacular switchable phenomena found in molecular coordination chemistry, the well-known Spin Crossover (SCO). SCO phenomena is a detectable, reproducible and reversible switch that occurs between the high spin (HS) and low spin (LS) electronic states of the transition metal actuated by different stimuli (i.e. light, temperature, pressure, the presence of an analyte). Moreover, the occurrence of SCO phenomena causes different outputs, one of them being a colour change. Altogether, an analyte in gas form could be detected by naked eye once it has triggered the corresponding HS ↔ LS transition. This vapochromic effect could be used to detect volatile molecules using a low-cost technology, including harmful chemical substances, gases and/or volatile organic compounds (VOCs) that are present in our environment, in our home or at our workplace. The present review condenses all reported iron coordination compounds where the colour change induced by a given molecule in its gas form is coupled to a HS ↔ LS spin transition. Special emphasis has been made on describing the nature of the post-synthetic modification (PSM) taking place in the material upon the analyte uptake. In this case, three types of PSM can be distinguished: based on supramolecular contacts and/or leading to a coordinative or covalent bond. In the latter, a colour change not only indicates the switch of the spin state in the material but also the formation of a new compound with different properties. It is important to indicate that some of the SCO coordination compounds discussed in the current report have been part of other spin crossover reviews, that have gathered thermally induced SCO compounds and the influence of guest molecules on the SCO behaviour. However, in the majority of examples in these reviews, the change of colour upon the uptake of analytes is not associated with a spin transition at room temperature. In addition, the observed colour variations have been mainly discussed in terms of host-guest interactions, when they can also be induced by a PSM taking place in different sites of the molecule, like the Fe(II) coordination sphere or by chemically altering its inorganic and/or organic linkers. Therefore, we present here for the first time an exhaustive compilation of all systems in which the interaction between the coordination compounds and the vapour analytes leads to a colour change due to a spin transition in the metal centre at room temperature.
Collapse
|
14
|
Dong YN, Liu ZK, Xue JP, Li Y, Sun K, Yao ZS, Tao J. Two-Dimensional Coordination Polymer Showing Spin-Crossover Behavior with a 64 K Wide Hysteresis Loop. Inorg Chem 2022; 61:20232-20236. [DOI: 10.1021/acs.inorgchem.2c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ya-Nan Dong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Jin-Peng Xue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Yun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Ke Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| |
Collapse
|
15
|
Feng WB, Xu W, Duan HB, Zhang H. Multi-step phase transition crystal with dielectric constant bistability and temperature-dependent conductivity. RSC Adv 2022; 12:32475-32479. [PMID: 36425677 PMCID: PMC9661182 DOI: 10.1039/d2ra05947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Here, we report the crystal structures, phase transitions, and thermal, dielectric, and conducting properties of an ion-pair compound [C4-bmim][Ni(mnt)2] (1). 1 undergoes a three-step phase transition with four phases before melting. A two-step dielectric constant bistability is also realized by the structural phase transition in 1 occurring among phases I, II, and III, which is due to the in-plane oscillations of the alkyl chain and crystal-to-mesophase transition, respectively. Moreover, 1 exhibits rare temperature-dependent conducting properties accompanying structural phase transitions, and conductivity is very high with 0.00186 S cm-1 at 413 K. The conduction properties of phase III (mesophase) arise from the dipole molecular motion.
Collapse
Affiliation(s)
- W B Feng
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| | - W Xu
- Department of Chemistry, Huangshan University Huangshan 245041 P.R. China
| | - H B Duan
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| | - H Zhang
- School of Environmental Science, Nanjing Xiaozhuang University Nanjing 211171 P.R. China
| |
Collapse
|
16
|
Dey B, Chandrasekhar V. Fe II spin crossover complexes containing N 4O 2 donor ligands. Dalton Trans 2022; 51:13995-14021. [PMID: 36040413 DOI: 10.1039/d2dt01967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin crossover (SCO) is one of the most studied magnetic bistable phenomena because of its application in the field of multifunctional magnetic materials. FeII complexes in a N6 coordination environment have been the most well-studied in terms of their SCO behaviour. Other coordination environments, notably the N4O2 coordination environment, has also been quite effective in inducing SCO behaviour in the corresponding FeII complexes. This review deals with such systems. The three ligand families that are discussed are: Jager type ligands, hydrazone based ligands and tridentate ligands having salicylaldehyde derivatives. These ligands allow the assembly of both mononuclear and multinuclear complexes that exhibit cooperative spin transitions. Also, FeII complexes obtained from some of these ligands are multifunctional and exhibit a coupling of optical and magnetic properties. Most of the FeII complexes obtained from these families of ligands are charge neutral which allows easy surface deposition. Further, modulation of these ligand families allows a fine tuning of the ligand field strength which results in varying SCO behavior. In addition some of the FeII complexes derived from these ligands exhibit a light induced excited spin state trapping (LIESST) effect. All of the above aspects are reviewed in this review.
Collapse
Affiliation(s)
- Bijoy Dey
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad - 500046, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad - 500046, Telangana, India. .,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
17
|
Seredyuk M, Znovjyak K, Valverde-Muñoz FJ, da Silva I, Muñoz MC, Moroz YS, Real JA. 105 K Wide Room Temperature Spin Transition Memory Due to a Supramolecular Latch Mechanism. J Am Chem Soc 2022; 144:14297-14309. [PMID: 35900921 PMCID: PMC9380689 DOI: 10.1021/jacs.2c05417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Little is known about the mechanisms behind the bistability
(memory)
of molecular spin transition compounds over broad temperature ranges
(>100 K). To address this point, we report on a new discrete FeII neutral complex [FeIIL2]0 (1) based on a novel asymmetric tridentate ligand 2-(5-(3-methoxy-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl))pyridine
(L). Due to the asymmetric cone-shaped form, in the lattice, the formed
complex molecules stack into a one-dimensional (1D) supramolecular
chain. In the case of the rectangular supramolecular arrangement of
chains in methanolates 1-A and 1-B (both
orthorhombic, Pbcn) differing, respectively, by bent
and extended spatial conformations of the 3-methoxy groups (3MeO),
a moderate cooperativity is observed. In contrast, the hexagonal-like
arrangement of supramolecular chains in polymorph 1-C (monoclinic, P21/c) results in steric coupling of the transforming complex
species with the peripheral flipping 3MeO group. The group acts as
a supramolecular latch, locking the huge geometric distortion of complex 1 and in turn the trigonal distortion of the central FeII ion in the high-spin state, thereby keeping it from the
transition to the low-spin state over a large thermal range. Analysis
of the crystal packing of 1-C reveals significantly changing
patterns of close intermolecular interactions on going between the
phases substantiated by the energy framework analysis. The detected
supramolecular mechanism leads to a record-setting robust 105 K wide
hysteresis spanning the room temperature region and an atypically
large TLIESST relaxation value of 104
K of the photoexcited high-spin state. This work highlights a viable
pathway toward a new generation of cleverly designed molecular memory
materials.
