1
|
Shioka I, Morita R, Yagasaki R, Wuergezhen D, Yamashita T, Fujiwara H, Okuda S. Ex vivo SIM-AFM measurements reveal the spatial correlation of stiffness and molecular distributions in 3D living tissue. Acta Biomater 2024:S1742-7061(24)00539-7. [PMID: 39379233 DOI: 10.1016/j.actbio.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Living tissues each exhibit a distinct stiffness, which provides cells with key environmental cues that regulate their behaviors. Despite this significance, our understanding of the spatiotemporal dynamics and the biological roles of stiffness in three-dimensional tissues is currently limited due to a lack of appropriate measurement techniques. To address this issue, we propose a new method combining upright structured illumination microscopy (USIM) and atomic force microscopy (AFM) to obtain precisely coordinated stiffness maps and biomolecular fluorescence images of thick living tissue slices. Using mouse embryonic and adult skin as a representative tissue with mechanically heterogeneous structures inside, we validate the measurement principle of USIM-AFM. Live measurement of tissue stiffness distributions revealed the highly heterogeneous mechanical nature of skin, including nucleated/enucleated epithelium, mesenchyme, and hair follicle, as well as the role of collagens in maintaining its integrity. Furthermore, quantitative analysis comparing stiffness distributions in live tissue samples with those in preserved tissues, including formalin-fixed and cryopreserved tissue samples, unveiled the distinct impacts of preservation processes on tissue stiffness patterns. This series of experiments highlights the importance of live mechanical testing of tissue-scale samples to accurately capture the true spatiotemporal variations in mechanical properties. Our USIM-AFM technique provides a new methodology to reveal the dynamic nature of tissue stiffness and its correlation with biomolecular distributions in live tissues and thus could serve as a technical basis for exploring tissue-scale mechanobiology. STATEMENT OF SIGNIFICANCE: Stiffness, a simple mechanical parameter, has drawn attention in understanding the mechanobiological principles underlying the homeostasis and pathology of living tissues. To explore tissue-scale mechanobiology, we propose a technique integrating an upright structured illumination microscope and an atomic force microscope. This technique enables live measurements of stiffness distribution and fluorescent observation of thick living tissue slices. Experiments revealed the highly heterogeneous mechanical nature of mouse embryonic and adult skin in three dimensions and the previously unnoticed influences of preservation techniques on the mechanical properties of tissue at microscopic resolution. This study provides a new technical platform for live stiffness measurement and biomolecular observation of tissue-scale samples with micron-scale resolution, thus contributing to future studies of tissue- and organ-scale mechanobiology.
Collapse
Affiliation(s)
- Itsuki Shioka
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ritsuko Morita
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Rei Yagasaki
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Tadahiro Yamashita
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
2
|
Kumarasinghe U, Hasturk O, Wang B, Rudolph S, Chen Y, Kaplan DL, Staii C. Impact of Silk-Ionomer Encapsulation on Immune Cell Mechanical Properties and Viability. ACS Biomater Sci Eng 2024; 10:4311-4322. [PMID: 38718147 DOI: 10.1021/acsbiomaterials.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Encapsulation of single cells is a powerful technique used in various fields, such as regenerative medicine, drug delivery, tissue regeneration, cell-based therapies, and biotechnology. It offers a method to protect cells by providing cytocompatible coatings to strengthen cells against mechanical and environmental perturbations. Silk fibroin, derived from the silkworm Bombyx mori, is a promising protein biomaterial for cell encapsulation due to the cytocompatibility and capacity to maintain cell functionality. Here, THP-1 cells, a human leukemia monocytic cell line, were encapsulated with chemically modified silk polyelectrolytes through electrostatic layer-by-layer deposition. The effectiveness of the silk nanocoating was assessed using scanning electron microscopy (SEM) and confocal microscopy and on cell viability and proliferation by Alamar Blue assay and live/dead staining. An analysis of the mechanical properties of the encapsulated cells was conducted using atomic force microscopy nanoindentation to measure elasticity maps and cellular stiffness. After the cells were encapsulated in silk, an increase in their stiffness was observed. Based on this observation, we developed a mechanical predictive model to estimate the variations in stiffness in relation to the thickness of the coating. By tuning the cellular assembly and biomechanics, these encapsulations promote systems that protect cells during biomaterial deposition or processing in general.
Collapse
Affiliation(s)
- Udathari Kumarasinghe
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Brook Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Gisbert VG, Espinosa FM, Sanchez JG, Serrano MC, Garcia R. Nanorheology and Nanoindentation Revealed a Softening and an Increased Viscous Fluidity of Adherent Mammalian Cells upon Increasing the Frequency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304884. [PMID: 37775942 DOI: 10.1002/smll.202304884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Indexed: 10/01/2023]
Abstract
The nanomechanical response of a cell depends on the frequency at which the cell is probed. The components of the cell that contribute to this property and their interplay are not well understood. Here, two force microscopy methods are integrated to characterize the frequency and/or the velocity-dependent properties of living cells. It is shown on HeLa and fibroblasts, that cells soften and fluidize upon increasing the frequency or the velocity of the deformation. This property was independent of the type and values (25 or 1000 nm) of the deformation. At low frequencies (2-10 Hz) or velocities (1-10 µm s-1 ), the response is dominated by the mechanical properties of the cell surface. At higher frequencies (>10 Hz) or velocities (>10 µm s-1 ), the response is dominated by the hydrodynamic drag of the cytosol. Softening and fluidization does not seem to involve any structural remodeling. It reflects a redistribution of the applied stress between the solid and liquid-like elements of the cell as the frequency or the velocity is changed. The data indicates that the quasistatic mechanical properties of a cell featuring a cytoskeleton pathology might be mimicked by the response of a non-pathological cell which is probed at a high frequency.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Francsico M Espinosa
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Juan G Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Maria Concepcion Serrano
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| |
Collapse
|
4
|
Matsuzaki T, Kawano Y, Horikiri M, Shimokawa Y, Yamazaki T, Okuma N, Koike H, Kimura M, Kawamura R, Yoneyama Y, Furuichi Y, Hakuno F, Takahashi SI, Nakabayashi S, Okamoto S, Nakauchi H, Taniguchi H, Takebe T, Yoshikawa HY. Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells. STAR Protoc 2023; 4:102471. [PMID: 37515762 PMCID: PMC10400955 DOI: 10.1016/j.xpro.2023.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).1,2,3.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Future Innovation, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuma Kawano
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Momoka Horikiri
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuko Shimokawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Takashi Yamazaki
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nao Okuma
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroyuki Koike
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Masaki Kimura
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Ryuzo Kawamura
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Yosuke Yoneyama
- Institute of Research, Division of Advanced Multidisciplinary Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiichiro Nakabayashi
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan; Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Satoshi Okamoto
- Division of Regenerative Medicine, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hideki Taniguchi
- Division of Regenerative Medicine, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Institute of Research, Division of Advanced Multidisciplinary Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
McCraw MR, Uluutku B, Solomon HD, Anderson MS, Sarkar K, Solares SD. Optimizing the accuracy of viscoelastic characterization with AFM force-distance experiments in the time and frequency domains. SOFT MATTER 2023; 19:451-467. [PMID: 36530043 DOI: 10.1039/d2sm01331b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an attractive alternative to traditional micro-rheology measurement techniques owing to their versatility of use in materials of a wide range of mechanical properties. Here, we show that the range of time dependent behaviour which can reliably be resolved from the typical method of FD inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental parameters: sampling frequency, experiment length, and strain rate. Specifically, we demonstrate that violating these restrictions can result in errors in the values of the parameters of the complex modulus. In the case of complex materials, such as cells, whose behaviour is not specifically understood a priori, the physical sensibility of these parameters cannot be assessed and may lead to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions. We use arguments from information theory to understand the nature of these inconsistencies as well as devise limits on the range of mechanical parameters which can be reliably obtained from FD experiments. The results further demonstrate that the nature of these restrictions depends on the domain (time or frequency) used in the inversion process, with the time domain being far more restrictive than the frequency domain. Finally, we demonstrate how to use these restrictions to better design FD experiments to target specific timescales of a material's behaviour through our analysis of a polydimethylsiloxane (PDMS) polymer sample.
