1
|
Kitami M, Kaku M, Thant L, Maeda T. A loss of primary cilia by a reduction in mTOR signaling correlates with age-related deteriorations in condylar cartilage. GeroScience 2024; 46:5995-6007. [PMID: 38526843 PMCID: PMC11493995 DOI: 10.1007/s11357-024-01143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 03/27/2024] Open
Abstract
Age-related deterioration of condylar cartilage is an etiological factor in temporomandibular joint-osteoarthritis (TMJ-OA). However, its underlying mechanism remains unknown. Therefore, we examined age-related changes and the relationship between mTOR signaling and primary cilia in condylar cartilage to determine the intrinsic mechanisms of age-related TMJ-OA. Age-related morphological changes were analyzed using micro-computed tomography and safranin O-stained histological samples of the mandibular condyle of C57BL/6J mice (up to 78 weeks old). Immunohistochemistry was used to assess the activity of mTOR signaling, primary cilia frequency, and Golgi size of condylar chondrocytes. Four-week-old mice receiving an 11-week series of intraperitoneal injections of rapamycin, a potent mTOR signaling inhibitor, were used for the histological evaluation of the condylar cartilage. The condylar cartilage demonstrated an age-related reduction in cartilage area, including chondrocyte size, cell density, and cell size distribution. The Golgi size, primary cilia frequency, and mTOR signaling also decreased with age. Rapamycin injections resulted in both diminished cartilage area and cell size, resembling the phenotypes observed in aged mice. Rapamycin-injected mice also exhibited a smaller Golgi size and lower primary cilia frequency in condylar cartilage. We demonstrated that a loss of primary cilia due to a decline in mTOR signaling was correlated with age-related deteriorations in condylar cartilage. Our findings provide new insights into the tissue homeostasis of condylar cartilage, contributing to understanding the etiology of age-related TMJ-OA.
Collapse
Affiliation(s)
- Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Lay Thant
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Dhanabalan KM, Padhan B, Dravid AA, Agarwal S, Pancheri NM, Lin A, Willet NJ, Padmanabhan AK, Agarwal R. Nordihydroguaiaretic acid microparticles are effective in the treatment of osteoarthritis. J Mater Chem B 2024; 12:11172-11186. [PMID: 39356214 DOI: 10.1039/d4tb01342e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Several disease-modifying osteoarthritis (OA) drugs have emerged, but none have been approved for clinical use due to their systemic side effects, short half-life, and rapid clearance from the joints. Nordihydroguaiaretic acid (NDGA), a reactive oxygen species (ROS) scavenger and autophagy inducer, could be a potential treatment for OA. In this report, we show for the first time that sustained delivery of NDGA through polymeric microparticles maintains therapeutic concentrations of drug in the joint and ameliorates post-traumatic OA (PTOA) in a mouse model. In vitro treatment of oxidatively stressed primary chondrocytes from OA patients using NDGA-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles (NDGA-MP) inhibited 15-lipoxygenase, induced autophagy, prevented chondrosenescence, and sustained matrix production. In vivo intra-articular delivery of NDGA-MP was non-toxic and had prolonged retention time (up to 35 days) in murine knee joints. Intra-articular therapy using NDGA-MP effectively reduced cartilage damage and reduced pain in the surgery-induced PTOA mouse model. Our studies open new avenues to modulate the immune environment and treat post-traumatic OA using ROS quenchers and autophagy inducers.
Collapse
Affiliation(s)
- Kaamini M Dhanabalan
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Bhagyashree Padhan
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Ameya A Dravid
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Smriti Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Nicholas M Pancheri
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | - Angela Lin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | - Nick J Willet
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | | | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| |
Collapse
|
3
|
Tang L, Ding J, Yang K, Zong Z, Wu R, Li H. New insights into the mechanisms and therapeutic strategies of chondrocyte autophagy in osteoarthritis. J Mol Med (Berl) 2024; 102:1229-1244. [PMID: 39145815 DOI: 10.1007/s00109-024-02473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease with an unclear cause characterized by secondary osteophytes and degenerative changes in the articular cartilage. More than 250 million people are expected to be affected by it by 2050, putting a tremendous socioeconomic strain on the entire world. OA cannot currently be treated with any effective medications that change the illness. Over time, chondrocytes undergo gradual metabolic, structural, and functional changes as a result of aging or abuse. The degenerative progression of osteoarthritis is significantly influenced by the imbalance of chondrocyte homeostasis. By continuously recycling and rebuilding macromolecules or organelles, autophagy functions as a crucial regulatory system to maintain homeostasis during an individual's growth and development. This review uses chondrocytes as its starting point and establishes a strong connection between autophagy and osteoarthritis in order to thoroughly examine the mechanisms behind chondrocyte autophagy in osteoarthritis. Biomarkers of chondrocyte autophagy will be identified, and prospective targeted medications and novel treatment approaches for slowing or preventing the course of OA will be developed based on chondrocyte senescence, autophagy, and apoptosis in OA. KEY MESSAGES: Currently, OA has not been treated with any drugs that can effectively cure it. We hope that by exploring specific targets in the course of osteoarthritis, we can promote the progress of treatment strategies. The degenerative progression of osteoarthritis is significantly influenced by the imbalance of chondrocyte balance. Through the continuous recovery and reconstruction of macromolecules or organelles, autophagy is an important regulatory system for maintaining homeostasis during individual growth and development. In this paper, the close relationship between autophagy and osteoarthritis was established with chondrocytes as the starting point, in order to further explore the mechanism of chondrocyte autophagy in osteoarthritis. The development process of osteoarthritis was studied from the perspective of chondrocytes, and the change of autophagy level had a significant impact on osteoarthritis. Chondrocyte autophagy is mainly determined by intracellular mitochondrial autophagy, so we are committed to finding relevant molecules. Through PI3K/AKT- and MAPK-related pathways, the biomarkers of chondrocyte autophagy were identified, and chondrocyte senescence, autophagy, and apoptosis based on osteoarthritis provided a constructive idea for the development of prospective targeted drugs and new therapies to slow down or prevent the progression of osteoarthritis.
Collapse
Affiliation(s)
- Lujia Tang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Third Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Ye Y, Wan L, Hu J, Li X, Zhang K. Combined single-cell RNA sequencing and mendelian randomization to identify biomarkers associated with necrotic apoptosis in intervertebral disc degeneration. Spine J 2024:S1529-9430(24)01030-1. [PMID: 39332686 DOI: 10.1016/j.spinee.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is associated with back pain; back pain is a world-wide contributor to poor quality of life, while necroptosis has the characteristics of necroptosis and apoptosis, however, its role in IDD is still unclear. Therefore, the aim of this study was to identify biomarkers associated with necroptosis in IDD. PURPOSE To explore biomarkers associated with necroptosis in IDD, reveal the pathogenesis of IDD, as well as provide new directions for the diagnosis and treatment of this disease. STUDY DESIGN/SETTINGS Retrospective cohort study. Our study employs scRNA-seq coupled with MR analysis to investigate the causal relationship between necroptosis and IDD, laying a foundational groundwork for unveiling the intricate pathogenic mechanisms of this condition. METHODS Data quality control and normalisation was executed in single-cell dataset, GSE205535. Then, different cell types were obtained by cell annotation through marker genes. Subsequently, chi-square test was employed to assess the distribution difference of different cell types between IDD and control to screen key cells. AUCell was applied to calculate necroptosis-related genes (NRGs) scores of all cell types, further key cells were divided into high and low NRGs groups according to the median AUC scores of different cell types. Afterwards, the differentially expressed genes (DEGs) within the 2 score groups were screened. Then, the genes that had causal relationship with IDD were selected as biomarkers by univariate and multivariate Mendelian randomization (MR) analysis. Finally, the expression of biomarkers in different cell types and pseudo-time analysis was analyzed separately. RESULTS In GSE205535, 16 different cell populations identified by UMAP cluster analysis were further annotated to 8 cell types using maker genes. Afterwards, 53 DEGs were screened between the high and low NRGs groups. In addition, 9 genes with causal relationship with IDD were obtained by univariate MR analysis, further multivariate MR analysis proved that NT5E and TMEM158 had a direct causal relationship with IDD, which were used as biomarkers in this study. This study not only found that the expression levels of NT5E and TMEM158 were higher in IDD group, but also found that fibrochondrocytes and inflammatory chondrocytes were the key cells of NT5E and TMEM158, respectively. In the end, the biomarkers had the same expression trend in the quasi-time series, and both of them from high to low and then increased. CONCLUSION NT5E and TMEM158, as biomarkers of necroptotic apoptotic IDD, were causally associated with IDD. CLINICAL SIGNIFICANCE The understanding of chondrocytes as key cells provides new perspectives for deeper elucidation of the pathogenesis of IDD, improved diagnostic methods, and the development of more effective treatments. These findings are expected to provide a more accurate and personalised approach to clinical diagnosis and treatment, thereby improving the prognosis and quality of life of patients with IDD.
Collapse
Affiliation(s)
- Yi Ye
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Lun Wan
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Jiang Hu
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Xiaoxue Li
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Kun Zhang
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China.
| |
Collapse
|
5
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
6
|
Lee DY, Bahar ME, Kim CW, Seo MS, Song MG, Song SY, Kim SY, Kim DR, Kim DH. Autophagy in Osteoarthritis: A Double-Edged Sword in Cartilage Aging and Mechanical Stress Response: A Systematic Review. J Clin Med 2024; 13:3005. [PMID: 38792546 PMCID: PMC11122125 DOI: 10.3390/jcm13103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Although osteoarthritis (OA) development is epidemiologically multifactorial, a primary underlying mechanism is still under debate. Understanding the pathophysiology of OA remains challenging. Recently, experts have focused on autophagy as a contributor to OA development. Method: To better understand the pathogenesis of OA, we survey the literature on the role of autophagy and the molecular mechanisms of OA development. To identify relevant studies, we used controlled vocabulary and free text keywords to search the MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, Web of Science, and SCOPUS database. Thirty-one studies were included for data extraction and systematic review. Among these studies, twenty-five studies investigated the effects of autophagy in aging and OA chondrocytes, six studies examined the effects of autophagy in normal human chondrocytes, and only one study investigated the effects of mechanical stress-induced autophagy on the development of OA in normal chondrocytes. Results: The studies suggest that autophagy activation prevents OA by exerting cell-protective effects in normal human chondrocytes. However, in aging and osteoarthritis (OA) chondrocytes, the role of autophagy is intricate, as certain studies indicate that stimulating autophagy in these cells can have a cytotoxic effect, while others propose that it may have a protective (cytoprotective) effect against damage or degeneration. Conclusions: Mechanical stress-induced autophagy is also thought to be involved in the development of OA, but further research is required to identify the precise mechanism. Thus, autophagy contributions should be interpreted with caution in aging and the types of OA cartilage.
