1
|
Szczepankiewicz AA, Parobczak K, Zaręba-Kozioł M, Ruszczycki B, Bijata M, Trzaskoma P, Hajnowski G, Holm-Kaczmarek D, Włodarczyk J, Sas-Nowosielska H, Wilczyński GM, Rędowicz MJ, Magalska A. Neuronal activation affects the organization and protein composition of the nuclear speckles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119829. [PMID: 39197592 DOI: 10.1016/j.bbamcr.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.
Collapse
Affiliation(s)
- Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Hajnowski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Marek Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Kikhai Т, Agapkina Y, Silkina M, Prikazchikova T, Gottikh M. The cellular SFPQ protein as a positive factor in the HIV-1 integration. Biochimie 2024; 222:9-17. [PMID: 38373651 DOI: 10.1016/j.biochi.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
The cellular SFPQ protein is involved in several stages of the HIV-1 life cycle, but the detailed mechanism of its involvement is not yet fully understood. Here, the role of SFPQ in the early stages of HIV-1 replication has been studied. It is found that changes in the intracellular level of SFPQ affect the integration of viral DNA, but not reverse transcription, and SFPQ is a positive factor of integration. A study of the SFPQ interaction with HIV-1 integrase (IN) has revealed two diRGGX1-4 motifs in the N-terminal region of SFPQ, which are involved in IN binding. Substitution of a single amino acid residue in any of these regions led to a decrease in binding efficiency, while mutations in both motifs almost completely disrupted the SFPQ interaction with IN. The effect of the SFPQ mutants with impaired ability to bind IN on viral replication has been analyzed. Unlike the wild-type protein, the SFPQ mutants did not affect viral integration. This confirms that SFPQ influences the integration stage through direct interaction with IN. Our results indicate that the SFPQ/IN complex can be considered as a potential therapeutic target for the development of new inhibitors of HIV replication.
Collapse
Affiliation(s)
- Тatiana Kikhai
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Yulia Agapkina
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Silkina
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Nagasawa CK, Bailey AO, Russell WK, Garcia-Blanco MA. Inefficient recruitment of DDX39B impedes pre-spliceosome assembly on FOXP3 introns. RNA (NEW YORK, N.Y.) 2024; 30:824-838. [PMID: 38575347 PMCID: PMC11182011 DOI: 10.1261/rna.079933.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.
Collapse
Affiliation(s)
- Chloe K Nagasawa
- Human Pathophysiology and Translational Medicine Program, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
4
|
Paul S, Arias MA, Wen L, Liao SE, Zhang J, Wang X, Regev O, Fei J. RNA molecules display distinctive organization at nuclear speckles. iScience 2024; 27:109603. [PMID: 38638569 PMCID: PMC11024929 DOI: 10.1016/j.isci.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
RNA molecules often play critical roles in assisting the formation of membraneless organelles in eukaryotic cells. Yet, little is known about the organization of RNAs within membraneless organelles. Here, using super-resolution imaging and nuclear speckles as a model system, we demonstrate that different sequence domains of RNA transcripts exhibit differential spatial distributions within speckles. Specifically, we image transcripts containing a region enriched in binding motifs of serine/arginine-rich (SR) proteins and another region enriched in binding motifs of heterogeneous nuclear ribonucleoproteins (hnRNPs). We show that these transcripts localize to the outer shell of speckles, with the SR motif-rich region localizing closer to the speckle center relative to the hnRNP motif-rich region. Further, we identify that this intra-speckle RNA organization is driven by the strength of RNA-protein interactions inside and outside speckles. Our results hint at novel functional roles of nuclear speckles and likely other membraneless organelles in organizing RNA substrates for biochemical reactions.
Collapse
Affiliation(s)
- Sneha Paul
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Institute for System Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Li Wen
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Susan E. Liao
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jiacheng Zhang
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoshu Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Fukumura K, Sperotto L, Seuß S, Kang HS, Yoshimoto R, Sattler M, Mayeda A. SAP30BP interacts with RBM17/SPF45 to promote splicing in a subset of human short introns. Cell Rep 2023; 42:113534. [PMID: 38065098 DOI: 10.1016/j.celrep.2023.113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
Human pre-mRNA splicing requires the removal of introns with highly variable lengths, from tens to over a million nucleotides. Therefore, mechanisms of intron recognition and splicing are likely not universal. Recently, we reported that splicing in a subset of human short introns with truncated polypyrimidine tracts depends on RBM17 (SPF45), instead of the canonical splicing factor U2 auxiliary factor (U2AF) heterodimer. Here, we demonstrate that SAP30BP, a factor previously implicated in transcriptional control, is an essential splicing cofactor for RBM17. In vitro binding and nuclear magnetic resonance analyses demonstrate that a U2AF-homology motif (UHM) in RBM17 binds directly to a newly identified UHM-ligand motif in SAP30BP. We show that this RBM17-SAP30BP interaction is required to specifically recruit RBM17 to phosphorylated SF3B1 (SF3b155), a U2 small nuclear ribonucleoprotein (U2 snRNP) component in active spliceosomes. We propose a mechanism for splicing in a subset of short introns, in which SAP30BP guides RBM17 in the assembly of active spliceosomes.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Luca Sperotto
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Stefanie Seuß
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 673-0101, Japan
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
6
|
Laurenzi T, Palazzolo L, Taiana E, Saporiti S, Ben Mariem O, Guerrini U, Neri A, Eberini I. Molecular Modelling of NONO and SFPQ Dimerization Process and RNA Recognition Mechanism. Int J Mol Sci 2022; 23:ijms23147626. [PMID: 35886974 PMCID: PMC9324803 DOI: 10.3390/ijms23147626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
NONO and SFPQ are involved in multiple nuclear processes (e.g., pre-mRNA splicing, DNA repair, and transcriptional regulation). These proteins, along with NEAT1, enable paraspeckle formation, thus promoting multiple myeloma cell survival. In this paper, we investigate NONO and SFPQ dimer stability, highlighting the hetero- and homodimer structural differences, and model their interactions with RNA, simulating their binding to a polyG probe mimicking NEAT1guanine-rich regions. We demonstrated in silico that NONO::SFPQ heterodimerization is a more favorable process than homodimer formation. We also show that NONO and SFPQ RRM2 subunits are primarily required for protein–protein interactions with the other DBHS protomer. Simulation of RNA binding to NONO and SFPQ, beside validating RRM1 RNP signature importance, highlighted the role of β2 and β4 strand residues for RNA specific recognition. Moreover, we demonstrated the role of the NOPS region and other protomer’s RRM2 β2/β3 loop in strengthening the interaction with RNA. Our results, having deepened RNA and DBHS dimer interactions, could contribute to the design of small molecules to modulate the activity of these proteins. RNA-mimetics, able to selectively bind to NONO and/or SFPQ RNA-recognition site, could impair paraspeckle formation, thus representing a first step towards the discovery of drugs for multiple myeloma treatment.
Collapse
Affiliation(s)
- Tommaso Laurenzi
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (T.L.); (E.T.); (A.N.)
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (T.L.); (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (T.L.); (E.T.); (A.N.)
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
- Data Science Research Center (DSRC), Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-50318256
| |
Collapse
|
7
|
Han J, An O, Ren X, Song Y, Tang SJ, Shen H, Ke X, Ng VHE, Tay DJT, Tan HQ, Kappei D, Yang H, Chen L. Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer. Nat Commun 2022; 13:1793. [PMID: 35379802 PMCID: PMC8980049 DOI: 10.1038/s41467-022-29400-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
The dynamic regulation of alternative splicing requires coordinated participation of multiple RNA binding proteins (RBPs). Aberrant splicing caused by dysregulation of splicing regulatory RBPs is implicated in numerous cancers. Here, we reveal a frequently overexpressed cancer-associated protein, DAP3, as a splicing regulatory RBP in cancer. Mechanistically, DAP3 coordinates splicing regulatory networks, not only via mediating the formation of ribonucleoprotein complexes to induce substrate-specific splicing changes, but also via modulating splicing of numerous splicing factors to cause indirect effect on splicing. A pan-cancer analysis of alternative splicing across 33 TCGA cancer types identified DAP3-modulated mis-splicing events in multiple cancers, and some of which predict poor prognosis. Functional investigation of non-productive splicing of WSB1 provides evidence for establishing a causal relationship between DAP3-modulated mis-splicing and tumorigenesis. Together, our work provides critical mechanistic insights into the splicing regulatory roles of DAP3 in cancer development. RNA binding proteins (RBPs) can participate in regulatory networks to control alternative splicing. Here the authors show that DAP3 functions as an RBP splicing modulator via two mechanisms, and that its overexpression leads to mis-splicing events in cancers.
