1
|
Reilly OT, Somerville LH, Hecht EE. Mechanisms of Social Attachment Between Children and Pet Dogs. Animals (Basel) 2024; 14:3036. [PMID: 39457966 PMCID: PMC11505475 DOI: 10.3390/ani14203036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
An increasing body of evidence indicates that owning a pet dog is associated with improvements in child health and well-being. Importantly, the degree of the social bond between child and dog may mediate the beneficial outcomes of dog ownership. The formation of social bonds is an intrinsically dyadic, interactive process where each interactor's behavior influences the other's behavior. For this reason, it is critical to evaluate the biological mechanisms of attachment in both children and their pet dogs as a socially bonded pair. Here, we review the physical, mental, and emotional outcomes that are associated with pet dog ownership or interaction in children. We then discuss the evidence that suggests that the strength of a social bond between a child and their pet dog matters for maximizing the beneficial outcomes associated with pet dog ownership, such as possible stress-buffering effects. We review the existing literature on the neural and endocrinological mechanisms of social attachment for inter-species social bonds that form between human children and dogs, situating this emerging knowledge within the context of the mechanisms of intra-species bonds in mammals. Finally, we highlight the remaining open questions and point toward directions for future research.
Collapse
Affiliation(s)
- Olivia T. Reilly
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA;
| | - Leah H. Somerville
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA;
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Erin E. Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
| |
Collapse
|
2
|
Spool JA, Lally AP, Remage-Healey L. Auditory pallial regulation of the social behavior network. Commun Biol 2024; 7:1336. [PMID: 39414913 PMCID: PMC11484815 DOI: 10.1038/s42003-024-07013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory cues such as vocalizations contain important social information. Processing social features of vocalizations (e.g., vocalizer identity, emotional state) necessitates unpacking the complex sound streams in song or speech; this depends on circuits in pallial cortex. But whether and how this information is then transferred to limbic and hypothalamic regions remains a mystery. Here, using gregarious, vocal songbirds (female Zebra finches), we identify a prominent influence of the auditory pallium on one specific node of the Social Behavior Network, the lateral ventromedial nucleus of the hypothalamus (VMHl). Electrophysiological recordings revealed that social and non-social auditory stimuli elicited stimulus-specific spike trains that permitted stimulus differentiation in a large majority of VMHl single units, while transient disruption of auditory pallium elevated immediate early gene activity in VMHl. Descending functional connections such as these may be critical for the range of vertebrate species that rely on nuanced communication signals to guide social decision-making.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA
| | - Anna P Lally
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Behroozi M, Lorenzi E, Tabrik S, Tegenthoff M, Gozzi A, Güntürkün O, Vallortigara G. Functional MRI of imprinting memory in awake newborn domestic chicks. Commun Biol 2024; 7:1326. [PMID: 39406830 PMCID: PMC11480507 DOI: 10.1038/s42003-024-06991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, invasive techniques like autoradiography or lesions have been used to study it, limiting the exploration of whole brain networks. Recent advances in fMRI for avian brains now open new windows to explore bird's brain functions at the network level. We developed an fMRI technique for awake, newly hatched chicks, capturing BOLD signal changes during imprinting experiments. While early memory acquisition phases are understood, long-term storage and retrieval remain unclear. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This paradigm opens up new avenues for exploring the broader landscape of learning and memory in neonatal vertebrates, enhancing our understanding of behaviour and brain networks.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany.
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy.
| | - Sepideh Tabrik
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Alessandro Gozzi
- Functional neuroimaging laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
- Research Center One Health Ruhr, University Research Alliance Ruhr, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy
| |
Collapse
|
4
|
Iwasaki Y, Yamaguchi Y, Nishiyama M. Structure and function of neurohypophysial hormones. Peptides 2024; 182:171300. [PMID: 39395442 DOI: 10.1016/j.peptides.2024.171300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Vasopressin (VP) and oxytocin (OXT) are neuropeptides that are synthesized in the hypothalamus and stored in/secreted from the neurohypophysis. Although VP and OXT were initially characterized as osmoregulatory and reproductive hormones, respectively, these peptides exert versatile actions not only in peripheral organs but also in the central nervous system via multiple G protein-coupled receptors. Orthologous peptides and receptors have been identified in various animal phyla, reflecting an ancient origin of this hormone family. The aim of this review is to provide basic information on this hormone family and to propose matters to be addressed in future studies. In the earlier sections of this review, we summarize the historical aspect of VP/OXT research as well as the basic features of hormonal peptides and corresponding receptors. The latter sections describe VP/OXT family peptides and their receptors in nonmammalian species, including invertebrates, to introduce the evolutionary aspect of this hormone family. By integrating knowledge from both general and comparative endocrinology perspectives, we highlight current and future research trends about the VP/OXT system.
Collapse
Affiliation(s)
- Yasumasa Iwasaki
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 510-0293, Japan.
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane 690-8504, Japan.
| | - Mitsuru Nishiyama
- Health Service Center, Kochi University, Kochi Medical School, Kochi 780-8520, Japan
| |
Collapse
|
5
|
Court L, Talbottier L, Lemarchand J, Cornilleau F, Pecnard E, Blache MC, Balthazart J, Cornil CA, Keller M, Calandreau L, Pellissier L. Exploring neuronal markers and early social environment influence in divergent quail lines selected for social motivation. Sci Rep 2024; 14:23554. [PMID: 39384852 PMCID: PMC11464888 DOI: 10.1038/s41598-024-74906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Many species, including humans exhibit a wide range of social behaviors that are crucial for the adaptation and survival of most species. Brain organization and function are shaped by genetic and environmental factors, although their precise contributions have been relatively understudied in the context of artificial selection. We used divergent lines of quail selected on their high versus low level of motivation to approach a group of conspecifics (S + and S-, respectively) to investigate the influence of genetic selection and early social environment on sociability. We observed distinct sex- and brain-region-specific expression patterns of three neuronal markers: mesotocin, and vasotocin, the avian homologues of mammalian oxytocin and vasopressin, as well as aromatase, the enzyme that converts androgens into estrogens. These markers displayed pronounced and neuroanatomically specific differences between S + and S- quail. Additionally, in a second experiment, we assessed the influence of early social environment on social skills in juvenile birds. Mixing S + and S- resulted in more S- males approaching the group without affecting the sociability of S + or other behaviors, suggesting that the early social environment may influence the results of genetic selection. In conclusion, the divergent quail lines offer a valuable model for unraveling the neuronal and behavioral mechanisms underlying social behaviors.
Collapse
Affiliation(s)
- Lucas Court
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France.
| | - Laura Talbottier
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | - Julie Lemarchand
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | | | - Emmanuel Pecnard
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | | | | | | | - Matthieu Keller
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | | | - Lucie Pellissier
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France.
| |
Collapse
|
6
|
Duque FG, Azam A, Kaur A, Pao R, Lynch KS. Divergent neural nodes are species- and hormone-dependent in the brood parasitic brain. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12907. [PMID: 39246030 PMCID: PMC11381655 DOI: 10.1111/gbb.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 09/10/2024]
Abstract
Avian brood parasitism is an evolutionarily derived behavior for which the neurobiological mechanisms are mostly unexplored. We aimed to identify brain regions that have diverged in the brood-parasitic brain using relative transcript abundance of social neuropeptides and receptors. We compared behavioral responses and transcript abundance in three brain regions in the brown-headed cowbird (BHCO), a brood parasite, and a closely related parental species, the red-winged blackbird (RWBL). Females of both species were treated with mesotocin (MT; avian homolog of oxytocin) or saline prior to exposure to nest stimuli. Results reveal that MT promotes approach toward nests with eggs rather than nests with begging nestlings in both species. We also examined relative transcript abundance of the five social neuropeptides and receptors in the brain regions examined: preoptic area (POA), paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BST). We found that MT-treated cowbirds but not blackbirds exhibited lower transcript abundance for two receptors, corticotropin-releasing factor 2 (CRFR2) and prolactin receptor (PRLR) in BST. Additionally, MT-treated cowbirds had higher PRLR in POA, comparable to those found in blackbirds, regardless of treatment. No other transcripts of interest exhibited significant differences as a result of MT treatment, but we found a significant effect of species in the three regions. Together, these results indicate that POA, PVN, and BST represent neural nodes that have diverged in avian brood parasites and may serve as neural substrates of brood-parasitic behavior.