Collapse
Affiliation(s)
- Dong-Yeong Lee
- Department of Orthopaedic Surgery, Barun Hospital, Jinju 52725, Republic of Korea;
| | - Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (M.-S.S.)
| | - Chang-Won Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| | - Min-Seok Seo
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (M.-S.S.)
| | - Myung-Geun Song
- Department of Orthopaedic Surgery, Inha University Hospital, Incheon 22212, Republic of Korea;
| | - Sang-Youn Song
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| | - Soung-Yon Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| | - Deok-Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (M.-S.S.)
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| |
Collapse
|
7
|
Khaleque MA, Kim JH, Hwang BJ, Kang JK, Quan M, Kim YY. Role of Necroptosis in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:15292. [PMID: 37894970 PMCID: PMC10607531 DOI: 10.3390/ijms242015292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Apoptosis has historically been considered the primary form of programmed cell death (PCD) and is responsible for regulating cellular processes during development, homeostasis, and disease. Conversely, necrosis was considered uncontrolled and unregulated. However, recent evidence has unveiled the significance of necroptosis, a regulated form of necrosis, as an important mechanism of PCD alongside apoptosis. The activation of necroptosis leads to cellular membrane disruption, inflammation, and vascularization. This process is crucial in various pathological conditions, including intervertebral disc degeneration (IVDD), neurodegeneration, inflammatory diseases, multiple cancers, and kidney injury. In recent years, extensive research efforts have shed light on the molecular regulation of the necroptotic pathway. Various stimuli trigger necroptosis, and its regulation involves the activation of specific proteins such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like (MLKL) pseudokinase. Understanding the intricate mechanisms governing necroptosis holds great promise for developing novel therapeutic interventions targeting necroptosis-associated IVDD. The objective of this review is to contribute to the growing body of scientific knowledge in this area by providing a comprehensive overview of necroptosis and its association with IVDD. Ultimately, these understandings will allow the development of innovative drugs that can modulate the necroptotic pathway, offering new therapeutic avenues for individuals suffering from necroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.K.); (J.-H.K.); (B.-J.H.); (J.-K.K.); (M.Q.)
| |
Collapse
|
8
|
Sheng W, Wang Q, Qin H, Cao S, Wei Y, Weng J, Yu F, Zeng H. Osteoarthritis: Role of Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2023; 24:13137. [PMID: 37685944 PMCID: PMC10487662 DOI: 10.3390/ijms241713137] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) represents the foremost degenerative joint disease observed in a clinical context. The escalating issue of population aging significantly exacerbates the prevalence of OA, thereby imposing an immense annual economic burden on societies worldwide. The current therapeutic landscape falls short in offering reliable pharmaceutical interventions and efficient treatment methodologies to tackle this growing problem. However, the scientific community continues to dedicate significant efforts towards advancing OA treatment research. Contemporary studies have discovered that the progression of OA may be slowed through the strategic influence on peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated receptors within the nuclear hormone receptor family. The three distinctive subtypes-PPARα, PPARβ/δ, and PPARγ-find expression across a broad range of cellular terminals, thus managing a multitude of intracellular metabolic operations. The activation of PPARγ and PPARα has been shown to efficaciously modulate the NF-κB signaling pathway, AP-1, and other oxidative stress-responsive signaling conduits, leading to the inhibition of inflammatory responses. Furthermore, the activation of PPARγ and PPARα may confer protection to chondrocytes by exerting control over its autophagic behavior. In summation, both PPARγ and PPARα have emerged as promising potential targets for the development of effective OA treatments.
Collapse
Affiliation(s)
- Weibei Sheng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihao Wei
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
9
|
Dhanabalan KM, Dravid AA, Agarwal S, Sharath RK, Padmanabhan AK, Agarwal R. Intra-articular injection of rapamycin microparticles prevent senescence and effectively treat osteoarthritis. Bioeng Transl Med 2023; 8:e10298. [PMID: 36684078 PMCID: PMC9842044 DOI: 10.1002/btm2.10298] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Trauma to the knee joint is associated with significant cartilage degeneration and erosion of subchondral bone, which eventually leads to osteoarthritis (OA), resulting in substantial morbidity and healthcare burden. With no disease-modifying drugs in clinics, the current standard of care focuses on symptomatic relief and viscosupplementation. Modulation of autophagy and targeting senescence pathways are emerging as potential treatment strategies. Rapamycin has shown promise in OA disease amelioration by autophagy upregulation, yet its clinical use is hindered by difficulties in achieving therapeutic concentrations, necessitating multiple weekly injections. Rapamycin-loaded in poly(lactic-co-glycolic acid) microparticles (RMPs) induced autophagy, prevented senescence, and sustained sulphated glycosaminoglycans production in primary human articular chondrocytes from OA patients. RMPs were potent, nontoxic, and exhibited high retention time (up to 35 days) in mice joints. Intra-articular delivery of RMPs effectively mitigated cartilage damage and inflammation in surgery-induced OA when administered as a prophylactic or therapeutic regimen. Together, the study demonstrates the feasibility of using RMPs as a potential clinically translatable therapy to prevent the progression of post-traumatic OA.
Collapse
Affiliation(s)
- Kaamini M. Dhanabalan
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | - Ameya A. Dravid
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | - Smriti Agarwal
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | | | | | - Rachit Agarwal
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| |
Collapse
|
10
|
Lv X, Zhao T, Dai Y, Shi M, Huang X, Wei Y, Shen J, Zhang X, Xie Z, Wang Q, Li Z, Qin D. New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol 2022; 10:1089668. [PMID: 36544901 PMCID: PMC9760856 DOI: 10.3389/fcell.2022.1089668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation system that maintains the stable state of cell energy metabolism. Some recent findings have indicated that autophagy dysfunction is an important driving factor for the occurrence and development of osteoarthritis (OA). The decrease of autophagy leads to the accumulation of damaged organelles and macromolecules in chondrocytes, which affects the survival of chondrocytes and ultimately leads to OA. An appropriate level of autophagic activation may be a new method to prevent articular cartilage degeneration in OA. This minireview discussed the mechanism of autophagy and OA, key autophagy targets regulating OA progression, and evaluated therapeutic applications of drugs targeting autophagy in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.
Collapse
Affiliation(s)
- Xiaoman Lv
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Qi Wang, ; Zhaofu Li, ; Dongdong Qin,
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Qi Wang, ; Zhaofu Li, ; Dongdong Qin,
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Qi Wang, ; Zhaofu Li, ; Dongdong Qin,
| |
Collapse
|
11
|
Kao WC, Chen JC, Liu PC, Lu CC, Lin SY, Chuang SC, Wu SC, Chang LH, Lee MJ, Yang CD, Lee TC, Wang YC, Li JY, Wei CW, Chen CH. The Role of Autophagy in Osteoarthritic Cartilage. Biomolecules 2022; 12:biom12101357. [PMID: 36291565 PMCID: PMC9599131 DOI: 10.3390/biom12101357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases leading to physical disability, with age being the main risk factor, and degeneration of articular cartilage is the main focus for the pathogenesis of OA. Autophagy is a crucial intracellular homeostasis system recycling flawed macromolecules and cellular organelles to sustain the metabolism of cells. Growing evidences have revealed that autophagy is chondroprotective by regulating apoptosis and repairing the function of damaged chondrocytes. Then, OA is related to autophagy depending on different stages and models. In this review, we discuss the character of autophagy in OA and the process of the autophagy pathway, which can be modulated by some drugs, key molecules and non-coding RNAs (microRNAs, long non-coding RNAs and circular RNAs). More in-depth investigations of autophagy are needed to find therapeutic targets or diagnostic biomarkers through in vitro and in vivo situations, making autophagy a more effective way for OA treatment in the future. The aim of this review is to introduce the concept of autophagy and make readers realize its impact on OA. The database we searched in is PubMed and we used the keywords listed below to find appropriate article resources.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jian-Chih Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ping-Cheng Liu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chang Lu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ling-hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 71101, Taiwan
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Chun Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chun-Wang Wei
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| |
Collapse
|
12
|
Caleb I, Kasza B, Erlitz L, Semjén D, Hardi P, Makszin L, Rendeki S, Takács I, Nagy T, Jancsó G. The Effects of Rapamycin on the Intestinal Graft in a Rat Model of Cold Ischemia Perfusion and Preservation. Metabolites 2022; 12:metabo12090794. [PMID: 36144199 PMCID: PMC9505496 DOI: 10.3390/metabo12090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Attenuating the rheological and structural consequences of intestinal ischemia-reperfusion-injury (IRI) is important in transplant proceedings. Preconditioning is an often-proposed remedy. This technique uses physical or pharmacological methods to manipulate key ischemia pathways, such as oxidation, inflammation, and autophagy, prior to ischemia. This study determined the time-dependent effects of Rapamycin preconditioning on small-bowel grafts undergoing cold ischemia perfusion and preservation. Our main parameters were mucosa and cell injury and autophagy. A total of 30 male Wistar rats were divided into 5 groups: sham, preservation-control, and 3 treated groups (Rapamycin administered either 0, 30, or 60 min prior to perfusion). After perfusion, the intestines were placed in chilled IGL-1 solution for 12 h. Thereafter, they were reperfused. Histology and bioanalysis (LDH and lactate) were used to ascertain intestinal injury while immunohistochemistry was used for measuring changes in autophagy markers (Beclin-1, LC3B, and p62 proteins). The results show no significant difference amongst the groups after vascular perfusion. However, intestinal injury findings and autophagy changes demonstrate that administering Rapamycin 30 min or 60 min prior was protective against adverse cold ischemia and reperfusion of the intestinal graft. These findings show that Rapamycin is protective against cold ischemia of the small intestine, especially when administered 30 min before the onset.
