1
|
Khan P, Ali S, Jan R, Kim KM. Lignin Nanoparticles: Transforming Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1541. [PMID: 39330697 PMCID: PMC11435067 DOI: 10.3390/nano14181541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
In the face of escalating environmental challenges driven by human activities, the quest for innovative solutions to counter pollution, contamination, and ecological degradation has gained paramount importance. Traditional approaches to environmental remediation often fall short in addressing the complexity and scale of modern-day environmental problems. As industries transition towards sustainable paradigms, the exploration of novel materials and technologies becomes crucial. Lignin nanoparticles have emerged as a promising avenue of exploration in this context. Once considered a mere byproduct, lignin's unique properties and versatile functional groups have propelled it to the forefront of environmental remediation research. This review paper delves into the resurgence of lignin from an environmental perspective, examining its pivotal role in carbon cycling and its potential to address various environmental challenges. The paper extensively discusses the synthesis, properties, and applications of lignin nanoparticles in diverse fields such as water purification and soil remediation. Moreover, it highlights the challenges associated with nanoparticle deployment, ranging from Eco toxicological assessments to scalability issues. Multidisciplinary collaboration and integration of research findings with real-world applications are emphasized as critical factors for unlocking the transformative potential of lignin nanoparticles. Ultimately, this review underscores lignin nanoparticles as beacons of hope in the pursuit of cleaner, healthier, and more harmonious coexistence between humanity and nature through innovative environmental remediation strategies.
Collapse
Affiliation(s)
- Pirzada Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Chang X, Wang Y, Zain A, Yu H, Huang W. Antifungal Activity of Difenoconazole-Loaded Microcapsules against Curvularia lunata. J Fungi (Basel) 2024; 10:519. [PMID: 39194845 DOI: 10.3390/jof10080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Difenoconazole-loaded (CS-DIF) microcapsules were synthesized by encapsulating difenoconazole into biocompatible chitosan. The physical and chemical properties indicated that the encapsulation and chemical loading rates were 85.58% and 61.98%, respectively. The microcapsules exhibited prominent controlled-release and surface stability performance. The cumulative release rate was only 33.6% in 168 h, and the contact angle decreased by 11.73° at 120 s compared with difenoconazole. The antifungal activity of the CS-DIF microcapsules against Curvularia lunata was confirmed through observations of colony growth, in vitro and in vivo inoculation, mycelium morphology, as well as DNA and protein leakage. The antioxidant enzyme activity of superoxide dismutase, peroxidase, and catalase decreased by 65.1%, 84.9%, and 69.7%, respectively, when Curvularia lunata was treated with 200 μg/mL microcapsules, compared with the control in 24 h. The enzymatic activity of polyphenol oxidase decreased by 323.8%. The reactive oxygen species contents of hydrogen peroxide and superoxide anions increased by 204.6% and 164%, respectively. Additionally, the soluble sugar and soluble protein contents decreased by 65.5% and 69.6%, respectively. These findings provided a novel approach to control the growth of C. lunata efficiently, laying a foundation for reducing the quantity and enhancing the efficiency of chemical pesticides. The CS-DIF microcapsules exhibited a strong inhibitory effect on fungus, effectively preventing and controlling leaf spot disease and showing potential for field applications. This study might be of great significance in ensuring plant protection strategies.
Collapse
Affiliation(s)
- Xiaoyu Chang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yuyan Wang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Abbas Zain
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Weidong Huang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
3
|
Jali P, Acharya S, Mahalik G. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. DISCOVER NANO 2024; 19:117. [PMID: 39009869 PMCID: PMC11250757 DOI: 10.1186/s11671-024-04059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Plant diseases cause colossal crop loss worldwide and are the major yield constraining component in agriculture. Nanotechnology, which has the possible to revolutionize numerous fields of science, innovation, drug, and agriculture. Nanotechnology can be utilized for combating the plant infectious diseases and nano-materials can be utilized as transporter of dynamic elements of pesticides, host defense etc. to the pathogens. The analysis of diseases, finding of pathogens may turn out to be substantially more precise and fast with the utilization of nanosensors. As worldwide demand for food production raises against an evolving atmosphere, nanotechnology could reasonably alleviate numerous challenges in disease managing by diminishing chemical inputs and advancing quick recognition of pathogens. The major goal of this review is to increase growth and productivity using supplements with nanoparticles. (i.e., metals, metal oxides, and carbon) to treat crop diseases and make agricultural practices more productive and sustainable. Prominently, this improved crop may not only be straight connected to the diminished occurrence of pathogenic microorganisms, yet in might possibly add nutritional benefits of the nanoparticles themselves, particularly for the micronutrients important for generating host resistance.
Collapse
Affiliation(s)
- Pallavi Jali
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Srinivas Acharya
- Department of Environmental Science, Government Autonomous College, Phulbani, Odisha, India.
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Jatani, Odisha, India.
| |
Collapse
|
4
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
El-Sayed SM, El-Sayed HS, Hashim AF, Youssef AM. Valorization of edible films based on chitosan/hydroxyethyl cellulose/olive leaf extract and TiO 2-NPs for preserving sour cream. Int J Biol Macromol 2024; 268:131727. [PMID: 38649073 DOI: 10.1016/j.ijbiomac.2024.131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Biodegradable edible films for sour cream packaging were developed based on chitosan (CS), hydroxyethyl cellulose (HEC), Olive leaf extract (OE), and titanium dioxide nanoparticles (TiO2-NPs). The prepared CS/HEC/TiO2-OE bionanocomposite films were evaluated for their antimicrobial and antioxidant activities as well as using FT-IR, mechanical, permeability, and contact angle. The effect of developed films on the lipid oxidation, microbiological load, and chemical properties of sour cream was investigated. The fabricated films had an antimicrobial impact against all tested strains. The film containing 8 % OE showed effective protection against fat oxidation, with a peroxide value of 3.21 meq O2/kg, a para-anisidine value 5.40, and free fatty acids of 0.82 mg KOH/kg. The films with OE 4 % and 8 % have a good effect on the microbiological load of sour cream for 90 days. These films did not influence the chemical composition of sour cream and therefore can be used in this sort of dairy product.
Collapse
Affiliation(s)
- Samah M El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Hoda S El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Ayat F Hashim
- Fats and Oils Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
6
|
Pan X, Cao F, Guo X, Wang Y, Cui Z, Huang T, Hou Y, Guan X. Development of a Safe and Effective Bacillus thuringiensis-Based Nanobiopesticide for Controlling Tea Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7807-7817. [PMID: 38514390 DOI: 10.1021/acs.jafc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Mg(OH)2 was used as the nanocarrier of the Bacillus thuringiensis (Bt) Cry1Ac protein, and the synthesized Cry1Ac-Mg(OH)2 composites were regular and uniform nanosheets. Nano-Mg(OH)2 could effectively improve the insecticidal effect of the Cry1Ac protein toward Ectropis obliqua. It could enhance the damage degree of the Cry1Ac protein to intestinal epithelial cells and microvilli, induce and enrich the production of reactive oxygen species (ROS) in the midgut, and enhance the degradation of the Cry1Ac protein into active fragments. Furthermore, an anti-rinsing assay showed that the Cry1Ac-Mg(OH)2 composites were bound to the notch structure of the tea leaf surface. The retention of the Cry1Ac protein increased by 11.45%, and sprayed nano-Mg(OH)2 was rapidly absorbed by different tissues of tea plants. Moreover, nano-Mg(OH)2 and composites did not significantly affect non-target organisms. These results show that nano-Mg(OH)2 can serve as a safe and effective biopesticide carrier, which provides a new approach for stable and efficient Bt preparation.