Collapse
Affiliation(s)
- Maksym Seredyuk
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.,Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine
| | | | - Ivan da Silva
- ISIS Neutron Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, U.K
| | - M Carmen Muñoz
- Departamento de Fisíca Aplicada, Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Yurii S Moroz
- Chemspace Ltd., Chervonotkatska Street 78, 02094 Kyiv, Ukraine.,ChemBio Center, Taras Shevchenko National University of Kyiv, 60, Volodymyrska Street, 01601 Kyiv, Ukraine
| | - José Antonio Real
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
| |
Collapse
|
18
|
Yergeshbayeva S, Hrudka JJ, Jo M, Gakiya-Teruya M, Meisel MW, Shatruk M. Abrupt Spin Transition in a Heteroleptic Fe(II) Complex with Pendant Naphthalene Functionality. Inorg Chem 2022; 61:11349-11358. [PMID: 35816625 DOI: 10.1021/acs.inorgchem.2c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A heteroleptic spin-crossover (SCO) complex, [Fe(tpma)(xnap-bim)](ClO4)2 (1; tpma = tris(2-pyridylmethyl)amine, xnap-bim = 8,15-dihydrodiimidazo[1,2-a:2',1'-c]naphtho[2,3-f][1,4]diazocine), has been obtained by reacting a Fe(II) precursor salt with tetradentate tpma and bidentate xnap-bim ligands. Depending on crystallization conditions, two different solvates have been obtained, 1·2.25py·0.5H2O and 1·py. The former readily loses the interstitial solvent to produce either a powder sample of 1 upon filtration or crystals of 1 if the solvent loss is slowed by placing the crystals of 1·2.25py·0.5H2O in diethyl ether. In contrast, 1·py exhibits higher stability toward solvent loss. The crystal packing of both solvates and of the solvent-free structure features double columns of [Fe(tpma)(xnap-bim)]2+ cations formed by efficient π-π interactions between the pyridyl groups of tpma ligands, as well as by stacks supported by π-π interactions between interdigitated naphthalene fragments of xnap-bim ligands. While both solvates show a gradual SCO between the high-spin (HS) and low-spin (LS) states of the Fe(II) ion, solvent-free complex 1 exhibits an abrupt spin transition centered at 127 K, with a narrow 2 K thermal hysteresis. Complex 1 also shows a light-induced excited spin state trapping effect, manifested as LS → HS conversion upon irradiation with white light at 5 K. The metastable HS state relaxes to the ground LS state when heated above 65 K.
Collapse
Affiliation(s)
- Sandugash Yergeshbayeva
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Jeremy J Hrudka
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Minyoung Jo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Miguel Gakiya-Teruya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mark W Meisel
- Department of Physics, University of Florida, Gainesville, Florida 32611-8440, United States.,National High Magnetic Field Laboratory, Gainesville, Florida 32611-8440, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
19
|
Investigations on the Spin States of Two Mononuclear Iron(II) Complexes Based on N-Donor Tridentate Schiff Base Ligands Derived from Pyridine-2,6-Dicarboxaldehyde. INORGANICS 2022. [DOI: 10.3390/inorganics10070098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iron(II)-Schiff base complexes are a well-studied class of spin-crossover (SCO) active species due to their ability to interconvert between a paramagnetic high spin-state (HS, S = 2, 5T2) and a diamagnetic low spin-state (LS, S = 0, 1A1) by external stimuli under an appropriate ligand field. We have synthesized two mononuclear FeII complexes, viz., [Fe(L1)2](ClO4)2.CH3OH (1) and [Fe(L2)2](ClO4)2.2CH3CN (2), from two N6–coordinating tridentate Schiff bases derived from 2,6-bis[(benzylimino)methyl]pyridine. The complexes have been characterized by elemental analysis, electrospray ionization–mass spectrometry (ESI-MS), Fourier-transform infrared spectroscopy (FTIR), solution state nuclear magnetic resonance spectroscopy, 1H and 13C NMR (both theoretically and experimentally), single-crystal diffraction and magnetic susceptibility studies. The structural, spectroscopic and magnetic investigations revealed that 1 and 2 are with Fe–N6 distorted octahedral coordination geometry and remain locked in LS state throughout the measured temperature range from 5–350 K.
Collapse
|
20
|
Hao G, Dale AS, N'Diaye AT, Chopdekar RV, Koch RJ, Jiang X, Mellinger C, Zhang J, Cheng R, Xu X, Dowben PA. Intermolecular interaction and cooperativity in an Fe(II) spin crossover molecular thin film system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:295201. [PMID: 35508146 DOI: 10.1088/1361-648x/ac6cbc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Compact domain features have been observed in spin crossover [Fe{H2B(pz)2}2(bipy)] molecular thin film systems via soft x-ray absorption spectroscopy and photoemission electron microscopy. The domains are in a mixed spin state that on average corresponds to roughly 2/3 the high spin occupation of the pure high spin state. Monte Carlo simulations support the presence of intermolecular interactions that can be described in terms of an Ising model in which interactions beyond nearest-neighbors cannot be neglected. This suggests the presence of short-range order to permit interactions between molecules beyond nearest neighbor that contribute to the formation of largely high spin state domains structure. The formation of a spin state domain structure appears to be the result of extensive cooperative effects.