Collapse
Affiliation(s)
- Ibitamuno Caleb
- Medical Skills Education and Innovation Centre, University of Pécs Medical School, 7624 Pécs, Hungary
- Correspondence: or
| | - Benedek Kasza
- Medical Skills Education and Innovation Centre, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Luca Erlitz
- Medical Skills Education and Innovation Centre, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Dávid Semjén
- Institute of Pathology, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Péter Hardi
- Medical Skills Education and Innovation Centre, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Szilárd Rendeki
- Medical Skills Education and Innovation Centre, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Ildikó Takács
- Institute of Nutrional Science and Dietetics, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Tibor Nagy
- Vascular Surgery Clinic, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Gábor Jancsó
- Vascular Surgery Clinic, University of Pécs Medical School, 7624 Pécs, Hungary
| |
Collapse
|
13
|
Kim YS, Guilak F. Engineering Hyaluronic Acid for the Development of New Treatment Strategies for Osteoarthritis. Int J Mol Sci 2022; 23:8662. [PMID: 35955795 PMCID: PMC9369020 DOI: 10.3390/ijms23158662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by inflammation of the joints, degradation of cartilage, and the remodeling of other joint tissues. Due to the absence of disease-modifying drugs for OA, current clinical treatment options are often only effective at slowing down disease progression and focus mainly on pain management. The field of tissue engineering has therefore been focusing on developing strategies that could be used not only to alleviate symptoms of OA but also to regenerate the damaged tissue. Hyaluronic acid (HA), an integral component of both the synovial fluid and articular cartilage, has gained widespread usage in developing hydrogels that deliver cells and biomolecules to the OA joint thanks to its biocompatibility and ability to support cell growth and the chondrogenic differentiation of encapsulated stem cells, providing binding sites for growth factors. Tissue-engineering strategies have further attempted to improve the role of HA as an OA therapeutic by developing diverse modified HA delivery platforms for enhanced joint retention and controlled drug release. This review summarizes recent advances in developing HA-based hydrogels for OA treatment and provides additional insights into how HA-based therapeutics could be further improved to maximize their potential as a viable treatment option for OA.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
14
|
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, Ning C, Li H, Gao C, Fu L, Jiang S, Chen M, Sui X, Liu S, Chen Z, Guo Q. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140:23-42. [PMID: 34896634 DOI: 10.1016/j.actbio.2021.12.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.
Collapse
|
15
|
Rayson A, Boudiffa M, Naveed M, Griffin J, Dall’Ara E, Bellantuono I. Geroprotectors and Skeletal Health: Beyond the Headlines. Front Cell Dev Biol 2022; 10:682045. [PMID: 35223825 PMCID: PMC8864221 DOI: 10.3389/fcell.2022.682045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis and osteoarthritis are the most common age-related diseases of the musculoskeletal system. They are responsible for high level of healthcare use and are often associated with comorbidities. Mechanisms of ageing such as senescence, inflammation and autophagy are common drivers for both diseases and molecules targeting those mechanisms (geroprotectors) have potential to prevent both diseases and their co-morbidities. However, studies to test the efficacy of geroprotectors on bone and joints are scant. The limited studies available show promising results to prevent and reverse Osteoporosis-like disease. In contrast, the effects on the development of Osteoarthritis-like disease in ageing mice has been disappointing thus far. Here we review the literature and report novel data on the effect of geroprotectors for Osteoporosis and Osteoarthritis, we challenge the notion that extension of lifespan correlates with extension of healthspan in all tissues and we highlight the need for more thorough studies to test the effects of geroprotectors on skeletal health in ageing organisms.
Collapse
Affiliation(s)
- Alexandra Rayson
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maya Boudiffa
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maneeha Naveed
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Jon Griffin
- Healthy Lifespan Institute, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| |
Collapse
|
16
|
Amsar RM, Wijaya CH, Ana ID, Hidajah AC, Notobroto HB, Kencana Wungu TD, Barlian A. Extracellular vesicles: a promising cell-free therapy for cartilage repair. Future Sci OA 2022; 8:FSO774. [PMID: 35070356 PMCID: PMC8765097 DOI: 10.2144/fsoa-2021-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022] Open
Abstract
Few effective therapies for cartilage repair have been found as cartilage has a low regenerative capacity. Extracellular vesicles (EVs), including exosomes, are produced by cells and contain bioactive components such as nucleic acids, proteins, lipids and other metabolites that have potential for treating cartilage injuries. Challenges like the difficulty in standardizing targeted therapy have prevented EVs from being used frequently as a treatment option. In this review we present current studies, mechanisms and delivery strategies of EVs. Additionally, we describe the challenges and future directions of EVs as therapeutic agents for cartilage repair. Repairing cartilage damage is challenging due to the tissue’s low regenerative capacity. Extracellular vesicles (EVs) contain bioactive components that may be able to treat cartilage injuries. However, EV-based therapy is not widely used. This review summarizes the current state of knowledge regarding the use of EVs for cartilage repair, including the mechanisms, delivery strategies, challenges and future directions.
Collapse
Affiliation(s)
- Rizka Musdalifah Amsar
- School of Life Science & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Christofora Hanny Wijaya
- Department of Food Science & Technology, Bogor Agricultural University, West Java, 16680, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Gadjah Mada University, Yogyakarta, 55281, Indonesia
| | - Atik Choirul Hidajah
- Department of Epidemiology Faculty of Public Health, Airlangga University, East Java, 60115, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatics & Population Faculty of Public Health, Airlangga University, East Java, 60115, Indonesia
| | - Triati Dewi Kencana Wungu
- Nuclear Physics & Biophysics Research Group, Department of Physics, Faculty of Mathematics & Natural Sciences, Institut Teknologi Bandung, West Java, 40132, Indonesia
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung, West Java, 40132, Indonesia
| | - Anggraini Barlian
- School of Life Science & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung, West Java, 40132, Indonesia
| |
Collapse
|
17
|
Zhang SL, Zhang KS, Wang JF, Wang YC, Zhang H, Tang C, Pei Z, Guan ZP. Corresponding Changes of Autophagy-Related Genes and Proteins in Different Stages of Knee Osteoarthritis: An Animal Model Study. Orthop Surg 2022; 14:595-604. [PMID: 35088942 PMCID: PMC8927001 DOI: 10.1111/os.13057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Objective To investigate the effect of autophagy expression levels of different weight‐bearing states and different stages of osteoarthritis in animal models, as well as the corresponding mechanisms. Methods We used the male Sprague–Dawley (SD) rats (12‐week‐old, SPF) to establish the OA animal models by modified Hulth method, and grouped animal models according to the length of time after surgery and different weight‐bearing areas. RT‐qPCR was carried out for detection of autophagy‐related genes such as Atg7, Atg12, P62, etc. Western blot analysis was used to detect the expression levels of corresponding autophagy‐related proteins such as LC3B, P62, etc. T test was performed for statistical analysis to compare different groups, while the differences were deemed statistically significant with P < 0.05. Transmission electron microscopy was used to observe the autophagosome to demonstrate the level of autophagy expression and the status of the chondrocytes. Results The results of the RT‐qPCR testing showed that when the weight‐bearing cartilage of the 4‐week group (relatively mild) was compared with that of the 10‐week group (relatively severe), there were statistically significant differences in all the genes tested, in detail: Atg3 (P < 0.01), Atg7 (P < 0.01), Atg12 (P < 0.01), P62 (P < 0.0001). The expression of autophagy‐related mRNA in the 4‐week group is increased compared with that of the 10‐week group. As for the expression of proteins, Western blotting showed that in the comparison between the 4‐ and the 10‐week groups, statistically significant results include Atg12 (P < 0.01) in the non‐weight‐bearing area, with decreased autophagy in the 10‐week group compared with that of the 4‐week group, while expression of LC3B (P < 0.05) protein was significantly higher in the 4‐week group than in the control in the non‐weight‐bearing area. The expression of LC3B (P < 0.0001) and P62 (P < 0.05) in the 10‐week group were higher than that of the control. Transmission electron microscope showed that autophagy in the weight‐bearing area is stronger than that in the non‐weight‐bearing area, and autophagy in the 4‐week group is stronger than in the 10‐week group for the weight‐bearing area. Conclusions The expression of autophagy varies during different stages of osteoarthritis, in which the autophagy is stronger in the early stage of osteoarthritis, and gradually decreases with the progression of the disease. Autophagy in different weight‐bearing areas may also be different.
Collapse
Affiliation(s)
- Shao-Long Zhang
- Peking University Shougang Hospital, Beijing, China.,Peking University Health Science Center, Beijing, China.,Civil Aviation General Hospital, Beijing, China
| | - Ke-Shi Zhang
- Peking University Shougang Hospital, Beijing, China
| | - Jun-Feng Wang
- Peking University International Hospital, Beijing, China
| | - Yi-Chuan Wang
- Peking University Shougang Hospital, Beijing, China.,Peking University Health Science Center, Beijing, China
| | - Hui Zhang
- Peking University Shougang Hospital, Beijing, China
| | - Chong Tang
- Peking University Shougang Hospital, Beijing, China
| | - Zheng Pei
- Peking University Shougang Hospital, Beijing, China
| | | |
Collapse
|
18
|
Jhun J, Woo JS, Kwon JY, Na HS, Cho KH, Kim SA, Kim SJ, Moon SJ, Park SH, Cho ML. Vitamin D Attenuates Pain and Cartilage Destruction in OA Animals via Enhancing Autophagic Flux and Attenuating Inflammatory Cell Death. Immune Netw 2022; 22:e34. [PMID: 36081528 PMCID: PMC9433191 DOI: 10.4110/in.2022.22.e34] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Ji Ye Kwon
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon Ae Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
19
|
Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway. Mol Immunol 2021; 142:63-75. [PMID: 34965485 DOI: 10.1016/j.molimm.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Severe acute pancreatitis (SAP) is complicated by systemic inflammatory response syndrome and multiple organ dysfunction, the disease will eventually result in death in almost half of the case. The spleen, as the largest immune organ adjacent to the pancreas, is prone to damage in SAP, thereby aggravating the damage of other organs and increasing mortality. However, to date, the research on the mechanism and treatment of spleen injury caused by SAP is still in its infancy. Herein, we investigated the mechanism of spleen injury, and explored the application potential of tuftsin for relieving spleen damage in SAP mice. Firstly, SAP mice model was constructed via the retrograde infusion of 3.5 % sodium taurocholate into the biliopancreatic duct. Then, we proved that the up-regulation of Toll-like receptor 4 (TLR4) in spleen would lead to the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction under SAP conditions. The splenic ROS and mitochondrial dysfunction could be improved by N-acetylcysteine (NAC) treatment or knocking out TLR4 in SAP mice. Meanwhile, we found that NAC treatment could also improve the autophagy of spleen tissue, suggesting that splenic ROS may affect impaired autophagy, causing the accumulation of damaged mitochondria, aggravating spleen damage. Furthermore, we verified the mechanism of spleen injury is caused by splenic ROS affecting PI3K/p-AKT/mTOR pathway-mediated autophagy. In addition, we detected the spleen injury caused by SAP could decrease the concentration of tuftsin in the serum of mice. Whereas, exogenous supplementation of tuftsin ameliorated the pathological damage, ROS accumulation, impaired autophagy, inflammation expression and apoptosis in damaged spleen. In summary, we verified the new mechanism of SAP-caused spleen damage that TLR4-induced ROS provoked mitophagy impairment and mitochondrial dysfunction in spleen via PI3K/p-AKT mTOR signaling, and the application potential of tuftsin in treating spleen injury, which might expand novel ideas and methods for the treatment of pancreatitis.
