1
|
Wang Y, Zhao WL, Gao Z, Qu C, Li X, Jiang Y, Hu L, Wang XQ, Li M, Wang W, Chen CF, Yang HB. Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2024:e202417458. [PMID: 39379791 DOI: 10.1002/anie.202417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6×10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit a narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6 %, and CPEL with |gEL| of 2.1×10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiwen Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Cemaloğlu R, Asmafiliz N, Tümer Y, Hökelek T, Kılıç Z, Çelik NN, Açık L, Güzel R, Güzel Erdal G. Phosphorus-Nitrogen Compounds: Part 76. Design and Syntheses of Dispiro- and Trispiro(N/N)cyclotriphosphazenes: Conformational and Structural Analyses, Chirality, Electrochemical, Dye-Sensitized Solar Cells, and Bioactivity Studies. Inorg Chem 2024; 63:18389-18407. [PMID: 39301633 DOI: 10.1021/acs.inorgchem.4c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The reactions of monospirocyclotriphosphazenes (1 and 2) with N-methyl-1,3-diaminopropane gave unsymmetrical cis-(3 and 5) and trans-(4 and 6) dispirocyclotriphosphazenes. Trans-cis-trans (tct) (7 and 11), cis-cis-cis (ccc) (8 and 12), trans-trans-cis (ttc) (9 and 13), and cis-trans-trans (ctt) (14) trispirocyclotriphosphazenes were obtained from the reactions of 3 and 5 and 4 and 6 with N-methyl-1,3-diaminopropane. cis-Dispirocyclotriphosphazenes (3 and 5) exist as "pseudomesoracemates", while trans-dispirocyclotriphosphazenes (4 and 6) are in "racemates". The existences of cis-3 and trans-4 as "pseudomesoracemate" and "racemate" were confirmed by 31P NMR spectra recorded by the addition of "chiral solvating agent (CSA)". X-ray crystallography proved that the absolute configurations of each enantiomer of cis-5 and trans-6 are SS' and RS'. Trispirocyclotriphosphazenes tct, ttc, ccc, and ctt exist as racemates, pseudomesoracemate, and meso forms. Furthermore, Hirshfeld surface analysis of the crystal structures of cis-5 and trans-6 revealed that the most significant contribution to crystal packing comes from H···H (58.2 and 57.6%, respectively). An oxidation-reduction wave was detected in the reversible cyclic voltammograms of the phosphazenes. The highest power conversion efficiency in dye-sensitized solar cell studies was obtained with cis-5. Additionally, trans-6 exhibited the lowest minimal inhibitory concentration value (78.1 μM) against Candida tropicalis, and it was observed to cleave pBR322 plasmid DNA.
Collapse
Affiliation(s)
- Reşit Cemaloğlu
- Department of Chemistry, Ankara University, 06100 Ankara, Türkiye
| | - Nuran Asmafiliz
- Department of Chemistry, Ankara University, 06100 Ankara, Türkiye
| | - Yasemin Tümer
- Department of Chemistry, Karabük University, 78050 Karabük, Türkiye
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye
| | - Zeynel Kılıç
- Department of Chemistry, Ankara University, 06100 Ankara, Türkiye
| | - Nejla Nur Çelik
- Department of Biology, Gazi University, 06500 Ankara, Türkiye
| | - Leyla Açık
- Department of Biology, Gazi University, 06500 Ankara, Türkiye
| | - Remziye Güzel
- Department of Chemistry, Dicle University, 21280 Diyarbakır, Türkiye
| | - Gülbahar Güzel Erdal
- Department of Medical Biology and Genetics, Dicle University, 21010 Diyarbakır, Türkiye
| |
Collapse
|
3
|
Struth FR, Jansen D, Pairault N, Schumacher M, Uteschil F, Linders J, Mayer C, Gröschel AH, Goldup SM, Niemeyer J. Steric Engineering of Rotaxane Catalysts: Benefits and Limits of Using the Mechanical Bond in Catalyst Design. Chemistry 2024:e202402717. [PMID: 39140421 DOI: 10.1002/chem.202402717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
The mechanical bond is emerging as a novel design element in catalyst development. Here, we report a series of 1,1'-binaphthyl-2,2'-diol (BINOL) based catalysts in which the number of interlocked macrocycles is varied. Unsurprisingly, the macrocycles have a profound steric influence on the catalytic performance of these molecules. However, in the enantioselective transformations examined, the macrocycles are detrimental to catalyst stereoselectivity whereas in lactide polymerization, they increase the molecular weight of the polymeric product.
Collapse
Affiliation(s)
- F Robin Struth
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Dennis Jansen
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Noël Pairault
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, University of Bordeaux, 33400, Talence, France
| | - Marcel Schumacher
- Institute of Organic Chemistry and Center for Soft Nanoscience (SoN), University of Muenster, Busso-Peus-Strasse 10, 48149, Muenster, Germany
| | - Florian Uteschil
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jürgen Linders
- Faculty of Chemistry (Physical Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christian Mayer
- Faculty of Chemistry (Physical Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - André H Gröschel
- Macromolecular Chemistry and Bavarian Centre for Battery Technology (BayBatt), University of Bayreuth, Weiherstrasse 26, 95448, Bayreuth, Germany
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| |
Collapse
|
4
|
Razi SS, Marin-Luna M, Alajarin M, Martinez-Cuezva A, Berna J. Conjugated bis(enaminones) as effective templates for rotaxane assembly and their post-synthetic modifications. Commun Chem 2024; 7:170. [PMID: 39098851 PMCID: PMC11298525 DOI: 10.1038/s42004-024-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
The development of efficient methods for the synthesis of mechanically interlocked compounds is currently considered a major challenge in supramolecular chemistry. Twofold vinylogous fumaramides, a class of conjugated bis(enaminones), successfully achieve the assembly of hydrogen-bonded amide-based rotaxanes, with a templating ability comparable to that of their parent fumaramide-based systems, showcasing full conversions and impressive yields up to 92%. Computational calculations offer a compelling explanation for the remarkable efficiency of these bis(enaminones) in driving the synthesis of unprecedented rotaxanes. The reactivity of these interlocked species was thoroughly investigated, revealing that a one-step double stopper-exchange process can be successfully performed while preserving the mechanical bond. This approach facilitates the formation of controllable rotaxanes, including a three-station molecular shuttle, whose assembly via a clipping methodology is highly unselective. The internal translational motion of this latter species has been successfully controlled in a reversible way by means of a cycloaddition/retrocycloaddition sequence.