Collapse
Affiliation(s)
- Fernanda G Duque
- Biology Department, Hofstra University, Hempstead, New York, USA
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Asma Azam
- Biology Department, Hofstra University, Hempstead, New York, USA
| | - Amanpreet Kaur
- Biology Department, Hofstra University, Hempstead, New York, USA
| | - Rachel Pao
- Biology Department, Hofstra University, Hempstead, New York, USA
| | - Kathleen S Lynch
- Biology Department, Hofstra University, Hempstead, New York, USA
| |
Collapse
|
7
|
Merritt AE, St John ME, Leri F, Stein LR. Sensory cues of predation risk generate sex-specific changes in neural activity and behavior, but not hormones, in Trinidadian guppies. Horm Behav 2024; 166:105635. [PMID: 39303528 DOI: 10.1016/j.yhbeh.2024.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
How an organism responds to risk depends on how that individual perceives such risk. Integrating cues from multiple sensory modalities allows individuals to extract information from their environment, and whether and how the brain and body respond differently to different sensory cues can help reveal mechanistic decision-making processes. Here, we assessed neural, hormonal, and behavioral responses to different sensory cues of predation risk in Trinidadian guppies (Poecilia reticulata). Adult guppies were assigned to one of four treatment groups: control, visual, olfactory, and both sensory cues combined from a natural predator, the pike cichlid (Crenicichla alta), for 2 h. We found no difference in glucocorticoid response to any cue. However, we found behavioral and neural activation responses to olfactory-only cues. In addition, we found a sex by treatment effect, where males showed greater changes in neural activation in brain regions associated with avoidance behavior, while females showed greater changes in neural activation in regions associated with social behavior and memory, mirroring sex by treatment differences in behavioral antipredator responses. Altogether, our results demonstrate that single and combinatory cues may influence risk-taking behavior differently based on sex, suggesting that perception and integration of cues can cascade into sex differences in behavior.
Collapse
Affiliation(s)
- A E Merritt
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America
| | - M E St John
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America
| | - F Leri
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America
| | - L R Stein
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America.
| |
Collapse
|
8
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of FoxP2-positive neurons is associated with tadpole begging behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542531. [PMID: 37292748 PMCID: PMC10246011 DOI: 10.1101/2023.05.26.542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motor function is a critical aspect of social behavior in a wide range of taxa. The transcription factor FoxP2 is well studied in the context of vocal communication in humans, mice, and songbirds, but its role in regulating social behavior in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds, and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behavior beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
9
|
Zada D, Schulze L, Yu JH, Tarabishi P, Napoli JL, Milan J, Lovett-Barron M. Development of neural circuits for social motion perception in schooling fish. Curr Biol 2024; 34:3380-3391.e5. [PMID: 39025069 PMCID: PMC11419698 DOI: 10.1016/j.cub.2024.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The collective behavior of animal groups emerges from the interactions among individuals. These social interactions produce the coordinated movements of bird flocks and fish schools, but little is known about their developmental emergence and neurobiological foundations. By characterizing the visually based schooling behavior of the micro glassfish Danionella cerebrum, we found that social development progresses sequentially, with animals first acquiring the ability to aggregate, followed by postural alignment with social partners. This social maturation was accompanied by the development of neural populations in the midbrain that were preferentially driven by visual stimuli that resemble the shape and movements of schooling fish. Furthermore, social isolation over the course of development impaired both schooling behavior and the neural encoding of social motion in adults. This work demonstrates that neural populations selective for the form and motion of conspecifics emerge with the experience-dependent development of collective movement.
Collapse
Affiliation(s)
- David Zada
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisanne Schulze
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Jo-Hsien Yu
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Princess Tarabishi
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Julia L Napoli
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Jimjohn Milan
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Kareklas K, Oliveira RF. Emotional contagion and prosocial behaviour in fish: An evolutionary and mechanistic approach. Neurosci Biobehav Rev 2024; 163:105780. [PMID: 38955311 DOI: 10.1016/j.neubiorev.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
In this review, we consider the definitions and experimental approaches to emotional contagion and prosocial behaviour in mammals and explore their evolutionary conceptualisation for studying their occurrence in the evolutionarily divergent vertebrate group of ray-finned fish. We present evidence for a diverse set of fish phenotypes that meet definitional criteria for prosocial behaviour and emotional contagion and discuss conserved mechanisms that may account for some preserved social capacities in fish. Finally, we provide some considerations on how to address the question of interdependency between emotional contagion and prosocial response, highlighting the importance of recognition processes, decision-making systems, and ecological context for providing evolutionary explanations.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal; ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal.
| |
Collapse
|
11
|
Polzin BJ, Zhao C, Stevenson SA, Gammie SC, Riters LV. RNA-sequencing reveals a shared neurotranscriptomic profile in the medial preoptic area of highly social songbirds and rats. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12908. [PMID: 39052331 PMCID: PMC11271255 DOI: 10.1111/gbb.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Rough-and-tumble play in juvenile rats and song in flocks of adult songbirds outside a breeding context (gregarious song) are two distinct forms of non-sexual social behavior. Both are believed to play roles in the development of sociomotor skills needed for later life-history events, including reproduction, providing opportunities for low-stakes practice. Additionally, both behaviors are thought to be intrinsically rewarded and are associated with a positive affective state. Given the functional similarities of these behaviors, this study used RNA-sequencing to identify commonalities in their underlying neurochemical systems within the medial preoptic area. This brain region is implicated in multiple social behaviors, including song and play, and is highly conserved across vertebrates. DESeq2 and rank-rank hypergeometric overlap analyses identified a shared neurotranscriptomic profile in adult European starlings singing high rates of gregarious song and juvenile rats playing at high rates. Transcript levels for several glutamatergic receptor genes, such as GRIN1, GRIN2A, and GRIA1, were consistently upregulated in highly gregarious (i.e., playful/high singing) animals. This study is the first to directly investigate shared neuromodulators of positive, non-sexual social behaviors across songbirds and mammals. It provides insight into a conserved brain region that may regulate similar behaviors across vertebrates.
Collapse
Affiliation(s)
- Brandon J. Polzin
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Changjiu Zhao
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sharon A. Stevenson
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Stephen C. Gammie
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lauren V. Riters
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
12
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. Biol Sex Differ 2024; 15:58. [PMID: 39044232 PMCID: PMC11267845 DOI: 10.1186/s13293-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. METHODS This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. RESULTS We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. CONCLUSIONS This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Abigail R Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA.
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
13
|
Riyahi S, Liebermann-Lilie ND, Jacobs A, Korsten P, Mayer U, Schmoll T. Transcriptomic changes in the posterior pallium of male zebra finches associated with social niche conformance. BMC Genomics 2024; 25:694. [PMID: 39009985 PMCID: PMC11251365 DOI: 10.1186/s12864-024-10573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis). In this pre-registered study, we investigated a large sample of 59 individual transcriptomes. We compared two experimental groups: males held in single breeding pairs (low sexual competition) versus those held in two pairs (elevated sexual competition) per breeding cage. Using weighted gene co-expression network analysis (WGCNA), we observed significant effects of the social treatment in all three tissues. However, only the treatment effects found in the pallium were confirmed by an additional randomisation test for statistical robustness. Likewise, the differential gene expression analysis revealed treatment effects only in the posterior pallium (ten genes) and optic tectum (six genes). No treatment effects were found in the testis at the single gene level. Thus, our experiments do not provide strong evidence for transcriptomic adjustment specific to manipulated sperm competition risk. However, we did observe transcriptomic adjustments to the manipulated social environment in the posterior pallium. These effects were polygenic rather than based on few individual genes with strong effects. Our findings are discussed in relation to an accompanying paper using the same animals, which reports behavioural results consistent with the results presented here.
Collapse
Affiliation(s)
- Sepand Riyahi
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
| | - Navina D Liebermann-Lilie
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Uwe Mayer
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, TN, 38068, Italy.