Collapse
|
8
|
Takayama KI, Honma T, Suzuki T, Kondoh Y, Osada H, Suzuki Y, Yoshida M, Inoue S. Targeting Epigenetic and Posttranscriptional Gene Regulation by PSF Impairs Hormone Therapy-Refractory Cancer Growth. Cancer Res 2021; 81:3495-3508. [PMID: 33975881 DOI: 10.1158/0008-5472.can-20-3819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
RNA-binding protein PSF functions as an epigenetic modifier by interacting with long noncoding RNAs and the corepressor complex. PSF also promotes RNA splicing events to enhance oncogenic signals. In this study, we conducted an in vitro chemical array screen and identified multiple small molecules that interact with PSF. Several molecules inhibited RNA binding by PSF and decreased prostate cancer cell viability. Among these molecules and its derivatives was a promising molecule, No. 10-3 [7,8-dihydroxy-4-(4-methoxyphenyl)chromen-2-one], that was the most effective at blocking PSF RNA-binding ability and suppressing treatment-resistant prostate and breast cancer cell proliferation. Exposure to No. 10-3 inhibited PSF target gene expression at the mRNA level. Treatment with No. 10-3 reversed epigenetically repressed PSF downstream targets, such as cell-cycle inhibitors, at the transcriptional level. Chromatin immunoprecipitation sequencing in prostate cancer cells revealed that No. 10-3 enhances histone acetylation to induce expression of apoptosis as well as cell-cycle inhibitors. Furthermore, No. 10-3 exhibited antitumor efficacy in a hormone therapy-resistant prostate cancer xenograft mouse model, suppressing treatment-resistant tumor growth. Taken together, this study highlights the feasibility of targeting PSF-mediated epigenetic and RNA-splicing activities for the treatment of aggressive cancers. SIGNIFICANCE: This study identifies small molecules that target PSF-RNA interactions and suppress hormone therapy-refractory cancer growth, suggesting the potential of targeting PSF-mediated gene regulation for cancer treatment.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan. .,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
9
|
Pisignano G, Ladomery M. Epigenetic Regulation of Alternative Splicing: How LncRNAs Tailor the Message. Noncoding RNA 2021; 7:ncrna7010021. [PMID: 33799493 PMCID: PMC8005942 DOI: 10.3390/ncrna7010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing is a highly fine-tuned regulated process and one of the main drivers of proteomic diversity across eukaryotes. The vast majority of human multi-exon genes is alternatively spliced in a cell type- and tissue-specific manner, and defects in alternative splicing can dramatically alter RNA and protein functions and lead to disease. The eukaryotic genome is also intensively transcribed into long and short non-coding RNAs which account for up to 90% of the entire transcriptome. Over the years, lncRNAs have received considerable attention as important players in the regulation of cellular processes including alternative splicing. In this review, we focus on recent discoveries that show how lncRNAs contribute significantly to the regulation of alternative splicing and explore how they are able to shape the expression of a diverse set of splice isoforms through several mechanisms. With the increasing number of lncRNAs being discovered and characterized, the contribution of lncRNAs to the regulation of alternative splicing is likely to grow significantly.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence: (G.P.); (M.L.)
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
- Correspondence: (G.P.); (M.L.)
| |
Collapse
|
10
|
Stagsted LVW, O'Leary ET, Ebbesen KK, Hansen TB. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals. eLife 2021; 10:e63088. [PMID: 33476259 PMCID: PMC7819710 DOI: 10.7554/elife.63088] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) represent an abundant and conserved entity of non-coding RNAs; however, the principles of biogenesis are currently not fully understood. Here, we identify two factors, splicing factor proline/glutamine rich (SFPQ) and non-POU domain-containing octamer-binding protein (NONO), to be enriched around circRNA loci. We observe a subclass of circRNAs, coined DALI circRNAs, with distal inverted Alu elements and long flanking introns to be highly deregulated upon SFPQ knockdown. Moreover, SFPQ depletion leads to increased intron retention with concomitant induction of cryptic splicing, premature transcription termination, and polyadenylation, particularly prevalent for long introns. Aberrant splicing in the upstream and downstream regions of circRNA producing exons are critical for shaping the circRNAome, and specifically, we identify missplicing in the immediate upstream region to be a conserved driver of circRNA biogenesis. Collectively, our data show that SFPQ plays an important role in maintaining intron integrity by ensuring accurate splicing of long introns, and disclose novel features governing Alu-independent circRNA production.
Collapse
|
11
|
Zhang Y, Wu D, Wang D. Long non-coding RNA ARAP1-AS1 promotes tumorigenesis and metastasis through facilitating proto-oncogene c-Myc translation via dissociating PSF/PTB dimer in cervical cancer. Cancer Med 2020; 9:1855-1866. [PMID: 31953923 PMCID: PMC7050100 DOI: 10.1002/cam4.2860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNA (lncRNA) is emerging as a pivotal regulator in tumorigenesis and aggressive progression. Here, we focused on an oncogenic lncRNA, ARAP1 antisense RNA 1 (ARAP1-AS1), which was notably upregulated in cervical cancer (CC) tissues, cell lines and serum. High ARAP1-AS1 expression was closely associated with larger tumor size, advanced FIGO stage as well as lymph node metastasis. Importantly, it was identified as an effective diagnostic and prognostic biomarker for CC. In vitro and in vivo assays showed that knockdown of ARAP1-AS1 inhibited, while overexpression of ARAP1-AS1 promoted CC cell growth and dissemination. Stepwise mechanistic dissection unveiled that ARAP1-AS1 could directly interact with PSF to release PTB, resulting in accelerating the internal ribosome entry site (IRES)-driven translation of proto-oncogene c-Myc, thereby facilitating CC development and progression. Moreover, c-Myc was able to transcriptionally activate ARAP1-AS1 by directly binding to the E-box motif located on ARAP1-AS1 promoter. Taken together, our findings clearly reveal the crucial role of ARAP1-AS1 in CC tumorigenesis and metastasis via regulation of c-Myc translation, targeting ARAP1-AS1 and its related regulatory loop implicates the therapeutic possibility for CC patients.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gynaecology and ObstetricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Wu
- Department of Gynaecology and ObstetricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Dian Wang
- Department of Gynaecology and ObstetricsShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
12
|
Mora Gallardo C, Sánchez de Diego A, Gutiérrez Hernández J, Talavera-Gutiérrez A, Fischer T, Martínez-A C, van Wely KHM. Dido3-dependent SFPQ recruitment maintains efficiency in mammalian alternative splicing. Nucleic Acids Res 2019; 47:5381-5394. [PMID: 30931476 PMCID: PMC6547428 DOI: 10.1093/nar/gkz235] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing is facilitated by accessory proteins that guide spliceosome subunits to the primary transcript. Many of these splicing factors recognize the RNA polymerase II tail, but SFPQ is a notable exception even though essential for mammalian RNA processing. This study reveals a novel role for Dido3, one of three Dido gene products, in alternative splicing. Binding of the Dido3 amino terminus to histones and to the polymerase jaw domain was previously reported, and here we show interaction between its carboxy terminus and SFPQ. We generated a mutant that eliminates Dido3 but preserves other Dido gene products, mimicking reduced Dido3 levels in myeloid neoplasms. Dido mutation suppressed SFPQ binding to RNA and increased skipping for a large group of exons. Exons bearing recognition sequences for alternative splicing factors were nonetheless included more efficiently. Reduced SFPQ recruitment may thus account for increased skipping of SFPQ-dependent exons, but could also generate a splicing factor surplus that becomes available to competing splice sites. Taken together, our data indicate that Dido3 is an adaptor that controls SFPQ utilization in RNA splicing. Distributing splicing factor recruitment over parallel pathways provides mammals with a simple mechanism to regulate exon usage while maintaining RNA splicing efficiency.
Collapse
Affiliation(s)
- Carmen Mora Gallardo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Ainhoa Sánchez de Diego
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Julio Gutiérrez Hernández
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Amaia Talavera-Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Thierry Fischer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Karel H M van Wely
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Lemaire S, Fontrodona N, Aubé F, Claude JB, Polvèche H, Modolo L, Bourgeois CF, Mortreux F, Auboeuf D. Characterizing the interplay between gene nucleotide composition bias and splicing. Genome Biol 2019; 20:259. [PMID: 31783898 PMCID: PMC6883713 DOI: 10.1186/s13059-019-1869-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nucleotide composition bias plays an important role in the 1D and 3D organization of the human genome. Here, we investigate the potential interplay between nucleotide composition bias and the regulation of exon recognition during splicing. RESULTS By analyzing dozens of RNA-seq datasets, we identify two groups of splicing factors that activate either about 3200 GC-rich exons or about 4000 AT-rich exons. We show that splicing factor-dependent GC-rich exons have predicted RNA secondary structures at 5' ss and are dependent on U1 snRNP-associated proteins. In contrast, splicing factor-dependent AT-rich exons have a large number of decoy branch points, SF1- or U2AF2-binding sites and are dependent on U2 snRNP-associated proteins. Nucleotide composition bias also influences local chromatin organization, with consequences for exon recognition during splicing. Interestingly, the GC content of exons correlates with that of their hosting genes, isochores, and topologically associated domains. CONCLUSIONS We propose that regional nucleotide composition bias over several dozens of kilobase pairs leaves a local footprint at the exon level and induces constraints during splicing that can be alleviated by local chromatin organization at the DNA level and recruitment of specific splicing factors at the RNA level. Therefore, nucleotide composition bias establishes a direct link between genome organization and local regulatory processes, like alternative splicing.