Collapse
Affiliation(s)
- Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xueping Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yilin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ziqi Cui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
7
|
Akhavan-Mahdavi S, Mirbagheri MS, Assadpour E, Sani MA, Zhang F, Jafari SM. Electrospun nanofiber-based sensors for the detection of chemical and biological contaminants/hazards in the food industries. Adv Colloid Interface Sci 2024; 325:103111. [PMID: 38367336 DOI: 10.1016/j.cis.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Food contamination reveals a major health risk globally and presents a significant challenge for the food industry. It can stem from biological contaminants like pathogens, parasites, and viruses, or chemical contaminants such as heavy metals, pesticides, drugs, and hormones. There is also the possibility of naturally occurring hazardous chemicals. Consequently, the development of sensing platforms has become crucial to accurately and rapidly identify contaminants and hazards in food products. Electrospun nanofibers (NFs) offer a promising solution due to their unique three-dimensional architecture, large specific surface area, and ease of preparation. Moreover, NFs exhibit excellent biocompatibility, degradability, and adaptability, making monitoring more convenient and environmentally friendly. These characteristics also significantly reduce the detection process of contaminants. NF-based sensors have the ability to detect a wide range of biological, chemicals, and physical hazards. Recent research on NFs-based sensors for the detection of various food contaminants/hazards, such as pathogens, pesticide/drugs residues, toxins, allergens, and heavy metals, is presented in this review.
Collapse
Affiliation(s)
- Sahar Akhavan-Mahdavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mahnaz Sadat Mirbagheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Manali Thakur
- Uniklinik Köln, Kerpener Strasse 62, 50937 Köln Germany
| | - Ievgen Dosnkyi
- Institute of Chemistry and Biochemistry Department of Organic ChemistryFreie Universität Berlin Takustr. 3 14195 Berlin, Germany
| | - Giulia Santomauro
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alok Kumar Singh
- Department of Plant Molecular Biology & Genetic Engineering, ANDUA&T, Ayodhya 224229, Uttar Pradesh, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Joachim Bill
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
10
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
11
|
Umair M, Huma Zafar S, Cheema M, Usman M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119553. [PMID: 37976639 DOI: 10.1016/j.jenvman.2023.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major constraint to provide safe food to society. Cultivation of food crops on these soils, channels the HMs into the food chain and causes serious human health and socioeconomic problems. Multiple conventional and non-conventional remedial options are already in practice with variable success rates, but nanotechnology has proved its success due to higher efficiency. It also led the hypothesis to use hybrid nanoparticles (HNPs) with extended benefits to remediate the HMs and supplement nutrients to enhance the crop yield in the contaminated environments. Hybrid nanoparticles are defined as exclusive chemical conjugates of inorganic and/or organic nanomaterials that are combinations of two or more organic components, two or more inorganic components, or at least one of both types of components. HNPs of different elements like essential nutrients, beneficial nutrients and carbon-based nanoparticles are used for the remediation of metals contaminated soil and the production of metal free crops. Characterizing features of HNPs including particle size, surface area, reactivity, and solubility affect the efficacy of these HNPs in the contaminated environment. Hybrid nanoparticles have great potential to remove the HMs ions from soil solution and restrict their ingress into the root tissues. Furthermore, HNPs of essential nutrients not only compete with heavy metal uptake by plants but also fulfill the need of nutrients. This review provides a comprehensive overview of the challenges associated with application of HNPs in contaminated soils, environmental implications, their remediation ability, and factors affecting their dynamics in environmental matrices.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur, 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| | - Muhammad Usman
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
12
|
Xu W, Shen D, Chen X, Zhao M, Fan T, Wu Q, Meng Z, Cui J. Rotenone nanoparticles based on mesoporous silica to improve the stability, translocation and insecticidal activity of rotenone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106047-106058. [PMID: 37723398 DOI: 10.1007/s11356-023-29842-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
Nanotechnology has been widely applied for pesticide carriers, which is an important way to improve the utilization, stability, and sustained release of pesticides. Mesoporous silica nanoparticles (MSNs) are a nanomaterial with adjustable particle and pore sizes, with a high specific surface area and good biocompatibility. Rotenone is a non-systemic botanical insecticide that is easily degraded in the environment. We used a modified soft-template method to prepare MSNs, in which rotenone was loaded using the solvent evaporation method. The prepared rotenone nanopesticide based on mesoporous silica showed considerable drug loading rates of 33.2%. Moreover, the prepared rotenone nanoparticles showed improved photostability and sustained release behavior, which improved the translocation of rotenone in tomato plants. Finally, the rotenone nanoparticles displayed superior insecticidal activity compared to traditional preparations. In summary, the rotenone nanopesticide improved the persistence and utilization rates of rotenone. These findings are of significance in reducing pesticide usage, mitigating environmental pollution, and ensuring food safety.
Collapse
Affiliation(s)
- Wangjin Xu
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China
| | - Dianjing Shen
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China.
| | - Ming Zhao
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China
| | - Tianle Fan
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China
| | - Qinchao Wu
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China
| | - Jiajia Cui
- College of Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
13
|
Altabbaa S, Mann NA, Chauhan N, Utkarsh K, Thakur N, Mahmoud GAE. Era connecting nanotechnology with agricultural sustainability: issues and challenges. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2023; 8:481-498. [DOI: 10.1007/s41204-022-00289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/27/2022] [Indexed: 09/02/2023]
|
14
|
Yadav A, Yadav K, Ahmad R, Abd-Elsalam KA. Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. AGROCHEMICALS 2023; 2:220-256. [DOI: 10.3390/agrochemicals2020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along with the alleviation of biotic and abiotic stress. Further, nanotechnology-based fertilizers and pesticides can be delivered in lower dosages, which reduces environmental impacts and human health hazards. Another significant advantage lies in introducing cutting-edge nanodiagnostic systems and nanobiosensors that monitor soil quality parameters, plant diseases, and stress, all of which are critical for precision agriculture. Additionally, this technology has demonstrated potential in reducing agro-waste, synthesizing high-value products, and using methods and devices for tagging, monitoring, and tracking agroproducts. Alongside these developments, cloud computing and smartphone-based biosensors have emerged as crucial data collection and analysis tools. Finally, this review delves into the economic, legal, social, and risk implications of nanotechnology in agriculture, which must be thoroughly examined for the technology’s widespread adoption.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Rumana Ahmad
- Department of Biochemistry, Era University, Lucknow 226003, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
15
|
Ahmad Wadaan M, Baabbad A, Farooq Khan M, Shanmuganathan R, Daniel F. Phytotoxicity and cytotoxicity attributes of immobilized Bacillus cereus treated and untreated textile effluents on Vigna mungo seeds and Artemia franciscana larvae. ENVIRONMENTAL RESEARCH 2023; 231:116111. [PMID: 37178746 DOI: 10.1016/j.envres.2023.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The physicochemical attributes of textile effluents collected from secondary treatment stage was investigated in this study and also assess the biosorption potential of membrane immobilized Bacillus cereus and free form of Bacillus cereus on textile effluent through bioreactor model study to find a sustainable solution to manage the textile effluent as vital need. Furthermore, the phytotoxicity and cytotoxicity nature of treated and untreated textile effluents on Vigna mungo and Artemia franciscana larvae under laboratory conditions as a novel approach. The textile effluent physicochemical parameter analysis results showed that the properties such as colour (Hazen unit), pH, turbidity, As, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Cd, Cl, Cr, Cu, Hg, Ni, Pb, SO42-, and Zn were beyond the acceptable limits. Bacillus cereus immobilized on a polyethylene membrane eliminated greater amounts of dye (25.0 ± 1.3, 56.5 ± 1.8, 57.18 ± 1.5, and 54.34 ± 1.7 Hazen unit from An1, Ae2, Ve3, and So4 respectively) and pollutants (As: 0.9-2.0, Cd: 6-8, Cr: 300-450, Cu: 5-7, Hg: 0.1-0.7, Ni: 8-14, Pb: 4-5, and Zn: 4-8 mg L-1) from textile effluent in a week of biosorption investigation using a bioreactor model (batch type) compared to a free form of B. cereus on textile effluent. The phytotoxicity and cytotoxicity study results revealed that the membrane immobilized B. cereus treated textile effluent exposure showed reduced phytotoxicity and minimal cytotoxicity (including mortality) percentage compared with free form B. cereus treated and untreated textile effluents. These entire results conclude that the membrane immobilized B. cereus may considerably minimize/detoxify the harmful pollutants from the textile effluents. A large scale level biosorption approach need to be performed to validate the maximum pollutants removing potential of this membrane immobilized bacteria species and optimal conditions for effective remediation.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box; 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad Baabbad
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box; 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box; 2455, Riyadh, 11451, Saudi Arabia
| | | | - Freedon Daniel
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Ghaziabad, 201204, India.