Collapse
Affiliation(s)
- Marshall R McCraw
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Berkin Uluutku
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Halen D Solomon
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Megan S Anderson
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| |
Collapse
|
6
|
Lekka M. Applicability of atomic force microscopy to determine cancer-related changes in cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210346. [PMID: 35909354 DOI: 10.1098/rsta.2021.0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
The determination of mechanical properties of living cells as an indicator of cancer progression has become possible with the development of local measurement techniques such as atomic force microscopy (AFM). Its most important advantage is a nanoscopic character, implying that very local alterations can be quantified. The results gathered from AFM measurements of various cancers show that, for most cancers, individual cells are characterized by the lower apparent Young's modulus, denoting higher cell deformability. The measured value depends on various factors, like the properties of substrates used for cell growth, force loading rate or indentation depth. Despite this, the results proved the AFM capability to recognize mechanically altered cells. This can significantly impact the development of methodological approaches toward the precise identification of pathological cells. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
7
|
Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate. Polymers (Basel) 2022; 14:polym14102124. [PMID: 35632006 PMCID: PMC9143375 DOI: 10.3390/polym14102124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
The viscoelastic properties of materials such as polymers can be quantitatively evaluated by measuring and analyzing the viscoelastic behaviors such as stress relaxation and creep. The standard linear solid model is a classical and commonly used mathematical model for analyzing stress relaxation and creep behaviors. Traditionally, the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model are derived using the assumption that the loading is a step function, implying that the loading rate used in the loading process of stress relaxation and creep tests is infinite. Using such constitutive equations may cause significant errors in analyses since the loading rate must be finite (no matter how fast it is) in a real stress relaxation or creep experiment. The purpose of this paper is to introduce the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model derived with a finite loading rate. The finite element computational simulation results demonstrate that the constitutive equations derived with a finite loading rate can produce accurate results in the evaluation of all viscoelastic parameters regardless of the loading rate in most cases. It is recommended that the constitutive equations derived with a finite loading rate should replace the traditional ones derived with an infinite loading rate to analyze stress relaxation and creep behaviors for quantitatively evaluating the viscoelastic properties of materials.
Collapse
|
8
|
Bianconi E, Tassinari R, Alessandrini A, Ragazzini G, Cavallini C, Abruzzo PM, Petrocelli G, Pampanella L, Casadei R, Maioli M, Canaider S, Facchin F, Ventura C. Cytochalasin B Modulates Nanomechanical Patterning and Fate in Human Adipose-Derived Stem Cells. Cells 2022; 11:cells11101629. [PMID: 35626666 PMCID: PMC9139657 DOI: 10.3390/cells11101629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoskeletal proteins provide architectural and signaling cues within cells. They are able to reorganize themselves in response to mechanical forces, converting the stimuli received into specific cellular responses. Thus, the cytoskeleton influences cell shape, proliferation, and even differentiation. In particular, the cytoskeleton affects the fate of mesenchymal stem cells (MSCs), which are highly attractive candidates for cell therapy approaches due to their capacity for self-renewal and multi-lineage differentiation. Cytochalasin B (CB), a cyto-permeable mycotoxin, is able to inhibit the formation of actin microfilaments, resulting in direct effects on cell biological properties. Here, we investigated for the first time the effects of different concentrations of CB (0.1–10 μM) on human adipose-derived stem cells (hASCs) both after 24 h (h) of CB treatment and 24 h after CB wash-out. CB influenced the metabolism, proliferation, and morphology of hASCs in a dose-dependent manner, in association with progressive disorganization of actin microfilaments. Furthermore, the removal of CB highlighted the ability of cells to restore their cytoskeletal organization. Finally, atomic force microscopy (AFM) revealed that cytoskeletal changes induced by CB modulated the viscoelastic properties of hASCs, influencing their stiffness and viscosity, thereby affecting adipogenic fate.
Collapse
Affiliation(s)
- Eva Bianconi
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino, Viale Rosanna Benzi 10, 16132 Genova, Italy;
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (A.A.); (G.R.)
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (A.A.); (G.R.)
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| | - Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
- Correspondence: (S.C.); (F.F.); Tel.: +39-051-2094114 (S.C.); +39-051-2094104 (F.F.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
- Correspondence: (S.C.); (F.F.); Tel.: +39-051-2094114 (S.C.); +39-051-2094104 (F.F.)
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| |
Collapse
|
9
|
Braidotti N, do R. B. F. Lima MA, Zanetti M, Rubert A, Ciubotaru C, Lazzarino M, Sbaizero O, Cojoc D. The Role of Cytoskeleton Revealed by Quartz Crystal Microbalance and Digital Holographic Microscopy. Int J Mol Sci 2022; 23:ijms23084108. [PMID: 35456926 PMCID: PMC9029771 DOI: 10.3390/ijms23084108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
The connection between cytoskeleton alterations and diseases is well known and has stimulated research on cell mechanics, aiming to develop reliable biomarkers. In this study, we present results on rheological, adhesion, and morphological properties of primary rat cardiac fibroblasts, the cytoskeleton of which was altered by treatment with cytochalasin D (Cyt-D) and nocodazole (Noc), respectively. We used two complementary techniques: quartz crystal microbalance (QCM) and digital holographic microscopy (DHM). Qualitative data on cell viscoelasticity and adhesion changes at the cell–substrate near-interface layer were obtained with QCM, while DHM allowed the measurement of morphological changes due to the cytoskeletal alterations. A rapid effect of Cyt-D was observed, leading to a reduction in cell viscosity, loss of adhesion, and cell rounding, often followed by detachment from the surface. Noc treatment, instead, induced slower but continuous variations in the rheological behavior for four hours of treatment. The higher vibrational energy dissipation reflected the cell’s ability to maintain a stable attachment to the substrate, while a cytoskeletal rearrangement occurs. In fact, along with the complete disaggregation of microtubules at prolonged drug exposure, a compensatory effect of actin polymerization emerged, with increased stress fiber formation.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (M.Z.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Maria Augusta do R. B. F. Lima
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (M.Z.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Michele Zanetti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (M.Z.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Alessandro Rubert
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy;
| | - Catalin Ciubotaru
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Marco Lazzarino
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy;
- Correspondence:
| | - Dan Cojoc
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| |
Collapse
|
10
|
Tracking of Endothelial Cell Migration and Stiffness Measurements Reveal the Role of Cytoskeletal Dynamics. Int J Mol Sci 2022; 23:ijms23010568. [PMID: 35008993 PMCID: PMC8745078 DOI: 10.3390/ijms23010568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Cell migration is a complex, tightly regulated multistep process in which cytoskeletal reorganization and focal adhesion redistribution play a central role. Core to both individual and collective migration is the persistent random walk, which is characterized by random force generation and resistance to directional change. We first discuss a model that describes the stochastic movement of ECs and characterizes EC persistence in wound healing. To that end, we pharmacologically disrupted cytoskeletal dynamics, cytochalasin D for actin and nocodazole for tubulin, to understand its contributions to cell morphology, stiffness, and motility. As such, the use of Atomic Force Microscopy (AFM) enabled us to probe the topography and stiffness of ECs, while time lapse microscopy provided observations in wound healing models. Our results suggest that actin and tubulin dynamics contribute to EC shape, compressive moduli, and directional organization in collective migration. Insights from the model and time lapse experiment suggest that EC speed and persistence are directionally organized in wound healing. Pharmacological disruptions suggest that actin and tubulin dynamics play a role in collective migration. Current insights from both the model and experiment represent an important step in understanding the biomechanics of EC migration as a therapeutic target.