Collapse
Affiliation(s)
- Guanhua Hao
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588, United States of America
- Advanced Light Source, Lawrence Berkeley National Lab, One Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Ashley S Dale
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States of America
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Lab, One Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Lab, One Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Roland J Koch
- Advanced Light Source, Lawrence Berkeley National Lab, One Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Xuanyuan Jiang
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Corbyn Mellinger
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States of America
| | - Ruihua Cheng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States of America
| | - Xiaoshan Xu
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Peter A Dowben
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588, United States of America
| |
Collapse
|
21
|
Influence of Cooperative Interactions on the Spin Crossover Phenomenon in Iron(II) Complexes: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Kuppusamy SK, Mizuno A, García-Fuente A, van der Poel S, Heinrich B, Ferrer J, van der Zant HSJ, Ruben M. Spin-Crossover in Supramolecular Iron(II)-2,6-bis(1 H-Pyrazol-1-yl)pyridine Complexes: Toward Spin-State Switchable Single-Molecule Junctions. ACS OMEGA 2022; 7:13654-13666. [PMID: 35559184 PMCID: PMC9088905 DOI: 10.1021/acsomega.1c07217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Spin-crossover (SCO) active iron(II) complexes are an integral class of switchable and bistable molecular materials. Spin-state switching properties of the SCO complexes have been studied in the bulk and single-molecule levels to progress toward fabricating molecule-based switching and memory elements. Supramolecular SCO complexes featuring anchoring groups for metallic electrodes, for example, gold (Au), are ideal candidates to study spin-state switching at the single-molecule level. In this study, we report on the spin-state switching characteristics of supramolecular iron(II) complexes 1 and 2 composed of functional 4-([2,2'-bithiophen]-5-ylethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L1) and 4-(2-(5-(5-hexylthiophen-2-yl)thiophen-2-yl)ethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L2) ligands, respectively. Density functional theory (DFT) studies revealed stretching-induced spin-state switching in a molecular junction composed of complex 1, taken as a representative example, and gold electrodes. Single-molecule conductance traces revealed the unfavorable orientation of the complexes in the junctions to demonstrate the spin-state dependence of the conductance.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute
for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Asato Mizuno
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Amador García-Fuente
- Departamento
de Física, Universidad de Oviedo, ES-33007 Oviedo, Spain
- Centro
de Investigación en Nanotecnología y Nanomateriales
(CINN, CSIC), El Entrego ES-33940, Spain
| | - Sebastiaan van der Poel
- Kavli
Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Benoît Heinrich
- Institut
de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg,
23, rue du Loess, BP 43, 67034 cedex
2 Strasbourg, France
| | - Jaime Ferrer
- Departamento
de Física, Universidad de Oviedo, ES-33007 Oviedo, Spain
- Centro
de Investigación en Nanotecnología y Nanomateriales
(CINN, CSIC), El Entrego ES-33940, Spain
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Mario Ruben
- Institute
for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Université
de Strasbourg (Unistra), Institute de Science et d′Ingénierie
Supramoléculaire (ISIS), Centre Européen de Science
Quantique (CESQ), 8,
Allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
23
|
Fischer K, Krahmer J, Tuczek F. Chemically and Light-Driven Coordination-Induced Spin State Switching (CISSS) of a nonheme-iron complex. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The new Fe(II) complex [Fe(trident)(bmik)](ClO4)2 (1) (trident = bis(2-pyridylmethyl)benzylamine and bmik = bis(1-methylimidazole)ketone) exhibits a change of magnetic moment in dichloromethane (DCM) solution upon addition of pyridine which is attributed to the Coordination-Induced Spin State Switching effect (CISSS). By attaching a photoisomerizable azopyridine sidegroup to the tridentate ligand the complex [Fe(azpy-trident)(bmik)](ClO4)2 (2; azpy-trident = [N,N-bis(2-pyridylmethyl)]-3-(3-pyridylazo)benzylamine) is obtained. As detected by Evans NMR spectroscopy, 2 reversibly changes its magnetic moment in homogeneous solution upon photoirradiation which is attributed to intermolecular Light-Driven Coordination-Induced Spin State Switching (LD-CISSS). Further support for this interpretation is inferred from concentration-dependent Evans NMR measurements.
Collapse
Affiliation(s)
- Kim Fischer
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, D-24118 Kiel , Germany
| | - Jan Krahmer
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, D-24118 Kiel , Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, D-24118 Kiel , Germany
| |
Collapse
|
24
|
Wang JP, Liu WT, Yu M, Ji XY, Liu JL, Chi MZ, Starikova AA, Tao J. One-Step versus Two-Step Valence Tautomeric Transitions in Tetraoxolene-Bridged Dinuclear Cobalt Compounds. Inorg Chem 2022; 61:4428-4441. [PMID: 35234043 DOI: 10.1021/acs.inorgchem.1c03944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The syntheses of valence tautomeric compounds with multistep transitions using new redox-active ligands are the long-term goal of the field of bistable materials. The redox-active tetraoxolene ligand, 2,7-di-tert-butylpyrene-4,5,9,10-tetraone (pyreneQ-Q), is now developed to synthesize a pair of dinuclear compounds {[CoL2]2(pyreneSq-Sq)}[Co(CO)4]2·xCH2Cl2·2C6H5CH3 (1, x = 2, L = 1,10-phenanthroline, phen; 2, x = 1.5, L = 2,2'-bipyridine, bpy). Variable-temperature magnetic susceptibilities and single-crystal X-ray diffraction measurements indicate a partial one-step valence tautomeric transition for 1 and a rare two-step valence tautomeric transition for 2, respectively. DFT calculation results are consistent with the experimental data, revealing the correlation between thermodynamic parameters and the one-step/two-step valence tautomeric behaviors.
Collapse
Affiliation(s)
- Jia-Ping Wang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, PR China
| | - Wen-Ting Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, PR China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, PR China
| | - Xue-Yang Ji
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, PR China
| | - Jing-Lin Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, PR China
| | - Man-Zhou Chi
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, PR China
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachka Avenue 194/2, Rostov-on-Don 344090, Russian Federation
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, PR China
| |
Collapse
|
25
|
Liu JH, Guo XQ, Wang ZC, Cai LX, Zhou LP, Tian CB, Sun QF. Cation modulated spin state and near room temperature transition within a family of compounds containing the same [FeL 2] 2- center. Dalton Trans 2022; 51:3894-3901. [PMID: 35167636 DOI: 10.1039/d1dt04254h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-crossover (SCO) active compounds have received much attention due to their potential application in molecular devices. Herein, a family of solvent-free FeII compounds, formulated as (A)2[FeL2], (H2L = pyridine-2,6-bi-tetrazolate, A = (Me)4N+1, Et2NH2+2, iPr2NH2+3 and iPrNH3+4), were synthesized and characterized. Single-crystal X-ray diffraction studies reveal that 1-4 are all supramolecular frameworks containing the same [FeL2]2- center, which is arranged into two packing modes via inter-molecular interactions, that is, a 3D architecture in 1 and 1D chain in 2-4. The spin states of 1-4 at different temperatures are assigned on the basis of the single-crystal X-ray diffraction data. Solid state magnetic investigations indicate that 1 and 4 exhibit a low spin state (below 350 K) and high spin state (2-400 K), respectively. 2 and 3 display clear SCO behavior in the measured temperature, but with different profiles and critical temperatures. 2 undergoes a complete gradual SCO with a critical temperature of T1/2 = 260 K. 3 has an abrupt near room temperature transition between T1/2 cooling = 278 K and T1/2 warming = 286, centered at 282 K (9 °C). This study reveals the importance of organic cations in the modulation of SCO behavior and offers a new insight for the design of SCO compounds with near room temperature spin transitions.
