1
|
Koh J, Kwon C, Kim H, Lee E, Machida A, Nakahira Y, Hwang YJ, Sakaki K, Kim S, Cho ES. Defect-Driven Evolution of Oxo-Coordinated Cobalt Active Sites with Rapid Structural Transformation for Efficient Water Oxidation. ACS NANO 2024; 18:28986-28998. [PMID: 39385616 DOI: 10.1021/acsnano.4c09856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Reconstructing the surface nature of metal-organic frameworks (MOFs) as precatalytic structures is a promising methodology for improving electrocatalytic performance. However, regulating the structural evolution of MOFs during electrolysis remains highly uncontrollable and lacks an in-depth understanding of the role of in situ-derived active sites. Here, we suggest a simple approach to fine-tune the symmetry of Co-MOFs with an oxo-coordinated asymmetric coordination that acts as a prototypical structure motif for the oxygen evolution reaction (OER). Through a facile thermal treatment, the Co-N4 configuration of Co-MOFs transforms to the distorted Co-N3-oxo configuration of defective Co-ligand nanoclusters. By operando spectroscopic characterization, the reconstructed Co-N3-oxo structure enables a rapid structural transition toward homogeneous oxyhydroxides. Moreover, the defective nature of the precatalytic structure regulates the surface Co-O bonding environment with abundant μ2-O-Co3+ sites, thereby exhibiting highly enhanced OER activity with an overpotential of 256 mV at 10 mA cm-2 and excellent durability for 100 h, compared with the pristine Co-MOFs. Atomistic simulations reveal that the effect of OER intermediates on the oxyhydroxides gets distributed among neighboring Co ions, promoting balanced binding of the intermediates. This work highlights an effective strategy to design the MOF-based structure for optimizing the surface nature, thus enhancing the electrocatalytic activity.
Collapse
Affiliation(s)
- Jinseok Koh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Choah Kwon
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunjeong Kim
- Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Eunchong Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Akihiko Machida
- Synchrotron Radiation Research Center, National Institutes for Quantum Science and Technology (QST), Sayo-gun, Hyogo 679-5148, Japan
| | - Yuki Nakahira
- Synchrotron Radiation Research Center, National Institutes for Quantum Science and Technology (QST), Sayo-gun, Hyogo 679-5148, Japan
| | - Yun Jeong Hwang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kouji Sakaki
- Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Sangtae Kim
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eun Seon Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Hu Q, Yang X, Kang J. Unveiling the potential of amorphous nanocatalysts in membrane-based hydrogen production. MATERIALS HORIZONS 2024; 11:4885-4910. [PMID: 39086327 DOI: 10.1039/d4mh00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hydrogen, as a clean and renewable energy source, is a promising candidate to replace fossil fuels and alleviate the environmental crisis. Compared with the traditional H-type cells with a finite-gap, the design of membrane electrodes can reduce the gas transmission resistance, enhance the current density, and improve the efficiency of hydrogen production. However, the harsh environment in the electrolyser makes the membrane electrode based water electrolysis technology still limited by the lack of catalyst activity and stability under the working conditions. Due to the abundant active sites and structural flexibility, amorphous nanocatalysts are alternatives. In this paper, we review the recent research progress of amorphous nanomaterials as electrocatalysts for hydrogen production by electrolysis at membrane electrodes, illustrate and discuss their structural advantages in membrane electrode catalytic systems, as well as explore the significance of the amorphous structure for the development of membrane electrode systems. Finally, the article also looks at future opportunities and adaptations of amorphous catalysts for hydrogen production at membrane electrodes. The authors hope that this review will deepen the understanding of the potential of amorphous nanomaterials for application in electrochemical hydrogen production, facilitating future nanomaterials research and new sustainable pathways for hydrogen production.
Collapse
Affiliation(s)
- Yifei Liu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Qi Hu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Xiuyi Yang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
3
|
Wang L, Huang J, Gan Q, Huang J, Hu X, Liu D, Taylor Isimjan T, Yang X. Fine-tuning nanoflower-like Fe/Co hybrids with high content oxyhydroxide accelerating oxygen evolution kinetics. J Colloid Interface Sci 2024; 670:124-131. [PMID: 38759267 DOI: 10.1016/j.jcis.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Iron hydroxide (FeOOH) is a potential active component in iron-based electrocatalysts for water electrolysis. However, its catalytic performance is constrained by its slow oxygen evolution reaction (OER) kinetics. Herein, we synthesized a nanoflower-like FeCo-hydro(oxy)oxides composite with tunable Fe/Co ratios (Fex-Coy) on nickel foam (NF) via a one-step electrodeposition technique. This method allows for precise control over the morphology and composition of the hybrid nanoflowers. The optimized Fe9-Co1 discloses favorable OER performance with a low overpotential of 222 mV at 50 mA cm-2 and demonstrates good stability exceeding 60 h at 10 mA cm-2. Further, an assembled Fe9-Co1(+)||Pt/C(-) dual-electrode configuration achieves a low cell voltage of 1.73 V at the current density of 100 mA cm-2 for water splitting, with long-term stability for 70 h and minimal degradation. Studies indicate that the distinctive nanoflower morphology of Fe9-Co1 enhances active site exposure, while both FeOOH and reconstructed CoOOH serve as catalytic centers, contributing to the observed OER performance. This work introduces a facile approach for synthesizing OER electrocatalysts, underscoring the role of the high-valence state of Fe/Co as active sites in the OER process.