Collapse
Affiliation(s)
- Sébastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Fabien Aubé
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | | | - Laurent Modolo
- LBMC Biocomputing Center, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
14
|
Ghosh AK, Veitschegger AM, Nie S, MacRae NRAJ, Jurica MS. Enantioselective Synthesis of Thailanstatin A Methyl Ester and Evaluation of in Vitro Splicing Inhibition. J Org Chem 2018; 83:5187-5198. [PMID: 29696980 PMCID: PMC5972027 DOI: 10.1021/acs.joc.8b00593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thailanstatin A has been isolated recently from the fermentation broth of B. thailandensis MSMB43. We describe here an enantioselective convergent synthesis of thailanstatin A methyl ester and evaluation of its splicing activity. Synthesis of both highly functionalized tetrahydropyran rings were carried out from commercially available tri- O-acetyl-d-glucal as the key starting material. Our convergent synthesis involved the synthesis of both tetrahydropyran fragments in a highly stereoselective manner. The fragments were then coupled using cross-metathesis as the key step. The synthesis of the diene subunit included a highly stereoselective Claisen rearrangement, a Cu(I)-mediated conjugate addition of MeLi to set the C-14 methyl stereochemistry, a reductive amination reaction to install the C16-amine functionality, and a Wittig olefination reaction to incorporate the diene unit. The epoxy alcohol subunit was synthesized by a highly selective anomeric allylation, a Peterson olefination, and a vanadium catalyzed epoxidation that installed the epoxide stereoselectively. Cross-metathesis of the olefins provided the methyl ester derivative of thailanstatin A. We have carried out in vitro splicing studies of the methyl ester derivative, which proved to be a potent inhibitor of the spliceosome.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| | - Anne M. Veitschegger
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| | - Shenyou Nie
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| | - Nicola Relitti Andrew J. MacRae
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| | - Melissa S. Jurica
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| |
Collapse
|
15
|
Romero-Barrios N, Legascue MF, Benhamed M, Ariel F, Crespi M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res 2018; 46:2169-2184. [PMID: 29425321 PMCID: PMC5861421 DOI: 10.1093/nar/gky095] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Massive high-throughput sequencing techniques allowed the identification of thousands of noncoding RNAs (ncRNAs) and a plethora of different mRNA processing events occurring in higher organisms. Long ncRNAs can act directly as long transcripts or can be processed into active small si/miRNAs. They can modulate mRNA cleavage, translational repression or the epigenetic landscape of their target genes. Recently, certain long ncRNAs have been shown to play a crucial role in the regulation of alternative splicing in response to several stimuli or during disease. In this review, we focus on recent discoveries linking gene regulation by alternative splicing and its modulation by long and small ncRNAs.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Maria Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| |
Collapse
|
16
|
Pathogenic variants that alter protein code often disrupt splicing. Nat Genet 2017; 49:848-855. [PMID: 28416821 PMCID: PMC6679692 DOI: 10.1038/ng.3837] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022]
Abstract
The lack of tools to identify causative variants from sequencing data greatly limits the promise of Precision Medicine. Previous studies suggest one-third of disease alleles alter splicing. We discovered that splicing defects cluster in diseases (e.g. haploinsufficient genes). We analyzed 4,964 published disease-causing exonic mutations using a Massively Parallel Splicing Assay (MaPSy) that showed 81% concordance rate with patient tissue splicing. ~10% of exonic mutations altered splicing, mostly by disrupting multiple stages of the spliceosome assembly. We present the first large-scale characterization of exonic splicing mutations using a novel technology that facilitates variant classification that keeps pace with variant discovery.
Collapse
|
17
|
Meyer F. Viral interactions with components of the splicing machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:241-68. [PMID: 27571697 DOI: 10.1016/bs.pmbts.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Eukaryotic genes are often interrupted by stretches of sequence with no protein coding potential or obvious function. After transcription, these interrupting sequences must be removed to give rise to the mature messenger RNA. This fundamental process is called RNA splicing and is achieved by complicated machinery made of protein and RNA that assembles around the RNA to be edited. Viruses also use RNA splicing to maximize their coding potential and economize on genetic space, and use clever strategies to manipulate the splicing machinery to their advantage. This article gives an overview of the splicing process and provides examples of viral strategies that make use of various components of the splicing system to promote their replicative cycle. Representative virus families have been selected to illustrate the interaction with various regulatory proteins and ribonucleoproteins. The unifying theme is fine regulation through protein-protein and protein-RNA interactions with the spliceosome components and associated factors to promote or prevent spliceosome assembly on given splice sites, in addition to a strong influence from cis-regulatory sequences on viral transcripts. Because there is an intimate coupling of splicing with the processes that direct mRNA biogenesis, a description of how these viruses couple the regulation of splicing with the retention or stability of mRNAs is also included. It seems that a unique balance of suppression and activation of splicing and nuclear export works optimally for each family of viruses.
Collapse
Affiliation(s)
- F Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, USA.
| |
Collapse
|
18
|
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 2016; 44:3989-4004. [PMID: 27084935 PMCID: PMC4872119 DOI: 10.1093/nar/gkw271] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Nuclear proteins are often given a concise title that captures their function, such as 'transcription factor,' 'polymerase' or 'nuclear-receptor.' However, for members of the Drosophila behavior/human splicing (DBHS) protein family, no such clean-cut title exists. DBHS proteins are frequently identified engaging in almost every step of gene regulation, including but not limited to, transcriptional regulation, RNA processing and transport, and DNA repair. Herein, we present a coherent picture of DBHS proteins, integrating recent structural insights on dimerization, nucleic acid binding modalities and oligomerization propensity with biological function. The emerging paradigm describes a family of dynamic proteins mediating a wide range of protein-protein and protein-nucleic acid interactions, on the whole acting as a multipurpose molecular scaffold. Overall, significant steps toward appreciating the role of DBHS proteins have been made, but we are only beginning to understand the complexity and broader importance of this family in cellular biology.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Archa H Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
19
|
Giguère SSB, Guise AJ, Jean Beltran PM, Joshi PM, Greco TM, Quach OL, Kong J, Cristea IM. The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression. Mol Cell Proteomics 2015; 15:791-809. [PMID: 26657080 DOI: 10.1074/mcp.m115.054619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Deleted in breast cancer 1 (DBC1) has emerged as an important regulator of multiple cellular processes, ranging from gene expression to cell cycle progression. DBC1 has been linked to tumorigenesis both as an inhibitor of histone deacetylases, HDAC3 and sirtuin 1, and as a transcriptional cofactor for nuclear hormone receptors. However, despite mounting interest in DBC1, relatively little is known about the range of its interacting partners and the scope of its functions. Here, we carried out a functional proteomics-based investigation of DBC1 interactions in two relevant cell types, T cells and kidney cells. Microscopy, molecular biology, biochemistry, and mass spectrometry studies allowed us to assess DBC1 mRNA and protein levels, localization, phosphorylation status, and protein interaction networks. The comparison of DBC1 interactions in these cell types revealed conserved regulatory roles for DBC1 in gene expression, chromatin organization and modification, and cell cycle progression. Interestingly, we observe previously unrecognized DBC1 interactions with proteins encoded by cancer-associated genes. Among these interactions are five components of the SWI/SNF complex, the most frequently mutated chromatin remodeling complex in human cancers. Additionally, we identified a DBC1 interaction with TBL1XR1, a component of the NCoR complex, which we validated by reciprocal isolation. Strikingly, we discovered that DBC1 associates with proteins that regulate the circadian cycle, including DDX5, DHX9, and SFPQ. We validated this interaction by colocalization and reciprocal isolation. Functional assessment of this association demonstrated that DBC1 protein levels are important for regulating CLOCK and BMAL1 protein oscillations in synchronized T cells. Our results suggest that DBC1 is integral to the maintenance of the circadian molecular clock. Furthermore, the identified interactions provide a valuable resource for the exploration of pathways involved in DBC1-associated tumorigenesis.
Collapse
Affiliation(s)
- Sophie S B Giguère
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Amanda J Guise
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Pierre M Jean Beltran
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Preeti M Joshi
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Olivia L Quach
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Jeffery Kong
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
20
|
Schneider C, Agafonov DE, Schmitzová J, Hartmuth K, Fabrizio P, Lührmann R. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes. PLoS Genet 2015; 11:e1005539. [PMID: 26393790 PMCID: PMC4579134 DOI: 10.1371/journal.pgen.1005539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/27/2015] [Indexed: 01/10/2023] Open
Abstract
Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act) spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act) crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.