Collapse
Affiliation(s)
- Jia-Hui Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-Cheng Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chong-Bin Tian
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
26
|
Kiehl J, Hochdörffer T, Carrella LM, Schünemann V, Nygaard MH, Overgaard J, Rentschler E. Pronounced Magnetic Bistability in Highly Cooperative Mononuclear [Fe(L npdtz) 2(NCX) 2] Complexes. Inorg Chem 2022; 61:3141-3151. [PMID: 35142508 DOI: 10.1021/acs.inorgchem.1c03491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular materials that exhibit stimuli-responsive bistability are promising candidates for the development of molecular switches and sensors. We herein report on the coexistence of a wide thermal hysteretic spin crossover (SCO) effect and a thermally inducible metastable high-spin state at low temperatures achieved with the two new complexes [FeII(Lnpdtz)2(NCX)2] (X = S; Se), with Lnpdtz being (2-naphthyl-5-pyridyl-1,2,4-thiadiazole) and X = S (1) and Se (2). Pronounced π-π-stacking of the aromatic side residues of the ligands enables strong intermolecular interactions, leading to abrupt SCO properties and broad magnetic hysteresis of 10 K for X = S and 58 K for X = Se. In this paper, we also present the pressure-induced spin-state switching around 0.8 GPa. A pronounced thermally induced excited spin state trapping (TIESST effect) is observed for the highly cooperative SCO compounds, which was experimentally followed by low-temperature single crystal structure analysis (20 K) and temperature-dependent Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Jonathan Kiehl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Tim Hochdörffer
- Department of Physics, Technische Universität Kaiserslautern, Erwin-Schroedinger-Str. 46, D-67663 Kaiserslautern, Germany
| | - Luca M Carrella
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Volker Schünemann
- Department of Physics, Technische Universität Kaiserslautern, Erwin-Schroedinger-Str. 46, D-67663 Kaiserslautern, Germany
| | - Mathilde H Nygaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Eva Rentschler
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
27
|
Suryadevara N, Mizuno A, Spieker L, Salamon S, Sleziona S, Maas A, Pollmann E, Heinrich B, Schleberger M, Wende H, Kuppusamy SK, Ruben M. Structural Insights into Hysteretic Spin-Crossover in a Set of Iron(II)-2,6-bis(1H-Pyrazol-1-yl)Pyridine) Complexes. Chemistry 2022; 28:e202103853. [PMID: 34939670 PMCID: PMC9305185 DOI: 10.1002/chem.202103853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/21/2022]
Abstract
Bistable spin-crossover (SCO) complexes that undergo abrupt and hysteretic (ΔT1/2 ) spin-state switching are desirable for molecule-based switching and memory applications. In this study, we report on structural facets governing hysteretic SCO in a set of iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) (bpp) complexes - [Fe(bpp-COOEt)2 ](X)2 ⋅CH3 NO2 (X=ClO4 , 1; X=BF4 , 2). Stable spin-state switching - T1/2 =288 K; ΔT1/2 =62 K - is observed for 1, whereas 2 undergoes above-room-temperature lattice-solvent content-dependent SCO - T1/2 =331 K; ΔT1/2 =43 K. Variable-temperature single-crystal X-ray diffraction studies of the complexes revealed pronounced molecular reorganizations - from the Jahn-Teller-distorted HS state to the less distorted LS state - and conformation switching of the ethyl group of the COOEt substituent upon SCO. Consequently, we propose that the large structural reorganizations rendered SCO hysteretic in 1 and 2. Such insights shedding light on the molecular origin of thermal hysteresis might enable the design of technologically relevant molecule-based switching and memory elements.
Collapse
Affiliation(s)
- Nithin Suryadevara
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Asato Mizuno
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Lea Spieker
- University of Duisburg-EssenFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)Lotharstraße 147057DuisburgGermany
| | - Soma Salamon
- University of Duisburg-EssenFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)Lotharstraße 147057DuisburgGermany
| | - Stephan Sleziona
- University of Duisburg-EssenFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)Lotharstraße 147057DuisburgGermany
| | - André Maas
- University of Duisburg-EssenFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)Lotharstraße 147057DuisburgGermany
| | - Erik Pollmann
- University of Duisburg-EssenFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)Lotharstraße 147057DuisburgGermany
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)CNRS-Université de Strasbourg23, rue du Loess, BP 4367034Strasbourg Cedex 2France
| | - Marika Schleberger
- University of Duisburg-EssenFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)Lotharstraße 147057DuisburgGermany
| | - Heiko Wende
- University of Duisburg-EssenFaculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)Lotharstraße 147057DuisburgGermany
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Mario Ruben
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Quantum Materials and Technologies (IQMT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Centre Européen de Sciences Quantiques (CESQ)Institut de Science et d'Ingénierie Supramoléculaires (ISIS)8 allée Gaspard Monge, BP 7002867083Strasbourg CedexFrance
| |
Collapse
|
28
|
Steric Quenching of Mn(III) Thermal Spin Crossover: Dilution of Spin Centers in Immobilized Solutions. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Structural and magnetic properties of a new spin crossover complex [Mn(4,6-diOMe-sal2323)]+ in lattices with ClO4−, (1), NO3−, (2), BF4−, (3), CF3SO3−, (4), and Cl− (5) counterions are reported. Comparison with the magnetostructural properties of the C6, C12, C18 and C22 alkylated analogues of the ClO4− salt of [Mn(4,6-diOMe-sal2323)]+ demonstrates that alkylation effectively switches off the thermal spin crossover pathway and the amphiphilic complexes are all high spin. The spin crossover quenching in the amphiphiles is further probed by magnetic, structural and Raman spectroscopic studies of the PF6− salts of the C6, C12 and C18 complexes of a related complex [Mn(3-OMe-sal2323)]+ which confirm a preference for the high spin state in all cases. Structural analysis is used to rationalize the choice of the spin quintet form in the seven amphiphilic complexes and to highlight the non-accessibility of the smaller spin triplet form of the ion more generally in dilute environments. We suggest that lattice pressure is a requirement to stabilize the spin triplet form of Mn3+ as the low spin form is not known to exist in solution.