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
14
|
Finszter CK, Kemecsei R, Zachar G, Ádám Á, Csillag A. Gestational VPA exposure reduces the density of juxtapositions between TH+ axons and calretinin or calbindin expressing cells in the ventrobasal forebrain of neonatal mice. Front Neuroanat 2024; 18:1426042. [PMID: 39026519 PMCID: PMC11254666 DOI: 10.3389/fnana.2024.1426042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Gestational exposure to valproic acid (VPA) is a valid rodent model of human autism spectrum disorder (ASD). VPA treatment is known to bring about specific behavioral deficits of sociability, matching similar alterations in human autism. Previous quantitative morphometric studies from our laboratory showed a marked reduction and defasciculation of the mesotelencephalic dopaminergic pathway of VPA treated mice, along with a decrease in tissue dopamine in the nucleus accumbens (NAc), but not in the caudatoputamen (CPu). In the present study, the correlative distribution of tyrosine hydroxylase positive (TH+) putative axon terminals, presynaptic to the target neurons containing calretinin (CR) or calbindin (CB), was assessed using double fluorescent immunocytochemistry and confocal laser microscopy in two dopamine recipient forebrain regions, NAc and olfactory tubercle (OT) of neonatal mice (mothers injected with VPA on ED13.5, pups investigated on PD7). Representative image stacks were volumetrically analyzed for spatial proximity and abundance of presynaptic (TH+) and postsynaptic (CR+, CB+) structures with the help of an Imaris (Bitplane) software. In VPA mice, TH/CR juxtapositions were reduced in the NAc, whereas the TH/CB juxtapositions were impoverished in OT. Volume ratios of CR+ and CB+ elements remained unchanged in NAc, whereas that of CB+ was markedly reduced in OT; here the abundance of TH+ axons was also diminished. CR and CB were found to partially colocalize with TH in the VTA and SN. In VPA exposed mice, the abundance of CR+ (but not CB+) perikarya increased both in VTA and SN, however, this upregulation was not mirrored by an increase of the number of CR+/TH+ double labeled cells. The observed reduction of total CB (but not of CB+ perikarya) in the OT of VPA exposed animals signifies a diminished probability of synaptic contacts with afferent TH+ axons, presumably by reducing the available synaptic surface. Altered dopaminergic input to ventrobasal forebrain targets during late embryonic development will likely perturb the development and consolidation of neural and synaptic architecture, resulting in lasting changes of the neuronal patterning (detected here as reduced synaptic input to dopaminoceptive interneurons) in ventrobasal forebrain regions specifically involved in motivation and reward.
Collapse
Affiliation(s)
| | | | | | | | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Fang YT, Kuo HC, Chen CY, Chou SJ, Lu CW, Hung CM. Brain Gene Regulatory Networks Coordinate Nest Construction in Birds. Mol Biol Evol 2024; 41:msae125. [PMID: 38916488 PMCID: PMC11223658 DOI: 10.1093/molbev/msae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Lopez MS, Alward BA. Androgen receptor alpha deficiency impacts aromatase expression in the female cichlid brain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240608. [PMID: 39076364 PMCID: PMC11285847 DOI: 10.1098/rsos.240608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
Steroid hormones bind to specific receptors that act as transcription factors to modify gene expression in the brain to regulate physiological and behavioural processes. The specific genes controlled by steroid hormones in the brain are not fully known. Identifying these genes is integral to establishing a comprehensive understanding of how hormones impact physiology and behaviour. A popular organism for answering this question is the cichlid fish Astatotilapia burtoni. Recently, CRISPR/Cas9 was used to engineer A. burtoni that lack functional androgen receptor (AR) genes encoding ARα. ARα mutant male A. burtoni produced fewer aggressive displays and possessed reduced expression of the gene encoding brain-specific aromatase, cyp19a1, in the ventromedial hypothalamus (VMH), an aggression locus. As a follow-up, we investigated whether ARα deficiency affected cyp19a1 expression in female A. burtoni using the same genetic line. We find that female A. burtoni possessing one or two non-functional ARα alleles had much higher expression of cyp19a1 in the preoptic area (POA), while females with one non-functional ARα allele possessed lower expression of cyp19a1 in the putative fish homologue of the bed nucleus of the stria terminalis (BNST). Thus, ARα may have a sex-specific role in modifying cyp19a1 expression in the teleost POA and BNST, regions that underlie sex differences across vertebrates.
Collapse
Affiliation(s)
- Mariana S. Lopez
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Beau A. Alward
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
17
|
Lorenzi E, Nadalin G, Morandi-Raikova A, Mayer U, Vallortigara G. Noncortical coding of biological motion in newborn chicks' brain. Cereb Cortex 2024; 34:bhae262. [PMID: 38918076 DOI: 10.1093/cercor/bhae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Biological motion, the typical movement of vertebrates, is perceptually salient for many animal species. Newly hatched domestic chicks and human newborns show a spontaneous preference for simple biological motion stimuli (point-light displays) at birth prior to any visual learning. Despite evidence of such preference at birth, neural studies performed so far have focused on a specialized neural network involving primarily cortical areas. Here, we presented newly hatched visually naïve domestic chicks to either biological or rigid motion stimuli and measured for the first time their brain activation. Immediate Early Gene (c-Fos) expression revealed selective activation in the preoptic area of the hypothalamus and the nucleus taeniae of the amygdala. These results suggest that subpallial/subcortical regions play a crucial role in biological motion perception at hatching, paving the way for future studies on adult animals, including humans.
Collapse
Affiliation(s)
- Elena Lorenzi
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giulia Nadalin
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | | | - Uwe Mayer
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giorgio Vallortigara
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| |
Collapse
|
18
|
Lloyd E, Rastogi A, Holtz N, Aaronson B, Craig Albertson R, Keene AC. Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids. J Comp Physiol B 2024; 194:299-313. [PMID: 37910192 PMCID: PMC11233325 DOI: 10.1007/s00360-023-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Niah Holtz
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ben Aaronson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA.
| |
Collapse
|
19
|
Hiraki-Kajiyama T, Miyasaka N, Ando R, Wakisaka N, Itoga H, Onami S, Yoshihara Y. An atlas and database of neuropeptide gene expression in the adult zebrafish forebrain. J Comp Neurol 2024; 532:e25619. [PMID: 38831653 DOI: 10.1002/cne.25619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Zebrafish is a useful model organism in neuroscience; however, its gene expression atlas in the adult brain is not well developed. In the present study, we examined the expression of 38 neuropeptides, comparing with GABAergic and glutamatergic neuron marker genes in the adult zebrafish brain by comprehensive in situ hybridization. The results are summarized as an expression atlas in 19 coronal planes of the forebrain. Furthermore, the scanned data of all brain sections were made publicly available in the Adult Zebrafish Brain Gene Expression Database (https://ssbd.riken.jp/azebex/). Based on these data, we performed detailed comparative neuroanatomical analyses of the hypothalamus and found that several regions previously described as one nucleus in the reference zebrafish brain atlas contain two or more subregions with significantly different neuropeptide/neurotransmitter expression profiles. Subsequently, we compared the expression data in zebrafish telencephalon and hypothalamus obtained in this study with those in mice, by performing a cluster analysis. As a result, several nuclei in zebrafish and mice were clustered in close vicinity. The present expression atlas, database, and anatomical findings will contribute to future neuroscience research using zebrafish.
Collapse
Affiliation(s)
- Towako Hiraki-Kajiyama
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Laboratory of Molecular Ethology, Graduate School of Life Science, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Reiko Ando
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noriko Wakisaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hiroya Itoga
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Life Science Data Sharing Unit, RIKEN Information R&D and Strategy Headquarters, Kobe, Hyogo, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
20
|
Yu JH, Napoli JL, Lovett-Barron M. Understanding collective behavior through neurobiology. Curr Opin Neurobiol 2024; 86:102866. [PMID: 38852986 PMCID: PMC11439442 DOI: 10.1016/j.conb.2024.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
A variety of organisms exhibit collective movement, including schooling fish and flocking birds, where coordinated behavior emerges from the interactions between group members. Despite the prevalence of collective movement in nature, little is known about the neural mechanisms producing each individual's behavior within the group. Here we discuss how a neurobiological approach can enrich our understanding of collective behavior by determining the mechanisms by which individuals interact. We provide examples of sensory systems for social communication during collective movement, highlight recent discoveries about neural systems for detecting the position and actions of social partners, and discuss opportunities for future research. Understanding the neurobiology of collective behavior can provide insight into how nervous systems function in a dynamic social world.
Collapse
Affiliation(s)
- Jo-Hsien Yu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. https://twitter.com/anitajhyu
| | - Julia L Napoli
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. https://twitter.com/juliadoingneuro
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Nishiike Y, Okubo K. The decision of male medaka to mate or fight depends on two complementary androgen signaling pathways. Proc Natl Acad Sci U S A 2024; 121:e2316459121. [PMID: 38781215 PMCID: PMC11145247 DOI: 10.1073/pnas.2316459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.