Collapse
Affiliation(s)
- Cornelius Schneider
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Dmitry E. Agafonov
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Klaus Hartmuth
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| |
Collapse
|
21
|
Yarosh CA, Iacona JR, Lutz CS, Lynch KW. PSF: nuclear busy-body or nuclear facilitator? WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:351-67. [PMID: 25832716 PMCID: PMC4478221 DOI: 10.1002/wrna.1280] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/25/2023]
Abstract
PTB-associated splicing factor (PSF) is an abundant and essential nucleic acid-binding protein that participates in a wide range of gene regulatory processes and cellular response pathways. At the protein level, PSF consists of multiple domains, many of which remain poorly characterized. Although grouped in a family with the proteins p54nrb/NONO and PSPC1 based on sequence homology, PSF contains additional protein sequence not included in other family members. Consistently, PSF has also been implicated in functions not ascribed to p54nrb/NONO or PSPC1. Here, we provide a review of the cellular activities in which PSF has been implicated and what is known regarding the mechanisms by which PSF functions in each case. We propose that the complex domain arrangement of PSF allows for its diversity of function and integration of activities. Finally, we discuss recent evidence that individual activities of PSF can be regulated independently from one another through the activity of domain-specific co-factors.
Collapse
Affiliation(s)
- Christopher A Yarosh
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, NJ, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, NJ, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Lenarcic EM, Ziehr BJ, Moorman NJ. An unbiased proteomics approach to identify human cytomegalovirus RNA-associated proteins. Virology 2015; 481:13-23. [PMID: 25765003 DOI: 10.1016/j.virol.2015.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 12/13/2022]
Abstract
Post-transcriptional events regulate herpesvirus gene expression, yet few herpesvirus RNA-binding proteins have been identified. We used an unbiased approach coupling oligo(dT) affinity capture with proteomics to identify viral RNA-associated proteins during infection. Using this approach, we identified and confirmed changes in the abundance or activity of two host RNA-associated proteins, DHX9 and DDX3, in cells infected with human cytomegalovirus (HCMV). We also identified and confirmed previously unreported activities for the HCMV US22 and pp71 proteins as RNA-associated viral proteins and confirmed that a known viral RNA-binding protein, pTRS1, associates with RNA in infected cells. Further, we found that HCMV pp71 co-sedimented with polysomes, associated with host and viral RNAs, and stimulated the overall rate of protein synthesis. These results demonstrate that oligo(dT) affinity capture coupled with proteomics provides a rapid and straightforward means to identify RNA-associated viral proteins during infection that may participate in the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Erik M Lenarcic
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin J Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
23
|
Soemedi R, Vega H, Belmont JM, Ramachandran S, Fairbrother WG. Genetic variation and RNA binding proteins: tools and techniques to detect functional polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:227-66. [PMID: 25201108 DOI: 10.1007/978-1-4939-1221-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At its most fundamental level the goal of genetics is to connect genotype to phenotype. This question is asked at a basic level evaluating the role of genes and pathways in genetic model organism. Increasingly, this question is being asked in the clinic. Genomes of individuals and populations are being sequenced and compared. The challenge often comes at the stage of analysis. The variant positions are analyzed with the hope of understanding human disease. However after a genome or exome has been sequenced, the researcher is often deluged with hundreds of potentially relevant variations. Traditionally, amino-acid changing mutations were considered the tractable class of disease-causing mutations; however, mutations that disrupt noncoding elements are the subject of growing interest. These noncoding changes are a major avenue of disease (e.g., one in three hereditary disease alleles are predicted to affect splicing). Here, we review some current practices of medical genetics, the basic theory behind biochemical binding and functional assays, and then explore technical advances in how variations that alter RNA protein recognition events are detected and studied. These advances are advances in scale-high-throughput implementations of traditional biochemical assays that are feasible to perform in any molecular biology laboratory. This chapter utilizes a case study approach to illustrate some methods for analyzing polymorphisms. The first characterizes a functional intronic SNP that deletes a high affinity PTB site using traditional low-throughput biochemical and functional assays. From here we demonstrate the utility of high-throughput splicing and spliceosome assembly assays for screening large sets of SNPs and disease alleles for allelic differences in gene expression. Finally we perform three pilot drug screens with small molecules (G418, tetracycline, and valproic acid) that illustrate how compounds that rescue specific instances of differential pre-mRNA processing can be discovered.
Collapse
Affiliation(s)
- Rachel Soemedi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
24
|
Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer 2014; 111:736-48. [PMID: 25025966 PMCID: PMC4134507 DOI: 10.1038/bjc.2014.383] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022] Open
Abstract
Background: Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) is a functional long non-coding RNA (lncRNA), which is highly expressed in several tumours, including colorectal cancer (CRC). Its biological function and mechanism in the prognosis of human CRC is still largely under investigation. Methods: This study aimed to investigate the new effect mechanism of MALAT1 on the proliferation and migration of CRC cells in vitro and in vivo, and detect the expression of MALAT1, SFPQ (also known as PSF (PTB-associated splicing factor)), and PTBP2 (also known as PTB (polypyrimidine-tract-binding protein)) in CRC tumour tissues, followed by correlated analysis with clinicopathological parameters. Results: We found that overexpression of MALAT1 could promote cell proliferation and migration in vitro, and promote tumour growth and metastasis in nude mice. The underlying mechanism was associated with tumour suppressor gene SFPQ and proto-oncogene PTBP2. In CRC, MALAT1 could bind to SFPQ, thus releasing PTBP2 from the SFPQ/PTBP2 complex. In turn, the increased SFPQ-detached PTBP2 promoted cell proliferation and migration. SFPQ critically mediated the regulatory effects of MALAT1. Moreover, in CRC tissues, MALAT1 and PTBP2 were overexpressed, both of which were associated closely with the invasion and metastasis of CRC. However, the SFPQ showed unchanged expression either in CRC tissues or adjacent normal tissues. Conclusions: Our findings implied that MALAT1 might be a potential predictor for tumour metastasis and prognosis. Furthermore, the interaction between MALAT1 and SFPQ could be a novel therapeutic target for CRC.
Collapse
|
25
|
Satoh T, Katano-Toki A, Tomaru T, Yoshino S, Ishizuka T, Horiguchi K, Nakajima Y, Ishii S, Ozawa A, Shibusawa N, Hashimoto K, Mori M, Yamada M. Coordinated regulation of transcription and alternative splicing by the thyroid hormone receptor and its associating coregulators. Biochem Biophys Res Commun 2014; 451:24-9. [PMID: 25019984 DOI: 10.1016/j.bbrc.2014.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/06/2014] [Indexed: 12/17/2022]
Abstract
Emerging evidence has indicated that the transcription and processing of precursor mRNA (pre-mRNA) are functionally coupled to modulate gene expression. In collaboration with coregulators, several steroid hormone receptors have previously been shown to directly affect alternative pre-mRNA splicing coupled to hormone-induced gene transcription; however, the roles of the thyroid hormone receptor (TR) and its coregulators in alternative splicing coordinated with transcription remain unknown. In the present study, we constructed a luciferase reporter and CD44 alternative splicing (AS) minigene driven by a minimal promoter carrying 2 copies of the palindromic thyroid hormone-response element. We then examined whether TR could modulate pre-mRNA processing coupled to triiodothyronine (T3)-induced gene transcription using luciferase reporter and splicing minigene assays in HeLa cells. In the presence of cotransfected TRβ1, T3 increased luciferase activities along with the inclusion of the CD44 variable exons 4 and 5 in a dose- and time-dependent manner. In contrast, cotransfected TRβ1 did not affect the exon-inclusion of the CD44 minigene driven by the cytomegalovirus promoter. T3-induced two-exon inclusion was significantly increased by the cotransfection of the TR-associated protein, 150-kDa, a subunit of the TRAP/Mediator complex that has recently been shown to function as a splicing factor. In contrast, T3-induced two-exon inclusion was significantly decreased by cotransfection of the polypyrimidine tract-binding protein-associated splicing factor, which was previously shown to function as a corepressor of TR. These results demonstrated that liganded TR in cooperation with its associating cofactors could modulate alternative pre-mRNA splicing coupled to gene transcription.