Collapse
Affiliation(s)
- Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jia Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qiuping Gan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiasui Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xinran Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dongcheng Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
4
|
Cai Z, Li L, Ding P, Pang D, Xu M, Xu Z, Kang J, Guo T, Teobaldi G, Wang Z, Liu LM, Guo L. High-Valence Cu Induced by Photoelectric Reconstruction for Dynamically Stable Oxygen Evolution Sites. J Am Chem Soc 2024; 146:19295-19302. [PMID: 38943666 DOI: 10.1021/jacs.4c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Oxygen vacancies are generally considered to play a crucial role in the oxygen evolution reaction (OER). However, the generation of active sites created by oxygen vacancies is inevitably restricted by their condensation and elimination reactions. To overcome this limitation, here, we demonstrate a novel photoelectric reconstruction strategy to incorporate atomically dispersed Cu into ultrathin (about 2-3 molecular) amorphous oxyhydroxide (a-CuM, M = Co, Ni, Fe, or Zn), facilitating deprotonation of the reconstructed oxyhydroxide to generate high-valence Cu. The in situ XAFS results and first-principles calculations reveal that Cu atoms are stabilized at high valence during the OER process due to Jahn-Teller distortion, resulting in para-type double oxygen vacancies as dynamically stable catalytic sites. The optimal a-CuCo catalyst exhibits a record-high mass activity of 3404.7 A g-1 at an overpotential of 300 mV, superior to the benchmarking hydroxide and oxide catalysts. The developed photoelectric reconstruction strategy opens up a new pathway to construct in situ stable oxygen vacancies by high-valence Cu single sites, which extends the design rules for creating dynamically stable active sites.
Collapse
Affiliation(s)
- Zhi Cai
- School of Chemistry, Beihang University, Beijing 100191, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Lidong Li
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Peijia Ding
- School of Physics, Beihang University, Beijing 100191, China
| | - Dawei Pang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyuan Xu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ziyan Xu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lin Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Wang D, Jung HD, Liu S, Chen J, Yang H, He Q, Xi S, Back S, Wang L. Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction. Nat Commun 2024; 15:4692. [PMID: 38824127 PMCID: PMC11144262 DOI: 10.1038/s41467-024-49158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO2/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Collapse
Affiliation(s)
- Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea
| | - Shikai Liu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Chen B, Liu T, Zhang J, Zhao S, Yue R, Wang S, Wang L, Chen Z, Feng Y, Huang J, Yin Y, Guiver MD. Interface-Engineered NiFe/Ni-S Nanoparticles for Reliable Alkaline Oxygen Production at Industrial Current: A Sulfur Source Confinement Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310737. [PMID: 38396324 DOI: 10.1002/smll.202310737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Using powder-based ink appears to be the most suitable candidate for commercializing the membrane electrode assembly (MEA), while research on the powder-based NPM catalyst for anion exchange membrane water electrolyzer (AEMWE) is currently insufficient, especially at high current density. Herein, a sulfur source (NiFe Layered double hydroxide adsorbedSO 4 2 - ${\mathrm{SO}}_4^{2 - }$ ) confinement strategy is developed to integrate Ni3S2 onto the surface of amorphous/crystalline NiFe alloy nanoparticles (denoted NiFe/Ni-S), achieving advanced control over the sulfidation process for the formation of metal sulfides. The constructed interface under the sulfur source confinement strategy generates abundant active sites that increase electron transport at the electrode-electrolyte interface and improve ability over an extended period at a high current density. Consequently, the constructed NiFe/Ni-S delivers an ultra-low overpotential of 239 mV at 10 mA cm-2 and 0.66 mAcm ECSA - 2 ${\mathrm{cm}}_{{\mathrm{ECSA}}}^{ - 2}$ under an overpotential of 300 mV. The AEMWE with NiFe/Ni-S anode exhibits a cell voltage of 1.664 V @ 0.5 A cm-2 and a 400 h stability at 1.0 A cm-2.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Tao Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Shuo Zhao
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Runfei Yue
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Sipu Wang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Lianqin Wang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhihao Chen
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing, 100013, China
| | - Jun Huang
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK 13), Forschungszentrum Jülich, D-52425, Lulich, Germany
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Li L, Zhao HF, Gan MX, Zhang T, Li JN, Tao S, Peng J, Yu HB, Peng X. Amorphous conversion in pyrolytic symmetric trinuclear nickel clusters trigger trifunctional electrocatalysts. Chem Sci 2024; 15:7689-7697. [PMID: 38784754 PMCID: PMC11110135 DOI: 10.1039/d4sc01696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
The pursuit of multifunctional electrocatalysts holds significant importance due to their comprehension of material chemistry. Amorphous materials are particularly appealing, yet they pose challenges in terms of rational design due to their structural disorder and thermal instability. Herein, we propose a strategy that entails the tandem (low-temperature/250-350 °C) pyrolysis of molecular clusters, enabling preservation of the local short-range structures of the precursor Schiff base nickel (Ni3[2(C21H24N3Ni1.5O6)]). The temperature-dependent residuals demonstrate exceptional activity and stability for at least three distinct electrocatalytic processes, including the oxygen evolution reaction (η10 = 197 mV), urea oxidation reaction (η10 = 1.339 V), and methanol oxidation reaction (1358 mA cm-2 at 0.56 V). Three distinct nickel atom motifs are discovered for three efficient electrocatalytic reactions (Ni1 and Ni1' are preferred for UOR/MOR, while Ni2 is preferred for OER). Our discoveries pave the way for the potential development of multifunctional electrocatalysts through disordered engineering in molecular clusters under tandem pyrolysis.