Collapse
Affiliation(s)
- Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo113-8657, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo113-8657, Japan
| |
Collapse
|
22
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. Commun Biol 2024; 7:612. [PMID: 38773256 PMCID: PMC11109250 DOI: 10.1038/s42003-024-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking variations in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely "everted" telencephalon, which has confounded comparisons of their brain regions to other vertebrates. Here we combine spatial transcriptomics and single nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the Mchenga conophorus cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell-types in the fish telencephalon and subpallial, hippocampal, and cortical cell-types in tetrapods, and find support for partial eversion of the teleost telencephalon. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
23
|
Buzenchi Proca TM, Solcan C, Solcan G. Neurotoxicity of Some Environmental Pollutants to Zebrafish. Life (Basel) 2024; 14:640. [PMID: 38792660 PMCID: PMC11122474 DOI: 10.3390/life14050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The aquatic environment encompasses a wide variety of pollutants, from plastics to drug residues, pesticides, food compounds, and other food by-products, and improper disposal of waste is the main cause of the accumulation of toxic substances in water. Monitoring, assessing, and attempting to control the effects of contaminants in the aquatic environment are necessary and essential to protect the environment and thus human and animal health, and the study of aquatic ecotoxicology has become topical. In this respect, zebrafish are used as model organisms to study the bioaccumulation, toxicity, and influence of environmental pollutants due to their structural, functional, and material advantages. There are many similarities between the metabolism and physiological structures of zebrafish and humans, and the nervous system structure, blood-brain barrier function, and social behavior of zebrafish are characteristics that make them an ideal animal model for studying neurotoxicity. The aim of the study was to highlight the neurotoxicity of nanoplastics, microplastics, fipronil, deltamethrin, and rotenone and to highlight the main behavioral, histological, and oxidative status changes produced in zebrafish exposed to them.
Collapse
Affiliation(s)
- Teodora Maria Buzenchi Proca
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania; (T.M.B.P.); (C.S.)
| | - Carmen Solcan
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania; (T.M.B.P.); (C.S.)
| | - Gheorghe Solcan
- Internal Medicine Unit, Clinics Department, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania
| |
Collapse
|
24
|
Skinner M, Daanish D, Damphousse CC, Krohmer RW, Mallet PE, McKay BE, Miller N. Socially-mediated activation in the snake social-decision-making network. Behav Brain Res 2024; 465:114965. [PMID: 38522595 DOI: 10.1016/j.bbr.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Brain areas important for social perception, social reward, and social behavior - collectively referred to as the social-decision-making network (SDN) - appear to be highly conserved across taxa. These brain areas facilitate a variety of social behaviors such as conspecific approach/avoidance, aggression, mating, parental care, and recognition. Although the SDN has been investigated across taxa, little is known about its functioning in reptiles. Research on the snake SDN may provide important new insights, as snakes have a keen social perceptual system and express a relatively reduced repertoire of social behaviors. Here, we present the results of an experiment in which ball pythons (Python regius) interacted with a same-sex conspecific for one hour and neural activation was investigated through Fos immunoreactivity. Compared to controls, snakes that interacted socially had higher Fos counts in brain areas implicated in social behavior across taxa, such as the medial amygdala, preoptic area, nucleus accumbens, and basolateral amygdala. Additionally, we found differential Fos immunoreactivity in the ventral amygdala, which facilitates communication between social brain areas. In many of these areas, Fos counts differed by sex, which may be due to increased competition between males. Fos counts did not differ in early sensory (i.e., vomeronasal) processing structures. As ball python social systems lack parental care, cooperation, or long-term group living, these results provide valuable insight into the basal functions of the vertebrate social decision-making network.
Collapse
Affiliation(s)
- Morgan Skinner
- Department of Psychology, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON N2L 3C5, Canada.
| | - Dania Daanish
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Chelsey C Damphousse
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Randolph W Krohmer
- Department of Biological Sciences, Saint Xavier University, 3700 W 103rd St, Chicago, IL 60655, USA
| | - Paul E Mallet
- Department of Psychology, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON N2L 3C5, Canada
| | - Bruce E McKay
- Department of Psychology, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON N2L 3C5, Canada
| | - Noam Miller
- Department of Psychology, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
25
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Bernier NJ, Balshine S. Social regulation of arginine vasopressin and oxytocin systems in a wild group-living fish. Horm Behav 2024; 161:105521. [PMID: 38452613 DOI: 10.1016/j.yhbeh.2024.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) are key regulators of social behaviour across vertebrates. However, much of our understanding of how these neuropeptide systems interact with social behaviour is centred around laboratory studies which fail to capture the social and physiological challenges of living in the wild. To evaluate relationships between these neuropeptide systems and social behaviour in the wild, we studied social groups of the cichlid fish Neolamprologus pulcher in Lake Tanganyika, Africa. We first used SCUBA to observe the behaviour of focal group members and then measured transcript abundance of key components of the AVP and OXT systems across different brain regions. While AVP is often associated with male-typical behaviours, we found that dominant females had higher expression of avp and its receptor (avpr1a2) in the preoptic area of the brain compared to either dominant males or subordinates of either sex. Dominant females also generally had the highest levels of leucyl-cystinyl aminopeptidase (lnpep)-which inactivates AVP and OXT-throughout the brain, potentially indicating greater overall activity (i.e., production, release, and turnover) of the AVP system in dominant females. Expression of OXT and its receptors did not differ across social ranks. However, dominant males that visited the brood chamber more often had lower preoptic expression of OXT receptor a (oxtra) suggesting a negative relationship between OXT signalling and parental care in males of this species. Overall, these results advance our understanding of the relationships between complex social behaviours and neuroendocrine systems under natural settings.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Monari PK, Hammond ER, Zhao X, Maksimoski AN, Petric R, Malone CL, Riters LV, Marler CA. Conditioned preferences: Gated by experience, context, and endocrine systems. Horm Behav 2024; 161:105529. [PMID: 38492501 DOI: 10.1016/j.yhbeh.2024.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.
Collapse
Affiliation(s)
- Patrick K Monari
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Emma R Hammond
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Xin Zhao
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Alyse N Maksimoski
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Radmila Petric
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; Institute for the Environment, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA.
| |
Collapse
|
27
|
Stennette KA, Godwin JR. Estrogenic influences on agonistic behavior in teleost fishes. Horm Behav 2024; 161:105519. [PMID: 38452611 DOI: 10.1016/j.yhbeh.2024.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Teleost fishes show an extraordinary diversity of sexual patterns, social structures, and sociosexual behaviors. Sex steroid hormones are key modulators of social behaviors in teleosts as in other vertebrates and act on sex steroid receptor-containing brain nuclei that form the evolutionarily conserved vertebrate social behavior network (SBN). Fishes also display important differences relative to tetrapod vertebrates that make them particularly well-suited to study the physiological mechanisms modulating social behavior. Specifically, fishes exhibit high levels of brain aromatization and have what has been proposed to be a lifelong, steroid hormone dependent plasticity in the neural substrates mediating sociosexual behavior. In this review, we examine how estrogenic signaling modulates sociosexual behaviors in teleosts with a particular focus on agonistic behavior. Estrogens have been shown to mediate agonistic behaviors in a broad range of fishes, from sexually monomorphic gonochoristic species to highly dimorphic sex changers with alternate reproductive phenotypes. These similarities across such diverse taxa contribute to a growing body of evidence that estrogens play a crucial role in the modulation of aggression in vertebrates. As analytical techniques and genomic tools rapidly advance, methods such as LC-MS/MS, snRNAseq, and CRISPR-based mutagenesis show great promise to further elucidate the mechanistic basis of estrogenic effects on social behavior in the diverse teleost lineage.
Collapse
Affiliation(s)
- Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
28
|
Sadino JM, Donaldson ZR. Prairie voles as a model for adaptive reward remodeling following loss of a bonded partner. Ann N Y Acad Sci 2024; 1535:20-30. [PMID: 38594916 PMCID: PMC11334365 DOI: 10.1111/nyas.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Loss of a loved one is a painful event that substantially elevates the risk for physical and mental illness and impaired daily function. Socially monogamous prairie voles are laboratory-amenable rodents that form life-long pair bonds and exhibit distress upon partner separation, mirroring phenotypes seen in humans. These attributes make voles an excellent model for studying the biology of loss. In this review, we highlight parallels between humans and prairie voles, focusing on reward system engagement during pair bonding and loss. As yearning is a unique feature that differentiates loss from other negative mental states, we posit a model in which the homeostatic reward mechanisms that help to maintain bonds are disrupted upon loss, resulting in yearning and other negative impacts. Finally, we synthesize studies in humans and voles that delineate the remodeling of reward systems during loss adaptation. The stalling of these processes likely contributes to prolonged grief disorder, a diagnosis recently added to the Diagnostic and Statistical Manual for Psychiatry.