Collapse
Affiliation(s)
- Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Akiko Katano-Toki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takuya Tomaru
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Ishizuka
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiko Horiguchi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuyo Nakajima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sumiyasu Ishii
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Ozawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobuyuki Shibusawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koshi Hashimoto
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masatomo Mori
- Kitakanto Molecular Novel Research Institute for Obesity and Metabolism, Midori, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
26
|
Abstract
Isolating spliceosomes at a specific assembly stage requires a means to stall or enrich for one of the intermediate splicing complexes. We describe strategies to arrest spliceosomes at different points of complex formation and provide a detailed protocol developed for isolating intact splicing complexes arrested between the first and second chemical steps of splicing. Briefly, spliceosomes are assembled on a radiolabeled in vitro-transcribed splicing substrate from components present in nuclear extract of HeLa cells. Spliceosome progression is arrested after the first step of splicing chemistry by mutating the pre-mRNA substrate at the 3' splice site. The substrate also contains binding sites for the MS2 protein, which serve as an affinity tag. Purification of arrested spliceosomes is carried out in two steps: (1) size exclusion chromatography and (2) affinity selection via a fusion of MS2 and maltose-binding protein (MBP). Complex assembly and purification are analyzed by denaturing polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Janine O Ilagan
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
27
|
Shelkovnikova TA, Robinson HK, Troakes C, Ninkina N, Buchman VL. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum Mol Genet 2013; 23:2298-312. [PMID: 24334610 PMCID: PMC3976330 DOI: 10.1093/hmg/ddt622] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paraspeckles are nuclear bodies formed by a set of specialized proteins assembled on the long non-coding RNA NEAT1; they have a role in nuclear retention of hyperedited transcripts and are associated with response to cellular stress. Fused in sarcoma (FUS) protein, linked to a number of neurodegenerative disorders, is an essential paraspeckle component. We have shown that its recruitment to these nuclear structures is mediated by the N-terminal region and requires prion-like activity. FUS interacts with p54nrb/NONO, a major constituent of paraspeckles, in an RNA-dependent manner and responds in the same way as other paraspeckle proteins to alterations in cellular homeostasis such as changes in transcription rates or levels of protein methylation. FUS also regulates NEAT1 levels and paraspeckle formation in cultured cells, and FUS deficiency leads to loss of paraspeckles. Pathological gain-of-function FUS mutations might be expected to affect paraspeckle function in human diseases because mislocalized amyotrophic lateral sclerosis (ALS)-linked FUS variants sequester other paraspeckle proteins into aggregates formed in cultured cells and into neuronal inclusions in a transgenic mouse model of FUSopathy. Furthermore, we detected abundant p54nrb/NONO-positive inclusions in motor neurons of patients with familial forms of ALS caused by FUS mutations, but not in other ALS cases. Our results suggest that both loss and gain of FUS function can trigger disruption of paraspeckle assembly, which may impair protective responses in neurons and thereby contribute to the pathogenesis of FUSopathies.
Collapse
|
28
|
Jahn SC, Law ME, Corsino PE, Rowe TC, Davis BJ, Law BK. Assembly, activation, and substrate specificity of cyclin D1/Cdk2 complexes. Biochemistry 2013; 52:3489-501. [PMID: 23627734 DOI: 10.1021/bi400047u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown conflicting data regarding cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes, and considering the widespread overexpression of cyclin D1 in cancer, it is important to fully understand their relevance. While many have shown that cyclin D1 and Cdk2 form active complexes, others have failed to show activity or association. Here, using a novel p21-PCNA fusion protein as well as p21 mutant proteins, we show that p21 is a required scaffolding protein, with cyclin D1 and Cdk2 failing to complex in its absence. These p21/cyclin D1/Cdk2 complexes are active and also bind the trimeric PCNA complex, with each trimer capable of independently binding distinct cyclin/Cdk complexes. We also show that increased p21 levels due to treatment with chemotherapeutic agents result in increased formation and kinase activity of cyclin D1/Cdk2 complexes, and that cyclin D1/Cdk2 complexes are able to phosphorylate a number of substrates in addition to Rb. Nucleophosmin and Cdh1, two proteins important for centrosome replication and implicated in the chromosomal instability of cancer, are shown to be phosphorylated by cyclin D1/Cdk2 complexes. Additionally, polypyrimidine tract binding protein-associated splicing factor (PSF) is identified as a novel Cdk2 substrate, being phosphorylated by Cdk2 complexed with either cyclin E or cyclin D1, and given the many functions of PSF, it could have important implications on cellular activity.
Collapse
Affiliation(s)
- Stephan C Jahn
- Department of Pharmacology and Therapeutics and the ‡Shands Cancer Center, University of Florida , Gainesville, Florida 32610, United States
| | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Chen X, Liu ZP, Huang Q, Wang Y, Xu D, Zhang XS, Chen R, Chen L. De novo prediction of RNA–protein interactions from sequence information. ACTA ACUST UNITED AC 2013; 9:133-42. [DOI: 10.1039/c2mb25292a] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood 2012; 120:e83-92. [PMID: 22976956 DOI: 10.1182/blood-2011-12-401471] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by molecular heterogeneity. As commonly altered genomic regions point to candidate genes involved in leukemogenesis, we used microarray-based comparative genomic hybridization and single nucleotide polymorphism profiling data of 391 AML cases to further narrow down genomic regions of interest. Targeted resequencing of 1000 genes located in the critical regions was performed in a representative cohort of 50 AML samples comprising all major cytogenetic subgroups. We identified 120 missense/nonsense mutations as well as 60 insertions/deletions affecting 73 different genes (∼ 3.6 tumor-specific aberrations/AML). While most of the newly identified alterations were nonrecurrent, we observed an enrichment of mutations affecting genes involved in epigenetic regulation including known candidates like TET2, TET1, DNMT3A, and DNMT1, as well as mutations in the histone methyltransferases NSD1, EZH2, and MLL3. Furthermore, we found mutations in the splicing factor SFPQ and in the nonclassic regulators of mRNA processing CTCF and RAD21. These splicing-related mutations affected 10% of AML patients in a mutually exclusive manner. In conclusion, we could identify a large number of alterations in genes involved in aberrant splicing and epigenetic regulation in genomic regions commonly altered in AML, highlighting their important role in the molecular pathogenesis of AML.
Collapse
|
31
|
Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat Struct Mol Biol 2012; 19:983-90. [DOI: 10.1038/nsmb.2380] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/08/2012] [Indexed: 01/09/2023]
|
32
|
Kurokawa K, Tanahashi T, Iima T, Yamamoto Y, Akaike Y, Nishida K, Masuda K, Kuwano Y, Murakami Y, Fukushima M, Rokutan K. Role of miR-19b and its target mRNAs in 5-fluorouracil resistance in colon cancer cells. J Gastroenterol 2012; 47:883-95. [PMID: 22382630 DOI: 10.1007/s00535-012-0547-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/04/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Drug resistance in colorectal cancers is assumed to be mediated by changes in the expression of microRNAs, but the specific identities and roles of microRNAs are largely unclear. We examined the effect of 5-fluorouracil (5-FU) resistance on microRNA expression. METHODS Two types of 5-FU-resistant colon cancer cells were derived from the DLD-1 and KM12C cell lines. The expressions of microRNAs were profiled with a microarray containing 723 microRNAs and validated by quantitative real-time polymerase chain reaction (qRT-PCR). To survey the downstream mediators of microRNA, we used a microRNA:mRNA immunoprecipitation (RIP)-Chip and pathway analysis tool to identify potential direct targets of microRNA. RESULTS In response to 5-FU, miR-19b and miR-21 were over-expressed in 5-FU-resistant cells. Of note, miR-19b was up-regulated 3.47-fold in the DLD-1 resistant cells, which exhibited no alteration in cell cycle profiles despite exposure to 5-FU. After transfection of miR-19b, specific mRNAs were recruited to microRNA:mRNA complexes isolated with Ago2 antibody and subjected to whole-genome transcriptional analysis. In this analysis, 66 target mRNAs were enriched by at least 5.0-fold in the microRNA:mRNA complexes from DLD-1 resistant cells. Ingenuity pathway analysis of mRNA targets significantly (P < 0.05) indicated the category "Cell Cycle" as a probable area of the molecular and cellular function related with 5-FU resistance. Among candidate mRNA targets, SFPQ and MYBL2 have been linked to cell cycle functions. CONCLUSIONS We revealed up-regulation of miR-19b in response to 5-FU and potential targets of miR-19b mediating the cell cycle under treatment with 5-FU. Our study provides an important insight into the mechanism of 5-FU resistance in colorectal cancers.
Collapse
Affiliation(s)
- Ken Kurokawa
- Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47:360-78. [PMID: 22655688 DOI: 10.3109/10409238.2012.691456] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alternative splicing patterns are regulated by RNA binding proteins that assemble onto each pre-mRNA to form a complex RNP structure. The polypyrimidine tract binding protein, PTB, has served as an informative model for understanding how RNA binding proteins affect spliceosome assembly and how changes in the expression of these proteins can control complex programs of splicing in tissues. In this review, we describe the mechanisms of splicing regulation by PTB and its function, along with its paralog PTBP2, in neuronal development.