Collapse
Affiliation(s)
- Syed S Razi
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
5
|
Chen R, Hammoud A, Aoun P, Martínez-Aguirre MA, Vanthuyne N, Maruchenko R, Brocorens P, Bouteiller L, Raynal M. Switchable supramolecular helices for asymmetric stereodivergent catalysis. Nat Commun 2024; 15:4116. [PMID: 38750046 PMCID: PMC11096402 DOI: 10.1038/s41467-024-48412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Despite recent developments on the design of dynamic catalysts, none of them have been exploited for the in-situ control of multiple stereogenic centers in a single molecular scaffold. We report herein that it is possible to obtain in majority any amongst the four possible stereoisomers of an amino alcohol by means of a switchable asymmetric catalyst built on supramolecular helices. Hydrogen-bonded assemblies between a benzene-1,3,5-tricarboxamide (BTA) achiral phosphine ligand coordinated to copper and a chiral BTA comonomer are engaged in a copper-hydride catalyzed hydrosilylation and hydroamination cascade process. The nature of the product stereoisomer is related to the handedness of the helices and can thus be directed in a predictable way by changing the nature of the major enantiomer of the BTA comonomer present in the assemblies. The strategy allows all stereoisomers to be obtained one-pot with similar selectivities by conducting the cascade reaction in a concomitant manner, i.e. without inverting the handedness of the helices, or sequentially, i.e. by switching the handedness of the supramolecular helices between the hydrosilylation and hydroamination steps. Supramolecular helical catalysts appear as a unique and versatile platform to control the configuration of molecules or polymers embedding several stereogenic centers.
Collapse
Affiliation(s)
- Ran Chen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Ahmad Hammoud
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Paméla Aoun
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Mayte A Martínez-Aguirre
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, 13397, Marseille, Cedex 20, France
| | - Régina Maruchenko
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Patrick Brocorens
- Service de Chimie des Matériaux Nouveaux, Institut de Recherche sur les Matériaux, Université de Mons, 20B-7000, 20 B-7000, Mons, Belgium
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
6
|
Tagliabue A, Micheletti C, Mella M. Effect of Counterion Size on Knotted Polyelectrolyte Conformations. J Phys Chem B 2024; 128:4183-4194. [PMID: 38648610 DOI: 10.1021/acs.jpcb.3c07446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Using Langevin dynamics simulations and a coarse-grained primitive model of electrolytes, we show that the behavior of knotted circular strong polyelectrolytes (PEs) in diluted aqueous solution is largely affected by the diameter of the counterions (CIs), σCI. Indeed, we observe that both gyration radius and knot length vary nonmonotonically with σCI, with both small and bulky CIs favoring knot localization, while medium-sized ones promote delocalized knots. We also show that the conformational change from delocalized to tight knots occurs via the progressive coalescence of the knot's essential crossings. The emerging conformers correspond to the minima of the free energy landscape profiled as a function of the knot length or PE size. We demonstrate that different conformational states can coexist, the transition between them appearing first-order-like and controlled by the enthalpic and entropic trade-off of the amount of CIs condensed on the PE. Such balance can be further altered by varying CI concentrations, thus providing an additional and more convenient tuning parameter for the system properties. Our results lay the foundation for achieving broader and more precise external adjustability of knotted PE size and shape by choosing the nature of its CIs. Thus, they offer new intriguing possibilities for designing novel PE-based materials that are capable of responding to changes in ionic solution properties.
Collapse
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, Como 22100, Italy
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, Trieste 34136, Italy
| | - Cristian Micheletti
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, Trieste 34136, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, Como 22100, Italy
| |
Collapse
|
7
|
Chen S, Katsonis N, Leigh DA, Patanapongpibul M, Ryabchun A, Zhang L. Changing Liquid Crystal Helical Pitch with a Reversible Rotaxane Switch. Angew Chem Int Ed Engl 2024; 63:e202401291. [PMID: 38445723 DOI: 10.1002/anie.202401291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
The transmission of chiral information between the molecular, meso and microscopic scales is a facet of biology that remains challenging to understand mechanistically and to mimic with artificial systems. Here we demonstrate that the dynamic change in the expression of the chirality of a rotaxane can be transduced into a change in pitch of a soft matter system. Shuttling the position of the macrocycle from far-away-from to close-to a point-chiral center on the rotaxane axle changes the expression of the chiral information that is transmitted across length scales; from nanometer scale constitutional chirality that affects the conformation of the macrocycle, to the centimeter scale chirality of the liquid crystal phase, significantly changing the pitch length of the chiral nematic structure.
Collapse
Affiliation(s)
- Sujun Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Nathalie Katsonis
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Manee Patanapongpibul
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Alexander Ryabchun
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
8
|
Kauerhof D, Riebe J, Vonnemann CJ, Thiele M, Jansen D, Niemeyer J. Heterobifunctional rotaxanes featuring two chiral subunits - synthesis and application in asymmetric organocatalysis. Chem Commun (Camb) 2024; 60:2393-2396. [PMID: 38323328 DOI: 10.1039/d3cc05482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Rotaxanes can serve as scaffolds for the generation of bifunctional catalysts. We have now generated acid-base functionalized rotaxanes featuring two chiral subunits. The mechanical bond leads to increased reaction rates and also to strongly altered enantioselectivites in comparison to the non-interlocked control catalysts.