Collapse
Affiliation(s)
- Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
29
|
Masuda M, Ihara S, Mori N, Koide T, Miyasaka N, Wakisaka N, Yoshikawa K, Watanabe H, Touhara K, Yoshihara Y. Identification of olfactory alarm substances in zebrafish. Curr Biol 2024; 34:1377-1389.e7. [PMID: 38423017 DOI: 10.1016/j.cub.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Escaping from danger is one of the most fundamental survival behaviors for animals. Most freshwater fishes display olfactory alarm reactions in which an injured fish releases putative alarm substances from the skin to notify its shoaling company about the presence of danger. Here, we identified two small compounds in zebrafish skin extract, designated as ostariopterin and daniol sulfate. Ostariopterin is a pterin derivative commonly produced in many freshwater fishes belonging to the Ostariophysi superorder. Daniol sulfate is a novel sulfated bile alcohol specifically present in the Danio species, including zebrafish. Ostariopterin and daniol sulfate activate distinct glomeruli in the olfactory bulb. Zebrafish display robust alarm reactions, composed of darting, freezing, and bottom dwelling, only when they are concomitantly stimulated with ostariopterin and daniol sulfate. These results demonstrate that the fish alarm reaction is driven through a coincidence detection mechanism of the two compounds along the olfactory neural circuitry.
Collapse
Affiliation(s)
- Miwa Masuda
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, RIKEN Center for Brain Science, Saitama 351-0198, Japan; ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan
| | - Sayoko Ihara
- ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan; Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Mori
- Laboratory of Organic Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tetsuya Koide
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Noriko Wakisaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Keiichi Yoshikawa
- Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hidenori Watanabe
- Laboratory of Organic Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan; Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, RIKEN Center for Brain Science, Saitama 351-0198, Japan; ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan.
| |
Collapse
|
30
|
Bolton PE, Ryder TB, Dakin R, Houtz JL, Moore IT, Balakrishnan CN, Horton BM. Neurogenomic landscape associated with status-dependent cooperative behaviour. Mol Ecol 2024:e17327. [PMID: 38511765 DOI: 10.1111/mec.17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The neurogenomic mechanisms mediating male-male reproductive cooperative behaviours remain unknown. We leveraged extensive transcriptomic and behavioural data on a neotropical bird species (Pipra filicauda) that performs cooperative courtship displays to understand these mechanisms. In this species, the cooperative display is modulated by testosterone, which promotes cooperation in non-territorial birds, but suppresses cooperation in territory holders. We sought to understand the neurogenomic underpinnings of three related traits: social status, cooperative display behaviour and testosterone phenotype. To do this, we profiled gene expression in 10 brain nuclei spanning the social decision-making network (SDMN), and two key endocrine tissues that regulate social behaviour. We associated gene expression with each bird's behavioural and endocrine profile derived from 3 years of repeated measures taken from free-living birds in the Ecuadorian Amazon. We found distinct landscapes of constitutive gene expression were associated with social status, testosterone phenotype and cooperation, reflecting the modular organization and engagement of neuroendocrine tissues. Sex-steroid and neuropeptide signalling appeared to be important in mediating status-specific relationships between testosterone and cooperation, suggesting shared regulatory mechanisms with male aggressive and sexual behaviours. We also identified differentially regulated genes involved in cellular activity and synaptic potentiation, suggesting multiple mechanisms underpin these genomic states. Finally, we identified SDMN-wide gene expression differences between territorial and floater males that could form the basis of 'status-specific' neurophysiological phenotypes, potentially mediated by testosterone and growth hormone. Overall, our findings provide new, systems-level insights into the mechanisms of cooperative behaviour and suggest that differences in neurogenomic state are the basis for individual differences in social behaviour.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian National Zoological Park, Washington, District of Columbia, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian National Zoological Park, Washington, District of Columbia, USA
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer L Houtz
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Brent M Horton
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
| |
Collapse
|
31
|
Gray SL, Lam EK, Henao-Diaz LF, Jalabert C, Soma KK. Effect of a Territorial Challenge on the Steroid Profile of a Juvenile Songbird. Neuroscience 2024; 541:118-132. [PMID: 38301739 DOI: 10.1016/j.neuroscience.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17β-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Emma K Lam
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - L Francisco Henao-Diaz
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Li LY, Imai A, Izumi H, Inoue R, Koshidaka Y, Takao K, Mori H, Yoshida T. Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance. Mol Brain 2024; 17:16. [PMID: 38475840 PMCID: PMC10935922 DOI: 10.1186/s13041-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.
Collapse
Affiliation(s)
- Lin-Yu Li
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
33
|
Abstract
In recent years, the impact of prenatal sound on development, notably for programming individual phenotypes for postnatal conditions, has increasingly been revealed. However, the mechanisms through which sound affects physiology and development remain mostly unexplored. Here, I gather evidence from neurobiology, developmental biology, cellular biology and bioacoustics to identify the most plausible modes of action of sound on developing embryos. First, revealing often-unsuspected plasticity, I discuss how prenatal sound may shape auditory system development and determine individuals' later capacity to receive acoustic information. I also consider the impact of hormones, including thyroid hormones, glucocorticoids and androgen, on auditory plasticity. Second, I review what is known about sound transduction to other - non-auditory - brain regions, and its potential to input on classical developmental programming pathways. Namely, the auditory pathway has direct anatomical and functional connectivity to the hippocampus, amygdala and/or hypothalamus, in mammals, birds and anurans. Sound can thus trigger both immediate and delayed responses in these limbic regions, which are specific to the acoustic stimulus and its biological relevance. Third, beyond the brain, I briefly consider the possibility for sound to directly affect cellular functioning, based on evidence in earless organisms (e.g. plants) and cell cultures. Together, the multi-disciplinary evidence gathered here shows that the brain is wired to allow multiple physiological and developmental effects of sound. Overall, there are many unexplored, but possible, pathways for sound to impact even primitive or immature organisms. Throughout, I identify the most promising research avenues for unravelling the processes of acoustic developmental programming.
Collapse
Affiliation(s)
- Mylene M Mariette
- Doñana Biological Station EBD-CSIC, 41092 Seville, Spain
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
34
|
Kleiber A, Roy J, Brunet V, Baranek E, Le-Calvez JM, Kerneis T, Batard A, Calvez S, Pineau L, Milla S, Guesdon V, Calandreau L, Colson V. Feeding predictability as a cognitive enrichment protects brain function and physiological status in rainbow trout: a multidisciplinary approach to assess fish welfare. Animal 2024; 18:101081. [PMID: 38335569 DOI: 10.1016/j.animal.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Cognitive enrichment is a promising but understudied type of environmental enrichment that aims to stimulate the cognitive abilities of animals by providing them with more opportunities to interact with (namely, to predict events than can occur) and to control their environment. In a previous study, we highlighted that farmed rainbow trout can predict daily feedings after two weeks of conditioning, the highest conditioned response being elicited by the combination of both temporal and signalled predictability. In the present study, we tested the feeding predictability that elicited the highest conditioned response in rainbow trout (both temporal and signalled by bubbles, BUBBLE + TIME treatment) as a cognitive enrichment strategy to improve their welfare. We thus analysed the long-term effects of this feeding predictability condition as compared with an unpredictable feeding condition (RANDOM treatment) on the welfare of rainbow trout, including the markers in the modulation of brain function, through a multidisciplinary approach. To reveal the brain regulatory pathways and networks involved in the long-term effects of feeding predictability, we measured gene markers of cerebral activity and plasticity, neurotransmitter pathways and physiological status of fish (oxidative stress, inflammatory status, cell type and stress status). After almost three months under these predictability conditions of feeding, we found clear evidence of improved welfare in fish from BUBBLE + TIME treatment. Feeding predictability allowed for a food anticipatory activity and resulted in fewer aggressive behaviours, burst of accelerations, and jumps before mealtime. BUBBLE + TIME fish were also less active between meals, which is in line with the observed decreased expression of transcripts related to the dopaminergic system. BUBBLE + TIME fish tented to present fewer eroded dorsal fin and infections to the pathogen Flavobacterium psychrophilum. Decreased expression of most of the studied mRNA involved in oxidative stress and immune responses confirm these tendencies else suggesting a strong role of feeding predictability on fish health status and that RANDOM fish may have undergone chronic stress. Fish emotional reactivity while isolated in a novel-tank as measured by fear behaviour and plasma cortisol levels were similar between the two treatments, as well as fish weight and size. To conclude, signalled combined with temporal predictability of feeding appears to be a promising approach of cognitive enrichment to protect brain function via the physiological status of farmed rainbow trout in the long term.