Collapse
Affiliation(s)
- Li Li
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hui-Feng Zhao
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Mei-Xing Gan
- College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Tao Zhang
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jia-Ning Li
- College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Shi Tao
- School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology Changshu 215500 China
| | - Jing Peng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xu Peng
- College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| |
Collapse
|
8
|
Liu Y, Ding M, Qin Y, Zhang B, Zhang Y, Huang J. Crystalline/Amorphous Mo-Ni(OH) 2/Fe xNi y(OH) 3x+2y hierarchical nanotubes as efficient electrocatalyst for overall water splitting. J Colloid Interface Sci 2024; 657:219-228. [PMID: 38039882 DOI: 10.1016/j.jcis.2023.11.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The development of efficient bifunctional catalysts for overall water splitting is highly desirable and essential for the advancement of hydrogen technology. In this work, Mo-Ni(OH)2/FexNiy(OH)3x+2y with hierarchical nanotube structure is constructed on flexible carbon cloth (CC) through simple electrochemical deposition and hydrothermal method. The hollow tube-structure is in favor of both exposing active sites and enhancing mass transfer capability. Moreover, the doping of Mo can enhance the electronic conductivity of heterostructures. The interfacial interaction between amorphous and crystal can enhance effectively the charge transfer kinetics across the interface. Therefore, Mo-Ni(OH)2/FexNiy(OH)3x+2y can achieve a low overpotential of 57 mV for hydrogen evolution reaction (HER) and 229 mV for oxygen evolution reaction (OER) at 10 mA·cm-2. In addition, Mo-Ni(OH)2/FexNiy(OH)3x+2y needs a potential of only 1.54 V at 10 mA·cm-2 for overall water splitting, and retains for a long period of time (60 h) reliable. The work will provide a valuable approach to the construction of highly efficient electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Yutong Liu
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Meng Ding
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China.
| | - Yuan Qin
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Baojie Zhang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Yafang Zhang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Jinzhao Huang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| |
Collapse
|
9
|
Li J, Lv Y, Wu X, Zhao K, Guo J, He B, Jia D. Iron doping and interface engineering on amorphous/crystalline Fe-Ni xS y heterostructures toward high-stability and kinetically accelerated water splitting. J Colloid Interface Sci 2023; 650:1086-1096. [PMID: 37463534 DOI: 10.1016/j.jcis.2023.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
It is very important to develop transition metal-based electrocatalysts with excellent activity, high stability and low-cost for overall water splitting. In this work, the Fe-doped NixSy/NF amorphous/crystalline heterostructure nanoarrays (Fe-NixSy/NF) was synthesized by a simple one-step method. The resulting hierarchically structured nanoarrays offer the advantages of large surface area, high structural void fraction and accessible internal surfaces. These advantages not only furnish additional catalytically active sites, but also enhance the stability of the structure and effectively accelerate mass diffusion and charge transport. Experimental and characterization results indicate that Fe doping increases the electrical conductivity of amorphous/crystalline NixSy/NF, and the NiS-Ni3S2 heterojunctions evoke interfacial charge rearrangement and optimize the adsorption free energy of the intermediates, which allows the catalyst to exhibit low overpotential and superior electrocatalytic activity. Especially, the overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) of Fe-NixSy/NF at 10 mA cm-2 in an alkaline environment are 102.4 and 230.5 mV, respectively. When applied as a bifunctional catalyst for overall water splitting, it requires only 1.45 V cell voltage to deliver a current density of 10 mA cm-2, which is preferable to the all-noble metal Pt/C || IrO2 electrocatalyst (1.62 mV @ 10 mA cm-2). In addition, Fe-NixSy/NF has excellent stability, and there is no obvious degradation after 96 h continuous operation at a current density of 100 mA cm-2. This work affords insights into the application of doping strategies and crystalline/amorphous synergistic modulation of the electrocatalytic activity of transition metal-based catalysts in energy conversion systems.