Collapse
Affiliation(s)
- Dana Kauerhof
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Christoph J Vonnemann
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Maike Thiele
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Dennis Jansen
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany.
| |
Collapse
|
9
|
Jelínková K, Závodná A, Kaleta J, Janovský P, Zatloukal F, Nečas M, Prucková Z, Dastychová L, Rouchal M, Vícha R. Two Squares in a Barrel: An Axially Disubstituted Conformationally Rigid Aliphatic Binding Motif for Cucurbit[6]uril. J Org Chem 2023; 88:15615-15625. [PMID: 37882436 PMCID: PMC10661032 DOI: 10.1021/acs.joc.3c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Novel binding motifs suitable for the construction of multitopic guest-based molecular devices (e.g., switches, sensors, data storage, and catalysts) are needed in supramolecular chemistry. No rigid, aliphatic binding motif that allows for axial disubstitution has been described for cucurbit[6]uril (CB6) so far. We prepared three model guests combining spiro[3.3]heptane and bicyclo[1.1.1]pentane centerpieces with imidazolium and ammonium termini. We described their binding properties toward CB6/7 and α-/β-CD using NMR, titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction. We found that a bisimidazolio spiro[3.3]heptane guest forms inclusion complexes with CB6, CB7, and β-CD with respective association constants of 4.0 × 104, 1.2 × 1012, and 1.4 × 102. Due to less hindering terminal groups, the diammonio analogue forms more stable complexes with CB6 (K = 1.4 × 106) and CB7 (K = 3.8 × 1012). The bisimidazolio bicyclo[1.1.1]pentane guest forms a highly stable complex only with CB7 with a K value of 1.1 × 1011. The high selectivity of the new binding motifs implies promising potential in the construction of multitopic supramolecular components.
Collapse
Affiliation(s)
- Kristýna Jelínková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Aneta Závodná
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Jiří Kaleta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Petr Janovský
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Filip Zatloukal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 602 00, Czech Republic
| | - Zdeňka Prucková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Lenka Dastychová
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Michal Rouchal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Robert Vícha
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| |
Collapse
|
10
|
Tseng IC, Zhang MX, Kang SL, Chiu SH. An Anion-Switchable Dual-Function Rotaxane Catalyst. Angew Chem Int Ed Engl 2023; 62:e202309889. [PMID: 37670563 DOI: 10.1002/anie.202309889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
In situ switching of the associated anions of a rotaxane catalyst between Cl- and TFPB- exposes its dialkylammonium and imidazolium stations, respectively, thereby selectively catalyzing the reactions of a mixture of trans-cinnamaldehyde and an aliphatic thiol to yield the Michael adduct and the thioacetal product, respectively.
Collapse
Affiliation(s)
- I-Cheng Tseng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Min-Xuan Zhang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Shih-Lun Kang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
11
|
Dehaghani Z, Chiarantoni P, Micheletti C. Topological Entanglement of Linear Catenanes: Knots and Threadings. ACS Macro Lett 2023; 12:1231-1236. [PMID: 37638542 PMCID: PMC10515615 DOI: 10.1021/acsmacrolett.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
We used molecular dynamics simulations to investigate the self-entanglements of the collapsed linear catenanes. We found two different types of topologically complex states. First, we observed numerous long-lived knotting events of the catenane backbone. However, comparison with conventional polymers reveals that knots are suppressed in catenanes. Next, we observed topologically complex states with no analogue in polymers, where a concatenated ring was threaded by other near or distal rings sliding through it. Differently from knots, these threaded states can disentangle by becoming fully tightened. A detailed thermodynamic and microscopic analysis is employed to rationalize the persistence of threaded states, which can survive significant internal reorganizations of the entire catenane. We finally discuss the broader implications of these previously unreported types of entanglements for other systems, such as noncollapsed and interacting catenanes.
Collapse
Affiliation(s)
| | | | - Cristian Micheletti
- International School for
Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
12
|
Wei HZ, Wei Y, Shi M. Synthesis and Characterization of Photoswitchable Dithienylethene-Based Chiral Bisoxazoline Compounds with Bidirectional Visible-Light Control. Chem Asian J 2023; 18:e202300633. [PMID: 37584248 DOI: 10.1002/asia.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023]
Abstract
In this paper, we have successfully synthesized dithienylethene-based chiral bisoxazoline ligands with bidirectional photoswitching capabilities under visible light irradiation and proposed a strategy for adjusting the conjugation system length in sensitizer groups. The detailed experimental procedures and the characterization data are presented in the main text and the Supporting Information. Despite their moderate photoswitching rates, these ligands provide a promising approach towards developing fully visible light-responsive chiral catalysts.
Collapse
Affiliation(s)
- Hao-Zhao Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Bismillah AN, Johnson TG, Hussein BA, Turley AT, Saha PK, Wong HC, Aguilar JA, Yufit DS, McGonigal PR. Control of dynamic sp 3-C stereochemistry. Nat Chem 2023; 15:615-624. [PMID: 36914791 PMCID: PMC10159849 DOI: 10.1038/s41557-023-01156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
Stereogenic sp3-hybridized carbon centres are fundamental building blocks of chiral molecules. Unlike dynamic stereogenic motifs, such as sp3-nitrogen centres or atropisomeric biaryls, sp3-carbon centres are usually fixed, requiring intermolecular reactions to undergo configurational changes. Here we report the internal enantiomerization of fluxional carbon cages and the consequences of their adaptive configurations for the transmission of stereochemical information. The sp3-carbon stereochemistry of the rigid tricyclic cages is inverted through strain-assisted Cope rearrangements, emulating the low-barrier configurational dynamics typical for sp3-nitrogen inversion or conformational isomerism. This dynamic enantiomerization can be stopped, restarted or slowed by external reagents, while the configuration of the cage is controlled by neighbouring, fixed stereogenic centres. As part of a phosphoramidite-olefin ligand, the fluxional cage acts as a conduit to transmit stereochemical information from the ligand while also transferring its dynamic properties to chiral-at-metal coordination environments, influencing catalysis, ion pairing and ligand exchange energetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Ho Chi Wong
- Department of Chemistry, Durham University, Durham, UK
| | | | | | - Paul R McGonigal
- Department of Chemistry, Durham University, Durham, UK. .,Department of Chemistry, University of York, York, UK.