Collapse
Affiliation(s)
- Niroshika Keppetipola
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
34
|
Dhar S, Thota A, Rao MRS. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis. J Biol Chem 2012; 287:6387-405. [PMID: 22215678 DOI: 10.1074/jbc.m111.288167] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermiogenesis is of considerable biological interest especially due to the unique chromatin remodeling events that take place during spermatid maturation. Here, we have studied the expression of chromatin remodeling factors in different spermatogenic stages and narrowed it down to bromodomain, testis-specific (Brdt) as a key molecule participating in chromatin remodeling during rat spermiogenesis. Our immunocytochemistry experiments reveal that Brdt colocalizes with acetylated H4 in elongating spermatids. Remodeling assays showed an acetylation-dependent but ATP-independent chromatin reorganization property of Brdt in haploid round spermatids. Furthermore, Brdt interacts with Smarce1, a member of the SWI/SNF family. We have studied the genomic organization of smarce1 and identified that it has two splice variants expressed during spermatogenesis. The N terminus of Brdt is involved in the recognition of Smarce1 as well as in the reorganization of hyperacetylated round spermatid chromatin. Interestingly, the interaction between Smarce1 and Brdt increases dramatically upon histone hyperacetylation both in vitro and in vivo. Thus, our results indicate this interaction to be a vital step in the chromatin remodeling process during mammalian spermiogenesis.
Collapse
Affiliation(s)
- Surbhi Dhar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | |
Collapse
|
35
|
Roepcke S, Stahlberg S, Klein H, Schulz MH, Theobald L, Gohlke S, Vingron M, Walther DJ. A tandem sequence motif acts as a distance-dependent enhancer in a set of genes involved in translation by binding the proteins NonO and SFPQ. BMC Genomics 2011; 12:624. [PMID: 22185324 PMCID: PMC3262029 DOI: 10.1186/1471-2164-12-624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/20/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bioinformatic analyses of expression control sequences in promoters of co-expressed or functionally related genes enable the discovery of common regulatory sequence motifs that might be involved in co-ordinated gene expression. By studying promoter sequences of the human ribosomal protein genes we recently identified a novel highly specific Localized Tandem Sequence Motif (LTSM). In this work we sought to identify additional genes and LTSM-binding proteins to elucidate potential regulatory mechanisms. RESULTS Genome-wide analyses allowed finding a considerable number of additional LTSM-positive genes, the products of which are involved in translation, among them, translation initiation and elongation factors, and 5S rRNA. Electromobility shift assays then showed specific signals demonstrating the binding of protein complexes to LTSM in ribosomal protein gene promoters. Pull-down assays with LTSM-containing oligonucleotides and subsequent mass spectrometric analysis identified the related multifunctional nucleotide binding proteins NonO and SFPQ in the binding complex. Functional characterization then revealed that LTSM enhances the transcriptional activity of the promoters in dependency of the distance from the transcription start site. CONCLUSIONS Our data demonstrate the power of bioinformatic analyses for the identification of biologically relevant sequence motifs. LTSM and the here found LTSM-binding proteins NonO and SFPQ were discovered through a synergistic combination of bioinformatic and biochemical methods and are regulators of the expression of a set of genes of the translational apparatus in a distance-dependent manner.
Collapse
Affiliation(s)
- Stefan Roepcke
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, Ortín J. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLoS Pathog 2011; 7:e1002397. [PMID: 22114566 PMCID: PMC3219729 DOI: 10.1371/journal.ppat.1002397] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 10/10/2011] [Indexed: 01/15/2023] Open
Abstract
The influenza A virus RNA polymerase is a heterotrimeric complex responsible for viral genome transcription and replication in the nucleus of infected cells. We recently carried out a proteomic analysis of purified polymerase expressed in human cells and identified a number of polymerase-associated cellular proteins. Here we characterise the role of one such host factors, SFPQ/PSF, during virus infection. Down-regulation of SFPQ/PSF by silencing with two independent siRNAs reduced the virus yield by 2–5 log in low-multiplicity infections, while the replication of unrelated viruses as VSV or Adenovirus was almost unaffected. As the SFPQ/PSF protein is frequently associated to NonO/p54, we tested the potential implication of the latter in influenza virus replication. However, down-regulation of NonO/p54 by silencing with two independent siRNAs did not affect virus yields. Down-regulation of SFPQ/PSF by siRNA silencing led to a reduction and delay of influenza virus gene expression. Immunofluorescence analyses showed a good correlation between SFPQ/PSF and NP levels in infected cells. Analysis of virus RNA accumulation in silenced cells showed that production of mRNA, cRNA and vRNA is reduced by more than 5-fold but splicing is not affected. Likewise, the accumulation of viral mRNA in cicloheximide-treated cells was reduced by 3-fold. In contrast, down-regulation of SFPQ/PSF in a recombinant virus replicon system indicated that, while the accumulation of viral mRNA is reduced by 5-fold, vRNA levels are slightly increased. In vitro transcription of recombinant RNPs generated in SFPQ/PSF-silenced cells indicated a 4–5-fold reduction in polyadenylation but no alteration in cap snatching. These results indicate that SFPQ/PSF is a host factor essential for influenza virus transcription that increases the efficiency of viral mRNA polyadenylation and open the possibility to develop new antivirals targeting the accumulation of primary transcripts, a very early step during infection. The influenza A viruses cause annual epidemics and occasional pandemics of respiratory infections that may be life threatening. The viral genome contains 8 RNA molecules forming ribonucleoproteins that replicate and transcribe in the nucleus of infected cells. Influenza viruses are intracellular parasites that need the host cell machinery to replicate. To better understand this virus-cell interplay we purified the viral RNA polymerase expressed in human cells and identified several specifically associated cellular proteins. Here we characterise the role of one of them, the proline-glutamine rich splicing factor (SFPQ/PSF). Down-regulation of SFPQ/PSF indicated that it is essential for virus multiplication. Specifically, the accumulation of messenger and genomic virus-specific RNAs was reduced by SFPQ/PSF silencing in infected cells. Furthermore, transcription of parental ribonucleoproteins was affected by SFPQ/PSF down-regulation. The consequences of silencing SFPQ/PSF on the transcription and replication of a viral recombinant replicon indicated that it is required for virus transcription but not for virus RNA replication. In vitro transcription experiments indicated that SFPQ/PSF increases the efficiency of virus mRNA polyadenylation. This is the first description of a cellular factor essential for influenza virus transcription and opens the possibility to identify inhibitors that target this host-virus interaction and block virus gene expression.
Collapse
Affiliation(s)
- Sara Landeras-Bueno
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Núria Jorba
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Maite Pérez-Cidoncha
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
- * E-mail:
| |
Collapse
|
37
|
Ray P, Kar A, Fushimi K, Havlioglu N, Chen X, Wu JY. PSF suppresses tau exon 10 inclusion by interacting with a stem-loop structure downstream of exon 10. J Mol Neurosci 2011; 45:453-66. [PMID: 21881826 DOI: 10.1007/s12031-011-9634-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/17/2011] [Indexed: 01/24/2023]
Abstract
Microtubule binding protein Tau has been implicated in a wide range of neurodegenerative disorders collectively classified as tauopathies. Exon 10 of the human tau gene, which codes for a microtubule binding repeat region, is alternatively spliced to form Tau protein isoforms containing either four or three microtubule binding repeats, Tau4R and Tau3R, respectively. The levels of different Tau splicing isoforms are fine-tuned by alternative splicing with the ratio of Tau4R/Tau3R maintained approximately at one in adult neurons. Mutations that disrupt tau exon 10 splicing regulation cause an imbalance of different tau splicing isoforms and have been associated with tauopathy. To search for factors interacting with tau pre-messenger RNA (pre-mRNA) and regulating tau exon 10 alternative splicing, we performed a yeast RNA-protein interaction screen and identified polypyrimidine tract binding protein associated splicing factor (PSF) as a candidate tau exon 10 splicing regulator. UV crosslinking experiments show that PSF binds to the stem-loop structure at the 5' splice site downstream of tau exon 10. This PSF-interacting RNA element is distinct from known PSF binding sites previously identified in other genes. Overexpression of PSF promotes tau exon 10 exclusion, whereas down-regulation of the endogenous PSF facilitates exon 10 inclusion. Immunostaining shows that PSF is expressed in the human brain regions affected by tauopathy. Our data reveal a new player in tau exon 10 alternative splicing regulation and uncover a previously unknown mechanism of PSF in regulating tau pre-mRNA splicing.