Collapse
|
11
|
Choi G, Tang Z, Guan W. Microfluidic high-throughput single-cell mechanotyping: Devices and
applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| |
Collapse
|
12
|
Sanchez JG, Espinosa FM, Miguez R, Garcia R. The viscoelasticity of adherent cells follows a single power-law with distinct local variations within a single cell and across cell lines. NANOSCALE 2021; 13:16339-16348. [PMID: 34581722 DOI: 10.1039/d1nr03894j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AFM-based force-distance curves are commonly used to characterize the nanomechanical properties of live cells. The transformation of these curves into nanomechanical properties requires the development of contact mechanics models. Spatially-resolved force-distance curves involving 1 to 2 μm deformations were obtained on HeLa and NIH 3T3 (fibroblast) cells. An elastic and two viscoelastic models were used to describe the experimental force-distance curves. The best agreement was obtained by applying a contact mechanics model that accounts for the geometry of the contact and the finite-thickness of the cell and assumes a single power-law dependence with time. Our findings show the shortcomings of elastic and semi-infinite viscoelastic models to characterize the mechanical response of a mammalian cell under micrometer-scale deformations. The parameters of the 3D power-law viscoelastic model, compressive modulus and fluidity exponent showed local variations within a single cell and across the two cell lines. The corresponding nanomechanical maps revealed structures that were not visible in the AFM topographic maps.
Collapse
Affiliation(s)
- Juan G Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Francisco M Espinosa
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Ruben Miguez
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Fan Y, Sun Q, Li X, Feng J, Ao Z, Li X, Wang J. Substrate Stiffness Modulates the Growth, Phenotype, and Chemoresistance of Ovarian Cancer Cells. Front Cell Dev Biol 2021; 9:718834. [PMID: 34504843 PMCID: PMC8421636 DOI: 10.3389/fcell.2021.718834] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
Mechanical factors in the tumor microenvironment play an important role in response to a variety of cellular activities in cancer cells. Here, we utilized polyacrylamide hydrogels with varying physical parameters simulating tumor and metastatic target tissues to investigate the effect of substrate stiffness on the growth, phenotype, and chemotherapeutic response of ovarian cancer cells (OCCs). We found that increasing the substrate stiffness promoted the proliferation of SKOV-3 cells, an OCC cell line. This proliferation coincided with the nuclear translocation of the oncogene Yes-associated protein. Additionally, we found that substrate softening promoted elements of epithelial-mesenchymal transition (EMT), including mesenchymal cell shape changes, increase in vimentin expression, and decrease in E-cadherin and β-catenin expression. Growing evidence demonstrates that apart from contributing to cancer initiation and progression, EMT can promote chemotherapy resistance in ovarian cancer cells. Furthermore, we evaluated tumor response to standard chemotherapeutic drugs (cisplatin and paclitaxel) and found antiproliferation effects to be directly proportional to the stiffness of the substrate. Nanomechanical studies based on atomic force microscopy (AFM) have revealed that chemosensitivity and chemoresistance are related to cellular mechanical properties. The results of cellular elastic modulus measurements determined by AFM demonstrated that Young's modulus of SKOV-3 cells grown on soft substrates was less than that of cells grown on stiff substrates. Gene expression analysis of SKOV-3 cells showed that mRNA expression can be greatly affected by substrate stiffness. Finally, immunocytochemistry analyses revealed an increase in multidrug resistance proteins, namely, ATP binding cassette subfamily B member 1 and member 4 (ABCB1 and ABCB4), in the cells grown on the soft gel resulting in resistance to chemotherapeutic drugs. In conclusion, our study may help in identification of effective targets for cancer therapy and improve our understanding of the mechanisms of cancer progression and chemoresistance.
Collapse
Affiliation(s)
- Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Quanmei Sun
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, China
| | - Xia Li
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,Hospital of Beijing Forestry University, Beijing Forestry University, Beijing, China
| | - Jiantao Feng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuo Ao
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, China
| | - Xiang Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, China
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
In silico stress fibre content affects peak strain in cytoplasm and nucleus but not in the membrane for uniaxial substrate stretch. Med Biol Eng Comput 2021; 59:1933-1944. [PMID: 34392447 DOI: 10.1007/s11517-021-02393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
Existing in silico models for single cell mechanics feature limited representations of cytoskeletal structures that contribute substantially to the mechanics of a cell. We propose a micromechanical hierarchical approach to capture the mechanical contribution of actin stress fibres. For a cell-specific fibroblast geometry with membrane, cytoplasm and nucleus, the Mori-Tanaka homogenization method was employed to describe cytoplasmic inhomogeneities and constitutive contribution of actin stress fibres. The homogenization was implemented in a finite element model of the fibroblast attached to a substrate through focal adhesions. Strain in cell membrane, cytoplasm and nucleus due to uniaxial substrate stretch was assessed for different stress fibre volume fractions and different elastic modulus of the substrate. A considerable decrease of the peak strain with increasing stress fibre content was observed in cytoplasm and nucleus but not the membrane, whereas the peak strain in cytoplasm, nucleus and membrane increased for increasing elastic modulus of the substrate. Finite element mesh of reconstructed human fibroblast and intracellular strain distribution in cell subjected to substrate stretch.
Collapse
|
15
|
Sheng JY, Mo C, Li GY, Zhao HC, Cao Y, Feng XQ. AFM-based indentation method for measuring the relaxation property of living cells. J Biomech 2021; 122:110444. [PMID: 33933864 DOI: 10.1016/j.jbiomech.2021.110444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Probing the mechanical properties of cells is critical for understanding their deformation behaviors and biological functions. Although some methods have been proposed to characterize the elastic properties of cells, it is still difficult to measure their time-dependent properties. This paper investigates the use of atomic force microscope (AFM) to determine the reduced relaxation modulus of cells. In principle, AFM is hard to perform an indentation relaxation test that requires a constant indenter displacement during load relaxation, whereas the real AFM indenter displacement usually varies with time during relaxation due to the relatively small bending stiffness of its cantilever. We investigate this issue through a combined theoretical, computational, and experimental effort. A protocol relying on the choice of appropriate cantilever bending stiffness is proposed to perform an AFM-based indentation relaxation test of cells, which enables the measurement of reduced relaxation modulus with high accuracy. This protocol is first validated by performing nanoindentation relaxation tests on a soft material and by comparing the results with those from independent measurements. Then indentation tests of cartilage cells are conducted to demonstrate this method in determining time-dependent properties of living cells. Finally, the change in the viscoelasticity of MCF-7 cells under hyperthermia is investigated.
Collapse
Affiliation(s)
- Jun-Yuan Sheng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Chi Mo
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Guo-Yang Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Yanping Cao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China.
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
16
|
Runel G, Lopez-Ramirez N, Chlasta J, Masse I. Biomechanical Properties of Cancer Cells. Cells 2021; 10:cells10040887. [PMID: 33924659 PMCID: PMC8069788 DOI: 10.3390/cells10040887] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Since the crucial role of the microenvironment has been highlighted, many studies have been focused on the role of biomechanics in cancer cell growth and the invasion of the surrounding environment. Despite the search in recent years for molecular biomarkers to try to classify and stratify cancers, much effort needs to be made to take account of morphological and nanomechanical parameters that could provide supplementary information concerning tissue complexity adaptation during cancer development. The biomechanical properties of cancer cells and their surrounding extracellular matrix have actually been proposed as promising biomarkers for cancer diagnosis and prognosis. The present review first describes the main methods used to study the mechanical properties of cancer cells. Then, we address the nanomechanical description of cultured cancer cells and the crucial role of the cytoskeleton for biomechanics linked with cell morphology. Finally, we depict how studying interaction of tumor cells with their surrounding microenvironment is crucial to integrating biomechanical properties in our understanding of tumor growth and local invasion.