Collapse
|
20
|
Pape E, Parent M, Pinzano A, Sapin-Minet A, Henrionnet C, Gillet P, Scala-Bertola J, Gambier N. Rapamycin-loaded Poly(lactic-co-glycolic) acid nanoparticles: Preparation, characterization, and in vitro toxicity study for potential intra-articular injection. Int J Pharm 2021; 609:121198. [PMID: 34662644 DOI: 10.1016/j.ijpharm.2021.121198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. Rapamycin is a potential candidate for OA treatment by increasing the autophagy process implicated in its physiopathology. To optimize Rapamycin profit and avoid systemic side effects, intra-articular (i.a.) administration appeared helpful. However, Rapamycin's highly hydrophobic nature and low bioavailability made it challenging to develop purpose-made drug delivery systems to overcome these limitations. We developed Rapamycin-loaded nanoparticles (NPs) using poly (lactic-co-glycolic acid) by emulsion/evaporation method. We evaluated these NPs' cytocompatibility towards cartilage (chondrocytes) and synovial membrane cells (synoviocytes) for a potential i.a. administration. The in vitro characterization of Rapamycin-loaded NPs had shown a suitable profile for an i.a. administration. In vitro biocompatibility of NPs was highlighted to 10 µM of Rapamycin for both synoviocytes and chondrocytes, but significant toxicity was observed with higher concentrations. Besides, synoviocytes are more sensitive to Rapamycin-loaded NPs than chondrocytes. Finally, we observed in vitro that an adapted formulated Rapamycin-loaded NPs could be safe at suitable i.a. injection concentrations. The toxic effect of Rapamycin encapsulated in these NPs on both articular cells was dose-dependent. After Rapamycin-loaded NPs i.a. administration, local retention, in situ safety, and systemic release should be evaluated with experimental in vivo models.
Collapse
Affiliation(s)
- Elise Pape
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| | | | - Astrid Pinzano
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
| | | | | | - Pierre Gillet
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| | - Julien Scala-Bertola
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| | - Nicolas Gambier
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| |
Collapse
|
21
|
蒋 玉, 胡 芝, 关 禹, 周 陈, 邹 淑. [Research Progress in Mechanotransduction Process of Mechanical-Stress-Induced Autophagy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:929-935. [PMID: 34841756 PMCID: PMC10408839 DOI: 10.12182/20211160102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Indexed: 02/05/2023]
Abstract
As a self-protective mechanism for cells to obtain energy by degrading their own structures or substances, autophagy widely occurs in basic physiological process of all kinds of eukaryotic cells. In recent years, studies have shown that autophagy can be induced through a variety of mechanical transduction pathways when various tissues and cells are exposed to different types of mechanical stress, and cells and tissues involved can thus regulate cell metabolic functions and participate in the pathological process of a variety of diseases. The stress receptors on the cell membrane and the multiple signaling pathways and cytoskeletons have been shown to play an important role in this process. At present, due to the difficulties in the establishment of the stress loading model and the limitations in the research methods concerned, the specific mechanical transduction mechanisms of autophagy induced by mechanical stress is not clear. Therefore, more reliable in vitro and in vivo models and more advanced research methodology are needed to investigate the mechanical transduction process of autophagy induced by mechanical stress, and to promote ultimately progress in the understanding of autophagy-related diseases and their treatments. This article reviewed the regulatory role of mechanical stress on autophagy in physiological and disease processes and the signal transduction process related to autophagy induced by mechanical stress.
Collapse
Affiliation(s)
- 玉坤 蒋
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 禹哲 关
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 陈晨 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Claude-Taupin A, Codogno P, Dupont N. Links between autophagy and tissue mechanics. J Cell Sci 2021; 134:271984. [PMID: 34472605 DOI: 10.1242/jcs.258589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Physical constraints, such as compression, shear stress, stretching and tension, play major roles during development, tissue homeostasis, immune responses and pathologies. Cells and organelles also face mechanical forces during migration and extravasation, and investigations into how mechanical forces are translated into a wide panel of biological responses, including changes in cell morphology, membrane transport, metabolism, energy production and gene expression, is a flourishing field. Recent studies demonstrate the role of macroautophagy in the integration of physical constraints. The aim of this Review is to summarize and discuss our knowledge of the role of macroautophagy in controlling a large panel of cell responses, from morphological and metabolic changes, to inflammation and senescence, for the integration of mechanical forces. Moreover, wherever possible, we also discuss the cell surface molecules and structures that sense mechanical forces upstream of macroautophagy.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université de Paris, 75015 Paris, France
| |
Collapse
|
23
|
The Hexosamine Biosynthetic Pathway as a Therapeutic Target after Cartilage Trauma: Modification of Chondrocyte Survival and Metabolism by Glucosamine Derivatives and PUGNAc in an Ex Vivo Model. Int J Mol Sci 2021; 22:ijms22147247. [PMID: 34298867 PMCID: PMC8305151 DOI: 10.3390/ijms22147247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, “fueling” the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.
Collapse
|
24
|
Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen 2021; 29:642-649. [PMID: 34021514 DOI: 10.1111/wrr.12939] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
The synovial membrane undergoes a variety of structural changes throughout the pathogenesis of osteoarthritis (OA), including the development of fibrosis. Fibroblast-like synoviocytes (FLS) are a heterogenous cell population of the synovium that are suggested to drive the fibrotic response, but the exact mechanisms associated with their activation in OA remain unclear. Once activated, FLS are suggested to acquire a myofibroblast-like phenotype that drives fibrogenesis through excessive extracellular matrix (ECM) component deposition and an enhanced contractile function. In this review, we define FLS in the synovium, discuss how select extracellular or endogenous factors potentially induce their activation in OA, and describe how the activity of myofibroblast-like cells affects the structure of the synovial membrane.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Ferreira A, Duarte T, Marques S, Costa P, Neves S, dos Santos T, Granja P, Porto G. Iron triggers the early stages of cartilage degeneration in vitro: The role of articular chondrocytes. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100145. [DOI: 10.1016/j.ocarto.2021.100145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
|
26
|
Involvement of Autophagy in Rat Tail Static Compression-Induced Intervertebral Disc Degeneration and Notochordal Cell Disappearance. Int J Mol Sci 2021; 22:ijms22115648. [PMID: 34073333 PMCID: PMC8199019 DOI: 10.3390/ijms22115648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
The intervertebral disc is the largest avascular low-nutrient organ in the body. Thus, resident cells may utilize autophagy, a stress-response survival mechanism, by self-digesting and recycling damaged components. Our objective was to elucidate the involvement of autophagy in rat experimental disc degeneration. In vitro, the comparison between human and rat disc nucleus pulposus (NP) and annulus fibrosus (AF) cells found increased autophagic flux under serum deprivation rather in humans than in rats and in NP cells than in AF cells of rats (n = 6). In vivo, time-course Western blotting showed more distinct basal autophagy in rat tail disc NP tissues than in AF tissues; however, both decreased under sustained static compression (n = 24). Then, immunohistochemistry displayed abundant autophagy-related protein expression in large vacuolated disc NP notochordal cells of sham rats. Under temporary static compression (n = 18), multi-color immunofluorescence further identified rapidly decreased brachyury-positive notochordal cells with robust expression of autophagic microtubule-associated protein 1 light chain 3 (LC3) and transiently increased brachyury-negative non-notochordal cells with weaker LC3 expression. Notably, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic death was predominant in brachyury-negative non-notochordal cells. Based on the observed notochordal cell autophagy impairment and non-notochordal cell apoptosis induction under unphysiological mechanical loading, further investigation is warranted to clarify possible autophagy-induced protection against notochordal cell disappearance, the earliest sign of disc degeneration, through limiting apoptosis.
Collapse
|
27
|
Scotece M, Rego-Pérez I, Lechuga-Vieco AV, Cortés AC, Jiménez-Gómez MC, Filgueira-Fernández P, Vaamonde-García C, Enríquez JA, Blanco FJ. Mitochondrial DNA impact on joint damaged process in a conplastic mouse model after being surgically induced with osteoarthritis. Sci Rep 2021; 11:9112. [PMID: 33907208 PMCID: PMC8079696 DOI: 10.1038/s41598-021-88083-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
It has been suggested that mitochondrial dysfunction and mtDNA variations may contribute to osteoarthritis (OA) pathogenesis. However, the causative link to support this claim is lacking. Here, we surgically-induced OA in conplastic mice in order to evaluate the functional consequences of mtDNA haplotypes in their joint degeneration. BL/6NZB strain was developed with C57BL/6JOlaHsd nuclear genome and NZB/OlaHsdmtDNA while BL/6C57, which is the original, was developed with C57BL/6JOlaHsd nuclear genome and C57/OlaHsdmtDNA for comparison. The surgical DMM OA model was induced in both strains. Their knees were processed and examined for histopathological changes. Cartilage expression of markers of autophagy, apoptosis, oxidative stress and senescence were also analyzed by immunohistochemistry. The joints of BL/6NZB mice that were operated presented more cellularity together with a reduced OARSI histopathology score, subchondral bone, menisci score and synovitis compared to those of BL/6C57 mice. This was accompanied with higher autophagy and a lower apoptosis in the cartilage of BL/6NZB mice that were operated. Therefore, the study demonstrates the functional impact of non-pathological variants of mtDNA on OA process using a surgically-induced OA model. Conplastic (BL/6NZB ) mice develop less severe OA compared to the BL/6C57original strain. These findings demonstrate that mitochondria and mtDNA are critical targets for potential novel therapeutic approaches to treat osteoarthritis.
Collapse
Affiliation(s)
- Morena Scotece
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Ignacio Rego-Pérez
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBERES, C/Melchor Fernández-Almagro 3, 28029, Madrid, Spain
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, UK
| | - Alberto Centeno Cortés
- Centro Tecnológico de Formación Xerencia de Xestión Integrada A Coruña (XXIAC), A Coruña, Spain
| | | | - Purificación Filgueira-Fernández
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBERFES, C/Melchor Fernández-Almagro 3, 28029, Madrid, Spain
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain.