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Kenan Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
| | - Binhai He
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
| |
Collapse
|
10
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
11
|
Kang J, Li F, Xu Z, Chen X, Sun M, Li Y, Yang X, Guo L. How Amorphous Nanomaterials Enhanced Electrocatalytic, SERS, and Mechanical Properties. JACS AU 2023; 3:2660-2676. [PMID: 37885575 PMCID: PMC10598560 DOI: 10.1021/jacsau.3c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
There is ever-growing research interest in nanomaterials because of the unique properties that emerge on the nanometer scale. While crystalline nanomaterials have received a surge of attention for exhibiting state-of-the-art properties in various fields, their amorphous counterparts have also attracted attention in recent years owing to their unique structural features that crystalline materials lack. In short, amorphous nanomaterials only have short-range order at the atomic scale, and their atomic packing lacks long-range periodic arrangement, in which the coordinatively unsaturated environment, isotropic atomic structure, and modulated electron state all contribute to their outstanding performance in various applications. Given their intriguing characteristics, we herein present a series of representative works to elaborate on the structural advantages of amorphous nanomaterials as well as their enhanced electrocatalytic, surface-enhanced Raman scattering (SERS), and mechanical properties, thereby elucidating the underlying structure-function relationship. We hope that this proposed relationship will be universally applicable, thus encouraging future work in the design of amorphous materials that show promising performance in a wide range of fields.
Collapse
Affiliation(s)
- Jianxin Kang
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Fengshi Li
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
- Research
Institute for Frontier Science, Beihang
University, Beijing 100191, China
| | - Ziyan Xu
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Xiangyu Chen
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Mingke Sun
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Yanhong Li
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Xiuyi Yang
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Lin Guo
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| |
Collapse
|
12
|
Kavinkumar T, Yang H, Sivagurunathan AT, Jeong H, Han JW, Kim DH. Regulating Electronic Structure of Iron Nitride by Tungsten Nitride Nanosheets for Accelerated Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300963. [PMID: 37066701 DOI: 10.1002/smll.202300963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Two essential characteristics that are required for hybrid electrocatalysts to exhibit higher oxygen and hydrogen evolution reaction (OER and HER, respectively) activity are a favorable electronic configuration and a sufficient density of active sites at the interface between the two materials within the hybrid. In the present study, a hybrid electrocatalyst is introduced with a novel architecture consisting of coral-like iron nitride (Fe2 N) arrays and tungsten nitride (W2 N3 ) nanosheets that satisfies these requirements. The resulting W2 N3 /Fe2 N catalyst achieves high OER activity (268.5 mV at 50 mA cm-2 ) and HER activity (85.2 mV at 10 mA cm-2 ) with excellent long-term durability in an alkaline medium. In addition, density functional theory calculations reveal that the individual band centers experience an upshift in the hybrid W2 N3 /Fe2 N structure, thus improving the OER and HER activity. The strategy adopted here thus provides a valuable guide for the fabrication of cost-effective multi-metallic crystalline hybrids for use as multifunctional electrocatalysts.
Collapse
Affiliation(s)
- Thangavel Kavinkumar
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Heejae Yang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | | | - Hayoung Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| |
Collapse
|
13
|
Viswanathan P, Kim K. In Situ Surface Restructuring of Amorphous Ni-Doped CoMo Phosphate-Based Three-Dimensional Networked Nanosheets: Highly Efficient and Durable Electrocatalyst for Overall Alkaline Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16571-16583. [PMID: 36971241 DOI: 10.1021/acsami.2c18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing cost-efficient bifunctional electrocatalysts with high efficiency and durability for the production of green hydrogen and oxygen is a demanding and challenging research area. Due to their high earth abundance, transition metal-based electrocatalysts are alternatives to noble metal-based water splitting electrocatalysts. Herein, binder-free three-dimensional (3D) networked nanosheets of Ni-doped CoMo ternary phosphate (Pi) were prepared using a facile electrochemical synthetic strategy on flexible carbon cloth without any high-temperature heat treatment or complicated electrode fabrication. The optimized CoMoNiPi electrocatalyst delivers admirable hydrogen (η10 = 96 mV) and oxygen (η10 = 272 mV) evolution performances in 1.0 M KOH electrolyte. For overall water splitting in a two-electrode system, the present catalyst demands only 1.59 and 1.90 V to reach current densities of 10 and 100 mA/cm2, respectively, which is lower than that of the Pt/C||RuO2 couple (1.61 V @ 10 mA/cm2, 2 V > @ 100 mA/cm2) and many other catalysts reported previously. Furthermore, the present catalyst delivers excellent long-term stability in a two-electrode system continuously over 100 h at a high current density of 100 mA/cm2, exhibiting nearly 100% faradic efficiency. The unique 3D amorphous structure with high porosity, a high active surface area, and lower charge transfer resistance provides excellent overall water splitting. Notably, the amorphous structure of the present catalyst favors the in situ surface reconstruction during electrolysis and generates very stable surface-active sites capable of long-term performance. The present work provides a route for the preparation of multimetallic-Pi nanostructures for various electrode applications that are easy to prepare and have superior activity, high stability, and low cost.