| |
Collapse
|
16
|
Mubeen I, Fawzi Bani Mfarrej M, Razaq Z, Iqbal S, Naqvi SAH, Hakim F, Mosa WFA, Moustafa M, Fang Y, Li B. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107670. [PMID: 37018866 DOI: 10.1016/j.plaphy.2023.107670] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Agrochemicals are products of advanced technologies that use inorganic pesticides and fertilizers. Widespread use of these compounds has adverse environmental effects, leading to acute and chronic exposure. Globally, scientists are adopting numerous green technologies to ensure a healthy and safe food supply and a livelihood for everyone. Nanotechnologies significantly impact all aspects of human activity, including agriculture, even if synthesizing certain nanomaterials is not environmentally friendly. Numerous nanomaterials may therefore make it easier to create natural insecticides, which are more effective and environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and extend shelf life, while controlled-release products can improve the delivery of pesticides. Nanotechnology platforms enhance the bioavailability of conventional pesticides by changing kinetics, mechanisms, and pathways. This allows them to bypass biological and other undesirable resistance mechanisms, increasing their efficacy. The development of nanomaterials is expected to lead to a new generation of pesticides that are more effective and safer for life, humans, and the environment. This article aims to express at how nanopesticides are being used in crop protection now and in the future. This review aims to shed some light on the various impacts of agrochemicals, their benefits, and the function of nanopesticide formulations in agriculture.
Collapse
Affiliation(s)
- Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates.
| | - Zarafshan Razaq
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Shehzad Iqbal
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, 3460000, Maule, Chile.
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Fahad Hakim
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Walid F A Mosa
- Plant Production Department (Horticulture- Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
18
|
Dutta P, Kumari A, Mahanta M, Upamanya G, Heisnam P, Borua S, Kaman PK, Mishra AK, Mallik M, Muthukrishnan G, Sabarinathan KG, Puzari KR, Vijayreddy D. Nanotechnological approaches for management of soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1136233. [PMID: 36875565 PMCID: PMC9981975 DOI: 10.3389/fpls.2023.1136233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Soil borne pathogens are significant contributor of plant yield loss globally. The constraints in early diagnosis, wide host range, longer persistence in soil makes their management cumbersome and difficult. Therefore, it is crucial to devise innovative and effective management strategy to combat the losses caused by soil borne diseases. The use of chemical pesticides is the mainstay of current plant disease management practices that potentially cause ecological imbalance. Nanotechnology presents a suitable alternative to overcome the challenges associated with diagnosis and management of soil-borne plant pathogens. This review explores the use of nanotechnology for the management of soil-borne diseases using a variety of strategies, such as nanoparticles acting as a protectant, as carriers of actives like pesticides, fertilizers, antimicrobials, and microbes or by promoting plant growth and development. Nanotechnology can also be used for precise and accurate detection of soil-borne pathogens for devising efficient management strategy. The unique physico-chemical properties of nanoparticles allow greater penetration and interaction with biological membrane thereby increasing its efficacy and releasability. However, the nanoscience specifically agricultural nanotechnology is still in its toddler stage and to realize its full potential, extensive field trials, utilization of pest crop host system and toxicological studies are essential to tackle the fundamental queries associated with development of commercial nano-formulations.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Gunadhya Kr Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University, Dhubri, India
| | - Punabati Heisnam
- College of Horticulture and Forestry, Central Agricultural University (Imphal), Pasighat, India
| | - Sarodee Borua
- Krishi Vigya Kendra (KVK)-Tinsukia, Assam Agricultural University, Tinsukia, India
| | - Pranjal K. Kaman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, India
| | - Meenakshi Mallik
- Indian Council of Agricultural Research-National Centre for Integrated Pest management (ICAR-NCIPM), Pusa, New Delhi, India
| | - Gomathy Muthukrishnan
- Agricultural College and Research Institute, Killikulam, Tamil Nadu Agricultural University (TNAU), Tuticorin, India
| | - Kuttalingam G. Sabarinathan
- Agricultural College and Research Institute, Killikulam, Tamil Nadu Agricultural University (TNAU), Tuticorin, India
| | - Krishti Rekha Puzari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Dumpapenchala Vijayreddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| |
Collapse
|
19
|
Transformation of Agro-Waste into Value-Added Bioproducts and Bioactive Compounds: Micro/Nano Formulations and Application in the Agri-Food-Pharma Sector. Bioengineering (Basel) 2023; 10:bioengineering10020152. [PMID: 36829646 PMCID: PMC9952426 DOI: 10.3390/bioengineering10020152] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The agricultural sector generates a significant amount of waste, the majority of which is not productively used and is becoming a danger to both world health and the environment. Because of the promising relevance of agro-residues in the agri-food-pharma sectors, various bioproducts and novel biologically active molecules are produced through valorization techniques. Valorization of agro-wastes involves physical, chemical, and biological, including green, pretreatment methods. Bioactives and bioproducts development from agro-wastes has been widely researched in recent years. Nanocapsules are now used to increase the efficacy of bioactive molecules in food applications. This review addresses various agri-waste valorization methods, value-added bioproducts, the recovery of bioactive compounds, and their uses. Moreover, it also covers the present status of bioactive micro- and nanoencapsulation strategies and their applications.
Collapse
|
20
|
Yang C, Lu Z, Xia Y, Zhang J, Zou Z, Chen C, Wang X, Tian X, Cheng S, Jiang X. Alterations of Gut-Derived Melatonin in Neurobehavioral Impairments Caused by Zinc Oxide Nanoparticles. Int J Nanomedicine 2023; 18:1899-1914. [PMID: 37057188 PMCID: PMC10088905 DOI: 10.2147/ijn.s386240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/24/2022] [Indexed: 04/15/2023] Open
Abstract
Purpose The widespread use of zinc oxide nanoparticles (ZnONPs) has raised concerns about its potential toxicity. Melatonin is a neurohormone with tremendous anti-toxic effects. The enterochromaffin cells are an essential source of melatonin in vivo. However, studies on the effects of ZnONPs on endogenous melatonin are minimal. In the present study, we aimed to investigate the effects of ZnONPs exposure on gut-derived melatonin. Methods In the present study, 64 adult male mice were randomly and equally divided into four groups, and each group was exposed to ZnONPs (0, 6.5, 13, 26 mg/kg/day) for 30 days. Subsequently, the neurobehavioral changes were observed. The effects of ZnONPs on the expression of melatonin-related genes arylalkylamine N-acetyltransferase (Aanat), melatonin receptor1A (Mt1/Mtnr1a), melatonin receptor1B (Mt2/Mtnr1b), and neuropeptide Y (Npy) on melatonin synthesis and secretion in duodenum, jejunum, ileum and colon during day and night were also assessed. Results The results revealed that oral exposure to ZnONPs induced impairments of locomotor activity and anxiety-like behavior in adult mice during the day. The transcriptional analysis of brain tissues revealed that exposure to ZnONPs caused profound effects on genes and transcriptional signaling pathways associated with melatonin synthesis and metabolic processes during the day and night. We also observed that, in the duodenum, jejunum, ileum and colon sites, ZnONPs resulted in a significant reduction in the expression of the gut-derived melatonin rate-limiting enzyme Aanat, the membrane receptors Mt1 and Mt2 and Npy during the day and night. Conclusion Taken together, this is the first study shows that oral exposure to ZnONPs interferes with melatonin synthesis and secretion in different intestinal segments of adult mice. These findings will provide novelty insights into the neurotoxic mechanisms of ZnONPs and suggest an alternative strategy for the prevention of ZnONP neurotoxicity.