Collapse
Affiliation(s)
- A Kleiber
- JUNIA, Comportement Animal et Systèmes d'Elevage, F-59000 Lille, France; INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France; INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | - J Roy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - V Brunet
- INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France
| | - E Baranek
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | | | | | - A Batard
- INRAE, PEIMA, 29450 Sizun, France
| | - S Calvez
- Oniris, INRAE, BIOEPAR, 44300 Nantes, France
| | - L Pineau
- Oniris, INRAE, BIOEPAR, 44300 Nantes, France
| | - S Milla
- Université de Lorraine, INRAE, UR AFPA, 54505 Vandoeuvre-lès-Nancy, France
| | - V Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, F-59000 Lille, France
| | - L Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - V Colson
- INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France
| |
Collapse
|
35
|
Shapouri S, Sharifi A, Folkedal O, Fraser TWK, Vindas MA. Behavioral and neurophysiological effects of buspirone in healthy and depression-like state juvenile salmon. Front Behav Neurosci 2024; 18:1285413. [PMID: 38410095 PMCID: PMC10894974 DOI: 10.3389/fnbeh.2024.1285413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024] Open
Abstract
A proportion of farmed salmon in seawater show a behaviorally inhibited, growth stunted profile known as a depression-like state (DLS). These DLS fish are characterized by chronically elevated serotonergic signaling and blood plasma cortisol levels and the inability to react further to acute stress, which is suggestive of chronic stress. In this study, we characterize the neuroendocrine profile of growth stunted freshwater parr and confirm that they show a DLS-like neuroendocrine profile with a blunted cortisol response and no serotonergic increase in response to acute stress. Furthermore, we attempted to reverse this DLS-like profile through pharmacological manipulation of the serotonin (5-HT) system with buspirone, an anxiolytic medication that acts as a serotonin receptor agonist (i.e., decreases serotonergic signaling). We found that while buspirone decreases anxiolytic-type behavior in healthy fish, no quantifiable behavioral change was found in DLS-like fish. However, there was a physiological effect of diminished basal serotonergic signaling. This suggests that at the physiological level, buspirone appears to reverse the neuroendocrine DLS profile. With a deeper understanding of what causes DLS profiles and growth stunting in juvenile fish, steps can be taken in terms of husbandry to prevent repeated stressors and the formation of the DLS profile, potentially reducing losses in aquaculture due to chronic stress.
Collapse
Affiliation(s)
- Sheyda Shapouri
- Biochemistry and Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Aziz Sharifi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ole Folkedal
- Animal Welfare, Matre Research Station, Institute of Marine Research, Bergen, Norway
| | - Thomas W. K. Fraser
- Reproduction and Developmental Biology, Matre Research Station, Institute of Marine Research, Bergen, Norway
| | - Marco A. Vindas
- Biochemistry and Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
36
|
Jackson LR, Dumitrascu M, Alward BA. Sex differences in aggression and its neural substrate in a cichlid fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562975. [PMID: 37905098 PMCID: PMC10614901 DOI: 10.1101/2023.10.18.562975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Aggression is ubiquitous among social species and functions to maintains social dominance hierarchies. The African cichlid fish Astatotilapia burtoni is an ideal study species for studying aggression due to their unique and flexible dominance hierarchy. However, female aggression in this species and the neural mechanisms of aggression in both sexes is not well understood. To further understand the potential sex differences in aggression in this species, we characterized aggression in male and female A. burtoni in a mirror assay. We then quantified neural activation patterns in brain regions of the social behavior network (SBN) to investigate if differences in behavior are reflected in the brain with immunohistochemistry by detecting the phosphorylated ribosome marker phospho-S6 ribosomal protein (pS6), a marker for neural activation. We found that A. burtoni perform both identical and sex-specific aggressive behaviors in response to a mirror assay. We observed sex differences in pS6 immunoreactivity in the Vv, a homolog of the lateral septum in mammals. Males but not females had higher ps6 immunoreactivity in the ATn after the aggression assay. The ATn is a homolog of the ventromedial hypothalamus in mammals, which is strongly implicated in the regulation of aggression in males. Several regions also have higher pS6 immunoreactivity in negative controls than fish exposed to a mirror, implicating a role for inhibitory neurons in suppressing aggression until a relevant stimulus is present. Male and female A. burtoni display both similar and sexually dimorphic behavioral patterns in aggression in response to a mirror assay. There are also sex differences in the corresponding neural activation patterns in the SBN. In mirror males but not females, the ATn clusters with the POA, revealing a functional connectivity of these regions that is triggered in an aggressive context in males. These findings suggest that distinct neural circuitry underlie aggressive behavior in male and female A. burtoni, serving as a foundation for future work investigating the molecular and neural underpinnings of sexually dimorphic behaviors in this species to reveal fundamental insights into understanding aggression.
Collapse
Affiliation(s)
| | | | - Beau A Alward
- University of Houston, Department of Psychology
- University of Houston, Department of Biology and Biochemistry
| |
Collapse
|
37
|
Pouso P, Cabana Á, Francia V, Silva A. Vasotocin but not isotocin is involved in the emergence of the dominant-subordinate status in males of the weakly electric fish, Gymnotus omarorum. Horm Behav 2024; 158:105446. [PMID: 37945472 DOI: 10.1016/j.yhbeh.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The establishment of the dominant-subordinate status implies a clear behavioral asymmetry between contenders that arises immediately after the resolution of the agonistic encounter and persists during the maintenance of stable dominance hierarchies. Changes in the activity of the brain social behavior network (SBN) are postulated to be responsible for the establishment and maintenance of the dominant-subordinate status. The hypothalamic nonapeptides of the vasopressin (AVP) and oxytocin (OT) families are known to modulate the activity of the SBN in a context-dependent manner across vertebrates, including status-dependent modulations. We searched for status-dependent asymmetries in AVP-like (vasotocin, AVT) and OT-like (isotocin, IT) cell number and activation immediately after the establishment of dominance in males of the weakly electric fish, Gymnotus omarorum, which displays the best understood example of non-breeding territorial aggression among teleosts. We used immunolabeling (FOS, AVT, and IT) of preoptic area (POA) neurons after dyadic agonistic encounters. This study is among the first to show in teleosts that AVT, but not IT, is involved in the establishment of the dominant-subordinate status. We also found status-dependent subregion-specific changes of AVT cell number and activation. These results confirm the involvement of AVT in the establishment of dominance and support the speculation that AVT is released from dominants' AVT neurons.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay
| | - Álvaro Cabana
- Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República, Montevideo 11800, Uruguay
| | - Virginia Francia
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
38
|
Bell AM. The evolution of decision-making mechanisms under competing demands. Trends Ecol Evol 2024; 39:141-151. [PMID: 37783626 PMCID: PMC10922085 DOI: 10.1016/j.tree.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Animals in nature are constantly managing multiple demands, and decisions about how to adjust behavior in response to ecologically relevant demands is critical for fitness. Evidence for behavioral correlations across functional contexts (behavioral syndromes) and growing appreciation for shared proximate substrates of behavior prompts novel questions about the existence of distinct neural, molecular, and genetic mechanisms involved in decision-making. Those proximate mechanisms are likely to be an important target of selection, but little is known about how they evolve, their evolutionary history, or where they harbor genetic variation. Herein I provide a conceptual framework for understanding the evolution of mechanisms for decision-making, highlighting insights on decision-making in humans and model organisms, and sketch an emerging synthesis.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, 505 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Lopez MS, Alward BA. Androgen receptor deficiency is associated with reduced aromatase expression in the ventromedial hypothalamus of male cichlids. Ann N Y Acad Sci 2024; 1532:73-82. [PMID: 38240562 PMCID: PMC10922992 DOI: 10.1111/nyas.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Social behaviors are regulated by sex steroid hormones, such as androgens and estrogens. However, the specific molecular and neural processes modulated by steroid hormones to generate social behaviors remain to be elucidated. We investigated whether some actions of androgen signaling in the control of social behavior may occur through the regulation of estradiol synthesis in the highly social cichlid fish, Astatotilapia burtoni. Specifically, we examined the expression of cyp19a1, a brain-specific aromatase, in the brains of male A. burtoni lacking a functional ARα gene (ar1), which was recently found to be necessary for aggression in this species. We found that cyp19a1 expression is higher in wild-type males compared to ar1 mutant males in the anterior tuberal nucleus (ATn), the putative fish homolog of the mammalian ventromedial hypothalamus, a brain region that is critical for aggression across taxa. Using in situ hybridization chain reaction, we determined that cyp19a1+ cells coexpress ar1 throughout the brain, including in the ATn. We speculate that ARα may modulate cyp19a1 expression in the ATn to govern aggression in A. burtoni. These studies provide novel insights into the hormonal mechanisms of social behavior in teleosts and lay a foundation for future functional studies.