Collapse
Affiliation(s)
- Perumal Viswanathan
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
14
|
Wang Y, Fan X, Du Q, Shang Y, Li X, Cao Z, Wang X, Li J, Xie Y, Gan W. Magnetic Heating Amorphous NiFe Hydroxide Nanosheets Encapsulated Ni Nanoparticles@Wood Carbon to Boost Oxygen Evolution Reaction Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206798. [PMID: 37010010 DOI: 10.1002/smll.202206798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
The oxygen evolution reaction (OER) has significant effects on the water-splitting process and rechargeable metal-air batteries; however, the sluggish reaction kinetics caused by the four-electron transfer process for transition metal catalysts hinder large-scale commercialization in highly efficient electrochemical energy conversion devices. Herein, a magnetic heating-assisted enhancement design for low-cost carbonized wood with high OER activity is proposed, in which Ni nanoparticles are encapsulated in amorphous NiFe hydroxide nanosheets (a-NiFe@Ni-CW) via direct calcination and electroplating. The introduction of amorphous NiFe hydroxide nanosheets optimizes the electronic structure of a-NiFe@Ni-CW, accelerating electron transfer and reducing the energy barrier in the OER. More importantly, the Ni nanoparticles located on carbonized wood can function as magnetic heating centers under the effect of an alternating current (AC) magnetic field, further promoting the adsorption of reaction intermediates. Consequently, a-NiFe@Ni-CW demonstrated an overpotential of 268 mV at 100 mA cm-2 for the OER under an AC magnetic field, which is superior to that of most reported transition metal catalysts. Starting with sustainable and abundant wood, this work provides a reference for highly effective and low-cost electrocatalyst design with the assistance of a magnetic field.
Collapse
Affiliation(s)
- Yaoxing Wang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Xueqin Fan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Qiuyu Du
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Ying Shang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Xueqi Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Zhifeng Cao
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Xuan Wang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Jian Li
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Yanjun Xie
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Wentao Gan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
15
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Guo C, Chen Q, Zhong J, Peng W, Li Y, Zhang F, Fan X. Constructing Amorphous–Crystalline Interfaces of Nickel–Iron Phosphides/Oxides for Oxygen Evolution Reaction. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Caixia Guo
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Qiming Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Jiayi Zhong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
17
|
Li X, Zhang H, Hu Q, Zhou W, Shao J, Jiang X, Feng C, Yang H, He C. Amorphous NiFe Oxide-based Nanoreactors for Efficient Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202300478. [PMID: 36789622 DOI: 10.1002/anie.202300478] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Synergy engineering is an important way to enhance the kinetic activity of oxygen-evolution-reaction (OER) electrocatalysts. Here, we fabricated NiFe amorphous nanoreactor (NiFe-ANR) oxide as OER electrocatalysts via a mild self-catalytic reaction. Firstly, the amorphousness helps transform NiFe-ANR into highly active hydroxyhydroxides, and its many fine-grain boundaries increase active sites. More importantly, as proved by experiments and finite element analysis, the nanoreactor structure alters the spatial curvature and the mass transfer over the catalyst, thereby enriching OH- in the catalyst surface and inner part. Thus, the catalyst with the structure of amorphous nanoreactors gained excellent activity, far superior to the NiFe catalyst with the structure of crystalline nanoreactor or amorphous non-nanoreactor. This work provides new insights into the applications and mechanisms of amorphousness and nanoreactors, embodying the "1+1>2" synergy of crystalline state and morphology.
Collapse
Affiliation(s)
- Xiaojie Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Huike Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaxin Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xingxing Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
18
|
Zheng Y, Guo R, Li X, He T, Wang W, Zhan Q, Li R, Zhang K, Ji S, Jin M. Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER. Front Chem 2023; 11:1122333. [PMID: 36793765 PMCID: PMC9922906 DOI: 10.3389/fchem.2023.1122333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Metal phosphides with multi-element components and amorphous structure represent a novel kind of electrocatalysts for promising activity and durability towards the oxygen evolution reaction (OER). In this work, a two-step strategy, including alloying and phosphating processes, is reported to synthesize trimetallic amorphous PdCuNiP phosphide nanoparticles for efficient OER under alkaline conditions. The synergistic effect between Pd, Cu, Ni, and P elements, as well as the amorphous structure of the obtained PdCuNiP phosphide nanoparticles, would boost the intrinsic catalytic activity of Pd nanoparticles towards a wide range of reactions. These obtained trimetallic amorphous PdCuNiP phosphide nanoparticles exhibit long-term stability, nearly a 20-fold increase in mass activity toward OER compared with the initial Pd nanoparticles, and 223 mV lower in overpotential at 10 mA cm-2. This work not only provides a reliable synthetic strategy for multi-metallic phosphide nanoparticles, but also expands the potential applications of this promising class of multi-metallic amorphous phosphides.