| |
Collapse
|
14
|
Hoyas Pérez N, Sherin PS, Posligua V, Greenfield JL, Fuchter MJ, Jelfs KE, Kuimova MK, Lewis JEM. Emerging properties from mechanical tethering within a post-synthetically functionalised catenane scaffold. Chem Sci 2022; 13:11368-11375. [PMID: 36320581 PMCID: PMC9533469 DOI: 10.1039/d2sc04101d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 09/06/2024] Open
Abstract
Maintaining close spatial proximity of functional moieties within molecular systems can result in fascinating emergent properties. Whilst much work has been done on covalent tethering of functional units for myriad applications, investigations into mechanically linked systems are relatively rare. Formation of the mechanical bond is usually the final step in the synthesis of interlocked molecules, placing limits on the throughput of functionalised architectures. Herein we present the synthesis of a bis-azide [2]catenane scaffold that can be post-synthetically modified using CuAAC 'click' chemistry. In this manner we have been able to access functionalised catenanes from a common precursor and study the properties of electrochemically active, emissive and photodimerisable units within the mechanically interlocked system in comparison to non-interlocked analogues. Our data demonstrates that the greater (co-)conformational flexibility that can be obtained with mechanically interlocked systems compared to traditional covalent tethers paves the way for developing new functional molecules with exciting properties.
Collapse
Affiliation(s)
- Nadia Hoyas Pérez
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Peter S Sherin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Victor Posligua
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Jake L Greenfield
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
15
|
Chen X, Gilissen PJ, Tinnemans P, Vanthuyne N, Rutjes FPJT, Feringa BL, Elemans JAAW, Nolte RJM. Enantiodivergent epoxidation of alkenes with a photoswitchable phosphate manganese-salen complex. NATURE SYNTHESIS 2022; 1:873-882. [PMID: 36353682 PMCID: PMC7613796 DOI: 10.1038/s44160-022-00157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of enantiodivergent catalysts capable of preparing both enantiomeric products from one substrate in a controlled fashion is challenging. Introducing a switching function into the catalyst can address this challenge, allowing the chiral reaction environment to reversibly change during catalysis. Here we report a photoswitchable phosphate ligand, derived from 2,2'-biphenol, which axially coordinates as the counter ion to an achiral manganese(III) salen catalyst, providing the latter with the ability to switch stereoselectivity in the epoxidation of alkenes. The enantiomers of the chiral ligand exist as a pair of pseudo-enantiomers, which can be interconverted by irradiation with light of different wavelengths. The opposite axial chirality of these pseudo-enantiomers is efficiently transferred to the manganese(III) salen catalyst. With this switchable supramolecular catalyst, the enantioselectivity of the epoxidation of a variety of alkenes can be controlled, resulting in opposite enantiomeric excesses of the epoxide products. This transfer of chirality from a photoswitchable anionic ligand to a metal complex broadens the scope of supramolecular catalysts.
Collapse
Affiliation(s)
- Xiaofei Chen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Pieter J Gilissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes A A W Elemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
16
|
Maynard JR, Gallagher P, Lozano D, Butler P, Goldup SM. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat Chem 2022; 14:1038-1044. [PMID: 35760959 PMCID: PMC7613450 DOI: 10.1038/s41557-022-00973-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Chirality typically arises in molecules because of a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two macrocycles with chemically distinct faces are joined to form a catenane, the structure is chiral, although the rings themselves are not. However, enantiopure mechanically axially chiral catenanes in which the mechanical bond provides the sole source of stereochemistry have not been reported. Here we re-examine the symmetry properties of these molecules and in doing so identify a straightforward route to access them from simple chiral building blocks. Our analysis also led us to identify an analogous but previously unremarked upon rotaxane stereogenic unit, which also yielded to our co-conformational auxiliary approach. With methods to access mechanically axially chiral molecules in hand, their properties and applications can now be explored.
Collapse
|
17
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022; 61:e202200638. [DOI: 10.1002/anie.202200638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
18
|
|
19
|
Maynard JRJ, Galmés B, Stergiou AD, Symes MD, Frontera A, Goldup SM. Anion-π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022; 61:e202115961. [PMID: 35040543 PMCID: PMC9303940 DOI: 10.1002/anie.202115961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/13/2022]
Abstract
We report a series of rotaxane-based anion-π catalysts in which the mechanical bond between a bipyridine macrocycle and an axle containing an NDI unit is intrinsic to the activity observed, including a [3]rotaxane that catalyses an otherwise disfavoured Michael addition in >60 fold selectivity over a competing decarboxylation pathway that dominates under Brønsted base conditions. The results are rationalized by detailed experimental investigations, electrochemical and computational analysis.
Collapse
Affiliation(s)
| | - Bartomeu Galmés
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | - Athanasios D. Stergiou
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Mark D. Symes
- WestCHEM School of ChemistryUniversity of Glasgow, Joseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta de Valldemossa km 7.507122Palma de MallorcaBalearesSpain
| | | |
Collapse
|
20
|
Cho HL, Lai CC, Liu YH, Hsu HF, Peng SM, Chiu SH. Metal-Ion-Induced Mechanical Chirality: Achiral Rotaxane as the Only Ligand in Chiral Palladium(II)–N-Heterocyclic Carbene Complexes. Org Lett 2022; 24:1996-2001. [DOI: 10.1021/acs.orglett.2c00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hsien-Liang Cho
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, 145 Xingda Road, South District, Taichung 402, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsiu-Fu Hsu
- Department of Chemistry, Tamkang University, No.151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
21
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
22
|
Yao B, Sun H, Yang L, Wang S, Liu X. Recent Progress in Light-Driven Molecular Shuttles. Front Chem 2022; 9:832735. [PMID: 35186899 PMCID: PMC8847434 DOI: 10.3389/fchem.2021.832735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular shuttles are typical molecular machines that could be applied in various fields. The motion modes of wheel components in rotaxanes could be strategically modulated by external stimuli, such as pH, ions, solvent, light, and so on. Light is particularly attractive because it is harmless and can be operated in a remote mode and usually no byproducts are formed. Over the past decade, many examples of light-driven molecular shuttles are emerging. Accordingly, this review summarizes the recent research progress of light-driven molecular shuttles. First, the light-driven mechanisms of molecular motions with different functional groups are discussed in detail, which show how to drive photoresponsive or non-photoresponsive molecular shuttles. Subsequently, the practical applications of molecular shuttles in different fields, such as optical information storage, catalysis for organic reactions, drug delivery, and so on, are demonstrated. Finally, the future development of light-driven molecular shuttle is briefly prospected.