Collapse
Affiliation(s)
- Cantao Yang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhaohong Lu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xiaoliang Wang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Shuqun Cheng; Xuejun Jiang, Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Number 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Tel +86-23-68485008, Fax +86-23-68485207, Email ;
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
21
|
Mehmandoust M, Li G, Erk N. Biomass-Derived Carbon Materials as an Emerging Platform for Advanced Electrochemical Sensors: Recent Advances and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Nevin Erk
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| |
Collapse
|
22
|
U VJ, Nargund VB, Patil RR, Vanti GL. Bacillus sp. extract used to fabricate ZnO nanoparticles for their antagonist effect against phytopathogens. Biometals 2022; 35:1255-1269. [PMID: 36075996 DOI: 10.1007/s10534-022-00440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
In order to achieve the food demand of a growing population, agricultural productivity needs to be increased by employing safe strategies. In the present study we have evaluated ZnONPs that were synthesized from the culture supernatant of Bacillus subtilis. Bio mimetically synthesized ZnONPs showed a surface resonance peak of 355 nm corresponding to NPs formation. Further, NPs were examined for their size, shape and element confirmation by DLS, AFM, SEM, TEM and EDAX, which confirmed the synthesized NPs were nearly spherical in size with average diameter of 32 nm by TEM. Surface charge of + 34.3 mV was observed for NPs with a low poly-dispersity index of 0.21. In vitro efficacy studies against fungi Colletotrichum capsici, Sclerotium rolfsii, Alternaria solani and Fusarium oxysporum f. sp. cicero showed up to 99% mycelial growth inhibition at 0.125% ZnONPs. Further, in-vitro disk-diffusion assay showed inhibition zones of 23 ± 0.4 mm and 12.67 ± 0.24 mm for Xanthomonas axonopodis pv. punicae (Xap) and Xanthomonas oryzae pv. oryzae (Xoo) bacterial cultures. Plant toxicity study was observed that ≤ 0.14% NPs concentration was safe under greenhouse conditions. Overall, the present study emphasizes the potential effect of ZnONPs against agricultural pathogens which play an important role in agriculture production.
Collapse
Affiliation(s)
- Vinay J U
- University of Agricultural Sciences, Karnataka, Dharwad, 580 005, India. .,Department of Nanotechnology, University of Agricultural Science, Dharwad, India.
| | | | | | - Gulamnabi L Vanti
- Karnataka Institute of Medical Science, Hubli, Karnataka, 580021, India. .,Migal Galilee Research Institute, Kiryat Shmona, Israel.
| |
Collapse
|
23
|
Abdul Razak NQ, Md Yusoff MH, Abdul Aziz WNA, Kamal ML, Hasan S, Uyup NH, Zulkffle MA, Mohamed Hussin NA, Shafie MH. Effects of silver nanoparticles on seed germination and seedling growth: A review. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Sun Y, Zhu G, Zhao W, Jiang Y, Wang Q, Wang Q, Rui Y, Zhang P, Gao L. Engineered Nanomaterials for Improving the Nutritional Quality of Agricultural Products: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4219. [PMID: 36500842 PMCID: PMC9736685 DOI: 10.3390/nano12234219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
To ensure food safety, the current agricultural development has put forward requirements for improving nutritional quality and reducing the harmful accumulation of agricultural chemicals. Nano-enabled sustainable agriculture and food security have been increasingly explored as a new research frontier. Nano-fertilizers show the potential to be more efficient than traditional fertilizers, reducing the amount used while ensuring plant uptake, supplying the inorganic nutrients needed by plants, and improving the process by which plants produce organic nutrients. Other agricultural uses of nanotechnology affect crop productivity and nutrient quality in addition to nano-fertilizers. This article will review the research progress of using nanomaterials to improve nutritional quality in recent years and point out the focus of future research.
Collapse
Affiliation(s)
- Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor’s Workstation of Yuhuangmiao Town, Shanghe County, Jinan 250061, China
- China Agricultural University Professor’s Workstation of Sunji Town, Shanghe County, Jinan 250061, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
25
|
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ESM, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AAM, Abd El-Mageed TA, Elrys AS, Elbadawi AA, El-Tarabily KA, AbuQamar SF. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:946717. [PMID: 36407622 PMCID: PMC9670308 DOI: 10.3389/fpls.2022.946717] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Plants are subjected to a wide range of abiotic stresses, such as heat, cold, drought, salinity, flooding, and heavy metals. Generally, abiotic stresses have adverse impacts on plant growth and development which affects agricultural productivity, causing food security problems, and resulting in economic losses. To reduce the negative effects of environmental stress on crop plants, novel technologies, such as nanotechnology, have emerged. Implementing nanotechnology in modern agriculture can also help improve the efficiency of water usage, prevent plant diseases, ensure food security, reduce environmental pollution, and enhance sustainability. In this regard, nanoparticles (NPs) can help combat nutrient deficiencies, promote stress tolerance, and improve the yield and quality of crops. This can be achieved by stimulating the activity of certain enzymes, increasing the contents (e.g., chlorophyll) and efficiency of photosynthesis, and controlling plant pathogens. The use of nanoscale agrochemicals, including nanopesticides, nanoherbicides, and nanofertilizers, has recently acquired increasing interest as potential plant-enhancing technologies. This review acknowledges the positive impacts of NPs in sustainable agriculture, and highlights their adverse effects on the environment, health, and food chain. Here, the role and scope of NPs as a practical tool to enhance yield and mitigate the detrimental effects of abiotic stresses in crops are described. The future perspective of nanoparticles in agriculture has also been discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmad O. Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amira M. El-Tahan
- Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Omar M. Ibrahim
- Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Alia A. M. Ebrahim
- School of Life Sciences, Jiangsu Key Laboratory for Microbes and Genomics, Nanjing Normal University, Nanjing, China
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Alaa A. Elbadawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
26
|
Ganilho C, da Silva MB, Paiva C, de Menezes TI, dos Santos MR, Pereira CM, Pereira R, Andreani T. Environmental Safety Assessments of Lipid Nanoparticles Loaded with Lambda-Cyhalothrin. NANOMATERIALS 2022; 12:nano12152576. [PMID: 35957012 PMCID: PMC9370418 DOI: 10.3390/nano12152576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Lipid nanoparticles (LN) composed of biodegradable lipids and produced by green methods are candidates for the encapsulation of pesticides, potentially contributing to decreasing their release in the environment. From a safety-by-design concept, this work proposes LN for the encapsulation of insecticide active ingredients (AI). However, given the complexity of nanoparticles, ecotoxicological studies are often controversial, and a detailed investigation of their effects on the environment is required. Accordingly, this work aimed to produce and characterize LN containing the insecticide lambda-cyhalothrin (LC) and evaluate their safety to crops (Solanum lycopersicum and Zea mays), soil invertebrates (Folsomia candida and Eisenia fetida), and soil microbial parameters. The average particle size for LN-loaded with LC (LN–LC) was 165.4 ± 2.34 nm, with narrow size distribution and negative charge (−38.7 ± 0.954 mV). LN were able to encapsulate LC with an entrapment efficacy of 98.44 ± 0.04%, maintaining the stability for at least 4 months. The LN–LC showed no risk to the growth of crops and reproduction of the invertebrates. The effect on microbial parameters showed that the activity of certain soil microbial parameters can be inhibited or stimulated by the presence of LN at highest concentrations, probably by changing the pH of soil or by the intrinsic properties of LN.
Collapse
Affiliation(s)
- Catarina Ganilho
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; (C.G.); (M.B.d.S.); (C.P.)
| | - Márcia Bessa da Silva
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; (C.G.); (M.B.d.S.); (C.P.)
| | - Cristiana Paiva
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; (C.G.); (M.B.d.S.); (C.P.)
| | - Thacilla Ingrid de Menezes
- Chemistry Research Centre (CIQUP) & Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (T.I.d.M.); (M.R.d.S.); (C.M.P.)
| | - Mayara Roncaglia dos Santos
- Chemistry Research Centre (CIQUP) & Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (T.I.d.M.); (M.R.d.S.); (C.M.P.)
| | - Carlos M. Pereira
- Chemistry Research Centre (CIQUP) & Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (T.I.d.M.); (M.R.d.S.); (C.M.P.)
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; (C.G.); (M.B.d.S.); (C.P.)
- Correspondence: (R.P.); (T.A.); Tel.: +351-220-402-000 (R.P. & T.A.)
| | - Tatiana Andreani
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; (C.G.); (M.B.d.S.); (C.P.)
- Chemistry Research Centre (CIQUP) & Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (T.I.d.M.); (M.R.d.S.); (C.M.P.)