Collapse
Affiliation(s)
- Yangzi Zheng
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruiyun Guo
- School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi, China,*Correspondence: Mingshang Jin, ; Ruiyun Guo,
| | - Xiang Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi, China
| | - Tianou He
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weicong Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi Zhan
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rui Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ke Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shangdong Ji
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mingshang Jin
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Mingshang Jin, ; Ruiyun Guo,
| |
Collapse
|
19
|
Xu Z, Wang J, Cai J, He Y, Hu J, Li H, Li Y, Zhou Y. Electrochemical Deposited Amorphous Bimetallic Nickle-Iron (Oxy)hydroxides Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Fan C, Wan Z, Pan M, Hou J, Shi Y, Guo W, Wang G, Peng S, Jing Q, Chen L. Photoassisted Electrochemical Hydrogen Evolution Reaction of MFe 2O 4@Ultrathin Black Phosphorus Amorphous-Crystalline Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54748-54757. [PMID: 36458335 DOI: 10.1021/acsami.2c16543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring highly active, stable, and low-cost catalysts for photoelectrochemical hydrogen evolution reaction (PE-HER) is vital in the field of energy conversion. Herein, we construct a new amorphous crystalline interface that amorphous iron-based spinel oxide (A-MFe2O4 (M = Ni, Co, Zn)) is uniformly anchored on the crystalline exfoliated black phosphorus (C-EBP) nanosheets via electrochemical and solvothermal strategies. Among these A-MFe2O4@C-EBP catalysts, more oxygen defects of A-NiFe2O4@C-EBP interface provide a larger effective electrochemical active area of 32.33 mF cm-2 as well as a turnover frequency of 0.44 s-1 and allow for an optimum equilibrium of the hydrogen-containing adsorption intermediates. Furthermore, A-NiFe2O4@C-EBP exhibits significant PE-HER performance with an overpotential of 42 mV at 10 mA cm-2 under visible-light irradiation. Density functional theory (DFT) calculations show that the amorphous-crystalline composite structure causes a large number of oxygen defects enhancing the intrinsic activity of A-NiFe2O4@C-EBP, which A-NiFe2O4@C-EBP significantly improves its adsorption capacity for H* for HER and has the lowest Gibbs free energy change for HER. This study not only provides a superior multifunctional amorphous-crystalline interface catalysts but also helps to understand the catalytic mechanism of PE-HER.
Collapse
Affiliation(s)
- Changchun Fan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhenzhen Wan
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Meiling Pan
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Juan Hou
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yulin Shi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wen Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Gang Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Shanglong Peng
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qun Jing
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Gu Z, Zhang Y, Wei X, Duan Z, Ren L, Ji J, Zhang X, Zhang Y, Gong Q, Wu H, Luo K. Unveiling the Accelerated Water Electrolysis Kinetics of Heterostructural Iron-Cobalt-Nickel Sulfides by Probing into Crystalline/Amorphous Interfaces in Stepwise Catalytic Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201903. [PMID: 36057998 PMCID: PMC9596816 DOI: 10.1002/advs.202201903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Indexed: 05/28/2023]
Abstract
Amorphization and crystalline grain boundary engineering are adopted separately in improving the catalytic kinetics for water electrolysis. Yet, the synergistic effect and advance in the cooperated form of crystalline/amorphous interfaces (CAI) have rarely been elucidated insightfully. Herein, a trimetallic FeCo(NiS2 )4 catalyst with numerous CAI (FeCo(NiS2 )4 -C/A) is presented, which shows highly efficient catalytic activity toward both hydrogen and oxygen evolution reactions (HER and OER). Density functional theory (DFT) studies reveal that CAI plays a significant role in accelerating water electrolysis kinetics, in which Co atoms on the CAI of FeCo(NiS2 )4 -C/A catalyst exhibit the optimal binding energy of 0.002 eV for H atoms in HER while it also has the lowest reaction barrier of 1.40 eV for the key step of OER. H2 O molecules are inclined to be absorbed on the interfacial Ni atoms based on DFT calculations. As a result, the heterostructural CAI-containing catalyst shows a low overpotential of 82 and 230 mV for HER and OER, respectively. As a bifunctional catalyst, it delivers a current density of 10 mA cm-2 at a low cell voltage of 1.51 V, which enables it a noble candidate as metal-based catalysts for water splitting. This work explores the role of CAI in accelerating the HER and OER kinetics for water electrolysis, which sheds light on the development of efficient, stable, and economical water electrolysis systems by facile interface-engineering implantations.