Collapse
|
23
|
Heard AW, Suárez JM, Goldup SM. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat Rev Chem 2022; 6:182-196. [PMID: 37117433 DOI: 10.1038/s41570-021-00348-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
Mechanically interlocked molecules, such as rotaxanes and catenanes, are receiving increased attention as scaffolds for the development of new catalysts, driven by both their increasing accessibility and high-profile examples of the mechanical bond delivering desirable behaviours and properties. In this Review, we survey recent advances in the catalytic applications of mechanically interlocked molecules organized by the effect of the mechanical bond on key catalytic properties, namely, activity, chemoselectivity and stereoselectivity, and focus on how the mechanically bonded structure leads to the observed behaviour. Our aim is to inspire future investigations of mechanically interlocked catalysts, including those outside of the supramolecular community.
Collapse
|
24
|
Maynard JRJ, Galmés B, Stergiou A, Symes M, Frontera A, Goldup SM. Anion‐π Catalysis Enabled by the Mechanical Bond. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Mark Symes
- University of Glasgow Chemistry UNITED KINGDOM
| | | | | |
Collapse
|
25
|
Rad N, Sashuk V. A light-gated regulation of the reaction site by a cucurbit[7]uril macrocycle. Chem Sci 2022; 13:12440-12444. [DOI: 10.1039/d2sc02077g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
On–off competitive inhibition is presented. Photoswitchable pseudorotaxane controls the rate of self-reaction and product selectivity of external reactions.
Collapse
Affiliation(s)
- Nazar Rad
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
26
|
Perez JDM, Alajarin M, Martinez-Cuezva A, Berna J. Modulating the Catalytic Activity by the Mechanical Bond: Organocatalysis with Polyamide [2]Rotaxanes bearing a Secondary Amino Function at the Thread. Org Chem Front 2022. [DOI: 10.1039/d2qo00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of the catalytic activity of degenerate succinamide-based [2]rotaxanes by changes at their macrocyclic component is disclosed herein. These systems, bearing an acyclic secondary amine function at the thread...
Collapse
|
27
|
A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat Chem 2021; 14:179-187. [PMID: 34845345 PMCID: PMC7612332 DOI: 10.1038/s41557-021-00825-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022]
Abstract
Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples in high enantiopurity (93–99% e.e.), including so-called ‘impossible’ rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks.
Collapse
|
28
|
Gauthier M, Waelès P, Coutrot F. Post-Synthetic Macrocyclization of Rotaxane Building Blocks. Chempluschem 2021; 87:e202100458. [PMID: 34811956 DOI: 10.1002/cplu.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Although not often encountered, cyclic interlocked molecules are appealing molecular targets because of their restrained tridimensional structure which is related to both the cyclic and interlocked shapes. Interlocked molecules such as rotaxane building blocks may be good candidates for post-synthetic intramolecular cyclization if the preservation of the mechanical bond ensures the interlocked architecture throughout the reaction. This is obviously the case if the modification does not involve the cleavage of either the macrocycle's main chain or the encircled part of the axle. However, among the post-synthetic reactions, the chemical linkage between two reactive sites belonging to embedded elements of rotaxanes still consists of an underexploited route to interlocked cyclic molecules. This Review lists the rare examples of macrocyclization through chemical connection between reactive sites belonging to a surrounding macrocycle and/or an encircled axle of interlocked rotaxanes.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
29
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
30
|
Sahoo D, Benny R, Ks NK, De S. Stimuli-Responsive Chiroptical Switching. Chempluschem 2021; 87:e202100322. [PMID: 34694736 DOI: 10.1002/cplu.202100322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
"Chirality" governs many fundamental properties in chemistry and biochemistry. While early investigations on stereochemistry are primarily dedicated to static chirality, there is an increasing interest in the field of dynamic chirality (chiral switches). These chiral switches are essential in controlling the directionality in molecular motors. Dynamic chiralities are equally crucial in switchable stereoselectivity, switchable asymmetric catalysis and enantioselective separation. Herein, we limit our discussion to recent advances on stimuli-induced chiroptical switching of axial, helical, and planar chirality in response to external stimuli. We also discuss a few examples of applications of the switchable chirality.
Collapse
Affiliation(s)
- Diptiprava Sahoo
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Renitta Benny
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Nithish Kumar Ks
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Soumen De
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
31
|
Liu W, Tan Y, Jones LO, Song B, Guo QH, Zhang L, Qiu Y, Feng Y, Chen XY, Schatz GC, Stoddart JF. PCage: Fluorescent Molecular Temples for Binding Sugars in Water. J Am Chem Soc 2021; 143:15688-15700. [PMID: 34505510 DOI: 10.1021/jacs.1c06333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Leighton O Jones
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
32
|
Wang QLS, Lin YJ, Jin GX. Same knot, longer rope: altering ligand geometry provides control over nuclearity in self-assembled trefoil knots. Chem Commun (Camb) 2021; 57:9772-9775. [PMID: 34486610 DOI: 10.1039/d1cc03699h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Taking advantage of the accumulation of a number of noncovalent intramolecular interactions, octanuclear and hexanuclear trefoil knots are self-assembled based on half-sandwich rhodium fragments. The selective synthesis of either the octanuclear or hexanuclear knot can be controlled by altering different dipyridyl arms.