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CTAB) & INOV4AGRO, University of Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal
- Correspondence: (R.P.); (T.A.); Tel.: +351-220-402-000 (R.P. & T.A.)
| |
Collapse
|
27
|
Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379:109833. [PMID: 35914405 DOI: 10.1016/j.ijfoodmicro.2022.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
In recent years, cutting-edge nanotechnology research has revolutionized several facets of the food business, including food processing, packaging, transportation, preservation, and functioning. Nanotechnology has beginning to loom large in the food business as the industry's demand for biogenic nanomaterial grows. The intracellular and extracellular synthesis of metal, metal oxide, and other essential NPs has recently been explored in a variety of microorganisms, including bacteria, actinomycetes, fungi, yeasts, microalgae, and viruses. These microbes produce a variety extracellular material, exopolysaccharides, enzymes, and secondary metabolites which play key roles in synthesizing as well as stabilizing the nanoparticle (NPs). Furthermore, genetic engineering techniques can help them to improve their capacity to generate NPs more efficiently. As a result, using microorganisms to manufacture NPs is unique and has a promising future. Microbial-mediated synthesis of NPs has lately been popular as a more environmentally friendly alternative to physical and chemical methods of nanomaterial synthesis, which require higher prices, more energy consumption, and more complex reaction conditions, as well as a potentially dangerous environmental impact. It is critical to consider regulatory measures implemented at all stages of the process, from production through refining, packaging, preservation, and storage, when producing bionanomaterials derived from culturable microbes for efficient food preservation. The current review discusses the synthesis, mechanism of action, and possible food preservation uses of microbial mediated NPs, which can assist to minimize food deterioration from the inside out while also ensuring that food is safe and free of contaminants. Despite the numerous benefits, there are looming debates concerning their usage in food items, particularly regarding its aggregation in human bodies and other risks to the environment. Other applications and impacts of these microbe-fabricated NPs in the context of future food preservation prospects connected with regulatory problems and potential hazards are highlighted.
Collapse
|
28
|
Synthesis of Iron, Zinc, and Manganese Nanofertilizers, Using Andean Blueberry Extract, and Their Effect in the Growth of Cabbage and Lupin Plants. NANOMATERIALS 2022; 12:nano12111921. [PMID: 35683776 PMCID: PMC9182584 DOI: 10.3390/nano12111921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
The predominant aim of the current study was to synthesize the nanofertilizer nanoparticles ZnO_MnO-NPs and FeO_ZnO-NPs using Andean blueberry extract and determine the effect of NPs in the growth promotion of cabbage (Brassica oleracea var. capitata) and Andean lupin (Lupinus mutabilis sweet) crops. The nanoparticles were analyzed by visible spectrophotometry, size distribution (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Solutions of nanoparticle concentrations were applied to cabbage, with solutions of 270 and 540 ppm of ZnO_MnO-NPs and 270 and 540 ppm of FeO_ZnO-NPs applied to Andean lupin. Zinc was used in both plants to take advantage of its beneficial properties for plant growth. Foliar NPs sprays were applied at the phenological stage of vegetative growth of the cabbage or Andean lupin plants grown under greenhouse conditions. The diameter of the NPs was 9.5 nm for ZnO, 7.8 nm for FeO, and 10.5 nm for MnO, which facilitate the adsorption of NPs by the stomata of plants. In Andean lupin, treatment with 270 ppm of iron and zinc indicated increases of 6% in height, 19% in root size, 3.5% in chlorophyll content index, and 300% in leaf area, while treatment with 540 ppm of iron and zinc yielded no apparent increases in any variable. In cabbage, the ZnO_MnO-NPs indicate, at a concentration of 270 ppm, increases of 10.3% in root size, 55.1% in dry biomass, 7.1% in chlorophyll content, and 25.6% in leaf area. Cabbage plants treated at a concentration of 540 ppm produced increases of 1.3% in root size and 1.8% in chlorophyll content, compared to the control, which was sprayed with distilled water. Therefore, the spray application of nanofertilizers at 270 ppm indicated an important improvement in both plants’ growth.
Collapse
|
29
|
Biogenic Silver Nanoparticles as a Stress Alleviator in Plants: A Mechanistic Overview. Molecules 2022; 27:molecules27113378. [PMID: 35684312 PMCID: PMC9182038 DOI: 10.3390/molecules27113378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, the growth and yield of crops are restrained due to an increase in the occurrence of ecological stresses globally. Biogenic generation of nanomaterials is an important step in the development of environmentally friendly procedures in the nanotechnology field. Silver-based nanomaterials are significant because of their physical, chemical, and biological features along with their plentiful applications. In addition to useful microbes, the green synthesized Ag nanomaterials are considered to be an ecologically friendly and environmentally biocompatible method for the enhancement of crop yield by easing stresses. In the recent decade, due to regular droughts, infrequent precipitation, salinity, and increased temperature, the climate alternation has changed certain ecological systems. As a result of these environmental changes, crop yield has decreased worldwide. The role of biogenic Ag nanomaterials in enhancing methylglyoxal detoxification, antioxidant defense mechanisms, and generating tolerance to stresses-induced ROS injury has been methodically explained in plants over the past ten years. However, certain studies regarding stress tolerance and metal-based nanomaterials have been directed, but the particulars of silver nanomaterials arbitrated stresses tolerance have not been well-reviewed. Henceforth, there is a need to have a good understanding of plant responses during stressful conditions and to practice the combined literature to enhance tolerance for crops by utilization of Ag nanoparticles. This review article illustrates the mechanistic approach that biogenic Ag nanomaterials in plants adopt to alleviate stresses. Moreover, we have appraised the most significant activities by exogenous use of Ag nanomaterials for improving plant tolerance to salt, low and high temperature, and drought stresses.
Collapse
|
30
|
Monotheca buxifolia Driven Synthesis of Zinc Oxide Nano Material Its Characterization and Biomedical Applications. MICROMACHINES 2022; 13:mi13050668. [PMID: 35630135 PMCID: PMC9146105 DOI: 10.3390/mi13050668] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
The current study demonstrates a sophisticated and environmentally friendly synthesis of zinc oxide nanoparticles (ZnO-NPs) for a range of biological and environmental applications using Monotheca buxifolia as a bio-source. At the nanometer scale, a simple aqueous extract from Monotheca buxifolia was used to convert Zn into stable elemental zinc (Zn0). With an average size of 45.8 nm and a spherical shape, the NPs were stable and pure. The nanoparticles studied here were tested in vitro for bactericide, fungicide, biocompatibility, leishmaniasis, anti-diabetic effect, antioxidant effect, and anti-Alzheimer’s effect. According to our results, Monotheca buxifolia mediated ZnO-NPs are highly effective against spore-forming fungal strains and MDR bacterial strains. All examined bacterial isolates of UTI (urinary tract infection) were resistant to non-coated antibiotics; however, adding 1% of the produced ZnO-NPs to the treatments increased their bactericidal activity significantly. The NPs also showed dose-dependent cytotoxicity against Leishmania tropica parasites, with an LC50 of 248 μg/mL for promastigote parasites and 251 μg/mL for amastigote parasites. In addition, a significant inhibition of α-glucosidase, α-amylase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) was discovered, indicating anti-Alzheimer’s and anti-diabetic effects. The biocompatibility of the particles with human red blood cells was also observed. Due to their environmentally friendly production, biological safety, and exceptional physicochemical properties, ZnO-NPs could be used as a new competitor for several biological and environmental applications.
Collapse
|
31
|
Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites. J Xenobiot 2022; 12:74-90. [PMID: 35466214 PMCID: PMC9036208 DOI: 10.3390/jox12020008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Biopolymers such as chitosan and gum acacia are used for nanotechnological applications due to their biosafety and ecofriendly nature. The commercial fungicide mancozeb (M) was loaded into chitosan–gum acacia (CSGA) polymers to form nanocomposite (NC) CSGA-M (mancozeb-loaded) measuring 363.6 nm via the ionic gelation and polyelectrolyte complexation method. The physico-chemical study of nano CSGA-M was accomplished using dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Nano CSGA-M-1.0 (containing 1.0 mg/mL mancozeb) at 1.5 ppm demonstrated a maximum inhibition (83.8 ± 0.7%) against Alternaria solani, while Sclerotinia sclerotiorum exhibited a 100% inhibition at 1.0 and 1.5 ppm through the mycelium inhibition method. Commercial mancozeb showed an inhibition of 84.6 ± 0% and 100%, respectively, for both fungi. In pot house conditions, NCs were found to exhibit good antimicrobial activity. Disease control efficiency (DCE, in %) in pathogen-treated plants for CSGA-M-1.0 was 64.6 ± 5.0 and 60.2 ± 1.4% against early blight and stem rot diseases, respectively. NCs showed lower cytotoxicity than commercial mancozeb at the given concentration. In conclusion, both in vitro and in vivo antifungal efficacy for nano CSGA-M was found to be quite comparable but less toxic than mancozeb to Vero cell lines; thus, in the future, this formulation may be used for sustainable agriculture.