Collapse
|
29
|
Zhao XH, Shao D, Chen JT, Gan DX, Yang J, Zhang YZ. A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1153-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Seredyuk M, Znovjyak K, Valverde-Muñoz FJ, Muñoz MC, Fritsky IO, Amirkhanov VM, Real JA. Spin transition and symmetry-breaking in new mononuclear FeII tren-complexes with up to 38 K hysteresis around room temperature. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00941a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New FeII complexes based on the well-known tripodand ligand type undergo abrupt hysteretic spin transition due to the symmetry-breaking in the room temperature region.
Collapse
Affiliation(s)
- Maksym Seredyuk
- Departament de Quimica Inorgànica, Institut de Ciencia Molecular (ICMol), Universitat de València, Valencia, Spain
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, Ukraine
| | - Kateryna Znovjyak
- Departament de Quimica Inorgànica, Institut de Ciencia Molecular (ICMol), Universitat de València, Valencia, Spain
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, Ukraine
| | | | - M. Carmen Muñoz
- Departamento de Fisica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, Ukraine
| | - Volodymyr M. Amirkhanov
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, Ukraine
| | - Jose A. Real
- Departament de Quimica Inorgànica, Institut de Ciencia Molecular (ICMol), Universitat de València, Valencia, Spain
| |
Collapse
|
31
|
Sulaiman A, Jiang YZ, Javed MK, Wu SQ, Li ZY, Bu XH. Tuning of spin-crossover behavior in two cyano-bridged mixed-valence FeIII2FeII trinuclear complexes based on a TpR ligand. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01086g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the use of TpR derivatives, we have demonstrated the modulation in the SCO behavior in two analogous trinuclear complexes. Moreover, a change in the spin transition temperature via solvent loss is observed.
Collapse
Affiliation(s)
- Arshia Sulaiman
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yi-Zhan Jiang
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Mohammad Khurram Javed
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
32
|
Nößler M, Hunger D, Neuman NI, Reimann M, Reichert F, Winkler M, Klein J, Bens T, Suntrup L, Demeshko S, Stubbe J, Kaupp M, van Slageren J, Sarkar B. Fluorinated Click-Derived Tripodal Ligands Drive Spin Crossover in both Iron(II) and Cobalt(II) Complexes. Dalton Trans 2022; 51:10507-10517. [DOI: 10.1039/d2dt01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of the spin state of metal complexes is important because it leads to a precise control over the physical properties and the chemical reactivity of the metal complexes. Currently,...
Collapse
|
33
|
Shen KY, Zhang CJ, Qu LY, Jiang SQ, Zhang Y, Tong ML, Bao X. Thermodriven, Acidity-Driven, and Photodriven Spin-State Switching in Pyridylacylhydrazoneiron(II) Complexes at or above Room Temperature. Inorg Chem 2021; 60:18225-18233. [PMID: 34784709 DOI: 10.1021/acs.inorgchem.1c02866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The magnetic bistability of spin-crossover (SCO) materials is highly appealing for applications as molecular switches and information storage. However, switching of the spin state around room temperature remains challenging. In this work, we reported the successful manipulation of the spin states of two iron(II) complexes (1-Fe and 2-Fe) based on pyridylacylhydrazone ligands in manifold ways. Both complexes are stabilized in the low-spin (LS) state at room temperature because of the strong ligand-field strength imposed by the ligands. 2-Fe shows thermoinduced SCO above room temperature with a very large and reproducible hysteresis (>50 K), while 1-Fe remains in the LS state up to 400 K. Acidity-driven spin-state switching of the two complexes was achieved at room temperature as a result of the complex dissociation and release of iron(II) in its high-spin (HS) state. Recovery of the complex is feasible upon further alkalization treatment in the case of 1-Fe, allowing bidirectional modulation of the spin state of the metal center. Light-driven one-way switching from LS to HS is also achieved by virtue of E-to-Z isomerization at the C═N double bond, which results in dissociation of the complex because of the poor binding affinity in the Z configuration.
Collapse
Affiliation(s)
- Kai Yan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chen Ju Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lei Yu Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shi Qing Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ming Liang Tong
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
34
|
Pruszkowska K, Stasyuk OA, Zep A, Krówczyński A, Sicinski RR, Solà M, Cyrański MK. Effect of Diamine Bridge on Reactivity of Tetradentate ONNO Nickel(II) Complexes. Chemphyschem 2021; 23:e202100741. [PMID: 34783442 DOI: 10.1002/cphc.202100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Two new square planar ONNO nickel(II) complexes C2_core and C3_core have been synthesized and characterized by single crystal X-ray diffraction, NMR spectroscopy, thermogravimetry, and DFT calculations. The experimental results revealed the effect of the length of diamine bridge in the ligand on the behavior of the studied complexes in the reaction with N-heterocyclic aromatic amines, while DFT calculations provided a basis for the rationalization of this observation. The complex with propylenediamine bridge (C3_core) readily reacts with pyridine and its derivatives to form high-spin (paramagnetic) complexes with octahedral geometry as characterized by X-ray diffraction; electron-donating substituents on the pyridine ring facilitate the coordination of axial ligands. In contrast, the complex with ethylenediamine bridge (C2_core) does not undergo such a reaction because of the high deformation energy of the core required for the formation of C2_Py complex.
Collapse
Affiliation(s)
- Kamila Pruszkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Olga A Stasyuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Anna Zep
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Adam Krówczyński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Rafal R Sicinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Miquel Solà
- Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
35
|
Kanetomo T, Inokuma K, Naoi Y, Enomoto M. Spin transition triggered by desorption of crystal solvents for a two-dimensional cobalt(ii) complex with hydrogen bonding. Dalton Trans 2021; 50:11243-11248. [PMID: 34341808 DOI: 10.1039/d1dt01934a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Co(5tpybNOH)2](BPh4)2 (1; 5tpybNOH = 5,5''-bis(N-tert-butyl hydroxylamino)-2,2':6',2''-terpyridine) has a two-dimensional (2D) structure through a hydrogen bond between the NOH sites, as revealed by X-ray crystallography. The crystal solvents were desorbed above 300 K as shown by thermal analyses and powder X-ray crystallography. The removal of the crystal solvents allowed irreversible structural changes and a spin transition of the Co centre from S = 1/2 to 3/2.