Collapse
Affiliation(s)
- Qi-Li-Sha Wang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
33
|
McCarney EP, Lovitt JI, Gunnlaugsson T. Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands. Chemistry 2021; 27:12052-12057. [PMID: 34106499 PMCID: PMC8457180 DOI: 10.1002/chem.202101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/24/2022]
Abstract
We report the efficient self-templated formation of optically active 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) derived homocircuit [2]catenane enantiomers. This represents the first example of the enantiopure formation of chiral btp homocircuit [2]catenanes from starting materials consisting of a classical chiral element; X-ray diffraction crystallography enabled the structural characterization of the [2]catenane. The self-assembly reaction was monitored closely in solution facilitating the characterization of the pseudo-rotaxane reaction intermediate prior to mechanically interlocking the pre-organised system via ring-closing metathesis.
Collapse
Affiliation(s)
- Eoin P. McCarney
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - June I. Lovitt
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| |
Collapse
|
34
|
Stereodynamics of E/ Z isomerization in rotaxanes through mechanical shuttling and covalent bond rotation. Chem 2021; 7:2137-2150. [PMID: 34435161 PMCID: PMC8367298 DOI: 10.1016/j.chempr.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
The mechanical bond has opened a new world for structural and dynamic stereochemistry, which is still largely underexplored and whose significance for various applications is becoming increasingly evident. We demonstrate that designed rearrangements involving both covalent and mechanical bonds can be integrated in [2]rotaxanes, leading to interesting consequences in terms of E/Z isomerization mechanisms. Two entirely distinct and concomitant stereomutations, pertaining to the same stereogenic element but involving different kinds of linkages within the molecule, are observed and are thoroughly characterized. The rate of the two processes is affected in opposite ways upon changing solvent polarity; such a phenomenon can be used to selectively modify the rate of each motion and adjust the relative contribution of the two mechanisms to the isomerization. Although the movements are not synchronized, an analysis of the intriguing fundamental implications for transition state theory, reaction pathway bifurcation, and microscopic reversibility was triggered by our experimental observations. Rotaxanes that display E/Z stereoisomerism depending on the ring position Co-existence of two different stereomutations that yield the same product Mutual influence and opposite solvent dependence of the two dynamic processes Fundamental implications for microscopic reversibility and chemical equilibrium
The concurrence and interplay of different movements of molecular components within the same structure play a key role in providing function to naturally occurring molecular machines. Despite the progress made on artificial counterparts, the construction of molecular systems, where two (or more) motions are integrated together to produce an outcome, is still in its infancy. Molecules called rotaxanes, obtained by interlocking a ring with a dumbbell-shaped axle, are an appealing yet underexplored platform for this purpose. Here, we describe rotaxanes where two coexisting and radically different processes—rotation about a covalent bond and translation of the ring along the axle—lead to the same change in the overall molecular shape. These results are significant not only to improve our fundamental understanding of the way molecular components move but also to develop sophisticated artificial nanomachines capable of transforming or transmitting motion.
Collapse
|
35
|
Caprice K, Pál D, Besnard C, Galmés B, Frontera A, Cougnon FBL. Diastereoselective Amplification of a Mechanically Chiral [2]Catenane. J Am Chem Soc 2021; 143:11957-11962. [PMID: 34323081 PMCID: PMC8397304 DOI: 10.1021/jacs.1c06557] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Achiral [2]catenanes composed of rings with inequivalent sides may adopt chiral co-conformations. Their stereochemistry depends on the relative orientation of the interlocked rings and can be controlled by sterics or an external stimulus (e.g., a chemical stimulus). Herein, we have exploited this stereodynamic property to amplify a mechanically chiral (P)-catenane upon binding to (R)-1,1'-binaphthyl 2,2'-disulfonate, with a diastereomeric excess of 85%. The chirality of the [2]catenane was ascertained in the solid state by single crystal X-ray diffraction and in solution by NMR and CD spectroscopies. This study establishes a robust basis for the development of a new synthetic approach to access enantioenriched mechanically chiral [2]catenanes.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dávid Pál
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Bartomeu Galmés
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
36
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
37
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
38
|
Gualandi L, Franchi P, Mezzina E, Goldup SM, Lucarini M. Spin-labelled mechanically interlocked molecules as models for the interpretation of biradical EPR spectra. Chem Sci 2021; 12:8385-8393. [PMID: 34221319 PMCID: PMC8221063 DOI: 10.1039/d1sc01462e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Biradical spin probes can provide detailed information about the distances between molecules/regions of molecules because the through-space coupling of radical centres, characterised by J, is strongly distance dependent. However, if the system can adopt multiple configurations, as is common in supramolecular complexes, the shape of the EPR spectrum is influenced not only by J but also the rate of exchange between different states. In practice, it is often hard to separate these variables and as a result, the effect of the latter is sometimes overlooked. To demonstrate this challenge unequivocally we synthesised rotaxane biradicals containing nitronyl nitroxide units at the termini of their axles. The rotaxanes exchange between the available biradical conformations more slowly than the corresponding non-interlocked axles but, despite this, in some cases, the EPR spectra of the axle and rotaxane remain remarkably similar. Detailed analysis allowed us to demonstrate that the similar EPR spectral shapes result from different combinations of J and rates of conformational interconversion, a phenomenon suggested theoretically more than 50 years ago. This work reinforces the idea that thorough analysis must be performed when interpreting the spectra of biradicals employed as spin probes in solution.