Collapse
Affiliation(s)
- Zhengxiang Gu
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yechuan Zhang
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
- School of Chemical Engineering and Advanced MaterialsUniversity of AdelaideAdelaideSA5005Australia
| | - Xuelian Wei
- National Engineering Research Center for BiomaterialsSichuan University29 Wangjiang RoadChengdu610064P. R. China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Long Ren
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jiecheng Ji
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaoqin Zhang
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yuxin Zhang
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041P. R. China
| | - Hao Wu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdaoShandong266237P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)Animal Experimental CenterDepartment of RadiologyNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041P. R. China
| |
Collapse
|
22
|
Zhang D, Wang F, Zhao W, Cui M, Fan X, Liang R, Ou Q, Zhang S. Boosting Hydrogen Evolution Reaction Activity of Amorphous Molybdenum Sulfide Under High Currents Via Preferential Electron Filling Induced by Tungsten Doping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202445. [PMID: 35876393 PMCID: PMC9507386 DOI: 10.1002/advs.202202445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Indexed: 05/23/2023]
Abstract
The lack of highly efficient, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) working at high current densities poses a significant challenge for the large-scale implementation of hydrogen production from renewable energy. Herein, amorphous molybdenum tungsten sulfide/nitrogen-doped reduced graphene oxide nanocomposites (a-MoWSx /N-RGO) are synthesized by plasma treatment for use as high-performance HER catalysts. By adjusting the plasma treatment duration and chemical composition, an optimal a-MoWSx /N-RGO catalyst is obtained, which exhibits a low overpotential of 348 mV at a current density of 1000 mA cm-2 and almost no decay after 24 h of working at this current density, outperforming commercial platinum/carbon (Pt/C) and previously reported heteroatom-doped MoS2 -based catalysts. Based on density functional theory (DFT) calculations, it is found that with a reasonable tungsten doping level, the catalytic active site (2S2 - ) shows excellent catalytic performance working at high current densities because extra electrons preferentially fill at 2S2 - . The introduction of tungsten tends to lower the electronic structure energy, resulting in a closer-to-zero positive Δ G H ∗ $\Delta {G}_{{{\rm{H}}}^{\rm{*}}}$ . Excessive tungsten introduction, however, can lead to structural damage and a worse HER performance under high current densities. The work provides a route towards rationally designing high-performance catalysts for the HER at industrial-level currents using earth-abundant elements.
Collapse
Affiliation(s)
- Dai Zhang
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
| | - Feilong Wang
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Wenqi Zhao
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Minghui Cui
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Xueliang Fan
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy MaterialsFudan UniversityShanghai200433P.R. China
| | - Rongqing Liang
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Qiongrong Ou
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Shuyu Zhang
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| |
Collapse
|
23
|
Tang Y, Li H, Cui K, Xia Y, Yuan G, Feng J, Xiong W. Chemoselective hydrogenation of cinnamaldehyde over amorphous coordination polymer supported Pt-Co bimetallic nanocatalyst. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Co(OH)2/TiO2 heterojunction for selective SERS detection of anionic dyes. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Tao Y, Liu S, Dong S, Wang C, Qu T, Li S, Li L, Ma Z. An in situ grown amorphous ZrO 2 layer on zeolite for enhanced phosphate adsorption. RSC Adv 2022; 12:16751-16762. [PMID: 35754910 PMCID: PMC9170381 DOI: 10.1039/d2ra01967a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Zeolite supported amorphous metal oxide nanolayers with high specific surface area, abundant adsorption sites, and excellent reusability hold a bright prospect in the efficient removal of contaminants, yet it is proven to be still challenging to precisely regulate and control their synthesis. Herein, we reported a facile synthetic strategy for rational design and achieving the uniform and firm in situ growth of an amorphous ZrO2 layer decorated on the surface of zeolite (ZEO@AZ) for enhanced phosphate adsorption. The Langmuir isotherm model and pseudo-second order kinetic equation well described the adsorption process towards phosphate solution, and the synthetized ZEO@AZ exhibited an excellent maximum adsorption amount of 24.98 mgP g-1. Furthermore, the adsorption of phosphates on ZEO@AZ was confirmed to be chemisorption, endothermic and spontaneous. This approach for fabricating amorphous metal oxide nanolayers on a robust matrix may provide a new route for constructing composites with superb phosphate adsorption performance.