Collapse
|
32
|
Zhao K, Yang Y, Zhang L, Zhang J, Zhou Y, Huang H, Luo S, Luo L. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives. ENVIRONMENTAL RESEARCH 2022; 205:112244. [PMID: 34688645 DOI: 10.1016/j.envres.2021.112244] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Chemical fertilizer is gaining increasing attention and has been the center of much research which indicating complex beneficial and harmful effects. Chemical fertilizer might cause some environmental hazards to the biosphere, especially in the agricultural ecosystem. The application of silicon (Si) fertilizer in agriculture has been proved to be able to create good economic and environmental benefits. Si is the second most abundant earth crust element. Si fertilizer improves soil quality and alleviates biotic and abiotic crop stress. It is of great significance to understand the function of Si fertilizer in agricultural utilization and environmental remediation. This paper reviews the Si-based fertilizer in farmland use and summarizes prior research relevant with characterization, soil quality improvement, and pollution remediation effects. Its use in agriculture enhances plant silicon uptake, mediates plant salt and drought stress and remediates heavy metals such as Al, As, Cd, Cu, Zn and Cr. This article also summarizes the detoxification mechanism of silicon and its effects on plant physiological activity such as photosynthesis and transpiration. Fertilizer materials and crop fertilizer management were also considered. Foliar spraying is an effective method to improve crop growth and yield and reduce biotic or abiotic stress. Silicon nanoparticle material provides potential with great potential and prospects. More investigation and research are prospected to better understand how silicon impacts the environment and whether it is a beneficial additive.
Collapse
Affiliation(s)
- Keqi Zhao
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Shuang Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| |
Collapse
|
33
|
Farooq T, Nisa ZU, Hameed A, Ahmed T, Hameed A. Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat. BMC Chem 2022; 16:23. [PMID: 35365183 PMCID: PMC8976417 DOI: 10.1186/s13065-022-00813-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
In this study Cu-chitosan nanoparticles (Cu-CNP) have been employed as eco-friendly and safer priming agents to induce salt and PEG-induced hyperosmotic stress tolerance in wheat seedlings. Seed priming is a facile on-farm stress management technique that requires a little amount of priming agent and minimizes the eco-toxicological effects on soil fertility. The wheat seeds were primed with 0.12% and 0.16% Cu-CNP for eight hours and were allowed to germinate under normal, PEG-induced hyperosmotic stress (15% PEG-6000 – 3.0 Mpa) and salt stress (150 mM). For comparison, non-primed and hydro-primed seeds were also allowed to germinate as control under the same conditions. The biochemical analyses suggested the priming treatments enhanced the POD activity under salt stress but it was decreased under PEG-induced hyperosmotic stress. Priming with 0.12% Cu-CNP induced a significant increase in CAT while the opposite effect was observed in 0.16% treated seedling under stress and non-stress conditions. Both priming treatments did not allow the over-expression of SOD under both stress conditions. The total phenolic contents were also decreased significantly under all conditions. Except for priming with 0.16% Cu-CNP under PEG-induced hyperosmotic stress, a suppression in MDA was observed under both stress conditions. Surprisingly, the Cu-CNP priming induced a significant increase in β-carotenoids, total carotenoids, chlorophyll a, b and total chlorophyll under normal and stress conditions. In conclusion, the controlled expression of enzymatic antioxidants, low contents of non-enzymatic antioxidants and suppression of MDA mirror the stress mitigating role of Cu-CNP against PEG-induced hyperosmotic stress and salinity. The stress-insulating potential has also been reinforced by the enhanced production of plant and photosynthetic pigments. All these priming-induced biochemical changes produced positive effects on growth and germinating parameters in wheat seedlings under PEG-induced hyperosmotic stress as well as salinity.
Collapse
Affiliation(s)
- Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Zaib Un Nisa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Toheed Ahmed
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan.,Department of Chemistry, Riphah international university, Faisalabad, 380000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
34
|
Grodetskaya TA, Evlakov PM, Fedorova OA, Mikhin VI, Zakharova OV, Kolesnikov EA, Evtushenko NA, Gusev AA. Influence of Copper Oxide Nanoparticles on Gene Expression of Birch Clones In Vitro under Stress Caused by Phytopathogens. NANOMATERIALS 2022; 12:nano12050864. [PMID: 35269352 PMCID: PMC8912387 DOI: 10.3390/nano12050864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Recently, metal oxide nanoparticles (NPs) have attracted attention as promising components for the protection and stimulation of plant microclones in tissue culture in vitro. However, the effect of NPs on the genetic mechanisms underlying plant adaptive responses remains poorly understood. We studied the effect of column-shaped CuO NPs 50 nm in diameter and 70–100 nm in length at a concentration of 0.1–10 mg/L on the development of phytopathogenic fungi Alternaria alternata, Fusarium oxysporum, and Fusarium avenaceum in culture, as well as on the infection of downy birch micro-clones with phytopathogens and the level of genes expression associated with the formation of plant responses to stress induced by microorganisms. CuO NPs effectively suppressed the development of colonies of phytopathogenic fungi A. alternata and F. avenaceum (up to 68.42% inhibition at 10 mg/L CuO NPs) but not the development of a colony of F. oxysporum. Exposure to the NPs caused multidirectional responses at the level of plant genes transcription: 5 mg/L CuO NPs significantly increased the expression level of the LEA8 and MYB46 genes and decreased the expression of DREB2 and PAL. Infection with A. alternata significantly increased the level of MYB46, LEA8, PAL, PR-1, and PR-10 transcripts in birch micro-clones; however, upon exposure to a medium with NPs and simultaneous exposure to a phytopathogen, the expression of the MYB46, PR-1, and PR-10 genes decreased by 5.4 times, which is associated with a decrease in the pathogenic load caused by the effect of NPs and the simultaneous stimulation of clones in vitro. The results obtained can be used in the development of preparations based on copper oxide NPs for disinfection and stimulation of plant phytoimmunity during clonal micropropagation of tree crops.