- Universidade da Coruña (UDC), Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, A Coruña, Spain.
| |
Collapse
|
28
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Intra-Articular Injection of (-)-Epigallocatechin 3-Gallate to Attenuate Articular Cartilage Degeneration by Enhancing Autophagy in a Post-Traumatic Osteoarthritis Rat Model. Antioxidants (Basel) 2020; 10:antiox10010008. [PMID: 33374730 PMCID: PMC7824012 DOI: 10.3390/antiox10010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin 3-gallate (EGCG) is the main active green tea catechin and has a wide variety of benefits for health. Post-traumatic osteoarthritis (PTOA) occurs as a consequence of joint injuries that commonly happen in the young population. In this study, we investigated the effects of EGCG on PTOA prevention by using the anterior cruciate ligament transection (ACLT)–OA model and further investigated the roles of autophagy in OA treatment. Our results showed that intra-articular injection of EGCG significantly improved the functional performances and decreased cartilage degradation. EGCG treatment attenuated the inflammation on synovial tissue and cartilage through less immunostained cyclooxygenase-2 and matrix metalloproteinase-13. We further noted EGCG may modulate the chondrocyte apoptosis by activation of the cytoprotective autophagy through reducing the expression of the mTOR and enhancing the expression of microtubule-associated protein light chain 3, beclin-1, and p62. In conclusion, intra-articular injection of EGCG after ACL injury inhibited the joint inflammation and cartilage degradation, thereby increasing joint function. EGCG treatment also reduced the chondrocyte apoptosis, possibly by activating autophagy. These findings suggested that EGCG may be a potential disease-modifying drug for preventing OA progression.
Collapse
|
30
|
Arias C, Saavedra N, Leal K, Vásquez B, Abdalla DSP, Salazar LA. Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats. Int J Mol Sci 2020; 21:ijms21228607. [PMID: 33203108 PMCID: PMC7697851 DOI: 10.3390/ijms21228607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a cellular mechanism that protects cells from stress by digesting non-functional cellular components. In the cartilage, chondrocytes depend on autophagy as a principal mechanism to maintain cellular homeostasis. This protective role diminishes prior to the structural damage that normally occurs during aging. Considering that aging is the main risk factor for osteoarthritis, evaluating the expression of genes associated with autophagy in senescent cartilage might allow for the identification of potential therapeutic targets for treatment. Thus, we studied two groups of young and senescent rats. A histological analysis of cartilage and gene expression quantification for autophagy-related genes were performed. In aged cartilage, morphological changes were observed, such as an increase in cartilage degeneration as measured by the modified Mankin score, a decrease in the number of chondrocytes and collagen II (Col2a1), and an increase in matrix metalloproteinase 13 (Mmp13). Moreover, 84 genes associated with autophagy were evaluated by a PCR array analysis, and 15 of them were found to be significantly decreased with aging. Furthermore, an in silico analysis based on by two different bioinformatics software tools revealed that several processes including cellular homeostasis, autophagosome assembly, and aging—as well as several biological pathways such as autophagy, insulin-like growth factor 1 (IGF-1) signaling, PI3K (phosphoinositide 3-kinase)/AKT (serine/threonine kinase) signaling, and mammalian target of rapamycin (mTOR) signaling—were enriched. In conclusion, the analysis identified some potential targets for osteoarthritis treatment that would allow for the development of new therapeutic strategies for this chronic disease.
Collapse
Affiliation(s)
- Consuelo Arias
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
- Carrera de Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Av. Alemania 1090, Temuco 4810101, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
| | - Karla Leal
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
| | - Bélgica Vásquez
- Facultad de Ciencias de la Salud, Universidad de Tarapacá, Av. General Velásquez 1775, Arica 1000007, Chile;
| | - Dulcineia S. P. Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes 580, São Paulo CEP 05508-000, SP, Brazil;
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
- Correspondence: ; Tel.: +56-45-259-6724
| |
Collapse
|
31
|
Li HP, Liu JT, Chen YX, Wang WB, Han Y, Yao QP, Qi YX. Suppressed nuclear envelope proteins activate autophagy of vascular smooth muscle cells during cyclic stretch application. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118855. [PMID: 32926941 DOI: 10.1016/j.bbamcr.2020.118855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
Dysfunctions of vascular smooth muscle cells (VSMCs) play crucial roles in vascular remodeling in hypertension, which correlates with pathologically elevated cyclic stretch due to increased arterial pressure. Recent researches reported that autophagy, a life-sustaining process, was increased in hypertension. However, the mechanobiological mechanism of VSMC autophagy and its potential roles in vascular remodeling are still unclear. Using renal hypertensive rats in vivo and FX5000 stretch application Unit in vitro, the autophagy of VSMCs was detected. The results showed that LC3II remarkably enhanced in hypertensive rats and 15% cyclic stretch (mimic the pathologically increased mechanical stretch in hypertension), and the activity of mammalian target of rapamycin (mTOR) was suppressed in 15% cyclic stretch. Administration of autophagy inhibitors, bafilomycin A1 and chloroquine, repressed VSMC proliferation efficiently, but did not affect the degradation of two important nuclear envelope (NE) proteins, lamin A/C and emerin. Using RNA interference to decline the expression of lamin A/C and emerin, respectively, we discovered that autophagy was upregulated under both static and 5% cyclic stretch conditions, accompanying with the decreased mTOR activity. During 15% cyclic stretch application, mTOR inhibition was responsible for autophagy elevation. Chloroquine administration in vivo inhibited the expression of PCNA (marker of proliferation) of abdominal aorta in hypertensive rats. Altogether, these results demonstrated that pathological cyclic stretch suppresses the expression of lamin A/C and emerin which subsequently represses mTOR pathway so as to induce autophagy activation. Blocking autophagic flux may be a practicable way to relieve the pathological vascular remodeling in hypertensive.
Collapse
Affiliation(s)
- Hai-Peng Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Ting Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan-Xiu Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bin Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
32
|
Thorup AS, Dell'Accio F, Eldridge SE. Lessons from joint development for cartilage repair in the clinic. Dev Dyn 2020; 250:360-376. [PMID: 32738003 DOI: 10.1002/dvdy.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
More than 250 years ago, William Hunter stated that when cartilage is destroyed it never recovers. In the last 20 years, the understanding of the mechanisms that lead to joint formation and the knowledge that some of these mechanisms are reactivated in the homeostatic responses of cartilage to injury has offered an unprecedented therapeutic opportunity to achieve cartilage regeneration. Very large investments in ambitious clinical trials are finally revealing that, although we do not have perfect medicines yet, disease modification is a feasible possibility for human osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesco Dell'Accio
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Suzanne E Eldridge
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Xiao L, Ding B, Gao J, Yang B, Wang J, Xu H. Curcumin prevents tension-induced endplate cartilage degeneration by enhancing autophagy. Life Sci 2020; 258:118213. [PMID: 32768583 DOI: 10.1016/j.lfs.2020.118213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
AIMS Intermittent cyclic tension stimulation(ICMT) was shown to promote degeneration of endplate chondrocytes and induce autophagy. However, enhancing autophagy can alleviate degeneration partly. Studies have shown that curcumin can induce autophagy and protect chondrocytes, we speculated that regulation of autophagy by curcumin might be an effective method to improve the stress resistance of endplate cartilage. In this study, human cervical endplate cartilage specimens were collected, and expression of autophagy markers was detected and compared. MAIN METHODS Human cervical endplate chondrocytes were cultured to establish a tension-induced degeneration model, for which changes of functional metabolism and autophagy levels were detected under different tension loading conditions. Changes in functional metabolism of endplate chondrocytes were observed under high-intensity tension loading in the presence of inhibitors, inducers, and curcumin to regulate the autophagy level of cells. In addition, a rat model of lumbar instability was established to observe the degeneration of lumbar disc after curcumin administration. KEY FINDINGS Through a series of experiments, we found that low-intensity tension stimulation can maintain a stable phenotype of endplate chondrocytes, but high-intensity tension stimulation has a negative effect. Moreover, with increasing tension intensity, the degree of degeneration of endplate chondrocytes was gradually aggravated and the level of autophagy increased. Besides, curcumin upregulated autophagy, inhibited apoptosis, and reduced phenotype loss of endplate chondrocytes induced by high-intensity tension loading, thereby relieving intervertebral disc degeneration induced by mechanical imbalance. SIGNIFICANCE Curcumin mediated autophagy and enhanced the adaptability of endplate chondrocytes to high-intensity tension load, thereby relieving intervertebral disc degeneration.
Collapse
Affiliation(s)
- Liang Xiao
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Baiyang Ding
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Jianming Gao
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Bijing Yang
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Jing Wang
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Hongguang Xu
- Research center of Spine Surgery, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China.
| |
Collapse
|
34
|
Dhanabalan KM, Gupta VK, Agarwal R. Rapamycin-PLGA microparticles prevent senescence, sustain cartilage matrix production under stress and exhibit prolonged retention in mouse joints. Biomater Sci 2020; 8:4308-4321. [PMID: 32597443 DOI: 10.1039/d0bm00596g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteoarthritis (OA) is a joint disease characterized by progressive damage of articular cartilage and the adjoining subchondral bone. Chondrocytes, the primary cells of the cartilage, have limited regenerative capacity and when they undergo stress due to trauma or with aging, they senesce or become apoptotic. Rapamycin, a potent immunomodulator, has shown promise in OA treatment. It activates autophagy and is known to prevent senescence. However, its clinical translation for OA is hampered due to systemic toxicity as high and frequent doses are required. Here, we have fabricated rapamycin encapsulated poly(lactic-co-glycolic acid) (PLGA) based carriers that induced autophagy and prevented cellular senescence in human chondrocytes. The microparticle (MP) delivery system showed sustained release of the drug for several weeks. Rapamycin microparticles protected in vitro cartilage mimics (micromass cultures) from degradation, allowing sustained production of sGAG, and demonstrated a prolonged senescence preventive effect under oxidative and genomic stress conditions. These microparticles also exhibited a residence time of ∼30 days after intra-articular injections in murine knee joints. Such particulate systems are promising candidates for intra-articular delivery of rapamycin for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Kaamini M Dhanabalan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012 India.
| | | | | |
Collapse
|
35
|
Abstract
Cartilage comprises a single cell type, the chondrocyte, embedded in a highly complex extracellular matrix. Disruption to the cartilage growth plate leads to reduced bone growth and results in a clinically diverse group of conditions known as genetic skeletal diseases (GSDs). Similarly, long-term degradation of articular cartilage can lead to osteoarthritis (OA), a disease characterised by joint pain and stiffness. As professionally secreting cells, chondrocytes are particularly susceptible to endoplasmic reticulum (ER) stress and this has been identified as a core disease mechanism in a group of clinically and pathologically related GSDs. If unresolved, ER stress can lead to chondrocyte cell death. Recent interest has focused on ER stress as a druggable target for GSDs and this has led to the first clinical trial for a GSD by repurposing an antiepileptic drug. Interestingly, ER stress markers have also been associated with OA in multiple cell and animal models and there is increasing interest in it as a possible therapeutic target for treatment. In summary, chondrocyte ER stress has been identified as a core disease mechanism in GSDs and as a contributory factor in OA. Thus, chondrocyte ER stress is a unifying factor for both common and rare cartilage-related diseases and holds promise as a novel therapeutic target.