Collapse
Affiliation(s)
- Gaël Runel
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSREM U1052, Université de Lyon, F-69008 Lyon, France; (G.R.); (N.L.-R.)
- BioMeca, F-69008 Lyon, France;
| | - Noémie Lopez-Ramirez
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSREM U1052, Université de Lyon, F-69008 Lyon, France; (G.R.); (N.L.-R.)
| | | | - Ingrid Masse
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSREM U1052, Université de Lyon, F-69008 Lyon, France; (G.R.); (N.L.-R.)
- Correspondence:
| |
Collapse
|
17
|
Kolmogorov VS, Erofeev AS, Woodcock E, Efremov YM, Iakovlev AP, Savin NA, Alova AV, Lavrushkina SV, Kireev II, Prelovskaya AO, Sviderskaya EV, Scaini D, Klyachko NL, Timashev PS, Takahashi Y, Salikhov SV, Parkhomenko YN, Majouga AG, Edwards CRW, Novak P, Korchev YE, Gorelkin PV. Mapping mechanical properties of living cells at nanoscale using intrinsic nanopipette-sample force interactions. NANOSCALE 2021; 13:6558-6568. [PMID: 33885535 DOI: 10.1039/d0nr08349f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mechanical properties of living cells determined by cytoskeletal elements play a crucial role in a wide range of biological functions. However, low-stress mapping of mechanical properties with nanoscale resolution but with a minimal effect on the fragile structure of cells remains difficult. Scanning Ion-Conductance Microscopy (SICM) for quantitative nanomechanical mapping (QNM) is based on intrinsic force interactions between nanopipettes and samples and has been previously suggested as a promising alternative to conventional techniques. In this work, we have provided an alternative estimation of intrinsic force and stress and demonstrated the possibility to perform qualitative and quantitative analysis of cell nanomechanical properties of a variety of living cells. Force estimation on decane droplets with well-known elastic properties, similar to living cells, revealed that the forces applied using a nanopipette are much smaller than in the case using atomic force microscopy. We have shown that we can perform nanoscale topography and QNM using a scanning procedure with no detectable effect on live cells, allowing long-term QNM as well as detection of nanomechanical properties under drug-induced alterations of actin filaments and microtubulin.
Collapse
Affiliation(s)
- Vasilii S Kolmogorov
- National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kolodziejczyk AM, Sokolowska P, Zimon A, Grala M, Rosowski M, Siatkowska M, Komorowski P, Walkowiak B. Dysfunction of endothelial cells exposed to nanomaterials assessed by atomic force spectroscopy. Micron 2021; 145:103062. [PMID: 33770641 DOI: 10.1016/j.micron.2021.103062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022]
Abstract
The study of the impact of nanomaterials on endothelial cell elasticity with the atomic force spectroscopy (AFS) can be a significant model for assessing nanomaterials toxic effects in vitro. The mechanical properties of cells exposed to nanostructures can provide information not only about cellular nano and micro-structure, but also about cell physiology. The toxicity of nanostructures is an important issue which must be carefully considered when the optimal nanomaterial is defined. There are no universal properties characterizing such a nanomaterial, i.e. depending on the intended use, the requirements can be diverse. For example, for biomedical use a nanomaterial should not negatively affect the cells or should cause the expected therapeutic or diagnostic effects in justified cases. The present study was devoted to the effects of silver nanoparticles (SNPs), multi-walled carbon nanotubes (MWCNTs) and poly(amidoamine) (PAMAM) dendrimers of 4th generation on functioning of endothelial cells. Immortalized endothelial cells were exposed for 24 h to the tested nanomaterials used in concentrations reducing cellular viability to the levels of 90 % and 75 %. The innovative nature of our work is the comparison of cell elasticity performed with various AFS probes, which enabled detection of local and global elasticity alteration caused by the nanostructures. The obtained results demonstrated changes in elasticity of endothelial cell induced by the nanostructures, which were closely correlated with the level of cellular viability, forming of actin stress fibres and elevated levels of reactive oxygen species. Trend of changes in local and global elasticity of cells exposed to nanostructures was similar, but the magnitude of the response was dependent on the selected probe. SNPs and MWCNTs evoked cells stiffening, which was correlated with changes in production levels of reactive oxygen species (ROS) and the cytoskeletal alteration. Softening of cells exposed to PAMAM dendrimers correlated with increased number of apoptotic cells and ROS production levels. Based on the obtained results we conclude, that the structure and the type of nanostructure (nanoparticle) is essential for their localization inside the cells and for the toxic effect on the endothelial cells.
Collapse
Affiliation(s)
| | - Paulina Sokolowska
- Bionanopark Ltd, Dubois 114/116, 93-465, Lodz, Poland; Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7 /9, 90-752, Lodz, Poland
| | | | | | | | | | - Piotr Komorowski
- Bionanopark Ltd, Dubois 114/116, 93-465, Lodz, Poland; Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| | - Bogdan Walkowiak
- Bionanopark Ltd, Dubois 114/116, 93-465, Lodz, Poland; Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| |
Collapse
|
19
|
Kubiak A, Zieliński T, Pabijan J, Lekka M. Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton. Int J Mol Sci 2020; 21:E8786. [PMID: 33233645 PMCID: PMC7699791 DOI: 10.3390/ijms21228786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing attention is devoted to the use of nanomechanics as a marker of various pathologies. Atomic force microscopy (AFM) is one of the techniques that could be applied to quantify the nanomechanical properties of living cells with a high spatial resolution. Thus, AFM offers the possibility to trace changes in the reorganization of the cytoskeleton in living cells. Impairments in the structure, organization, and functioning of two main cytoskeletal components, namely, actin filaments and microtubules, cause severe effects, leading to cell death. That is why these cytoskeletal components are targets for antitumor therapy. This review intends to describe the gathered knowledge on the capability of AFM to trace the alterations in the nanomechanical properties of living cells induced by the action of antitumor drugs that could translate into their effectiveness.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland; (A.K.); (T.Z.); (J.P.)
| |
Collapse
|
20
|
Van der Meeren L, Verduijn J, Krysko DV, Skirtach AG. AFM Analysis Enables Differentiation between Apoptosis, Necroptosis, and Ferroptosis in Murine Cancer Cells. iScience 2020; 23:101816. [PMID: 33299979 PMCID: PMC7702191 DOI: 10.1016/j.isci.2020.101816] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) has a fundamental role in development, pathology, and tissue homeostasis. In order to understand the RCD mechanisms, it is essential to follow these processes in real time. Here, atomic force microscopy (AFM) is applied to morphologically and mechanically characterize four RCD modalities (intrinsic and extrinsic apoptosis, necroptosis, and ferroptosis) in murine tumor cell lines. The nano-topographical analysis revealed a distinct surface morphology in case of necroptosis, ∼ 200 nm membrane disruptions are observed. Using mechanical measurements, it is possible to detect the early onset of RCD. Combined elasticity and microrheology analysis allowed for a clear distinction between apoptotic and regulated necrotic cell death. Finally, immunofluorescence analysis of the cytoskeleton structure during the RCD processes confirm the measured mechanical changes. The results of this study not only demonstrate the possibility of early real-time cell death detection but also reveal important differences in the cytoskeletal dynamics between multiple RCD modalities. AFM is a label-free method to distinguish apoptosis, necroptosis, and ferroptosis Nanotopography and subtle morphologic changes are distinct for each RCD Mechanobiology elasticity analysis reveals changes occurring at early stages of RCD Microrheology data agree with mechanobiology Young's modulus analysis
Collapse
Affiliation(s)
- Louis Van der Meeren
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Joost Verduijn
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent, 9000 Ghent, Belgium.,Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.,Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - André G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Liu X, Wei Y, Li W, Li B, Liu L. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy. J Cell Physiol 2020; 236:3725-3733. [PMID: 33169846 DOI: 10.1002/jcp.30110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023]
Abstract
The cytoskeleton acts as a scaffold for membrane protrusion, such as microvilli. However, the relationship between the characteristics of microvilli and cytoskeleton remains poorly understood under the physiological state. To investigate the role of the cytoskeleton in regulating microvilli and cellular mechanical properties, atomic force microscopy (AFM) was used to detect the dynamic characteristics of microvillus morphology and elastic modulus of living HeLa cells. First, HeLa and MCF-7 cell lines were stained with Fluor-488-phalloidin and microtubules antibody. Then, the microvilli morphology was analyzed by high-resolution images of AFM in situ. Furthermore, changes in elastic modulus were investigated by the force curve of AFM. Fluorescence microscopy and AFM results revealed that destroyed microfilaments led to a smaller microvilli size, whereas the increase in the aggregation and number of microfilaments led to a larger microvilli size. The destruction and aggregation of microfilaments remarkably affected the mechanical properties of HeLa cells. Microtubule-related drugs induced the change of microtubule, but we failed to note significant differences in microvilli morphology and mechanical properties of cells. In summary, our results unraveled the relationship between microfilaments and the structure of microvilli and Young's modulus in living HeLa cells, which would contribute to the further understanding of the physiological function of the cytoskeleton in vivo.