Collapse
Affiliation(s)
- Tatiana A. Grodetskaya
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Peter M. Evlakov
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
- Correspondence: ; Tel.: +7-9204366589
| | - Olga A. Fedorova
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Vyacheslav I. Mikhin
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Olga V. Zakharova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Nadezhda A. Evtushenko
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Alexander A. Gusev
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
35
|
Chauhan A, Anand J, Parkash V, Rai N. Biogenic synthesis: a sustainable approach for nanoparticles synthesis mediated by fungi. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anuj Chauhan
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Vipin Parkash
- Forest Pathology Discipline, Forest Protection Division Forest Research Institute (Deemed) University, (Indian Council of Forestry Research & Education) Autonomous council under Ministry of Environment, Forest & Climate Change, (Govt. of India), Dehradun, Uttarakhand, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| |
Collapse
|
36
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
37
|
Lu S, Ma T, Hu X, Zhao J, Liao X, Song Y, Hu X. Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:312-321. [PMID: 34096072 DOI: 10.1002/jsfa.11360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sugarcane straw is an available but largely ignored lignocellulosic biomass to obtain cellulose nanocrystals (CNCs) with highly crystalline, tunable surface chemistries and a wide-ranging adaptability. Herein, we utilized sugarcane straw to obtain pure cellulose via purification processes, followed by subsequent preparation of CNCs via sulfuric acid hydrolysis. The properties of the purified fibers and obtained CNCs were assessed by their composition, morphology, chemical structure, crystallinity and thermal stability. RESULTS After the purification process, alkali-treated fibers (ATFs) contained 886.33 ± 1.25 g kg-1 cellulose, and its morphological analysis revealed a smooth and slender fibrous structure. The CNCs obtained by treatment with 64 wt% sulfuric acid at 45 °C for 60 min were isolated in a yield of 21.8%, with a diameter and length of 6 to 10 nm and 160 to 200 nm, respectively. Moreover, crystallinity index of these CNCs reached 62.66%, and thermal stability underwent a two-step degradation. Short-term ultrasonication after hydrolysis was employed to enhance isolation of the CNC particles and improve the anionic charge with higher value -38.00 mV. CONCLUSION Overall, isolation and characterization results indicated the potential for CNCs preparation using sugarcane straw, in addition to offering a fundamental understanding of this material and indicating potential applications. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetable Processing, Beijing, China
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetable Processing, Beijing, China
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetable Processing, Beijing, China
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetable Processing, Beijing, China
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetable Processing, Beijing, China
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetable Processing, Beijing, China
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetable Processing, Beijing, China
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
38
|
Alabdallah NM, Hasan MM. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci 2021; 28:5631-5639. [PMID: 34588874 PMCID: PMC8459083 DOI: 10.1016/j.sjbs.2021.05.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
The development of effective and environmentally friendly methods for the green synthesis of nanoparticles (NPs) is a critical stage in the field of nanotechnology. Silver nanoparticles (AgNPs) are significant due to their unique physical, chemical, and biological properties, as well as their numerous applications. Physical, chemical, and green synthesis approaches can all be used to produce AgNPs; however, synthesis using biological precursors, particularly plant-based green synthesis, has shown outstanding results. In recent years, owing to a combination of frequent droughts, unusual rainfall, salt-affected areas, and high temperatures, climate change has changed several ecosystems. Crop yields have decreased globally as a result of these changes in the environment. Green synthesized AgNPs role in boosting antioxidant defense mechanisms, methylglyoxal (MG) detoxification, and developing tolerance for abiotic stress-induced oxidative damage has been thoroughly described in plant species over the last decade. Although various studies on abiotic stress tolerance and metallic nanoparticles (NPs) in plants have been conducted, but the details of AgNPs mediated abiotic stress tolerance have not been well summarized. Therefore, the plant responses to abiotic stress need to be well understood and to apply the gained knowledge to increase stress tolerance by using AgNPs for crop plants. In this review, we outlined the green synthesis of AgNPs extracted from plant extract. We also have updates on the most important accomplishments through exogenous application of AgNPs to improve plant tolerance to drought, salinity, low and high-temperature stresses.
Collapse
Affiliation(s)
- Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 383, Dammam, Saudi Arabia
| | - Md. Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
39
|
HUTAPEA S, GHAZI AL-SHAWI S, CHEN TC, YOU X, Bokov D, ABDELBASSET WK, SUKSATAN W. Study on food preservation materials based on nano-particle reagents. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.39721] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Dmitry Bokov
- Sechenov First Moscow State Medical University, Russian Federation; Biotechnology and Food Safety, Russian Federation
| | | | | |
Collapse
|
40
|
Pacios-Michelena S, Aguilar González CN, Alvarez-Perez OB, Rodriguez-Herrera R, Chávez-González M, Arredondo Valdés R, Ascacio Valdés JA, Govea Salas M, Ilyina A. Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.696518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the relevant problems in today's agriculture is related to phytopathogenic microorganisms that cause between 30–40% of crop losses. Synthetic chemical pesticides and antibiotics have brought human and environmental health problems and microbial resistance to these treatments. So, the search for natural alternatives is necessary. The genus Streptomyces have broad biotechnological potential, being a promising candidate for the biocontrol of phytopathogenic microorganisms. The efficacy of some species of this genus in plant protection and their continued presence in the intensely competitive rhizosphere is due to its great potential to produce a wide variety of soluble bioactive secondary metabolites and volatile organic compounds. However, more attention is still needed to develop novel formulations that could increase the shelf life of streptomycetes, ensuring their efficacy as a microbial pesticide. In this sense, encapsulation offers an advantageous and environmentally friendly option. The present review aims to describe some phytopathogenic microorganisms with economic importance that require biological control. In addition, it focuses mainly on the Streptomyces genus as a great producer of secondary metabolites that act on other microorganisms and plants, exercising its role as biological control. The review also covers some strategies and products based on Streptomyces and the problems of its application in the field.
Collapse
|
41
|
Huang Y, Li X, Mo D, Yuan H, Hu Q, Jiang Y, Gan C, Chen Y, Li W, Lu R, Cui J. Fabrication and evaluation of Lambda-Cyhalothrin nanosuspoemulsion with pH- and temperature-responsive based on polyethylene wax as carrier. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:741-752. [PMID: 34388056 DOI: 10.1080/03601234.2021.1941705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using polyethylene wax (PW) as the coating matrix, the lambda-cyhalothrin-PW nanosuspoemulsion (LC-PW) with a particle size of 80-150nm was prepared through high-speed stirring, hot melt emulsification and ultrasonic dispersion. The formulation and composition of the LC-PW were optimized, the morphology of the LC-PW was analyzed by dynamic light scattering (DLS) and TEM, and the structure of the LC-PW was characterized by UV and IR. The anti-photolysis test showed that LC-PW had a good anti-photolysis performance. Furthermore, LC-PW could sustainably release Lambda-cyhalothrin, which was pH- and temperature dependent. The insecticidal activity analysis in the greenhouse indicated that the toxic strength between LC-PW and LC-SC (lambda-cyhalothrin-suspension concentrate) to Mythimna separata was similar within the same concentration ranges tested, but the insecticidal duration of LC-PW was significantly longer than LC-SC. Thus, the new type of LC-PW with the properties of anti-photolysis and controlled release is suitable for application in the field as a better insecticide.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Xiangying Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Dongmei Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Haiyan Yuan
- Pharmaceutical Collge, Guangxi Medical University, Nanning, PR China
| | - Qiang Hu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yang Jiang
- Guangxi Tianyuan Biochemical Co. Ltd., Nanning, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Weiguo Li
- Guangxi Tianyuan Biochemical Co. Ltd., Nanning, PR China
| | - Rui Lu
- Guangxi Tianyuan Biochemical Co. Ltd., Nanning, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
- Guangxi Tianyuan Biochemical Co. Ltd., Nanning, PR China
| |
Collapse
|
42
|
Basavegowda N, Baek KH. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech 2021; 11:357. [PMID: 34268065 DOI: 10.1007/s13205-021-02907-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Over the last century, the demand for food resources has been continuously increasing with the rapid population growth. Therefore, it is critically important to adopt sustainable farming practices that can enhance crop production without the excessive use of fertilizers. In this regard, there is a growing interest in the use of nanomaterials for improving plant nutrition as an alternative to traditional chemical or mineral fertilizers. Using this technology, the efficiency of micro- and macro-nutrients in plants can increase. Various nanomaterials have been successfully applied in agricultural production, compared to conventional fertilizers. Among the major plant nutrients, phosphorus (P) is the least accessible since most farmlands are frequently P deficient. Hence, P use efficiency should be maximized to conserve the resource base and maintain agricultural productivity. This review summarizes the current research and the future possibilities of nanotechnology in the biofortification of plant nutrition, with a focus on P fertilizers. In addition, it covers the challenges, environmental impacts, and toxic effects that have been explored in the area of nanotechnology to improve crop production. The potential uses and benefits of nanoparticle-based fertilizers in precision and sustainable agriculture are also discussed.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| |
Collapse
|
43
|
Abid U, Gill YQ, Irfan MS, Umer R, Saeed F. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers. Int J Biol Macromol 2021; 181:1-29. [PMID: 33744249 DOI: 10.1016/j.ijbiomac.2021.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Renewable resources including polycarbohydrates, lignin, proteins, and polyacids are the intrinsically valuable class of materials that are naturally available in great quantities. Their utilization as green additives and reinforcing bio-fillers, in substitution of environmentally perilous petroleum-based fillers, for developing high-performance green rubber blends and composites is presently a highly tempting option. Blending of these renewable materials with elastomers is not straight-forward and research needs to exploit the high functionality of carbohydrates and other natural materials as proper physicochemical interactions are essential. Correlating and understanding the structural properties of lignin, carbohydrates, polyacids, and other biopolymers, before their incorporation in elastomers, is a potential approach towards the development of green elastomers for value-added applications. Promising properties i.e., biodegradability, biocompatibility, morphological characteristics, high mechanical properties, thermal stability, sustainability, and various other characteristics along with recent advancements in the development of green elastomers are reviewed in this paper. Structures, viability, interactions, properties, and use of most common natural polycarbohydrates (chitosan and starch), lignin, and proteins (collagen and gelatin) for elastomer modification are extensively reviewed. Challenges in commercialization, applications, and future perspectives of green elastomers are also discussed. Sustainability analysis of green elastomers is accomplished to elaborate their cost-effectiveness and environmental friendliness.