Collapse
Affiliation(s)
- Michael D Briggs
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ella P Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Helen F Dietmar
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
36
|
Plant homeodomain finger protein 23 inhibits autophagy and promotes apoptosis of chondrocytes in osteoarthritis. Chin Med J (Engl) 2020; 132:2581-2587. [PMID: 31592908 PMCID: PMC6846253 DOI: 10.1097/cm9.0000000000000402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant homeodomain finger protein 23 (PHF23) is a novel autophagy inhibitor gene that has been few studied with respect to orthopedics. This study was to investigate the expression of PHF23 in articular cartilage and synovial tissue, and analyze the relationship between PHF23 and chondrocyte autophagy in osteoarthritis (OA). METHODS Immunohistochemical staining and western blot were applied to show the expression of PHF23 in cartilage of different outbridge grades and synovial tissue of patient with OA and healthy control. The normal human chondrocyte pre-treated with rapamycin or 3-methyladenine, treated with interleukin-1β (IL-1β). IL-1β induced expression level of PHF23 and autophagy-related proteins light chain 3B-I (LC3B-I), LC3B-II, and P62, were examined by Western blot. A PHF23 gene knock-down model was constructed with small interfering RNA. Western blot was performed to detect the efficiency of PHF23 and the impact of PHF23 knockout on IL-1β-induced expression of autophagy-related and apoptotic-related proteins in chondrocyte. RESULTS The expression of PHF23 was significantly increased in the high-grade cartilage and synovial tissue of patients with OA. The IL-1β-induced expression of PHF23 was gradually enhanced with time. The level of LC3B-II, P62 changed with time. After knockdown of PHF23, the level of autophagy-related proteins increased and apoptotic-related proteins decreased in IL-1β-induced OA-like chondrocytes. CONCLUSIONS The expression of PHF23 increased in human OA cartilage and synovium, and was induced by IL-1β through inflammatory stress. PHF23 can suppress autophagy of chondrocytes, and accelerate apoptosis.
Collapse
|
37
|
Yurube T, Ito M, Kakiuchi Y, Kuroda R, Kakutani K. Autophagy and mTOR signaling during intervertebral disc aging and degeneration. JOR Spine 2020; 3:e1082. [PMID: 32211593 PMCID: PMC7084057 DOI: 10.1002/jsp2.1082] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Degenerative disc disease is a highly prevalent, global health problem that represents the primary cause of back pain and is associated with neurological disorders, including radiculopathy, myelopathy, and paralysis, resulting in worker disability and socioeconomic burdens. The intervertebral disc is the largest avascular organ in the body, and degeneration is suspected to be linked to nutritional deficiencies. Autophagy, the process through which cells self-digest and recycle damaged components, is an important cell survival mechanism under stress conditions, especially nutrient deprivation. Autophagy is negatively controlled by the mammalian target of rapamycin (mTOR) signaling pathway. mTOR is a serine/threonine kinase that detects nutrient availability to trigger the activation of cell growth and protein synthesis pathways. Thus, resident disc cells may utilize autophagy and mTOR signaling to cope with harsh low-nutrient conditions, such as low glucose, low oxygen, and low pH. We performed rabbit and human disc cell and tissue studies to elucidate the involvement and roles played by autophagy and mTOR signaling in the intervertebral disc. In vitro serum and nutrient deprivation studies resulted in decreased disc cell proliferation and metabolic activity and increased apoptosis and senescence, in addition to increased autophagy. The selective RNA interference-mediated and pharmacological inhibition of mTOR complex 1 (mTORC1) was protective against inflammation-induced disc cellular apoptosis, senescence, and extracellular matrix catabolism, through the induction of autophagy and the activation of the Akt-signaling network. Although temsirolimus, a rapamycin derivative with improved water solubility, was the most effective mTORC1 inhibitor tested, dual mTOR inhibitors, capable of blocking multiple mTOR complexes, did not rescue disc cells. In vivo, high levels of mTOR-signaling molecule expression and phosphorylation were observed in human intermediately degenerated discs and decreased with age. A mechanistic understanding of autophagy and mTOR signaling can provide a basis for the development of biological therapies to treat degenerative disc disease.
Collapse
Affiliation(s)
- Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Masaaki Ito
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yuji Kakiuchi
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Ryosuke Kuroda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kenichiro Kakutani
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
38
|
Chondro-protective effects of celastrol on osteoarthritis through autophagy activation and NF-κB signaling pathway inhibition. Inflamm Res 2020; 69:385-400. [DOI: 10.1007/s00011-020-01327-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
|
39
|
Wu X, Cai Y, Lu S, Xu K, Shi X, Yang L, Huang Z, Xu P. Intra-articular Injection of Chloramphenicol Reduces Articular Cartilage Degeneration in a Rabbit Model of Osteoarthritis. Clin Orthop Relat Res 2019; 477:2785-2797. [PMID: 31764352 PMCID: PMC6907289 DOI: 10.1097/corr.0000000000001016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by degeneration of articular cartilage. Studies have found that enhancement of autophagy, an intracellular catabolic process, may limit the pathologic progression of OA. Chloramphenicol is a potent activator of autophagy; however, the effects of chloramphenicol on articular cartilage are unknown. QUESTIONS/PURPOSES Using human OA knee chondrocytes in vitro, we asked, does chloramphenicol (1) activate autophagy in chondrocytes; (2) protect chondrocytes from IL-1β-induced apoptosis; and (3) reduce the expression of matrix metallopeptidase (MMP)-13 and IL-6 (markers associated with articular cartilage degradation and joint inflammation). Using an in vivo rabbit model of OA, we asked, does an intra-articular injection of chloramphenicol in the knee (4) induce autophagy; (5) reduce OA severity; and (6) reduce MMP-13 expression? METHODS Human chondrocytes were extracted from 10 men with OA undergoing TKA. After treatment with 25 μg/mL, 50 μg/mL, or 100μg/mL chloramphenicol, the autophagy of chondrocytes was detected with Western blotting, transmission electron microscopy, or an autophagy detection kit. There were four groups in our study: one group was untreated, one was treated with 100 μg/mL chloramphenicol, another was treated with 10 ng/mL of IL-1β, and the final group was treated with 10 ng/mL of IL-1β and 100 μg/mL of chloramphenicol. All groups were treated for 48 hours; cell apoptosis was detected with Western blotting and flow cytometry. Inflammation marker IL-6 in the cell culture supernatant was detected with an ELISA. Articular cartilage degradation-related enzyme MMP-13 was analyzed with Western blotting. A rabbit model of OA was induced by intra-articular injection of type II collagenase in 20 male 3-month-old New Zealand White rabbits' right hind leg knees; the left hind leg knees served as controls. Rabbits were treated by intra-articular injection of saline or chloramphenicol once a week for 8 weeks. Autophagy of the articular cartilage was detected with Western blotting and transmission electron microscopy. Degeneration of articular cartilage was analyzed with Safranin O-fast green staining and the semi-quantitative index Osteoarthritis Research Society International (OARSI) grading system. Degeneration of articular cartilage was evaluated using the OARSI grading system. The expression of MMP-13 in articular cartilage was detected with immunohistochemistry. RESULTS Chloramphenicol activated autophagy in vitro in the chondrocytes of humans with OA and in an in vivo rabbit model of OA. Chloramphenicol inhibited IL-1-induced apoptosis (flow cytometry results with chloramphenicol, 25.33 ± 3.51%, and without chloramphenicol, 44.00 ± 3.61%, mean difference, 18.67% [95% CI 10.60 to 26.73]; p = 0.003) and the production of proinflammatory cytokine IL-6 (ELISA results, with chloramphenicol, 720.00 ± 96.44 pg/mL, without chloramphenicol, 966.67 ± 85.05 pg/mL; mean difference 74.24 pg/mL [95% CI 39.28 to 454.06]; p = 0.029) in chondrocytes. After chloramphenicol treatment, the severity of cartilage degradation was reduced in the treatment group (OARSI 6.80 ± 2.71) compared with the control group (12.30 ± 2.77), (mean difference 5.50 [95% CI 1.50 to 9.50]; p = 0.013). Furthermore, chloramphenicol treatment also decreased the production of MMP-13 in vitro and in vivo. CONCLUSIONS Chloramphenicol reduced the severity of cartilage degradation in a type II collagen-induced rabbit model of OA, which may be related to induction of autophagy and inhibition of MMP-13 and IL-6. CLINICAL RELEVANCE Our study suggests that an intra-articular injection of chloramphenicol may reduce degeneration of articular cartilage and that induction of autophagy may be a method for treating OA. The animal model we used was type II collagen-induced OA, which was different from idiopathic OA and post-traumatic OA. Therefore, we need to use other types of OA models (idiopathic OA or a surgically induced OA model) to further verify its effect, and the side effects of chloramphenicol also need to be considered, such as myelosuppression.
Collapse
Affiliation(s)
- Xiaoqing Wu
- X. Wu, Y. Cai, K. Xu, L. Yang, P. Xu, Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China S. Lu, Department of Genetics and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China X. Shi, Department of Oncology, Qianfoshan Hospital, Shandong University, Jinan, China Z. Huang, Department of Joint Surgery, Shiquan County Hospital of Traditional Chinese Medicine, Ankang, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Heard BJ, Barton KI, Agbojo OM, Chung M, Sevick JL, Bader TJ, Martin CR, Shrive NG, Hart DA. Molecular Response of Rabbit Menisci to Surgically Induced Hemarthrosis and a Single Intra-Articular Dexamethasone Treatment. J Orthop Res 2019; 37:2043-2052. [PMID: 31095777 DOI: 10.1002/jor.24346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament reconstructive surgery can restore biomechanical stability, however, such surgery cannot reliably prevent the onset of post-traumatic osteoarthritis. The aim of this study was to elucidate the molecular response that occurs within the menisci following a surgical injury that allows bleeding into the joint space, and then to investigate the effect of dexamethasone (DEX) on this molecular response. Cell viability studies following acute controlled exposure to blood and blood plus DEX were also conducted. Forty-eight New Zealand white rabbits were randomly allocated into control, sham, surgical, and surgical + DEX groups (each group n = 6). Animals were sacrificed at 48 h and 9 weeks, and menisci were harvested. The messenger RNA (mRNA) expression levels for key inflammatory, and degradative proteins, as well as mRNA levels for autophagy pathway molecules were quantified, and statistically significant changes were described. Meniscal cell viability was calculated by incubating groups of medial and lateral menisci in autologous blood, or autologous blood plus DEX for 48 h (each group n = 4; total of eight medial and eight lateral menisci), and then conducting a histological live/dead assay. Results indicated a significant reduction in only medial meniscal cell viability when the tissue was exposed to blood in combination with DEX. A single administration of DEX following surgery significantly suppresses the elevated molecular expression for key inflammatory and degradative markers within menisci at 48 h and 9 weeks post-surgery. In vitro, autologous blood did not affect cell viability, but addition of DEX uniquely impacted the medial menisci. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2043-2052, 2019.