Collapse
Affiliation(s)
- Xueyan Liu
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China
| | - Yuhui Wei
- Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China
| | - Bin Li
- Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lin Liu
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China.,Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Huang W, Tan M, Wang Y, Liu L, Pan Y, Li J, Ouyang M, Long C, Qu X, Liu H, Liu C, Wang J, Deng L, Xiang Y, Qin X. Increased intracellular Cl - concentration improves airway epithelial migration by activating the RhoA/ROCK Pathway. Theranostics 2020; 10:8528-8540. [PMID: 32754261 PMCID: PMC7392015 DOI: 10.7150/thno.46002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
In the airway, Cl- is the most abundant anion and is critically involved in transepithelial transport. The correlation of the abnormal expression and activation of chloride channels (CLCs), such as cystic fibrosis transmembrane conductance regulators (CFTRs), anoctamin-1, and CLC-2, with cell migration capability suggests a relationship between defective Cl- transport and epithelial wound repair. However, whether a correlation exists between intracellular Cl- and airway wound repair capability has not been explored thus far, and the underlying mechanisms involved in this relationship are not fully defined. Methods: In this work, the alteration of intracellular chloride concentration ([Cl-]i) was measured by using a chloride-sensitive fluorescent probe (N-[ethoxycarbonylmethyl]-6-methoxyquinolium bromide). Results: We found that clamping with high [Cl-]i and 1 h of treatment with the CLC inhibitor CFTR blocker CFTRinh-172 and chloride intracellular channel inhibitor IAA94 increased intracellular Cl- concentration ([Cl-]i) in airway epithelial cells. This effect improved epithelial cell migration. In addition, increased [Cl-]i in cells promoted F-actin reorganization, decreased cell stiffness, and improved RhoA activation and LIMK1/2 phosphorylation. Treatment with the ROCK inhibitor of Y-27632 and ROCK1 siRNA significantly attenuated the effects of increased [Cl-]i on LIMK1/2 activation and cell migration. In addition, intracellular Ca2+ concentration was unaffected by [Cl-]i clamping buffers and CFTRinh-172 and IAA94. Conclusion: Taken together, these results suggested that Cl- accumulation in airway epithelial cells could activate the RhoA/ROCK/LIMK cascade to induce F-actin reorganization, down-regulate cell stiffness, and improve epithelial migration.
Collapse
Affiliation(s)
- Wenjie Huang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Affiliated Liutie Central Hospital of Guangxi medical university, Liuzhou, Guangxi 545007, China
| | - Meiling Tan
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
- School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Mingxing Ouyang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Chunjiao Long
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia Wang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
23
|
Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee GH, Ligler FS, Diekman BO, Polacheck WJ. Microfluidics for the study of mechanotransduction. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:224004. [PMID: 33840837 PMCID: PMC8034607 DOI: 10.1088/1361-6463/ab78d4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.
Collapse
Affiliation(s)
- Christian M Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Tanmay M Khare
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Matthew Rich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gi-Hun Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
24
|
Makarova N, Kalaparthi V, Wang A, Williams C, Dokukin ME, Kaufman CK, Zon L, Sokolov I. Difference in biophysical properties of cancer-initiating cells in melanoma mutated zebrafish. J Mech Behav Biomed Mater 2020; 107:103746. [PMID: 32364948 DOI: 10.1016/j.jmbbm.2020.103746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/31/2022]
Abstract
Despite sharing oncogenetic mutations, only a small number of cells within a given tissue will undergo malignant transformation. Biochemical and physical factors responsible for this cancer-initiation process are not well understood. Here we study biophysical differences of pre-melanoma and melanoma cells in a BRAFV600E/P53 zebrafish model. The AFM indentation technique was used to study the cancer-initiating cells while the surrounding melanocytes were the control. We observed a statistically significant decrease in the modulus of elasticity (the effective Young's modulus) of cancer-initiating cells compared to the surrounding melanocytes. No significant differences in the pericellular coat surrounding cells were observed. These results contribute to a better understanding of the factors responsible for the initiation of cancer.
Collapse
Affiliation(s)
- N Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Vivek Kalaparthi
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Andrew Wang
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Chris Williams
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - M E Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA; Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Charles K Kaufman
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | | | - I Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA; Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Department of Physics, Tufts University, Medford, MA, USA.
| |
Collapse
|
25
|
Kuboki T, Ebata H, Matsuda T, Arai Y, Nagai T, Kidoaki S. Hierarchical Development of Motile Polarity in Durotactic Cells Just Crossing an Elasticity Boundary. Cell Struct Funct 2020; 45:33-43. [PMID: 31902938 PMCID: PMC10739161 DOI: 10.1247/csf.19040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022] Open
Abstract
Cellular durotaxis has been extensively studied in the field of mechanobiology. In principle, asymmetric mechanical field of a stiffness gradient generates motile polarity in a cell, which is a driving factor of durotaxis. However, the actual process by which the motile polarity in durotaxis develops is still unclear. In this study, to clarify the details of the kinetics of the development of durotactic polarity, we investigated the dynamics of both cell-shaping and the microscopic turnover of focal adhesions (FAs) for Venus-paxillin-expressing fibroblasts just crossing an elasticity boundary prepared on microelastically patterned gels. The Fourier mode analysis of cell-shaping based on a persistent random deformation model revealed that motile polarity at a cell-body scale was established within the first few hours after the leading edges of a moving cell passed through the boundary from the soft to the stiff regions. A fluorescence recovery after photobleaching (FRAP) analysis showed that the mobile fractions of paxillin at FAs in the anterior part of the cells exhibited an asymmetric increase within several tens of minutes after cells entered the stiff region. The results demonstrated that motile polarity in durotactic cells is established through the hierarchical step-wise development of different types of asymmetricity in the kinetics of FAs activity and cell-shaping with a several-hour time lag.Key words: Microelasticity patterned gel, durotaxis, cell polarity, focal adhesions, paxillin.