Collapse
Affiliation(s)
- Lorenzo Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Paola Franchi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Elisabetta Mezzina
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| | - Stephen M Goldup
- Department of Chemistry, University of Southampton University Road, Highfield Southampton UK
| | - Marco Lucarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via San Giacomo 11 Bologna Italy
| |
Collapse
|
39
|
Curcio M, Nicoli F, Paltrinieri E, Fois E, Tabacchi G, Cavallo L, Silvi S, Baroncini M, Credi A. Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes. J Am Chem Soc 2021; 143:8046-8055. [PMID: 33915051 PMCID: PMC8176457 DOI: 10.1021/jacs.1c02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The mechanical interlocking
of molecular components can lead to
the appearance of novel and unconventional properties and processes,
with potential relevance for applications in nanoscience, sensing,
catalysis, and materials science. We describe a [3]rotaxane in which
the number of recognition sites available on the axle component can
be changed by acid–base inputs, encompassing cases in which
this number is larger, equal to, or smaller than the number of interlocked
macrocycles. These species exhibit very different properties and give
rise to a unique network of acid–base reactions that leads
to a fine pKa tuning of chemically equivalent
acidic sites. The rotaxane where only one station is available for
two rings exhibits a rich coconformational dynamics, unveiled by an
integrated experimental and computational approach. In this compound,
the two crown ethers compete for the sole recognition site, but can
also come together to share it, driven by the need to minimize free
energy without evident inter-ring interactions.
Collapse
Affiliation(s)
- Massimiliano Curcio
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Federico Nicoli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Erica Paltrinieri
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Ettore Fois
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Serena Silvi
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna 40126, Italy
| | - Massimo Baroncini
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Bologna 40127, Italy
| | - Alberto Credi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| |
Collapse
|
40
|
Goswami A, Gaikwad S, Schmittel M. A Switchable Catalyst Duo for Acyl Transfer Proximity Catalysis and Regulation of Substrate Selectivity. Chemistry 2021; 27:2997-3001. [PMID: 33022776 PMCID: PMC7898682 DOI: 10.1002/chem.202004416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Enzymes are encoded with a gamut of information to catalyze a highly selective transformation by selecting the proper reactants from an intricate mixture of constituents. Mimicking biological machinery, two switchable catalysts with differently sized cavities and allosteric control are conceived that allow complementary size-selective acyl transfer in an on/off manner by modulating the effective local concentration of the substrates. Selective activation of one of two catalysts in a mixture of reactants of similar reactivity enabled upregulation of the desired product.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
41
|
Perez JDM, Puigcerver J, Orlando T, Pastor A, Martins MAP, Alajarin M, Martinez-Cuezva A, Berna J. Mechanical bonding activation in rotaxane-based organocatalysts. Org Chem Front 2021. [DOI: 10.1039/d1qo00789k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interlocked organocatalysts show enhanced catalytic performance when compared with their non-interlocked threads.The ring cooperatively activates the substrates, facilitating the formation and stabilization of catalytically active intermediates.
Collapse
Affiliation(s)
- Jesus de Maria Perez
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Julio Puigcerver
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Tainara Orlando
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria-RS
- Brazil
| | - Aurelia Pastor
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria-RS
- Brazil
| | - Mateo Alajarin
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Jose Berna
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| |
Collapse
|
42
|
Schmittel M, Howlader P. Toward Molecular Cybernetics - the Art of Communicating Chemical Systems. CHEM REC 2020; 21:523-543. [PMID: 33350570 DOI: 10.1002/tcr.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
The emerging field of molecular cybernetics has the potential to widely broaden our perception of chemistry. Chemistry will develop beyond its current focus that is mainly concerned with single transformations, pure compounds, and/or defined mixtures. On this way, chemistry will become autonomous, networked and smart through communicating molecules each of which serves a control engineering purpose, like the set of wheels in the machinery of life. The present personal account describes our latest developments in this field.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Prodip Howlader
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
43
|
Kassem S, Lee ATL, Leigh DA, Markevicius A, Tetlow DJ, Toriumi N. Site-to-site peptide transport on a molecular platform using a small-molecule robotic arm. Chem Sci 2020; 12:2065-2070. [PMID: 34163969 PMCID: PMC8179245 DOI: 10.1039/d0sc05906d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peptides attached to a cysteine hydrazide ‘transporter module’ are transported selectively in either direction between two chemically similar sites on a molecular platform, enabled by the discovery of new operating methods for a molecular transporter that functions through ratcheting. Substrate repositioning is achieved using a small-molecule robotic arm controlled by a protonation-mediated rotary switch and attachment/release dynamic covalent chemistry. A polar solvent mixtures were found to favour Z to E isomerization of the doubly-protonated switch, transporting cargo in one direction (arbitrarily defined as ‘forward’) in up to 85% yield, while polar solvent mixtures were unexpectedly found to favour E to Z isomerization enabling transport in the reverse (‘backward’) direction in >98% yield. Transport of the substrates proceeded in a matter of hours (compared to 6 days even for simple cargoes with the original system) without the peptides at any time dissociating from the machine nor exchanging with others in the bulk. Under the new operating conditions, key intermediates of the switch are sufficiently stabilized within the macrocycle formed between switch, arm, substrate and platform that they can be identified and structurally characterized by 1H NMR. The size of the peptide cargo has no significant effect on the rate or efficiency of transport in either direction. The new operating conditions allow detailed physical organic chemistry of the ratcheted transport mechanism to be uncovered, improve efficiency, and enable the transport of more complex cargoes than was previously possible. Peptides are transported in either direction between chemically similar sites on a molecular platform, substrate repositioning is achieved using a cysteine hydrazide transporter module and a small-molecule robotic arm controlled by a rotary switch.![]()
Collapse
Affiliation(s)
- Salma Kassem
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Alan T L Lee
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - David A Leigh
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Daniel J Tetlow