Collapse
Affiliation(s)
- Bryan J Heard
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Kristen I Barton
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Omokhowa M Agbojo
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - May Chung
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - John L Sevick
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Taylor J Bader
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - C Ryan Martin
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Nigel G Shrive
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Alberta Health Services Bone and Joint Health Strategic Clinical Networks, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Zhou HY, Li Q, Wang JX, Xie YJ, Wang SQ, Lei L, Gao YQ, Huang MM, Hu Y, Xu FY, Zhang C. Low-intensity pulsed ultrasound repair in mandibular condylar cartilage injury rabbit model. Arch Oral Biol 2019; 104:60-66. [DOI: 10.1016/j.archoralbio.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
|
42
|
Yang H, Wen Y, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Ye T, Bai X, Xiao G, Wang M. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy 2019; 16:271-288. [PMID: 31007149 PMCID: PMC6984599 DOI: 10.1080/15548627.2019.1606647] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A switch from autophagy to apoptosis is implicated in chondrocytes during the osteoarthritis (OA) progression with currently unknown mechanism(s). In this study we utilized a flow fluid shear stress (FFSS) model in cultured chondrocytes and a unilateral anterior crossbite (UAC) animal model. We found that both FFSS and UAC actively induced endoplasmic reticulum stress (ERS) in the temporomandibular joints (TMJ) chondrocytes, as demonstrated by dramatic increases in expression of HSPA5, p-EIF2AK3, p-ERN1 and ATF6. Interestingly, both FFSS and UAC activated not only pro-death p-EIF2AK3-mediated ERS-apoptosis programs but also pro-survival p-ERN1-mediated autophagic flux in chondrocytes. Data from FFSS demonstrated that MTORC1, a downstream of p-ERN1, suppressed autophagy but promoted p-EIF2AK3 mediated ERS-apoptosis. Data from UAC model demonstrated that at early stage both the p-ERN1 and p-EIF2AK3 were activated and MTORC1 was inhibited in TMJ chondrocytes. At late stage, MTORC1-p-EIF2AK3-mediated ERS apoptosis were predominant, while p-ERN1 and autophagic flux were inhibited. Inhibition of MTORC1 by TMJ local injection of rapamycin in rats or inducible ablation of MTORC1 expression selectively in chondrocytes in mice promoted chondrocyte autophagy and suppressed apoptosis, and reduced TMJ cartilage loss induced by UAC. In contrast, MTORC1 activation by TMJ local administration of MHY1485 or genetic deletion of Tsc1, an upstream MTORC1 suppressor, resulted in opposite effects. Collectively, our results establish that aberrant mechanical loading causes cartilage degeneration by activating, at least in part, the MTORC1 signaling which modulates the autophagy and apoptosis programs in TMJ chondrocytes. Thus, inhibition of MTORC1 provides a novel therapeutic strategy for prevention and treatment of OA. Abbreviations : ACTB: actin beta; ATF6: activating transcription factor 6; BECN1: beclin 1; BFL: bafilomycin A1; CASP12: caspase 12; CASP3: caspase 3; DAPI: 4ʹ,6-diamidino-2-phenylindole; DDIT3: DNA-damage inducible transcript 3; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERS: endoplasmic reticulum stress; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FFSS: flow fluid shear stress; HSPA5/GRP78/BiP: heat shock protein 5; LAMP2: lysosome-associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; OA: osteoarthritis; PRKAA1/2/AMPK1/2: protein kinase, AMP-activated, alpha 1/2 catalytic subunit; RPS6: ribosomal protein S6; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TG: thapsigargin; TMJ: temporomandibular joints; TSC1/2: tuberous sclerosis complex 1/2; UAC: unilateral anterior crossbite; UPR: unfolded protein response; XBP1: x-box binding protein 1.
Collapse
Affiliation(s)
- Hongxu Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Yi Wen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Hongyun Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Lei Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Tao Ye
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Meiqing Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
43
|
The Role of Autophagy in Chondrocyte Metabolism and Osteoarthritis: A Comprehensive Research Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5171602. [PMID: 31111057 PMCID: PMC6487163 DOI: 10.1155/2019/5171602] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/21/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022]
Abstract
Chondrocytes are the sole cellular constituents of normal cartilage. The degeneration and apoptosis of these cells are considered the main cause of osteoarthritis (OA). Previous studies have suggested that the enhancement of autophagy in chondrocytes can delay the progression of osteoarthritis by affecting intracellular metabolic activity, i.e., by regulating the metabolism of nutrients, which can delay cell aging and death. In this review, we explored the relationship between autophagy and chondrocyte metabolism and provided new ideas for the prevention and treatment of OA.
Collapse
|
44
|
Hwang HS, Choi MH, Kim HA. 29-kDa FN-f inhibited autophagy through modulating localization of HMGB1 in human articular chondrocytes. BMB Rep 2019. [PMID: 29804557 PMCID: PMC6235092 DOI: 10.5483/bmbrep.2018.51.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibronectin fragments found in the synovial fluid of patients with osteoarthritis (OA) induce the catabolic responses in cartilage. Nuclear high-mobility group protein Box 1 (HMGB1), a damage-associated molecular pattern, is responsible for the regulation of signaling pathways related to cell death and survival in response to various stimuli. In this study, we investigated whether changes induced by 29-kDa aminoterminal fibronectin fragment (29-kDa FN-f) in HMGB1 expression influences the pathogenesis of OA via an HMGB1- modulated autophagy signaling pathway. Human articular chondrocytes were enzymatically isolated from articular cartilage. The level of mRNA was measured by quantitative real-time PCR. The expression of proteins was examined by western blot analysis, immnunofluorescence assay, and enzyme-linked immunosorbent assay. Interaction of proteins was evaluated by immunoprecipitation. The HMGB1 level was significantly lower in human OA cartilage than in normal cartilage. Although 29-kDa FN-f significantly reduced the HMGB1 expression at the mRNA and protein levels 6 h after treatment, the cytoplasmic level of HMGB1 was increased in chondrocytes treated with 29-kDa FN-f, which significantly inhibited the interaction of HMGB1 with Beclin-1, increased the interaction of Bcl-2 with Beclin-1, and decreased the levels of Beclin-1 and phosphorylated Bcl-2. In addition, the level of microtubule-associated protein 1 light chain 3-II, an autophagy marker, was down-regulated in chondrocytes treated with 29-kDa FN-f, whereas the effect was antagonized by mTOR knockdown. Furthermore, prolonged treatment with 29-kDa FN-f significantly increased the release of HMGB1 into the culture medium. These results demonstrated that 29-kDa FN-f inhibits chondrocyte autophagy by modulating the HMGB1 signaling pathway. [BMB Reports 2018; 51(10): 509-514].
Collapse
Affiliation(s)
- Hyun Sook Hwang
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea
| | - Min Ha Choi
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea
| |
Collapse
|
45
|
Gao WF, Xu YY, Ge JF, Chen FH. Inhibition of acid‑sensing ion channel 1a attenuates acid‑induced activation of autophagy via a calcium signaling pathway in articular chondrocytes. Int J Mol Med 2019; 43:1778-1788. [PMID: 30720055 PMCID: PMC6414154 DOI: 10.3892/ijmm.2019.4085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), member of the degenerin/epithelial sodium channel protein superfamily, serves a critical role in various physiological and pathological processes. The aim of the present study was to examine the role of ASIC1a in the autophagy of rat articular chondrocytes. Autophagy was induced by acidic stimulation in rat articular chondrocytes and the extent of autophagy was evaluated via the expression levels of microtubule-associated protein 1 light chain 3II, Beclin1 and uncoordinated-51 like kinase1. Suppression of ASIC1a was achieved using small interfering RNA technology and/or inhibitor psalmotoxin-1. The expression levels of autophagy markers were measured by western blot analysis and reverse transcription-quantitative polymerase chain reaction methods. Intracellular calcium ([Ca2+]i) was analyzed using a Ca2+-imaging method. Additionally, protein expression levels of the Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/5′-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway were measured by western blot analysis. The results showed that autophagy was increased in a pH-and time-dependent manner with exposure to an acidic environment. In addition, silencing ASIC1a significantly decreased the expression levels of autophagy makers, accompanied by abrogation of the acid-induced [Ca2+]i increase. Furthermore, silencing of ASIC1a downregulated the levels of CaMKKβ/β-actin and phosphorylated (p-) AMPK/AMPK, and upregulated the levels of p-mTOR/mTOR. These results indicated that ASIC1a is a potent regulator of autophagy in chondrocytes, which may be associated with decreased Ca2+ influx and the CaMKKβ/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Wen-Fan Gao
- Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, P.R. China
| | - Ya-Yun Xu
- Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, P.R. China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
46
|
Alterations of autophagy in knee cartilage by treatment with treadmill exercise in a rat osteoarthritis model. Int J Mol Med 2018; 43:336-344. [PMID: 30365059 PMCID: PMC6257837 DOI: 10.3892/ijmm.2018.3948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate potential alterations in the articular cartilage in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA) with or without treatment with moderate treadmill exercise. A total of 30 male Sprague-Dawley rats were randomly divided into three groups (n=10), including the control, OA and OA with treadmill exercise (OAE) groups. Rats were evaluated upon completing the treadmill exercise program (speed, 18 m/min; 30 min/day; 5 days/week for 4 weeks). Interleukin (IL)-1β and IL-4 levels in the serum and intra-articular lavage fluid (IALF) were measured by ELISA. Alterations in articular cartilage and synovium were also evaluated by histology, immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. The results revealed that IL-1β in the serum and IALF decreased in the OAE group, whereas IL-4 increased, and histological evaluation indicated that the OAE group had a clear treatment response. However, the expression of type II collagen in the articular cartilage increased in the OAE group as compared with the OA group, whereas ADAMTS5 expression decreased. In contrast to light chain 3B (LC3B), the protein expression levels of BECLIN1 and sequestosome 1 (SQSTM1) were increased in the OA group. In addition, a significant increase was observed between OA and OAE groups in LC3B and SQSTM1 protein levels, whereas no change was observed in BECLIN1 levels between the OA and OAE groups in the superficial and deep zones. The results of western blotting demonstrated that LC3II was notably decreased in the OA group and partially increased in the OAE group. The mRNA expression levels of LC3B and SQSTM1 increased in the OA and OAE groups, with a significant difference observed between the two groups, while a concomitant decrease was detected in BECLIN1 levels. In conclusion, 30 min of treadmill exercise had an evident protective effect in the articular cartilage of rats with MIA-induced OA and may promote autophagy in the articular cartilage.