Collapse
Affiliation(s)
- Thasaneeya Kuboki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 744 Moto-oka, Nishi ku, Fukuoka, Japan
| | - Hiroyuki Ebata
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 744 Moto-oka, Nishi ku, Fukuoka, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering. The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
| | - Yoshiyuki Arai
- Department of Biomolecular Science and Engineering. The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering. The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan
| | - Satoru Kidoaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 744 Moto-oka, Nishi ku, Fukuoka, Japan
| |
Collapse
|
26
|
Huang D, Kidoaki S. Stiffness-optimized drug-loaded matrix for selective capture and elimination of cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
28
|
Fluorescence correlation spectroscopy reveals the dynamics of kinesins interacting with organelles during microtubule-dependent transport in cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118572. [DOI: 10.1016/j.bbamcr.2019.118572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 01/26/2023]
|
29
|
Devendran C, Carthew J, Frith JE, Neild A. Cell Adhesion, Morphology, and Metabolism Variation via Acoustic Exposure within Microfluidic Cell Handling Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902326. [PMID: 31871874 PMCID: PMC6918100 DOI: 10.1002/advs.201902326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Indexed: 05/04/2023]
Abstract
Acoustic fields are capable of manipulating biological samples contained within the enclosed and highly controlled environment of a microfluidic chip in a versatile manner. The use of acoustic streaming to alter fluid flows and radiation forces to control cell locations has important clinical and life science applications. While there have been significant advances in the fundamental implementation of these acoustic mechanisms, there is a considerable lack of understanding of the associated biological effects on cells. Typically a single, simple viability assay is used to demonstrate a high proportion of living cells. However, the findings of this study demonstrate that acoustic exposure can inhibit cell attachment, decrease cell spreading, and most intriguingly increase cellular metabolic activity, all without any impact upon viability rates. This has important implications by showing that mortality studies alone are inadequate for the assessment of biocompatibility, but further demonstrates that physical manipulation of cells can also be used to influence their biological activity.
Collapse
Affiliation(s)
- Citsabehsan Devendran
- Laboratory for Micro SystemsDepartment of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
| | - James Carthew
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| | - Jessica E. Frith
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| | - Adrian Neild
- Laboratory for Micro SystemsDepartment of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
30
|
Pires RH, Shree N, Manu E, Guzniczak E, Otto O. Cardiomyocyte mechanodynamics under conditions of actin remodelling. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190081. [PMID: 31587648 PMCID: PMC6792454 DOI: 10.1098/rstb.2019.0081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 01/26/2023] Open
Abstract
The mechanical performance of cardiomyocytes (CMs) is an important indicator of their maturation state and of primary importance for the development of therapies based on cardiac stem cells. As the mechanical analysis of adherent cells at high-throughput remains challenging, we explore the applicability of real-time deformability cytometry (RT-DC) to probe cardiomyocytes in suspension. RT-DC is a microfluidic technology allowing for real-time mechanical analysis of thousands of cells with a throughput exceeding 1000 cells per second. For CMs derived from human-induced pluripotent stem cells, we determined a Young's modulus of 1.25 ± 0.08 kPa which is in close range to previous reports. Upon challenging the cytoskeleton with cytochalasin D (CytoD) to induce filamentous actin depolymerization, we distinguish three different regimes in cellular elasticity. Transitions are observed below 10 nM and above 103 nM and are characterized by a decrease in Young's modulus. These regimes can be linked to cytoskeletal and sarcomeric actin contributions by CM contractility measurements at varying CytoD concentrations, where we observe a significant reduction in pulse duration only above 103 nM while no change is found for compound exposure at lower concentrations. Comparing our results to mechanical cell measurements using atomic force microscopy, we demonstrate for the first time to our knowledge, the feasibility of using a microfluidic technique to measure mechanical properties of large samples of adherent cells while linking our results to the composition of the cytoskeletal network. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Ricardo H. Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Nithya Shree
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Emmanuel Manu
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Ewa Guzniczak
- Heriot-Watt University School of Engineering and Physical Science, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh Campus, Edinburgh EH14 4AS, UK
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| |
Collapse
|
31
|
Characterization of 3D matrix conditions for cancer cell migration with elasticity/porosity-independent tunable microfiber gels. Polym J 2019. [DOI: 10.1038/s41428-019-0283-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Weber A, Iturri J, Benitez R, Zemljic-Jokhadar S, Toca-Herrera JL. Microtubule disruption changes endothelial cell mechanics and adhesion. Sci Rep 2019; 9:14903. [PMID: 31624281 PMCID: PMC6797797 DOI: 10.1038/s41598-019-51024-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022] Open
Abstract
The interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 30 min of incubation the cells stiffened, their relaxation times increased (lower fluidity) and the adhesion between tip and cell decreased. This was accompanied by cytoskeletal rearrangements, a reduction in cell area and changes in cell shape. Over the whole experimental time, different behavior for the two used concentrations was found while for the control the values remained stable. This study underlines the role of microtubules in shaping endothelial cell mechanics.
Collapse
Affiliation(s)
- Andreas Weber
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Vienna, Austria.
| | - Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Vienna, Austria
| | - Rafael Benitez
- Dpto. Matemáticas para la Economía y la Empresa, Facultad de Economía, Universidad de Valencia, Avda. Tarongers s/n, 46022, Valencia, Spain
| | - Spela Zemljic-Jokhadar
- Department of Biophysics, Medicine Faculty, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - José L Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Vienna, Austria.
| |
Collapse
|
33
|
Grasping and Releasing Agarose micro Beads in Water Drops. MICROMACHINES 2019; 10:mi10070436. [PMID: 31262087 PMCID: PMC6680837 DOI: 10.3390/mi10070436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023]
Abstract
The micromanipulation of micro objects is nowadays the focus of several investigations, specially in biomedical applications. Therefore, some manipulation tasks are required to be in aqueous environment and become more challenging because they depend upon observation and actuation methods that are compatible with MEMS Technology based micromanipulators. This paper describes how three grasping-releasing based tasks have been successfully applied to agarose micro beads whose average size is about 60 μm: (i) the extraction of a single micro bead from a water drop; (ii) the insertion of a single micro bead into the drop; (iii) the grasping of a single micro bead inside the drop. The success of the performed tasks rely on the use of a microgripper previously designed, fabricated, and tested.
Collapse
|
34
|
Moriyama K, Kidoaki S. Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7478-7486. [PMID: 30230337 DOI: 10.1021/acs.langmuir.8b02529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Directional cell movement from a softer to a stiffer region on a culture substrate with a stiffness gradient, so-called durotaxis, has attracted considerable interest in the field of mechanobiology. Although the strength of a stiffness gradient has been known to influence durotaxis, the precise manipulation of durotactic cells has not been established due to the limited knowledge available on how the threshold stiffness gradient (TG) for durotaxis is determined. In the present study, to clarify the principles for the manipulation of durotaxis, we focused on the absolute stiffness of the soft region and evaluated its effect on the determination of TG required to induce durotaxis. Microelastically patterned gels that differed with respect to both the absolute stiffness of the soft region and the strength of the stiffness gradient were photolithographically prepared using photo-cross-linkable gelatins, and the TG for mesenchymal stem cells (MSCs) was examined systematically for each stiffness value of the soft region. As a result, the TG values for soft regions with stiffnesses of 2.5, 5, and 10 kPa were 0.14, 1.0, and 1.4 kPa/μm, respectively, i.e., TG markedly increased with an increase in the absolute stiffness of the soft region. An analysis of the area and long-axis length for focal adhesions revealed that the adhesivity of MSCs was more stable on a stiffer soft region. These results suggested that the initial location of cells starting durotaxis plays an essential role in determining the TG values and furthermore that the relationship between the position-dependent TG and intrinsic stiffness gradient (IG) of the culture substrate should be carefully reconsidered for inducing durotaxis; IG must be higher than TG (IG ≥ TG). This principle provides a fundamental guide for designing biomaterials to manipulate cellular durotaxis.