Collapse
Affiliation(s)
- Payal Ray
- Department of Neurology, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
38
|
Liu L, Xie N, Rennie P, Challis JRG, Gleave M, Lye SJ, Dong X. Consensus PP1 binding motifs regulate transcriptional corepression and alternative RNA splicing activities of the steroid receptor coregulators, p54nrb and PSF. Mol Endocrinol 2011; 25:1197-210. [PMID: 21566083 DOI: 10.1210/me.2010-0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Originally identified as essential pre-mRNA splicing factors, non-POU-domain-containing, octamer binding protein (p54nrb) and PTB-associated RNA splicing factor (PSF) are also steroid receptor corepressors. The mechanisms by which p54nrb and PSF regulate gene transcription remain unclear. Both p54nrb and PSF contain protein phosphatase 1 (PP1) consensus binding RVxF motifs, suggesting that PP1 may regulate phosphorylation status of p54nrb and PSF and thus their function in gene transcription. In this report, we demonstrated that PP1 forms a protein complex with both p54nrb and PSF. PP1 interacts directly with the RVxF motif only in p54nrb, but not in PSF. Association with PP1 results in dephosphorylation of both p54nrb and PSF in vivo and the loss of their transcriptional corepressor activities. Using the CD44 minigene as a reporter, we showed that PP1 regulates p54nrb and PSF alternative splicing activities that determine exon skipping vs. inclusion in the final mature RNA for translation. In addition, changes in transcriptional corepression and RNA splicing activities of p54nrb and PSF are correlated with alterations in protein interactions of p54nrb and PSF with transcriptional corepressors such as Sin3A and histone deacetylase 1, and RNA splicing factors such as U1A and U2AF. Furthermore, we demonstrated a novel function of the RVxF motif within PSF that enhances its corepression and RNA splicing activities independent of PP1. We conclude that the RVxF motifs play an important role in controlling the multifunctional properties of p54nrb and PSF in the regulation of gene transcription.
Collapse
Affiliation(s)
- Liangliang Liu
- Vancouver Prostate Center, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Xu Y, Karlsson A, Johansson M. Identification of genes associated to 2',2'-difluorodeoxycytidine resistance in HeLa cells with a lentiviral short-hairpin RNA library. Biochem Pharmacol 2011; 82:210-5. [PMID: 21565176 DOI: 10.1016/j.bcp.2011.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 01/28/2023]
Abstract
Resistance to the cytotoxic nucleoside analog 2',2'-diflurodeoxycytidine (dFdC) used in cancer chemotherapy is a frequent cause of treatment failure. Although several molecular mechanisms that cause resistance to dFdC have been identified, many cells acquire dFdC resistance by unknown mechanisms. We have used a short-hairpin RNA (shRNA) library in a lentiviral vector that contains ≈5000 shRNAs designed against genes encoding kinases, phosphatases, tumor suppressors and DNA binding proteins to perform a loss-of-function screen to identify genes causing dFdC resistance in HeLa cells when their expression is decreased. 155 cell lines with shRNA expression were isolated from the screen and several of these cell lines were in repeated experiments verified to show resistance to dFdC compared to wild-type cells. DNA sequencing of the shRNA vector integrated in the cellular genome was used to determine the shRNA expressed in the cells and the putative target genes were identified by sequence analysis. 16 cell lines with putative target genes previously not associated to dFdC resistance were identified. Chemically synthesized short-interfering RNAs (siRNAs) directed against the target genes were used to verify that the decreased expression of the identified genes caused dFdC resistance. Using these techniques we identified two splicing factor proteins, serine/arginine-rich splicing factor 3 (SRSF3) and splicing factor proline/glutamine-rich (SFPQ), that induced resistance to dFdC as well as other pyrimidine nucleoside analogs when their expression was decreased in HeLa cells.
Collapse
Affiliation(s)
- Yunjian Xu
- Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol Cell Biol 2011; 31:2667-82. [PMID: 21536652 DOI: 10.1128/mcb.05266-11] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinity-purified human B, B(act), and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, B(act), and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosome's compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing.
Collapse
|
41
|
Rajesh C, Baker DK, Pierce AJ, Pittman DL. The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion. Nucleic Acids Res 2010; 39:132-45. [PMID: 20813759 PMCID: PMC3017596 DOI: 10.1093/nar/gkq738] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA double-stranded breaks (DSBs) are among the most severe forms of DNA damage and responsible for chromosomal translocations that may lead to gene fusions. The RAD51 family plays an integral role in preserving genome stability by homology directed repair of DSBs. From a proteomics screen, we recently identified SFPQ/PSF as an interacting partner with the RAD51 paralogs, RAD51D, RAD51C and XRCC2. Initially discovered as a potential RNA splicing factor, SFPQ was later shown to have homologous recombination and non-homologous end joining related activities and also to bind and modulate the function of RAD51. Here, we demonstrate that SFPQ interacts directly with RAD51D and that deficiency of both proteins confers a severe loss of cell viability, indicating a synthetic lethal relationship. Surprisingly, deficiency of SFPQ alone also leads to sister chromatid cohesion defects and chromosome instability. In addition, SFPQ was demonstrated to mediate homology directed DNA repair and DNA damage response resulting from DNA crosslinking agents, alkylating agents and camptothecin. Taken together, these data indicate that SFPQ association with the RAD51 protein complex is essential for homologous recombination repair of DNA damage and maintaining genome integrity.
Collapse
Affiliation(s)
- Changanamkandath Rajesh
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
42
|
Chen LL, Carmichael GG. Long noncoding RNAs in mammalian cells: what, where, and why? WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:2-21. [PMID: 21956903 DOI: 10.1002/wrna.5] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Not all long, polyadenylated cellular RNAs encode polypeptides. In recent years, it has become apparent that a number of organisms express abundant amounts of transcripts that lack open reading frames or that are retained in the nucleus. Rather than accumulating silently in the cell, we now know that many of these long noncoding RNAs (lncRNAs) play important roles in nuclear architecture or in the regulation of gene expression. Here, we discuss some recent progress in our understanding of the functions of a number of important lncRNAs in mammalian cells.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
43
|
Abstract
Studies of mammalian splicing factors are often focused on small nuclear ribonucleoproteins or regulatory RNA-binding proteins, such as hnRNP (heterogeneous nuclear ribonucleoprotein) and SR proteins (serine/arginine-rich proteins); however, much less is known about the contribution of DExD/H-box proteins or RNA helicases in mammalian pre-mRNA splicing. The human DEAH-box protein DHX16 [also known as DBP2 (DEAD-box protein 2)], is homologous with Caenorhabditis elegans Mog-4, Schizosaccharomyces pombe Prp8 and Saccharomyces cerevisiae Prp2. In the present study, we show that DHX16 is required for pre-mRNA splicing after the formation of a pre-catalytic spliceosome. We found that anti-DHX16 antiserum inhibited the splicing reaction in vitro and the antibody immunoprecipitated pre-mRNA, splicing intermediates and spliceosomal small nuclear RNAs. Cells that expressed DHX16 that had a mutation in the helicase domain accumulated unspliced intron-containing minigene transcripts. Nuclear extracts isolated from the dominant-negative DHX16-G724N-expressing cells formed splicing complex B, but were impaired in splicing. Adding extracts containing DHX16-G724N or DHX16-S552L mutant proteins to HeLa cell nuclear extracts resulted in reduced splicing, indicating that the mutant protein directly inhibited splicing in vitro. Therefore our results show that DHX16 is needed for human pre-mRNA splicing at a step analogous to that mediated by the S. cerevisiae spliceosomal ATPase Prp2.
Collapse
|
44
|
Roybal GA, Jurica MS. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res 2010; 38:6664-72. [PMID: 20529876 PMCID: PMC2965229 DOI: 10.1093/nar/gkq494] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pre-mRNA splicing is catalyzed by the large ribonucleoprotein spliceosome. Spliceosome assembly is a highly dynamic process in which the complex transitions through a number of intermediates. Recently, the potent anti-tumor compound Spliceostatin A (SSA) was shown to inhibit splicing and to interact with an essential component of the spliceosome, SF3b. However, it was unclear whether SSA directly impacts the spliceosome and, if so, by what mechanism, which limits interpretation of the drugs influence on splicing. Here, we report that SSA inhibits pre-mRNA splicing by interfering with the spliceosome subsequent to U2 snRNP addition. We demonstrate that SSA inhibition of spliceosome assembly requires ATP, key pre-mRNA splicing sequences and intact U1 and U2 snRNAs. Furthermore all five U snRNAs in addition to the SSA molecule associate with pre-mRNA during SSA inhibition. Kinetic analyses reveal that SSA impedes the A to B complex transition. Remarkably, our data imply that, in addition to its established function in early U2 snRNP recruitment, SF3b plays a role in later maturation of spliceosomes. This work establishes SSA as a powerful tool for dissecting the dynamics of spliceosomes in cells. In addition our data will inform the design of synthetic splicing modulator compounds for targeted anti-tumor treatment.
Collapse
Affiliation(s)
- Gabriel A Roybal
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
45
|
Li S, Kuhne WW, Kulharya A, Hudson FZ, Ha K, Cao Z, Dynan WS. Involvement of p54(nrb), a PSF partner protein, in DNA double-strand break repair and radioresistance. Nucleic Acids Res 2009; 37:6746-53. [PMID: 19759212 PMCID: PMC2777424 DOI: 10.1093/nar/gkp741] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian cells repair DNA double-strand breaks (DSBs) via efficient pathways of direct, nonhomologous DNA end joining (NHEJ) and homologous recombination (HR). Prior work has identified a complex of two polypeptides, PSF and p54(nrb), as a stimulatory factor in a reconstituted in vitro NHEJ system. PSF also stimulates early steps of HR in vitro. PSF and p54(nrb) are RNA recognition motif-containing proteins with well-established functions in RNA processing and transport, and their apparent involvement in DSB repair was unexpected. Here we investigate the requirement for p54(nrb) in DSB repair in vivo. Cells treated with siRNA to attenuate p54(nrb) expression exhibited a delay in DSB repair in a gamma-H2AX focus assay. Stable knockdown cell lines derived by p54(nrb) miRNA transfection showed a significant increase in ionizing radiation-induced chromosomal aberrations. They also showed increased radiosensitivity in a clonogenic survival assay. Together, results indicate that p54(nrb) contributes to rapid and accurate repair of DSBs in vivo in human cells and that the PSF.p54(nrb) complex may thus be a potential target for radiosensitizer development.