Collapse
|
47
|
Chen R, Zhou X, Yin S, Lu Z, Nie J, Zhou W, Liu X. [Study on the protective mechanism of autophagy on cartilage by magnesium sulfate]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1340-1345. [PMID: 30600669 DOI: 10.7507/1002-1892.201804015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective To investigate the mechanism of magnesium sulfate in protecting rabbit cartilage by initiating autophagy. Methods Twenty-four adult female New Zealand rabbits were used to prepare post-traumatic osteoarthritis (PTOA) models by anterior cruciate ligament transection. Then, the PTOA models were randomly divided into PTOA group, distilled water group, and magnesium sulfate group, with 8 rabbits in each group. Immediately after operation, the distilled water group and the magnesium sulfate group were injected with 0.5 mL distilled water and 20 mmol/L magnesium sulfate solution in the joint cavity 3 times a week for 4 weeks, respectively. The PTOA group was not treated. The general condition of the animals was observed after operation. After 4 weeks, the expressions of tumor necrosis factor α (TNF-α) and collagen typeⅡ in the joint fluid and the expression of collagen type Ⅱ in venous blood were detected by ELISA assay. The protein expressions of transient receptor potential channel vanilloid 5 (TRPV5) and microtubule associated protein 1 light chain 3 (LC3; LC3-Ⅱ/LC3-Ⅰ) in femoral cartilage were detected by Western blot. The mRNA expressions of interleukin 1β (IL-1β), TNF-α, matrix metalloproteinases 3 (MMP-3) in synovial tissue and collagen type Ⅱ, Aggrecan (AGN), SOX9 in cartilage tissue were detected by real-time fluorescence quantitative PCR. Cartilage tissue sections were stained with HE staining, Masson staining, and Alcian blue staining and scored according to the modified histological osteoarthritis (OA) score. Results All animals survived until the experiment was completed. Compared with the other two groups, the expression of TNF-α in joint effusion and collagen type Ⅱ in joint effusion and venous blood were decreased in magnesium sulfate group; the protein expression of TRPV5 decreased, and the ratio of LC3-Ⅱ/LC3-Ⅰ increased significantly; the mRNA expressions of IL-1β, TNF-α, and MMP-3 in synovial tissue were decreased, and the mRNA expressions of collagen type Ⅱ, AGN, and SOX9 in cartilage tissue were increased; OA scores also decreased significantly. All differences were statistically significant ( P<0.05). There was no significant difference in the above indicators between the PTOA group and the distilled water group ( P>0.05). Conclusion Intra-articular injection of magnesium sulfate can reduce intra-articular inflammation, reduce the loss of collagen type Ⅱ and AGN, and is beneficial to cartilage regeneration in rabbits. The mechanism may be related to the initiation of chondroautophagy by inhibiting the calcium channel TRPV5.
Collapse
Affiliation(s)
- Rong Chen
- Department of Traumatic Orthopedics, the People's Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan Hubei, 442000, P.R.China
| | - Xue Zhou
- The Fourth Hospital of Clinical Medicine, Hubei University of Medicine, Shiyan Hubei, 442000, P.R.China
| | - Shaomei Yin
- The Fourth Hospital of Clinical Medicine, Hubei University of Medicine, Shiyan Hubei, 442000, P.R.China
| | - Zeyu Lu
- The Fourth Hospital of Clinical Medicine, Hubei University of Medicine, Shiyan Hubei, 442000, P.R.China
| | - Jinpeng Nie
- The Fourth Hospital of Clinical Medicine, Hubei University of Medicine, Shiyan Hubei, 442000, P.R.China
| | - Wencheng Zhou
- The Fourth Hospital of Clinical Medicine, Hubei University of Medicine, Shiyan Hubei, 442000, P.R.China
| | - Xinghui Liu
- Department of Anatomy, Hubei University of Medicine, Shiyan Hubei, 442000,
| |
Collapse
|
48
|
Goutas A, Syrrou C, Papathanasiou I, Tsezou A, Trachana V. The autophagic response to oxidative stress in osteoarthritic chondrocytes is deregulated. Free Radic Biol Med 2018; 126:122-132. [PMID: 30096432 DOI: 10.1016/j.freeradbiomed.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023]
Abstract
It has been reported that oxidative stress (OS) is involved in the pathogenesis of osteoarthritis (OA) and that defective autophagy is accompanying this age-related disease. Moreover, it has been proposed that induction of autophagy could serve as therapeutic mean, as it was shown to alleviate several symptoms in OA animal models. On the contrary, it is also known that autophagic death, which results from over-activation of autophagy, is also a contributor in the development of this disease. Given this discrepancy, in this study we aimed at analysing the autophagic response against acute exogenous oxidative insult of chondrocytes from healthy individuals (control) and OA patients (OA). Cells were treated with sublethal concentrations of hydrogen peroxide (H2O2) and then allowed to recover for different periods of time. Firstly, mRNA levels of autophagy-related genes (ATG5, Beclin-1 and LC3) were found significantly reduced in OA chondrocytes compared to control chondrocytes under physiological conditions. After the exposure to OS, in control cells mRNA and protein levels of these genes initially increased and decreased back to their basal levels 6-24 h after treatment. On the contrary, in OA chondrocytes the levels of autophagy-related genes remained high even 24 h post-treatment, indicating their inability to attenuate autophagy. Under the same conditions, the staining pattern of LC3, known marker of autophagosome formation, was analysed, and possible morphological differences between mitochondria of control and OA cells were microscopically assessed. These analyses revealed higher number of impaired mitochondria as well as increased autophagosome formation in OA cells as compared to control cells at all time points. Taken together, our results demonstrate a deregulation of the autophagic response against the oxidative insult in OA chondrocytes and offers insights on autophagy's role in the progression of OA.
Collapse
Affiliation(s)
- Andreas Goutas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Christina Syrrou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Varvara Trachana
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| |
Collapse
|
49
|
Huang K, Wu LD. Dehydroepiandrosterone: Molecular mechanisms and therapeutic implications in osteoarthritis. J Steroid Biochem Mol Biol 2018; 183:27-38. [PMID: 29787833 DOI: 10.1016/j.jsbmb.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022]
Abstract
Dehydroepiandrosterone (DHEA), a 19-carbon steroid hormone primarily synthesized in the adrenal gland, exerts a chondroprotective effect against osteoarthritis (OA) and has been considered an effective candidate of disease-modifying OA drugs (DMOADs) that slow disease progression. We and others previously demonstrated that DHEA exerted a beneficial effect on osteoarthritic cartilage by positively modulating the balance between anabolic and catabolic factors (e.g., MMPs/TIMP-1, ADAMTS/TIMP-3 and cysteine proteinases/cystatin C), inhibiting catabolic signaling pathways (e.g., Wnt/β-catenin), and suppressing proinflammatory cytokines-mediated low-grade synovial inflammation (e.g., IL-1β). However, the full picture of the pharmacological molecular mechanism(s) underlying the activity of DHEA against OA is still incomplete, and a comprehensive and up-to-date review article in this field is unavailable. In this review, recent findings (apart from the well documented pathogenesis of OA) regarding disease-related mechanisms involving low grade synovial inflammation, cartilage matrix stiffness, chondrocyte autophagy and the roles of a variety of catabolic cellular signaling pathways are discussed. Moreover, the possible relationship between these disease-related mechanisms and DHEA action is discussed. Emerging evidence from in vivo and in vitro studies were scrutinized and are concisely presented to demonstrate the investigational and putative mechanisms underlying the anti-OA potential of DHEA.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, China.
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, China
| |
Collapse
|
50
|
Osman AHK, Shintani M. Autophagy in normal tissues of camel (Camelus dromedarius) with focus on immunoexpression of LC3 and LC3B. Biotech Histochem 2018; 93:557-564. [PMID: 29969923 DOI: 10.1080/10520295.2018.1470728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Autophagy is a highly regulated intracellular pathway for degradation and recycling of cytoplasmic protein aggregates and entire organelles. The autophagic pathway is stimulated by nutrient starvation, which prompted us to study the desert camel. Various organs of the camel undergo ecological and physiological stress due to food and water deprivation, dehydration and long exposure to solar radiation. We investigated the immunohistochemical expression of specific biomarkers of autophagy under normal conditions as a baseline for later work on stressed individuals. The autophagy-specific biomarkers, microtubule-associated protein1 light chain 3 (LC3), and its cleaved variant, LC3B, were strongly expressed in the cytosol of all tissues examined. The cytosolic immunoreactivity of LC3 was relatively weak, diffuse and vacuolar, while that of LC3B was stronger, punctate and at lower levels. LC3 appears to be associated with the autophagosomal membranes, either free or lysosome-bounded. LC3B is specific for the autophagosome-lysosome complexes and their degraded, granular contents. Autophagy was strongly expressed in CNS neurons and intestinal neural elements, which suggests a protective function for the nervous system. Autophagic markers also were seen in deformed immune-competent cells with fragmented nuclei in lymph nodes, spleen and gut-associated lymphoid tissue (GALT), which suggests a "suicidal" activity of eliminating unneeded cells. Autophagy, as measured by LC3 and LC3B expression, may participate in a general regulatory mechanism in tissues of the desert camel.
Collapse
Affiliation(s)
- Abdel-Hamid K Osman
- a Department of Cytology and Histology, Faculty of Veterinary Medicine , Suez Canal University , Ismailia , Egypt
| | - Michiko Shintani
- b Laboratory of Pathology, Division of Medical Biosciences , kobe University Graduate School of Health Sciences , Kobe , Japan
| |
Collapse
|