Collapse
Affiliation(s)
- Kousuke Moriyama
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering , Kyushu University , 744 Moto-oka, Nishi ku , Fukuoka , Japan
| | - Satoru Kidoaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering , Kyushu University , 744 Moto-oka, Nishi ku , Fukuoka , Japan
| |
Collapse
|
35
|
Toward Operations in a Surgical Scenario: Characterization of a Microgripper via Light Microscopy Approach. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Micro Electro Mechanical Systems (MEMS)-Technology based micro mechanisms usually operate within a protected or encapsulated space and, before that, they are fabricated and analyzed within one Scanning Electron Microscope (SEM) vacuum specimen chamber. However, a surgical scenario is much more aggressive and requires several higher abilities in the microsystem, such as the capability of operating within a liquid or wet environment, accuracy, reliability and sophisticated packaging. Unfortunately, testing and characterizing MEMS experimentally without fundamental support of a SEM is rather challenging. This paper shows that in spite of large difficulties due to well-known physical limits, the optical microscope is still able to play an important role in MEMS characterization at room conditions. This outcome is supported by the statistical analysis of two series of measurements, obtained by a light trinocular microscope and a profilometer, respectively.
Collapse
|
36
|
ZHAO W, CUI W, XU S, CHEONG L, SHEN C. Examination of Alzheimer's disease by a combination of electrostatic force and mechanical measurement. J Microsc 2019; 275:66-72. [DOI: 10.1111/jmi.12801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/15/2022]
Affiliation(s)
- W. ZHAO
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Ningbo Zhejiang China
| | - W. CUI
- Ningbo Key Laboratory of Behavioral Neuroscience, Provincial Key Laboratory of Pathophysiology, School of MedicineNingbo University Ningbo Zhejiang China
| | - S. XU
- Ningbo Key Laboratory of Behavioral Neuroscience, Provincial Key Laboratory of Pathophysiology, School of MedicineNingbo University Ningbo Zhejiang China
| | - L.‐Z. CHEONG
- College of Food and Pharmaceutical SciencesNingbo University Ningbo China
| | - C. SHEN
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Ningbo Zhejiang China
| |
Collapse
|
37
|
Ayee MAA, LeMaster E, Teng T, Lee J, Levitan I. Hypotonic Challenge of Endothelial Cells Increases Membrane Stiffness with No Effect on Tether Force. Biophys J 2019; 114:929-938. [PMID: 29490252 DOI: 10.1016/j.bpj.2017.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/13/2023] Open
Abstract
Regulation of cell volume is a fundamental property of all mammalian cells. Multiple signaling pathways are known to be activated by cell swelling and to contribute to cell volume homeostasis. Although cell mechanics and membrane tension have been proposed to couple cell swelling to signaling pathways, the impact of swelling on cellular biomechanics and membrane tension have yet to be fully elucidated. In this study, we use atomic force microscopy under isotonic and hypotonic conditions to measure mechanical properties of endothelial membranes including membrane stiffness, which reflects the stiffness of the submembrane cytoskeleton complex, and the force required for membrane tether formation, reflecting membrane tension and membrane-cytoskeleton attachment. We find that hypotonic swelling results in significant stiffening of the endothelial membrane without a change in membrane tension/membrane-cytoskeleton attachment. Furthermore, depolymerization of F-actin, which, as expected, results in a dramatic decrease in the cellular elastic modulus of both the membrane and the deeper cytoskeleton, indicating a collapse of the cytoskeleton scaffold, does not abrogate swelling-induced stiffening of the membrane. Instead, this swelling-induced stiffening of the membrane is enhanced. We propose that the membrane stiffening should be attributed to an increase in hydrostatic pressure that results from an influx of solutes and water into the cells. Most importantly, our results suggest that increased hydrostatic pressure, rather than changes in membrane tension, could be responsible for activating volume-sensitive mechanisms in hypotonically swollen cells.
Collapse
Affiliation(s)
- Manuela Aseye Ayele Ayee
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth LeMaster
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tao Teng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - James Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
38
|
Raudenska M, Kratochvilova M, Vicar T, Gumulec J, Balvan J, Polanska H, Pribyl J, Masarik M. Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation. Sci Rep 2019; 9:1660. [PMID: 30733487 PMCID: PMC6367361 DOI: 10.1038/s41598-018-38199-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
We focused on the biomechanical and morphological characteristics of prostate cancer cells and their changes resulting from the effect of docetaxel, cisplatin, and long-term zinc supplementation. Cell population surviving the treatment was characterized as follows: cell stiffness was assessed by atomic force microscopy, cell motility and invasion capacity were determined by colony forming assay, wound healing assay, coherence-controlled holographic microscopy, and real-time cell analysis. Cells of metastatic origin exhibited lower height than cells derived from the primary tumour. Cell dry mass and CAV1 gene expression followed similar trends as cell stiffness. Docetaxel- and cisplatin-surviving cells had higher stiffness, and decreased motility and invasive potential as compared to non-treated cells. This effect was not observed in zinc(II)-treated cells. We presume that cell stiffness changes may represent an important overlooked effect of cisplatin-based anti-cancer drugs. Atomic force microscopy and confocal microscopy data images used in our study are available for download in the Zenodo repository ( https://zenodo.org/ , Digital Object Identifiers:10.5281/zenodo.1494935).
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Hana Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic.
| |
Collapse
|
39
|
Sumbul F, Rico F. Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations. Methods Mol Biol 2019; 1886:163-189. [PMID: 30374867 DOI: 10.1007/978-1-4939-8894-5_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe, and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulations as a computational microscope allow investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy experiments using AFM, including sample preparation, measurements, and analysis and interpretation of the resulting dynamic force spectrum in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging computational tools with experimental techniques.
Collapse
Affiliation(s)
- Fidan Sumbul
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France
| | - Felix Rico
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France.
| |
Collapse
|
40
|
Bahcecioglu G, Hasirci N, Hasirci V. Cell behavior on the alginate-coated PLLA/PLGA scaffolds. Int J Biol Macromol 2018; 124:444-450. [PMID: 30465840 DOI: 10.1016/j.ijbiomac.2018.11.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
Abstract
Here, we investigated the effect of preparation temperature and alginate-coating on L929 fibroblast behavior on lyophilized microporous PLLA/PLGA (95:5, w/w) scaffolds. The lower freezing temperature used during lyophilization (-80 °C) resulted in smaller pores (around 50 μm) and higher compressive modulus (1500 kPa) than those prepared at the higher temperature (-20 °C) (pore size: 120 μm, compressive modulus: 600 kPa) (p < 0.01). Cell proliferation was significantly lower on the alginate-coated scaffolds (p < 0.05), probably due to weak cell adhesion on alginate, rapid degradation/dissolution of the alginate hydrogel (40% weight loss after 2 weeks of incubation) (p < 0.05), which resulted in loss of material and cells, and the decrease in the pH (p < 0.05), which probably resulted in decreased cell metabolic activity. Cells tended to get less round on the scaffolds prepared at -20 °C, which had lower compressive modulus and larger pores, and upon coating with alginate, which resulted in a hydrophilic surface that had lower stiffness. When the scaffolds had closer stiffness to the cells, the cells tended to get more branched. The most branched morphology of the fibroblasts was obtained in the presence of alginate, a natural polymer having a similar stiffness with that of the L929 fibroblasts (4 kPa).
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey; Department of Biological Sciences, METU, Ankara, Turkey; Graduate Department of Biotechnology, METU, Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey; Graduate Department of Biotechnology, METU, Ankara, Turkey; Department of Chemistry, METU, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey; Department of Biological Sciences, METU, Ankara, Turkey; Graduate Department of Biotechnology, METU, Ankara, Turkey; Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey.
| |
Collapse
|
41
|
Ayee MA, Levitan I. Membrane Stiffening in Osmotic Swelling: Analysis of Membrane Tension and Elastic Modulus. CURRENT TOPICS IN MEMBRANES 2018; 81:97-123. [PMID: 30243442 PMCID: PMC6588289 DOI: 10.1016/bs.ctm.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of osmotic swelling on key cellular biomechanical properties are explored in this chapter. We present the governing equations and theoretical backgrounds of the models employed to estimate cell membrane tension and elastic moduli from experimental methods, and provide a summary of the prevailing experimental approaches used to obtain these biomechanical parameters. A detailed analysis of the current evidence of the effects of osmotic swelling on membrane tension and elastic moduli is provided. Briefly, due to the buffering effect of unfolding membrane reservoirs, mild hypotonic swelling does not change membrane tension or the adhesion of the membrane to the underlying cytoskeleton. Conversely, osmotic swelling causes the cell membrane envelope to stiffen, measured as an increase in the membrane elastic modulus.