Collapse
Affiliation(s)
- Takuya Kanetomo
- Department of Chemistry, Faculty of Science Division 1, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | |
Collapse
|
36
|
Üngör Ö, Choi ES, Shatruk M. Optimization of crystal packing in semiconducting spin-crossover materials with fractionally charged TCNQ δ- anions (0 < δ < 1). Chem Sci 2021; 12:10765-10779. [PMID: 34476058 PMCID: PMC8372557 DOI: 10.1039/d1sc02843j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Co-crystallization of the prominent Fe(ii) spin-crossover (SCO) cation, [Fe(3-bpp)2]2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQ δ- radical anion has afforded a hybrid complex [Fe(3-bpp)2](TCNQ)3·5MeCN (1·5MeCN, where δ = -0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σ RT = 3.1 × 10-3 S cm-1, and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ- anions, [Fe(3-bpp)2](TCNQ)2·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) to obtain [Fe(bzimpy)2](TCNQ)6·2Me2CO (4) and [Fe(bzimpy)2](TCNQ)5·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σ RT = 9.1 × 10-2 S cm-1 and 1.8 × 10-3 S cm-1, respectively.
Collapse
Affiliation(s)
- Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
| | - Eun Sang Choi
- National High Magnetic Field Laboratory 1800 E Paul Dirac Dr Tallahassee FL 32310 USA
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory 1800 E Paul Dirac Dr Tallahassee FL 32310 USA
| |
Collapse
|
37
|
Bonanno NM, Watts Z, Mauws C, Patrick BO, Wiebe CR, Shibano Y, Sugisaki K, Matsuoka H, Shiomi D, Sato K, Takui T, Lemaire MT. Valence tautomerism in a [2 × 2] Co 4 grid complex containing a ditopic arylazo ligand. Chem Commun (Camb) 2021; 57:6213-6216. [PMID: 34059865 DOI: 10.1039/d1cc01991k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe the structural and magnetic properties of a tetranuclear [2 × 2] Co4 grid complex containing a ditopic arylazo ligand. At low temperatures and in solution the complex is comprised of Co3+ and singly reduced trianion-radical ligands. In the solid state we demonstrate the presence of valence tautomerization via variable temperature magnetic susceptibility experiments and powder-pattern EPR spectroscopy. Valence tautomerism in polynuclear complexes is very rare and to our knowledge is unprecedented in [2 × 2] grid complexes.
Collapse
Affiliation(s)
- Nico M Bonanno
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Zackery Watts
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Cole Mauws
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British of Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Christopher R Wiebe
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada and Department of Chemistry, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Yuki Shibano
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558 8585, Japan
| | - Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558 8585, Japan
| | - Hideto Matsuoka
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558 8585, Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558 8585, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558 8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558 8585, Japan
| | - Martin T Lemaire
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
38
|
Benchohra A, Li Y, Chamoreau L, Baptiste B, Elkaïm E, Guillou N, Kreher D, Lescouëzec R. The Atypical Hysteresis of [Fe(C
6
F
5
Tp)
2
]: Overlay of Spin‐Crossovers and Symmetry‐Breaking Phase Transition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amina Benchohra
- Institut Parisien de Chimie Moléculaire CNRS UMR 8232 Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire CNRS UMR 8232 Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Lise‐Marie Chamoreau
- Institut Parisien de Chimie Moléculaire CNRS UMR 8232 Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Benoit Baptiste
- Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie (IMPMC) Sorbonne Universite UMR 7590 CNRS UMR 206 IRD Museum National d'Histoire Naturelle MNHN 4 place Jussieu 75252 Paris cedex 5 France
| | - Erik Elkaïm
- Synchrotron Soleil L'Orme des Merisiers Saint-Aubin—BP 48 91192 Gif-sur-Yvette cedex France
| | - Nathalie Guillou
- Université Paris-Saclay UVSQ Institut Lavoisier de Versailles CNRS UMR 8180 45 Avenue des Etats-Unis 78035 Versailles France
| | - David Kreher
- Institut Parisien de Chimie Moléculaire CNRS UMR 8232 Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire CNRS UMR 8232 Sorbonne Université 4 place Jussieu 75252 Paris cedex 5 France
| |
Collapse
|
39
|
Benchohra A, Li Y, Chamoreau LM, Baptiste B, Elkaïm E, Guillou N, Kreher D, Lescouëzec R. The Atypical Hysteresis of [Fe(C 6 F 5 Tp) 2 ]: Overlay of Spin-Crossovers and Symmetry-Breaking Phase Transition. Angew Chem Int Ed Engl 2021; 60:8803-8807. [PMID: 33496370 DOI: 10.1002/anie.202015994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Indexed: 11/11/2022]
Abstract
The [FeII (C6 F5 Tp)2 ] spin-crossover complex is an atypical molecular switch, which can be converted upon annealing between two archetypal spin-crossover behaviours: from an extremely gradual spin-crossover to a broad hysteretic spin-transition (of ca. 65 K). The hysteresis shows an uncommon "rounded shape" that is reproducible upon cycling temperature. In depth structural studies reveal a first crystal phase transition, which occurs upon melting and recrystallizing at high temperature. This first irreversible transition is associated with a radical change in the crystal packing. More importantly, the "rounded and broad" hysteretic transition is shown to occur in a non-cooperative SCO system and is associated with the occurrence of a symmetry-breaking phase transition that appears when roughly ca. 50 % of the SCO complexes are switched.
Collapse
Affiliation(s)
- Amina Benchohra
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252, Paris cedex 5, France
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252, Paris cedex 5, France
| | - Lise-Marie Chamoreau
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252, Paris cedex 5, France
| | - Benoit Baptiste
- Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie (IMPMC), Sorbonne Universite, UMR 7590 CNRS, UMR 206 IRD, Museum National d'Histoire Naturelle MNHN, 4 place Jussieu, 75252, Paris cedex 5, France
| | - Erik Elkaïm
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192, Gif-sur-Yvette cedex, France
| | - Nathalie Guillou
- Université Paris-Saclay, UVSQ, Institut Lavoisier de Versailles, CNRS UMR 8180, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - David Kreher
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252, Paris cedex 5, France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252, Paris cedex 5, France
| |
Collapse
|
40
|
Kumar KS, Ruben M. Sublimable Spin-Crossover Complexes: From Spin-State Switching to Molecular Devices. Angew Chem Int Ed Engl 2021; 60:7502-7521. [PMID: 31769131 PMCID: PMC8048919 DOI: 10.1002/anie.201911256] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 11/10/2022]
Abstract
Spin-crossover (SCO) active transition metal complexes are an important class of switchable molecular materials due to their bistable spin-state switching characteristics at or around room temperature. Vacuum-sublimable SCO complexes are a subclass of SCO complexes suitable for fabricating ultraclean spin-switchable films desirable for applications, especially in molecular electronics/spintronics. Consequently, on-surface SCO of thin-films of sublimable SCO complexes have been studied employing spectroscopy and microscopy techniques, and results of fundamental and technological importance have been obtained. This Review provides complete coverage of advances made in the field of vacuum-sublimable SCO complexes: progress made in the design and synthesis of sublimable functional SCO complexes, on-surface SCO of molecular and multilayer thick films, and various molecular and thin-film device architectures based on the sublimable SCO complexes.