Collapse
Affiliation(s)
- Umer Abid
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Yasir Qayyum Gill
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Muhammad Shafiq Irfan
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan; Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Farhan Saeed
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| |
Collapse
|
44
|
Das G, Shin HS, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Singh YD, Panda MK, Mishra AP, Nigam M, Saklani S, Chaturi PK, Martorell M, Cruz-Martins N, Sharma V, Garg N, Sharma R, Patra JK. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front Pharmacol 2021; 11:602364. [PMID: 33628175 PMCID: PMC7898063 DOI: 10.3389/fphar.2020.602364] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023] Open
Abstract
In recent decades, interest in the Cordyceps genus has amplified due to its immunostimulatory potential. Cordyceps species, its extracts, and bioactive constituents have been related with cytokine production such as interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor (TNF)-α, phagocytosis stimulation of immune cells, nitric oxide production by increasing inducible nitric oxide synthase activity, and stimulation of inflammatory response via mitogen-activated protein kinase pathway. Other pharmacological activities like antioxidant, anti-cancer, antihyperlipidemic, anti-diabetic, anti-fatigue, anti-aging, hypocholesterolemic, hypotensive, vasorelaxation, anti-depressant, aphrodisiac, and kidney protection, has been reported in pre-clinical studies. These biological activities are correlated with the bioactive compounds present in Cordyceps including nucleosides, sterols, flavonoids, cyclic peptides, phenolic, bioxanthracenes, polyketides, and alkaloids, being the cyclic peptides compounds the most studied. An organized review of the existing literature was executed by surveying several databanks like PubMed, Scopus, etc. using keywords like Cordyceps, cordycepin, immune system, immunostimulation, immunomodulatory, pharmacology, anti-cancer, anti-viral, clinical trials, ethnomedicine, pharmacology, phytochemical analysis, and different species names. This review collects and analyzes state-of-the-art about the properties of Cordyceps species along with ethnopharmacological properties, application in food, chemical compounds, extraction of bioactive compounds, and various pharmacological properties with a special focus on the stimulatory properties of immunity.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
| | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | - Sarla Saklani
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, Alameda Prof. Hernani Monteiro, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
45
|
Lugani Y, Sooch BS, Singh P, Kumar S. Nanobiotechnology applications in food sector and future innovations. MICROBIAL BIOTECHNOLOGY IN FOOD AND HEALTH 2021. [PMCID: PMC7499077 DOI: 10.1016/b978-0-12-819813-1.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Mohamed HI, Abd-Elsalam KA, Tmam AM, Sofy MR. Silver-based nanomaterials for plant diseases management: Today and future perspectives. SILVER NANOMATERIALS FOR AGRI-FOOD APPLICATIONS 2021:495-526. [DOI: 10.1016/b978-0-12-823528-7.00031-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
47
|
Pérez-Hernández H, Pérez-Moreno A, Sarabia-Castillo CR, García-Mayagoitia S, Medina-Pérez G, López-Valdez F, Campos-Montiel RG, Jayanta-Kumar P, Fernández-Luqueño F. Ecological Drawbacks of Nanomaterials Produced on an Industrial Scale: Collateral Effect on Human and Environmental Health. WATER, AIR, AND SOIL POLLUTION 2021; 232:435. [PMID: 34658457 PMCID: PMC8507508 DOI: 10.1007/s11270-021-05370-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
Currently, hundreds of different nanomaterials with a broad application in products that make daily lives a little bit easier, in every aspect, are being produced on an industrial scale at thousands of tons per year. However, several scientists, researchers, politics, and ordinary citizens have stated their concern regarding the life cycle, collateral effects, and final disposal of these cutting-edge materials. This review summarizes, describes, and discusses all manuscripts published in the Journal Citation Reports during the last 10 years, which studied the toxicity or the effects of nanomaterials on human and environmental health. It was observed that 23.62% of the manuscripts analyzed found no ecological or human risks; 54.39% showed that several nanomaterials have toxicological effects on the ecosystems, human, or environmental health. In comparison, only 21.97% stated the nanomaterials had a beneficial impact on those. Although only 54.39% of the manuscripts reported unfavorable effects of nanomaterials on ecosystems, human, or environmental health, it is relevant because the potential damage is invaluable. Therefore, it is imperative to make toxicological studies of nanomaterials with holistic focus under strictly controlled real conditions before their commercialization, to deliver to the market only innocuous and environmentally friendly products.
Collapse
Affiliation(s)
- H. Pérez-Hernández
- El Colegio de la Frontera Sur, Agroecología, Unidad Campeche, 24500 Campeche, Mexico
| | - A. Pérez-Moreno
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - C. R. Sarabia-Castillo
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - S. García-Mayagoitia
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - G. Medina-Pérez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo C. P. 43000 México
| | - F. López-Valdez
- Agricultural Biotechnology Group, Research Center for Applied Biotechnology (CIBA), Instituto Politécnico Nacional, 90700 Tlaxcala, Mexico
| | - R. G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo C. P. 43000 México
| | - P. Jayanta-Kumar
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326 Republic of Korea
| | - F. Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| |
Collapse
|
48
|
Wahid I, Kumari S, Ahmad R, Hussain SJ, Alamri S, Siddiqui MH, Khan MIR. Silver Nanoparticle Regulates Salt Tolerance in Wheat Through Changes in ABA Concentration, Ion Homeostasis, and Defense Systems. Biomolecules 2020; 10:E1506. [PMID: 33147820 PMCID: PMC7694077 DOI: 10.3390/biom10111506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
Salinity is major abiotic stress affecting crop yield, productivity and reduces the land-usage area for agricultural practices. The purpose of this study is to analyze the effect of green-synthesized silver nanoparticle (AgNP) on physiological traits of wheat (Triticum aestivum) under salinity stress. Using augmented and high-throughput characterization of synthesized AgNPs, this study investigated the proximity of AgNPs-induced coping effects under stressful cues by measuring the germination efficiency, oxidative-biomarkers, enzymatic and non-enzymatic antioxidants, proline and nitrogen metabolism, stomatal dynamics, and ABA content. Taken together, the study shows a promising approach in salt tolerance and suggests that mechanisms of inducing the salt tolerance depend on proline metabolism, ions accumulation, and defense mechanisms. This study ascertains the queries regarding the correlation between nanoparticles use and traditional agriculture methodology; also significantly facilitates to reach the goal of sustainable developments for increasing crop productivity via much safer and greener approachability.
Collapse
Affiliation(s)
- Iram Wahid
- Department of Biosciences, Integral University, Lucknow 226026, India;
| | - Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India;
| | - Sofi J. Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir 192202, India;
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (M.H.S.)
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (M.H.S.)
| | | |
Collapse
|
49
|
Pal S, Singh V, Kumar R, Gogoi R. Design and development of 1,3,4-thiadiazole based potent new nano-fungicides. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Xu Y, Lu Y, Li J, Liu R, Zhu X. Effect of graphene quantum dot size on plant growth. NANOSCALE 2020; 12:15045-15049. [PMID: 32432272 DOI: 10.1039/d0nr01913e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We found a straightforward dependence of plant growth on the sizes of graphene quantum dots. Enormous GQDs, such as graphene with dimensions of micrometers, neither promoted nor inhibited the growth. In contrast, synthesized GQDs with dimensions of about 10 nm best promoted the plant growth. Moreover GQDs synthesized using an "intelligent" chemistry robot yielded even better growth results than did GQDs synthesized conventionally by humans. In addition, a theoretical model was derived for the mechanism of the promotion of plant growth by GQDs.
Collapse
Affiliation(s)
- Yao Xu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 14-15F, Tower G2, Xinghe World, Rd Yabao, Longgang District, Shenzhen 518172, China.
| | | | | | | | | |
Collapse
|