Collapse
Affiliation(s)
| | - Irena Levitan
- University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
42
|
Gaur D, Yogalakshmi Y, Kulanthaivel S, Agarwal T, Mukherjee D, Prince A, Tiwari A, Maiti TK, Pal K, Giri S, Saleem M, Banerjee I. Osteoblast-Derived Giant Plasma Membrane Vesicles Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Deepanjali Gaur
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Yamini Yogalakshmi
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Senthilguru Kulanthaivel
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Tarun Agarwal
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Devdeep Mukherjee
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Ashutosh Prince
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Anuj Tiwari
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Tapas K. Maiti
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Supratim Giri
- Department of Chemistry; National Institute of Technology Rourkela; Odisha 769008 India
| | - Mohammed Saleem
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| |
Collapse
|
43
|
Sorkin R, Bergamaschi G, Kamsma D, Brand G, Dekel E, Ofir-Birin Y, Rudik A, Gironella M, Ritort F, Regev-Rudzki N, Roos WH, Wuite GJL. Probing cellular mechanics with acoustic force spectroscopy. Mol Biol Cell 2018; 29:2005-2011. [PMID: 29927358 PMCID: PMC6232971 DOI: 10.1091/mbc.e18-03-0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.
Collapse
Affiliation(s)
- Raya Sorkin
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Department of Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Douwe Kamsma
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Guy Brand
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elya Dekel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Yifat Ofir-Birin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ariel Rudik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Marta Gironella
- Small Biosystems Lab, Departament de Fsica de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Felix Ritort
- Small Biosystems Lab, Departament de Fsica de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Wouter H Roos
- Department of Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
44
|
Orzechowska B, Pabijan J, Wiltowska-Zuber J, Zemła J, Lekka M. Fibroblasts change spreading capability and mechanical properties in a direct interaction with keratinocytes in conditions mimicking wound healing. J Biomech 2018; 74:134-142. [DOI: 10.1016/j.jbiomech.2018.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023]
|
45
|
Continuous hypergravity alters the cytoplasmic elasticity of MC3T3-E1 osteoblasts via actin filaments. J Biomech 2018. [DOI: 10.1016/j.jbiomech.2018.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Ganier O, Schnerch D, Oertle P, Lim RY, Plodinec M, Nigg EA. Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 2018; 37:embj.201798576. [PMID: 29567643 PMCID: PMC5920242 DOI: 10.15252/embj.201798576] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Centrosomes are the main microtubule‐organizing centers of animal cells. Although centrosome aberrations are common in tumors, their consequences remain subject to debate. Here, we studied the impact of structural centrosome aberrations, induced by deregulated expression of ninein‐like protein (NLP), on epithelial spheres grown in Matrigel matrices. We demonstrate that NLP‐induced structural centrosome aberrations trigger the escape (“budding”) of living cells from epithelia. Remarkably, all cells disseminating into the matrix were undergoing mitosis. This invasive behavior reflects a novel mechanism that depends on the acquisition of two distinct properties. First, NLP‐induced centrosome aberrations trigger a re‐organization of the cytoskeleton, which stabilizes microtubules and weakens E‐cadherin junctions during mitosis. Second, atomic force microscopy reveals that cells harboring these centrosome aberrations display increased stiffness. As a consequence, mitotic cells are pushed out of mosaic epithelia, particularly if they lack centrosome aberrations. We conclude that centrosome aberrations can trigger cell dissemination through a novel, non‐cell‐autonomous mechanism, raising the prospect that centrosome aberrations contribute to the dissemination of metastatic cells harboring normal centrosomes.
Collapse
Affiliation(s)
| | | | - Philipp Oertle
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Yh Lim
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Marija Plodinec
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Bahcecioglu G, Hasirci N, Hasirci V. Effects of microarchitecture and mechanical properties of 3D microporous PLLA-PLGA scaffolds on fibrochondrocyte and L929 fibroblast behavior. ACTA ACUST UNITED AC 2018; 13:035005. [PMID: 29334080 DOI: 10.1088/1748-605x/aaa77f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There are several reports studying cell behavior on surfaces in 2D or in hydrogels in 3D. However, cell behavior in 3D microporous scaffolds has not been investigated extensively. In this study, poly(L-lactic acid)/poly(lactic acid-co-glycolic acid) (PLLA/PLGA)-based microporous scaffolds were used to study the effects of scaffold microarchitecture and mechanical properties on the behavior of two different cell types, human meniscal fibrochondrocytes and L929 mouse fibroblasts. In general, cell attachment, spreading and proliferation rate were mainly regulated by the strut (pore wall) stiffness. Increasing strut stiffness resulted in an increase in L929 fibroblast attachment and a decrease in fibrochondrocyte attachment. L929 fibroblasts tended to get more round as the strut stiffness increased, while fibrochondrocytes tended to get more elongated. Cell migration increased for both cell types with the increasing pore size. Migrating L929 fibroblasts tended to get more round on the stiff scaffolds, while fibrochondrocytes tended to get more round on the soft scaffolds. This study shows that the behavior of cells on 3D microporous scaffolds is mainly regulated by pore size and strut stiffness, and the response of a cell depends on the stiffness of both cells and materials. This study could be useful in designing better scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- G Bahcecioglu
- BIOMATEN-METU Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, 06800 Ankara, Turkey. Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey. Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | | | | |
Collapse
|
48
|
Cosme PJ, Ye J, Sears S, Wojcikiewicz EP, Terentis AC. Label-Free Confocal Raman Mapping of Transportan in Melanoma Cells. Mol Pharm 2018; 15:851-860. [PMID: 29397737 DOI: 10.1021/acs.molpharmaceut.7b00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-penetrating peptides (CPPs) are promising vectors for the intracellular delivery of a variety of membrane-impermeable bioactive compounds. The mechanisms by which CPPs cross the cell membrane, and the effects that CPPs may have on cell function, still remain to be fully clarified. In this work, we employed confocal Raman microscopy (CRM) and atomic force microscopy (AFM) to study the infiltration and physiological effects of the amphipathic CPP transportan (Tp) on the metastatic melanoma cell line SK-Mel-2. CRM enabled the detection of label-free Tp within the cells. Raman maps of live cells revealed rapid entry (within 5 min) and widespread distribution of the peptide throughout the cytoplasm and the presence of the peptide within the nucleus after ∼20 min. Principal component analysis of the CRM data collected from Tp-treated and untreated cells showed that Tp Raman bands were not positively correlated with lipid Raman bands, indicating that Tp entered the cells via a nonendocytic mechanism. Analysis of intracellularly recovered Tp by mass spectrometry showed that Tp remained intact in SK-Mel-2 cells for up to 24 h. The Raman spectroscopic data also showed that, although Tp was predominantly unstructured (random coil) in aqueous solution, it accumulated to high densities within the cells with mostly β-sheet and α-helical structures. AFM was employed to measure the effect of Tp treatment on cell stiffness. These data showed that Tp induced a significant increase in cell stiffness within the first hour of treatment, which was partially abated after 2 h. It is hypothesized that the increase in cell stiffness was the result of cytoskeletal changes triggered by Tp.
Collapse
|
49
|
Mollaeian K, Liu Y, Bi S, Ren J. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J Mech Behav Biomed Mater 2018; 78:65-73. [DOI: 10.1016/j.jmbbm.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
|
50
|
Zemła J, Danilkiewicz J, Orzechowska B, Pabijan J, Seweryn S, Lekka M. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 2018; 73:115-124. [DOI: 10.1016/j.semcdb.2017.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/27/2022]
|