Collapse
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)CNRS-Université de Strasbourg23, rue du Loess, BP 4367034Strasbourg cedex 2France
| | - Mario Ruben
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)CNRS-Université de Strasbourg23, rue du Loess, BP 4367034Strasbourg cedex 2France
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Quantum Materials and -TechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
41
|
Xie KP, Wu SG, Wang LF, Huang GZ, Ni ZP, Tong ML. A spin-crossover phenomenon in a 2D heterometallic coordination polymer with [Pd(SCN) 4] 2- building blocks. Dalton Trans 2021; 50:4152-4158. [PMID: 33688869 DOI: 10.1039/d1dt00244a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 3-(9-anthracenyl)-pyridine (1) and L2 = 4-(9-anthracenyl)-pyridine (2)), were constructed by employing square-planar [Pd(SCN)4]2- building blocks. Compound 1 exhibits a complete spin-crossover (SCO) behaviour under normal atmospheric pressure, and represents the first SCO example in a 2D system containing [Pd(SCN)4]2- units. In contrast, compound 2 only shows paramagnetic behaviour at measured temperatures. It is clear that the fine-tuning of the monodentate ligand can modulate the ligand field and packing fashions, which sheds light on developing new SCO materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|
42
|
Gebretsadik T, Yang Q, Wu J, Tang J. Hydrazone based spin crossover complexes: Behind the extra flexibility of the hydrazone moiety to switch the spin state. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Jornet-Mollá V, Giménez-Saiz C, Vieira BJC, Waerenborgh JC, Romero FM. Temperature dependence of desolvation effects in hydrogen-bonded spin crossover complexes. Dalton Trans 2021; 50:2536-2544. [PMID: 33522546 DOI: 10.1039/d0dt03986a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, crystal structure and (photo)magnetic properties of the anhydrous spin crossover salt of formula [Fe(bpp)2](C6H8O4) (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H8O4 = adipate dianion), obtained by desolvation at 400 K of the original tetrahydrate in a single-crystal-to-single-crystal (SC-SC) transformation, are reported. This work offers a comparison between this compound and the previously reported hydrated material ([Fe(bpp)2](C6H8O4)·4H2O, 1·4H2O), highlighting the significance of the thermal conditions used in the dehydration-rehydration processes. In both compounds, a hydrogen-bonded network between iron(ii) complexes and adipate anions is observed. The original tetrahydrate (1·4H2O) is low-spin and desolvation at 450 K triggers a low-spin (LS) to high-spin (HS) transition to an amorphous phase that remains stable over the whole temperature range of study. Surprisingly, the dehydrated compound at 400 K (1) keeps the crystallinity, undergoes a partial spin crossover (T1/2 = 180 K) and a quantitative LS to HS photomagnetic conversion at low temperatures, with a T(LIESST) value of 61 K.
Collapse
Affiliation(s)
- Verónica Jornet-Mollá
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | | | | | | | | |
Collapse
|
44
|
Kurz H, Hörner G, Weber B. An Iron(II) Spin Crossover Complex with a Maleonitrile Schiff base‐like Ligand and Scan Rate‐dependent Hysteresis above Room Temperature. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hannah Kurz
- Department of Chemistry University of Bayreuth Universitätsstraße 30, NWI 95447 Bayreuth Germany
| | - Gerald Hörner
- Department of Chemistry University of Bayreuth Universitätsstraße 30, NWI 95447 Bayreuth Germany
| | - Birgit Weber
- Department of Chemistry University of Bayreuth Universitätsstraße 30, NWI 95447 Bayreuth Germany
| |
Collapse
|
45
|
Guionneau P, Marchivie M, Chastanet G. Multiscale Approach of Spin Crossover Materials: A Concept Mixing Russian Dolls and Domino Effects. Chemistry 2021; 27:1483-1486. [PMID: 32692437 DOI: 10.1002/chem.202002699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/22/2022]
Abstract
The spin crossover (SCO) phenomenon corresponds to a modification that originates at the atomic scale. However, the simple consideration of the transformations that occur following the SCO at this scale or in its close vicinity does not allow anyone to truly understand, anticipate and thus take advantage of what happens at the scale of the material, and even less at the device one. As the fruit of years of work and experience on this phenomenon, we formalize here the concept of the multiscale understanding of SCO. Clearly, the deflagration generated by the initial impressive atomic modification on all the physical scales of the solid must be understood in terms of structure-properties relationships that fit together, like Russian dolls, and propagate according to a kind of domino effect. Each scale can both give different and independent consequences from those of the other scales but at the same time can influence those of a larger or smaller scale, the whole being imperatively to take into account. The concept appears well illustrated by the volume modification, always the same at the atomic level but drastically different and adaptable, in amplitude and sense, at any other physical scale. This approach results in a much wider range of potential applications than the atomic level alone initially suggests, including one serious path to shape memory materials.
Collapse
Affiliation(s)
- Philippe Guionneau
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600, Pessac, France
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600, Pessac, France
| | - Guillaume Chastanet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 av. Dr A. Schweitzer, F-33600, Pessac, France
| |
Collapse
|
46
|
Qamar OA, Cong C, Ma H. Solid state mononuclear divalent nickel spin crossover complexes. Dalton Trans 2020; 49:17106-17114. [PMID: 33205805 DOI: 10.1039/d0dt03421e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin crossover complexes containing 3d4-3d7 transition metal ions with tunable electronic configurations in appropriate ligand field environments have been extensively investigated. In contrast, the development of 3d8 divalent nickel complexes displaying such a spin crossover behavior is far behind. The increasing number of X-ray single crystal structures along with magnetic evidence and thermodynamic equilibrium indicate that bistable divalent nickel complexes are gradually recognized to be a formal member of the "spin crossover family". Unfortunately, the rarity of nickel spin crossover complexes is occasionally mentioned. This Perspective article highlights examples of mononuclear 3d8 nickel spin crossover complexes in dynamic rearrangements with characterized solid state structures from the viewpoint of types of ligands utilized.