Collapse
Affiliation(s)
- Mariana S. Lopez
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Beau A. Alward
- Department of Psychology, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry. University of Houston, Houston, Texas, USA
| |
Collapse
|
40
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577753. [PMID: 38352560 PMCID: PMC10862741 DOI: 10.1101/2024.01.29.577753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of neurosexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G. Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - George W. Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brianna E. Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Abigail R. Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Jeffrey T. Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Justin S. Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Zachary V. Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
41
|
Ravenel JR, Perkins AE, Tomczik A, Defendini A, Strnad HK, Varlinskaya E, Deak T, Spencer RL. Age-related decline in social interaction is associated with decreased c-Fos induction in select brain regions independent of oxytocin receptor expression profiles. AGING BRAIN 2024; 5:100107. [PMID: 38313579 PMCID: PMC10837624 DOI: 10.1016/j.nbas.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024] Open
Abstract
Social behavior decreases with aging, and we have previously found a substantial decline in social investigative behavior of old female rats. In this study we examined the neural activation pattern (c-Fos mRNA) of young (3 month) and old (18 month) female rats after brief 10 min exposure to a novel female rat in order to identify forebrain regions that show selective age-related alterations in their neural response to social investigation. We also measured relative oxytocin receptor expression (Oxtr mRNA) as a possible factor in age-related declines in c-Fos induction after social interaction. Young rats exposed to a social partner had a greater c-Fos mRNA response than those exposed to novel context alone in the lateral septum and septohypothalamic area, with blunted increases evident in old rats. In addition, c-Fos mRNA levels in the lateral septum were positively correlated with social investigative behavior. Interestingly, age-related differences in c-Fos gene induction were unrelated to the local amount of Oxtr expression within specific brain regions, although we found an age-related decline in Oxtr expression in the ventromedial hypothalamus. This functional neuroanatomical characterization may point to certain brain regions that are especially sensitive to age-related declines associated with social interaction behavior.
Collapse
Affiliation(s)
- J. Russell Ravenel
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Amy E. Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902, USA
| | - Angela Tomczik
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ana Defendini
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Helen K. Strnad
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Elena Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902, USA
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
42
|
Myznikov A, Korotkov A, Zheltyakova M, Kiselev V, Masharipov R, Bursov K, Yagmurov O, Votinov M, Cherednichenko D, Didur M, Kireev M. Dark triad personality traits are associated with decreased grey matter volumes in 'social brain' structures. Front Psychol 2024; 14:1326946. [PMID: 38282838 PMCID: PMC10811166 DOI: 10.3389/fpsyg.2023.1326946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Personality traits and the degree of their prominence determine various aspects of social interactions. Some of the most socially relevant traits constitute the Dark Triad - narcissism, psychopathy, and Machiavellianism - associated with antisocial behaviour, disregard for moral norms, and a tendency to manipulation. Sufficient data point at the existence of Dark Triad 'profiles' distinguished by trait prominence. Currently, neuroimaging studies have mainly concentrated on the neuroanatomy of individual dark traits, while the Dark Triad profile structure has been mostly overlooked. Methods We performed a clustering analysis of the Dirty Dozen Dark Triad questionnaire scores of 129 healthy subjects using the k-means method. The variance ratio criterion (VRC) was used to determine the optimal number of clusters for the current data. The two-sample t-test within the framework of voxel-based morphometry (VBM) was performed to test the hypothesised differences in grey matter volume (GMV) for the obtained groups. Results Clustering analysis revealed 2 groups of subjects, both with low-to-mid and mid-to-high levels of Dark Triad traits prominence. A further VBM analysis of these groups showed that a higher level of Dark Triad traits may manifest itself in decreased grey matter volumes in the areas related to emotional regulation (the dorsolateral prefrontal cortex, the cingulate cortex), as well as those included in the reward system (the ventral striatum, the orbitofrontal cortex). Discussion The obtained results shed light on the neurobiological basis underlying social interactions associated with the Dark Triad and its profiles.
Collapse
Affiliation(s)
- Artem Myznikov
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Alexander Korotkov
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Maya Zheltyakova
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Vladimir Kiselev
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Ruslan Masharipov
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Kirill Bursov
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Orazmurad Yagmurov
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Denis Cherednichenko
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Michael Didur
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
| | - Maxim Kireev
- Russian Academy of Science, N.P. Bechtereva Institute of Human Brain, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
43
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
44
|
Gaytán-Tocavén L, Aguilar-Moreno A, Ortiz J, Alcauter S, Antonio-Cabrera E, Paredes RG. Identification of neural circuits controlling male sexual behavior and sexual motivation by manganese-enhanced magnetic resonance imaging. Front Behav Neurosci 2023; 17:1301406. [PMID: 38187924 PMCID: PMC10768062 DOI: 10.3389/fnbeh.2023.1301406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Different techniques have been used to identify the brain regions that control sexual motivation and sexual behavior. However, the influence of sexual experience on the activation of these brain regions in the same subject is unknown. Using manganese-enhanced magnetic resonance imaging (MEMRI), we analyzed the activation of brain regions in the sexual incentive motivation (SIM) and the partner preference PP (tests) on weeks 1, 5, and 10 in male rats tested for 10 weeks. AIM. In experiment 1, we analyzed the possible toxic effects of 16 mg/kg of MnCl2 on male sexual behavior, running wheel, and motor execution. In experiment 2, subjects were tested for SIM and PP using MEMRI. Methods In both experiments, a dose of 16 mg/kg (s.c) of chloride manganese (MnCl2) was administered 24 h before subjects were tested and placed immediately thereafter in a 7-Tesla Bruker scanner. Results In experiment 1, the dose of 16 mg/kg of MnCl2 did not induce behavioral alterations that could interfere with interpreting the imaging data. In experiment 2, we found a clear preference for the female in both the SIM and PP tests. We found a higher signal intensity in the olfactory bulb (OB) in week 1 of the SIM test compared to the control group. We also found increased signal intensity in the socio-sexual behavior and mesolimbic reward circuits in the SIM test in week 1. In the PP test, we found a higher signal intensity in the ventral tegmental area (VTA) in week 10 compared to the control group. In the same test, we found increased signal intensity in the socio-sexual and mesolimbic reward circuits in week 5 compared to the control group. Cohen's d analysis of the whole brain revealed that as the subjects gained sexual experience we observed a higher brain activation in the OB in the SIM group. The PP group showed higher brain activation in the cortex and subcortical structures as they acquired sexual experience. Discussion As the subjects gain sexual experience, more structures of the reward and socio-sexual circuits are recruited, resulting in different, and large brain activations.
Collapse
Affiliation(s)
| | | | - Juan Ortiz
- Instituto de Neurobiología, UNAM, Querétaro, Mexico
| | | | | | - Raúl G. Paredes
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Querétaro, Mexico
- Instituto de Neurobiología, UNAM, Querétaro, Mexico
| |
Collapse
|
45
|
Wallace KJ, Dupeyron S, Li M, Kelly AM. Early life social complexity shapes adult neural processing in the communal spiny mouse Acomys cahirinus. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06513-5. [PMID: 38055059 DOI: 10.1007/s00213-023-06513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
RATIONALE Early life social rearing has profound consequences on offspring behavior and resilience. Yet, most studies examining early life development in rodents use species whose young are born immobile and do not produce complex social behavior until later in development. Furthermore, models of rearing under increased social complexity, rather than deprivation, are needed to provide alternative insight into the development of social neural circuitry. OBJECTIVES To understand precocial offspring social development, we manipulated early life social complexity in the communal spiny mouse Acomys cahirinus and assessed long-term consequences on offspring social behavior, exploration, and neural responses to novel social stimuli. METHODS Spiny mouse pups were raised in the presence or absence of a non-kin breeding group. Upon adulthood, subjects underwent social interaction tests, an open field test, and a novel object test. Subjects were then exposed to a novel conspecific and novel group and neural responses were quantified via immunohistochemical staining in brain regions associated with social behavior. RESULTS Early life social experience did not influence behavior in the test battery, but it did influence social processing. In animals exposed to non-kin during development, adult lateral septal neural responses toward a novel conspecific were weaker and hypothalamic neural responses toward a mixed-sex group were stronger. CONCLUSIONS Communal species may exhibit robust behavioral resilience to the early life social environment. But the early life environment can affect how novel social information is processed in the brain during adulthood, with long-term consequences that are likely to shape their behavioral trajectory.