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Naoyuki Toriumi
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
44
|
Martinez-Cuezva A, Pastor A, Marin-Luna M, Diaz-Marin C, Bautista D, Alajarin M, Berna J. Cyclization of interlocked fumaramides into β-lactams: experimental and computational mechanistic assessment of the key intercomponent proton transfer and the stereocontrolling active pocket. Chem Sci 2020; 12:747-756. [PMID: 34163808 PMCID: PMC8178992 DOI: 10.1039/d0sc05757f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A detailed mechanistic study of the diastereoselective CsOH-promoted cyclization of interlocked fumaramides to give β-lactams is described. The mechanistic analysis comprises the experimental evaluation of the structure-reactivity relationship for a wide range of fumaramides [2]rotaxanes (Hammet-plots), KIE studies with deuterium-labelled interlocked fumaramides and computational analysis of two alternative mechanistic pathways for the cyclization process. The obtained results confirm that: (a) the rate-determining step is the deprotonation of the N-benzyl group of the thread by the amidate group of the macrocycle generated by the external base, (b) the polyamide macrocycle plays an important role not only as activating element but also as the stereodifferenciating factor responsible for the observed diastereoselection and (c) the higher flexibility of the adamantyl core speeds up the cyclization process in diadamantyl-derived rotaxanes. A mechanistic study of the diastereoselective cyclization of interlocked fumaramides to give β-lactams unveils the key factors for successfully taming the process.![]()
Collapse
Affiliation(s)
- Alberto Martinez-Cuezva
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Aurelia Pastor
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Marta Marin-Luna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Carmen Diaz-Marin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | | | - Mateo Alajarin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum" 30100 Murcia Spain
| |
Collapse
|
45
|
Zhu L, Li J, Yang J, Au-Yeung HY. Cross dehydrogenative C-O coupling catalysed by a catenane-coordinated copper(i). Chem Sci 2020; 11:13008-13014. [PMID: 34094485 PMCID: PMC8163234 DOI: 10.1039/d0sc05133k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catalytic activity of copper(i) complexes supported by phenanthroline-containing catenane ligands towards a new C(sp3)–O dehydrogenative cross-coupling of phenols and bromodicarbonyls is reported. As the phenanthrolines are interlocked by the strong and flexible mechanical bond in the catenane, the active catalyst with an open copper coordination site can be revealed only transiently and the stable, coordinatively saturated Cu(i) pre-catalyst is quickly regenerated after substrate transformation. Compared with a control Cu(i) complex supported by non-interlocked phenanthrolines, the catenane-supported Cu(i) is highly efficient with a broad substrate scope, and can be applied in gram-scale transformations without a significant loss of the catalytic activity. This work demonstrates the advantages of the catenane ligands that provide a dynamic and responsive copper coordination sphere, highlighting the potential of the mechanical bond as a design element in transition metal catalyst development. The use of a catenane-supported copper(i) complex for the cross dehydrogenative C–O coupling of phenols and bromodicarbonyls is described.![]()
Collapse
Affiliation(s)
- Lihui Zhu
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jiasheng Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China .,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
46
|
Grill K, Dube H. Supramolecular Relay-Control of Organocatalysis with a Hemithioindigo-Based Molecular Motor. J Am Chem Soc 2020; 142:19300-19307. [DOI: 10.1021/jacs.0c09519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kerstin Grill
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Henry Dube
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
47
|
Rodríguez‐López J, Brovetto M, Martín VS, Martín T. Enantiodivergent Cyclization by Inversion of the Reactivity in Ambiphilic Molecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julio Rodríguez‐López
- Instituto Universitario de Bio-Orgánica Antonio González Universidad de La Laguna Francisco Sánchez 2 38206 La Laguna Tenerife Spain
| | - Margarita Brovetto
- Instituto Universitario de Bio-Orgánica Antonio González Universidad de La Laguna Francisco Sánchez 2 38206 La Laguna Tenerife Spain
| | - Víctor S. Martín
- Instituto Universitario de Bio-Orgánica Antonio González Universidad de La Laguna Francisco Sánchez 2 38206 La Laguna Tenerife Spain
- Departamento de Química Orgánica Universidad de La Laguna Francisco Sánchez s/n. Facultad de Farmacia 38200 La Laguna Tenerife Spain
| | - Tomás Martín
- Instituto Universitario de Bio-Orgánica Antonio González Universidad de La Laguna Francisco Sánchez 2 38206 La Laguna Tenerife Spain
- Instituto de Productos Naturales y Agrobiología CSIC Francisco Sánchez 3 38206 La Laguna Tenerife Spain
| |
Collapse
|
48
|
|
49
|
Cui Z, Lu Y, Gao X, Feng HJ, Jin GX. Stereoselective Synthesis of a Topologically Chiral Solomon Link. J Am Chem Soc 2020; 142:13667-13671. [DOI: 10.1021/jacs.0c05366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Ye Lu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Hui-Jun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
50
|
Rodríguez-López J, Brovetto M, Martín VS, Martín T. Enantiodivergent Cyclization by Inversion of the Reactivity in Ambiphilic Molecules. Angew Chem Int Ed Engl 2020; 59:17077-17083. [PMID: 32573884 DOI: 10.1002/anie.202006650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/01/2023]
Abstract
Inverting the reactivity of the functional groups in ambiphilic molecules provides a new synthetic strategy to perform late-stage enantiodivergence. Both enantiomers of the final compound can be obtained from a common chiral precursor. As a proof of concept, the synthesis of substituted five- and six-membered oxacycles is described. The key step is the cyclization of an ambiphilic linear precursor bearing a propargylic alcohol and an epoxide linked through an alkyl chain. Through a slight modification of these linear precursors and employing different reaction conditions, these functional groups can inverse their chemical reactivity, producing one enantiomer or another of the final product. This enantiodivergent cyclization involves three stereogenic centers that can undergo fully controlled retention or inversion of their configuration depending on the cyclization pathway that is activated. The cyclization provides late-stage enantiodivergence, enabling the synthesis of either enantiomers of the oxacycles from a common chiral substrate with total transfer of the enantiomeric purity.
Collapse
Affiliation(s)
- Julio Rodríguez-López
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain
| | - Margarita Brovetto
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain
| | - Víctor S Martín
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain.,Departamento de Química Orgánica, Universidad de La Laguna, Francisco Sánchez s/n. Facultad de Farmacia, 38200, La Laguna, Tenerife, Spain
| | - Tomás Martín
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Francisco Sánchez 2, 38206, La Laguna, Tenerife, Spain.,Instituto de Productos Naturales y Agrobiología, CSIC, Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|