Collapse
Affiliation(s)
- Obaid Ali Qamar
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 21186, China.
| | | | | |
Collapse
|
47
|
Kühne IA, Esien K, Gavin LC, Müller-Bunz H, Felton S, Morgan GG. Modulation of Mn 3+ Spin State by Guest Molecule Inclusion. Molecules 2020; 25:E5603. [PMID: 33260579 PMCID: PMC7730159 DOI: 10.3390/molecules25235603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022] Open
Abstract
Spin state preferences for a cationic Mn3+ chelate complex in four different crystal lattices are investigated by crystallography and SQUID magnetometry. The [MnL1]+ complex cation was prepared by complexation of Mn3+ to the Schiff base chelate formed from condensation of 4-methoxysalicylaldehyde and 1,2-bis(3-aminopropylamino)ethane. The cation was crystallized separately with three polyatomic counterions and in one case was found to cocrystallize with a percentage of unreacted 4-methoxysalicylaldehyde starting material. The spin state preferences of the four resultant complexes [MnL1]CF3SO3·xH2O, (1), [MnL1]PF6·xH2O, (2), [MnL1]PF6·xsal·xH2O, (2b), and [MnL1]BPh4, (3), were dependent on their ability to form strong intermolecular interactions. Complexes (1) and (2), which formed hydrogen bonds between [MnL1]+, lattice water and in one case also with counterion, showed an incomplete thermal spin crossover over the temperature range 5-300 K. In contrast, complex (3) with the BPh4-, counterion and no lattice water, was locked into the high spin state over the same temperature range, as was complex (2b), where inclusion of the 4-methoxysalicylaldehyde guest blocked the H-bonding interaction.
Collapse
Affiliation(s)
- Irina A. Kühne
- School of Chemistry, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland; (I.A.K.); (L.C.G.); (H.M.-B.)
| | - Kane Esien
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK; (K.E.); (S.F.)
| | - Laurence C. Gavin
- School of Chemistry, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland; (I.A.K.); (L.C.G.); (H.M.-B.)
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland; (I.A.K.); (L.C.G.); (H.M.-B.)
| | - Solveig Felton
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK; (K.E.); (S.F.)
| | - Grace G. Morgan
- School of Chemistry, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland; (I.A.K.); (L.C.G.); (H.M.-B.)
| |
Collapse
|
48
|
Kumar KS, Ruben M. Sublimierbare Spin‐Crossover‐Komplexe: Vom Schalten des Spinzustands zu molekularen Bauelementen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) CNRS-Université de Strasbourg 23, rue du Loess, BP 43 67034 Strasbourg cedex 2 Frankreich
| | - Mario Ruben
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) CNRS-Université de Strasbourg 23, rue du Loess, BP 43 67034 Strasbourg cedex 2 Frankreich
- Institut für Nanotechnologie Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Institut für Quantenmaterialien und -technologien Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
49
|
Senthil Kumar K, Del Giudice N, Heinrich B, Douce L, Ruben M. Bistable spin-crossover in a new series of [Fe(BPP-R) 2] 2+ (BPP = 2,6-bis(pyrazol-1-yl)pyridine; R = CN) complexes. Dalton Trans 2020; 49:14258-14267. [PMID: 33026376 DOI: 10.1039/d0dt02214d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-crossover (SCO) active transition metal complexes are a class of switchable molecular materials. Such complexes undergo hysteretic high-spin (HS) to low-spin (LS) transition, and vice versa, rendering them suitable for the development of molecule-based switching and memory elements. Therefore, the search for SCO complexes undergoing abrupt and hysteretic SCO, that is, bistable SCO, is actively carried out by the molecular magnetism community. In this study, we report the bistable SCO characteristics associated with a new series of iron(ii) complexes-[Fe(BPP-CN)2](X)2, X = BF4 (1a-d) or ClO4 (2)-belonging to the [Fe(BPP-R)2]2+ (BPP = 2,6-bis(pyrazol-1-yl)pyridine) family of complexes. Among the complexes, the lattice solvent-free complex 2 showed a stable and complete SCO (T1/2 = 241 K) with a thermal hysteresis width (ΔT) of 28 K-the widest ΔT reported so far for a [Fe(BPP-R)2](X)2 family of complexes, showing abrupt SCO. The reproducible and bistable SCO shown by the relatively simple [Fe(BPP-CN)2](X)2 series of molecular complexes is encouraging to pursue [Fe(BPP-R)2]2+ systems for the realization of technologically relevant SCO complexes.
Collapse
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France. and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Nicolas Del Giudice
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Laurent Douce
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Mario Ruben
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France. and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. and Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
50
|
Wen T, Wang Y, Li C, Jiang D, Jiang Z, Qu S, Yang W, Wang Y. Site-Specific Pressure-Driven Spin-Crossover in Lu 1-xSc xFeO 3. J Phys Chem Lett 2020; 11:8549-8553. [PMID: 32970442 DOI: 10.1021/acs.jpclett.0c02537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pressure-driven spin-crossover (PSCO) is a collective quantum phenomenon frequently observed in transition-metal-based systems. According to the crystal-field theory, PSCO highly depends on the surrounding coordination environment of a given magnetic ion; nevertheless, it has never been verified experimentally up to now. Herein, we report the observation of a site-specific PSCO phenomenon in Lu1-xScxFeO3, in which octahedrally coordinated Fe3+ in orthorhombic LuFeO3 and trigonal-bipyramidally coordinated Fe3+ in hexagonal Lu0.5Sc0.5FeO3 show distinct PSCO response to external pressure. X-ray emission spectra and DFT calculations reveal the key role of coordination environment in a PSCO process and predict the occurrence of PSCO for trigonal-bipyramidally coordinated Fe3+ above 100 GPa, far beyond that of 50 GPa for octahedrally coordinated Fe3+ in LuFeO3. The demonstration of site-specific PSCO sheds light on the state-of-the-art design of PSCO materials for directional applications.
Collapse
Affiliation(s)
- Ting Wen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Yiming Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Chen Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Dequan Jiang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Zimin Jiang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Shangqing Qu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| |
Collapse
|