Collapse
Affiliation(s)
- Shuyi Li
- Department of Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Ilagan J, Yuh P, Chalkley RJ, Burlingame AL, Jurica MS. The role of exon sequences in C complex spliceosome structure. J Mol Biol 2009; 394:363-75. [PMID: 19761775 DOI: 10.1016/j.jmb.2009.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/04/2009] [Accepted: 09/09/2009] [Indexed: 02/05/2023]
Abstract
Pre-mRNA splicing is catalyzed by a large ribonucleoprotein complex called the spliceosome. Previous electron microscopy reconstruction of C complex spliceosomes arrested between the two chemical steps of splicing revealed an averaged core structure consisting of three primary domains surrounding a central cavity. Here we characterize the involvement of pre-mRNA in this structured core of C complex by protection mapping. We find that the 3' end of the cleaved 5' exon and intron sequences flanking the branched lariat are buried in the complex. Upstream regions of the 5' exon and the entire 3' exon, including the mutant 3' splice site, are accessible and can be removed by nucleolytic cleavage. Furthermore, we show that the second-step active site of the complex, which is arrested by a 3' splice site mutation, can accept a normal 3' splice site in trans to catalyze exon ligation. Removal of the accessible exon regions alters the protein composition of the complex, but the core spliceosome proteins associated with the uridine-rich small nuclear ribonucleoproteins U2, U5, and U6 and the Prp19 complex as well as several other proteins remain intact. Two-dimensional averaged images of an exon-trimmed complex closely resemble C complex assembled on full-length pre-mRNA, supporting the hypothesis that the electron microscopy model of C complex reflects the core structure of a catalytically competent particle. Trimming the 3' exon does, however, alter the distribution of particles that appear to be missing some density, suggesting that the exon plays a role in stabilizing C complex.
Collapse
Affiliation(s)
- Janine Ilagan
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
47
|
Chen LL, Carmichael GG. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 2009; 35:467-78. [PMID: 19716791 DOI: 10.1016/j.molcel.2009.06.027] [Citation(s) in RCA: 522] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/12/2009] [Accepted: 06/08/2009] [Indexed: 01/12/2023]
Abstract
In many cells, mRNAs containing inverted repeats (Alu repeats in humans) in their 3' untranslated regions (3'UTRs) are inefficiently exported to the cytoplasm. Nuclear retention correlates with adenosine-to-inosine editing and is in paraspeckle-associated complexes containing the proteins p54(nrb), PSF, and PSP1 alpha. We report that robust editing activity in human embryonic stem cells (hESCs) does not lead to nuclear retention. p54(nrb), PSF, and PSP1 alpha are all expressed in hESCs, but paraspeckles are absent and only appear upon differentiation. Paraspeckle assembly and function depend on expression of a long nuclear-retained noncoding RNA, NEAT1. This RNA is not detectable in hESCs but is induced upon differentiation. Knockdown of NEAT1 in HeLa cells results both in loss of paraspeckles and in enhanced nucleocytoplasmic export of mRNAs containing inverted Alu repeats. Taken together, these results assign a biological function to a large noncoding nuclear RNA in the regulation of mRNA export.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
48
|
Lukong KE, Huot MÉ, Richard S. BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cell Signal 2009; 21:1415-22. [DOI: 10.1016/j.cellsig.2009.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/30/2009] [Indexed: 11/29/2022]
|
49
|
Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE. The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol 2009; 7:e1000120. [PMID: 19478851 PMCID: PMC2682485 DOI: 10.1371/journal.pbio.1000120] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/17/2009] [Indexed: 11/19/2022] Open
Abstract
Protein complexes deposited on messenger RNAs during their maturation are able to recruit components of a cellular RNA surveillance pathway, thereby linking RNA maturation to subsequent steps in RNA quality control. Exon junction complexes (EJCs) link nuclear splicing to key features of mRNA function including mRNA stability, translation, and localization. We analyzed the formation of EJCs by the spliceosome, the physiological EJC assembly machinery. We studied a comprehensive set of eIF4A3, MAGOH, and BTZ mutants in complete or C-complex–arrested splicing reactions and identified essential interactions of EJC proteins during and after EJC assembly. These data establish that EJC deposition proceeds through a defined intermediate, the pre-EJC, as an ordered, sequential process that is coordinated by splicing. The pre-EJC consists of eIF4A3 and MAGOH-Y14, is formed before exon ligation, and provides a binding platform for peripheral EJC components that join after release from the spliceosome and connect the core structure with function. Specifically, we identified BTZ to bridge the EJC to the nonsense-mediated messenger RNA (mRNA) decay protein UPF1, uncovering a critical link between mRNP architecture and mRNA stability. Based on this systematic analysis of EJC assembly by the spliceosome, we propose a model of how a functional EJC is assembled in a strictly sequential and hierarchical fashion, including nuclear splicing-dependent and cytoplasmic steps. The first step in the expression of eukaryotic protein-coding genes is transcription into a messenger RNA (mRNA) precursor in the nucleus. These precursor mRNAs then undergo maturation through the removal of introns in a process termed splicing. During splicing, the splicing machinery or “spliceosome” deposits a complex of proteins onto the mRNA that accompanies it during post-transcriptional steps in gene expression, including the regulation of mRNA stability, transport out of the nucleus, cellular localisation, and translation. This complex, the exon junction complex (EJC), represents a molecular memory of the splicing process. Understanding the biogenesis of EJCs and their downstream effects helps reveal the basic principles by which the primary steps of mRNA synthesis are coupled to the regulation of gene expression. Here we show that EJCs are assembled in a strictly splicing-dependent manner through an unexpected, coordinated, and hierarchical assembly pathway. Importantly, we show that the EJC recruits the cytoplasmic protein BTZ, which then bridges the complex to an mRNA quality-control machinery called the nonsense-mediated decay pathway that degrades mRNAs containing premature stop codons. This finding suggests that the EJC and bridging by BTZ help determine the stability of mRNA and thus are essential for proper cellular surveillance of mRNA quality.
Collapse
Affiliation(s)
- Niels H. Gehring
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (NHG); (AEK)
| | - Styliani Lamprinaki
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andreas E. Kulozik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (NHG); (AEK)
| |
Collapse
|
50
|
Dong X, Yu C, Shynlova O, Challis JRG, Rennie PS, Lye SJ. p54nrb is a transcriptional corepressor of the progesterone receptor that modulates transcription of the labor-associated gene, connexin 43 (Gja1). Mol Endocrinol 2009; 23:1147-60. [PMID: 19423654 DOI: 10.1210/me.2008-0357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The progesterone receptor (PR) plays important roles in the establishment and maintenance of pregnancy. By dynamic interactions with coregulators, PR represses the expression of genes that increase the contractile activity of myometrium and contribute to the initiation of labor. We have previously shown that PTB-associated RNA splicing factor (PSF) can function as a PR corepressor. In this report, we demonstrated that the PSF heterodimer partner, p54nrb (non-POU-domain-containing, octamer binding protein), can also function as a transcription corepressor, independent of PSF. p54nrb Interacts directly with PR independent of progesterone. In contrast to PSF, p54nrb neither enhances PR protein degradation nor blocks PR binding to DNA. Rather, p54nrb recruits mSin3A through its N terminus to the PR-DNA complex, resulting in an inhibition of PR-mediated transactivation of the progesterone-response element-luciferase reporter gene. PR also repressed transcription of the connexin 43 gene (Gja1), an effect dependent on the presence of an activator protein 1 site within the proximal Gja1 promoter. Mutation of this site abolished PR-mediated repression and decreased the recruitment of PR and p54nrb onto the Gja1 promoter. Furthermore, knockdown p54nrb expression by small interfering RNA alleviated PR-mediated repression on Gja1 transcription, whereas overexpression of p54nrb enhanced it. In the physiological context of pregnancy, p54nrb protein levels decrease with the approach of labor in the rat myometrium. We conclude that p54nrb is a transcriptional corepressor of PR. Decreased expression of p54nrb at the time of labor may act to derepress PR-mediated inhibition on connexin 43 expression and contribute to the initiation of labor.
Collapse
Affiliation(s)
- Xuesen Dong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1X5.
| | | | | | | | | | | |
Collapse
|