Collapse
Affiliation(s)
| | | | - Mutian Li
- Department of Psychology, Emory University, Atlanta, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, USA
| |
Collapse
|
46
|
Luong K, Bernardo MF, Lindstrom M, Alluri RK, Rose GJ. Brain regions controlling courtship behavior in the bluehead wrasse. Curr Biol 2023; 33:4937-4949.e3. [PMID: 37898122 PMCID: PMC10764105 DOI: 10.1016/j.cub.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Bluehead wrasses (Thalassoma bifasciatum) follow a socially controlled mechanism of sex determination. A socially dominant initial-phase (IP) female is able to transform into a new terminal-phase (TP) male if the resident TP male is no longer present. TP males display an elaborate array of courtship behaviors, including both color changes and motor behaviors. Little is known concerning the neural circuits that control male-typical courtship behaviors. This study used glutamate iontophoresis to identify regions that may be involved in courtship. Stimulation of the following brain regions elicited diverse types of color change responses, many of which appear similar to courtship color changes: the ventral telencephalon (supracommissural nucleus of the ventral telencephalon [Vs], lateral nucleus of the ventral telencephalon [Vl], ventral nucleus of the ventral telencephalon [Vv], and dorsal nucleus of the ventral telencephalon [Vd]), parts of the preoptic area (NPOmg and NPOpc), entopeduncular nucleus, habenular nucleus, and pretectal nuclei (PSi and PSm). Stimulation of two regions in the posterior thalamus (central posterior thalamic [CP] and dorsal posterior thalamic [DP]) caused movements of the pectoral fins that are similar to courtship fluttering and vibrations. Furthermore, these responses were elicited in female IP fish, indicating that circuits for sexual behaviors typical of TP males exist in females. Immunohistochemistry results revealed regions that are more active in fish that are not courting: interpeduncular nucleus, red nucleus, and ventrolateral thalamus (VL). Taken together, we propose that the telencephalic-habenular-interpeduncular pathway plays an important role in controlling and regulating courtship behaviors in TP males; in this model, in response to telencephalic input, the habenular nucleus inhibits the interpeduncular nucleus, thereby dis-inhibiting forebrain regions and promoting the expression of courtship behaviors.
Collapse
Affiliation(s)
- Kyphuong Luong
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Madeline F Bernardo
- School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Michael Lindstrom
- College of Osteopathic Medicine, New York Institute of Technology, 101 Northern Blvd, Glen Head, NY 11545, USA
| | - Rishi K Alluri
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| | - Gary J Rose
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| |
Collapse
|
47
|
Wayne CR, Karam AM, McInnis AL, Arms CM, Kaller MD, Maruska KP. Impacts of repeated social defeat on behavior and the brain in a cichlid fish. J Exp Biol 2023; 226:jeb246322. [PMID: 37909345 DOI: 10.1242/jeb.246322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Social defeat is a powerful experience leading to drastic changes in physiology and behavior, many of which are negative. For example, repeated social defeat in vertebrates results in reduced reproductive success, sickness and behavioral abnormalities that threaten individual survival and species persistence. However, little is known about what neural mechanisms are involved in determining whether an individual is resilient or susceptible to repeated social defeat stress. It also remains unknown whether exclusive use of reactive behaviors after repeated social defeat is maintained over time and impacts future behaviors during subsequent contests. We used a resident-intruder experiment in the African cichlid fish Astatotilapia burtoni to investigate the behavior and neural correlates of these two opposing groups. Behavior was quantified by watching fish during defeat trials and used to distinguish resilient and susceptible individuals. Both resilient and susceptible fish started with searching and freezing behaviors, with searching decreasing and freezing increasing after repeated social defeat. After a 4 day break period, resilient fish used both searching and freezing behaviors during a social defeat encounter with a new resident, while susceptible fish almost exclusively used freezing behaviors. By quantifying neural activation using pS6 in socially relevant brain regions, we identified differential neural activation patterns associated with resilient and susceptible fish and found nuclei that co-varied and may represent functional networks. These data provide the first evidence of specific conserved brain networks underlying social stress resilience and susceptibility in fishes.
Collapse
Affiliation(s)
- C Rose Wayne
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Ava M Karam
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Alora L McInnis
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Catherine M Arms
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Michael D Kaller
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
48
|
Sewall KB, Beck ML, Lane SJ, Davies S. Urban and rural male song sparrows (Melospiza melodia) differ in territorial aggression and activation of vasotocin neurons in response to song challenge. Horm Behav 2023; 156:105438. [PMID: 37801916 DOI: 10.1016/j.yhbeh.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
When living in urban habitats, 'urban adapter' species often show greater aggression toward conspecifics, yet we do not understand the mechanisms underlying this behavioral shift. The neuroendocrine system regulates socio-sexual behaviors including aggression and thus could mediate behavioral responses to urbanization. Indeed, urban male song sparrows (Melospiza melodia), which are more territorially aggressive, also have greater abundance of the neuropeptide arginine vasotocin (AVT) in nodes of the brain social behavior network. Higher abundance of AVT could reflect long-term synthesis that underlies baseline territoriality or short-term changes that regulate aggression in response to social challenge. To begin to resolve the timeframe over which the AVT system contributes to habitat differences in aggression we used immediate early gene co-expression as a measure of the activation of AVT neurons. We compared Fos induction in AVT-immunoreactive neurons of the bed nucleus of the stria terminalis (BSTm) and paraventricular nucleus of the hypothalamus (PVN) between urban and rural male song sparrows in response to a short (< 5 min.) or long (> 30 min.) song playback to simulate territorial intrusion by another male. We found that urban males had a higher proportion of Fos-positive AVT neurons in both brain regions compared to rural males, regardless of the duration of song playback. Our results suggest that AVT neurons remain activated in urban males, independently of the duration of social challenge. These findings that Fos induction in AVT neurons differs between rural and urban male song sparrows further implicate this system in regulating behavioral responses to urbanization.
Collapse
Affiliation(s)
- Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Michelle L Beck
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Industrial Economics Incorporated, Cambridge, MA, USA
| | - Samuel J Lane
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Scott Davies
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Quinnipiac University, Department of Biological Sciences, 275 Mt Carmel Ave, Hamden, CT 06518, USA
| |
Collapse
|
49
|
Wakeford A, Nye JA, Grieb ZA, Voisin DA, Mun J, Huhman KL, Albers E, Michopoulos V. Sex influences the effects of social status on socioemotional behavior and serotonin neurochemistry in rhesus monkeys. Biol Sex Differ 2023; 14:75. [PMID: 37898775 PMCID: PMC10613371 DOI: 10.1186/s13293-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Despite observed sex differences in the prevalence of stress-related psychiatric conditions, most preclinical and translational studies have only included male subjects. Therefore, it has not been possible to effectively assess how sex interacts with other psychosocial risk factors to impact the etiology and maintenance of stress-related psychopathology. One psychosocial factor that interacts with sex to impact risk for stress-related behavioral and physiological deficits is social dominance. The current study was designed to assess sex differences in the effects of social status on socioemotional behavior and serotonin neurochemistry in socially housed rhesus monkeys. We hypothesized that sex and social status interact to influence socioemotional behaviors as well as serotonin 1A receptor binding potential (5HT1AR-BP) in regions of interest (ROIs) implicated in socioemotional behavior. METHODS Behavioral observations were conducted in gonadally intact adult female (n = 14) and male (n = 13) rhesus monkeys. 5HT1AR-BP was assessed via positron emission tomography using 4-(2'-Methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF). RESULTS Aggression emitted was greater in dominant compared to subordinate animals, regardless of sex. Submission emitted was significantly greater in subordinate versus dominant animals and greater in females than males. Affiliative behaviors emitted were not impacted by sex, status, or their interaction. Anxiety-like behavior emitted was significantly greater in females than in males regardless of social status. Hypothalamic 5HT1AR-BP was significantly greater in females than in males, regardless of social status. 5HT1AR-BP in the dentate gyrus of the hippocampus was significantly impacted by a sex by status interaction whereby 5HT1AR-BP in the dentate gyrus was greater in dominant compared to subordinate females but was not different between dominant and subordinate males. There were no effects of sex, status, or their interaction on 5HT1AR-BP in the DRN and in the regions of the PFC studied. CONCLUSIONS These data have important implications for the treatment of stress-related behavioral health outcomes, as they suggest that sex and social status are important factors to consider in the context of serotonergic drug efficacy.
Collapse
Affiliation(s)
- Alison Wakeford
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary A Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jiyoung Mun
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Emory National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
50
|
Zada D, Schulze L, Yu JH, Tarabishi P, Napoli JL, Lovett-Barron M. Development of neural circuits for social motion perception in schooling fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563839. [PMID: 37961196 PMCID: PMC10634817 DOI: 10.1101/2023.10.25.563839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Many animals move in groups, where collective behavior emerges from the interactions amongst individuals. These social interactions produce the coordinated movements of bird flocks and fish schools, but little is known about their developmental emergence and neurobiological foundations. By characterizing the visually-based schooling behavior of the micro glassfish Danionella cerebrum, here we found that social development progresses sequentially, with animals first acquiring the ability to aggregate, followed by postural alignment with social partners. This social maturation was accompanied by the development of neural populations in the midbrain and forebrain that were preferentially driven by visual stimuli that resemble the shape and movements of schooling fish. The development of these neural circuits enables the social coordination required for collective movement.
Collapse
Affiliation(s)
- David Zada
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Lisanne Schulze
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Jo-Hsien Yu
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Princess Tarabishi
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Julia L Napoli
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| |
Collapse
|