Collapse
Affiliation(s)
- Ying Tao
- College of Mining, Liaoning Technical University Fuxin 123000 P. R. China
- School of Metallurgy Engineering, Liaoning Key Laboratory of Optimization and Utilization of Non-associated Low-grade Iron Ore, Liaoning Institute of Science and Technology Benxi 117004 P. R. China
| | - Shaojia Liu
- School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Shizhi Dong
- College of Mining, Liaoning Technical University Fuxin 123000 P. R. China
| | - Chengguo Wang
- School of Metallurgy Engineering, Liaoning Key Laboratory of Optimization and Utilization of Non-associated Low-grade Iron Ore, Liaoning Institute of Science and Technology Benxi 117004 P. R. China
| | - Tao Qu
- School of Metallurgy Engineering, Liaoning Key Laboratory of Optimization and Utilization of Non-associated Low-grade Iron Ore, Liaoning Institute of Science and Technology Benxi 117004 P. R. China
| | - Sinan Li
- School of Metallurgy Engineering, Liaoning Key Laboratory of Optimization and Utilization of Non-associated Low-grade Iron Ore, Liaoning Institute of Science and Technology Benxi 117004 P. R. China
| | - Lingling Li
- School of Metallurgy Engineering, Liaoning Key Laboratory of Optimization and Utilization of Non-associated Low-grade Iron Ore, Liaoning Institute of Science and Technology Benxi 117004 P. R. China
| | - Zhuang Ma
- College of Mining, Liaoning Technical University Fuxin 123000 P. R. China
- School of Metallurgy Engineering, Liaoning Key Laboratory of Optimization and Utilization of Non-associated Low-grade Iron Ore, Liaoning Institute of Science and Technology Benxi 117004 P. R. China
| |
Collapse
|
26
|
Shi Y, Zhang D, Miao H, Zhan T, Lai J. Design of NiFe‐based nanostructures for efficient oxygen evolution electrocatalysis. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yue Shi
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Dan Zhang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao China
| | - Hongfu Miao
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
27
|
Zhou Y, Hao W, Zhao X, Zhou J, Yu H, Lin B, Liu Z, Pennycook SJ, Li S, Fan HJ. Electronegativity-Induced Charge Balancing to Boost Stability and Activity of Amorphous Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100537. [PMID: 34951727 DOI: 10.1002/adma.202100537] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Amorphization is an efficient strategy to activate intrinsically inert catalysts. However, the low crystallinity of amorphous catalysts often causes high solubility and poor electrochemical stability in aqueous solution. Here, a different mechanism is developed to simultaneously stabilize and activate the water-soluble amorphous MoSx Oy via a charge-balancing strategy, which is induced by different electronegativity between the co-dopants Rh (2.28) and Sn (1.96). The electron-rich Sn prefers to stabilize the unstable apical O sites in MoSx Oy through charge transfer, which can prevent the H from attacking. Meanwhile, the Rh, as the charge regulator, shifts the main active sites on the basal plane from inert Sn to active apical Rh sites. As a result, the amorphous RhSn-MoSx Oy exhibits drastic enhancement in electrochemical stability (η10 increases only by 12 mV) after 1000 cycles and a distinct activity (η10 : 26 mV and Tafel: 30.8 mV dec-1 ) for the hydrogen evolution reaction in acidic solution. This work paves a route for turning impracticably water-soluble catalysts into treasure and inspires new ideas to design high-performance amorphous electrocatalysts.
Collapse
Affiliation(s)
- Yao Zhou
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Hao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiadong Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Huimei Yu
- Testing Platform of School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Lin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117543, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
28
|
Cheng Y, Yin Z, Ma WM, He ZX, Yao X, Lv WY. Alkali-Induced In Situ Formation of Amorphous Ni xFe 1-x(OH) 2 from a Linear [M 3(COO) 6]-Based MOF Template for Overall Electrochemical Water Splitting. Inorg Chem 2022; 61:3327-3336. [PMID: 35138829 DOI: 10.1021/acs.inorgchem.1c03982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amorphous and bifunctional electrocatalysts based on 3d transition metals tend to exhibit better performance than their crystalline counterparts and are a promising choice for efficient overall water splitting yet far from being well explored. A 3,6-net metal-organic framework (MOF) of [Ni3(bpt)2(DMF)2(H2O)2]·1.5DMF (Ni-MOF), based on linear [Ni3(COO)6] as a node and [1,1'-biphenyl]-3,4',5-tricarboxylic acid (H3bpt) as a linker, was conveniently prepared via a hydrothermal reaction. Benefitting from the wide compatibility of the octahedral coordination geometry in Ni-MOF for different 3d metal ions, the molecular level and controllable metal doping facilitates the production of the desired Ni/Fe bimetallic MOF. A high-concentration alkali solution of 1 M KOH induced the in situ transformation of the MOF as a precursor to new amorphous electrocatalysts of [Ni(OH)2(H2O)0.6]·H2O [a-Ni(OH)2] and its metal-doped derivatives of a-Ni0.77Fe0.23(OH)2 and a-Ni0.65Fe0.35(OH)2. In particular, the costly organic ligand H3bpt was fully dissolved in the alkaline solution and can be recovered for cyclic utilization by subsequent acidification. The obtained amorphous hydroxide was deduced to be loose and defective layers containing both coordinated and lattice water based on combined characterizations of TG, IR, Raman, XPS, and sorption analysis. As opposed to the crystalline counterpart of Ni(OH)2 with stacked packing layers and an absent lattice water, the abundant catalytic active sites of the amorphous electrocatalyst endow good performance in both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The bifunctional a-Ni0.65Fe0.35(OH)2 coated on nickel foam realizes small overpotentials of 247 and 99 mV for OER and HER, respectively, under a current density of 10 mA cm-2, which can work with a cell voltage of merely 1.60 V for overall water splitting. This study provides an efficient strategy for widely screening and preparing new functional amorphous materials for electrocatalytic application.
Collapse
Affiliation(s)
- Yu Cheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Zheng Yin
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Wei-Min Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Zhao-Xuan He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Xuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wen-Yu Lv
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
29
|
Mallick L, Rajput A, Adak MK, Kundu A, Chaudhary P, Chakraborty B. γ-FeO(OH) with Multi-surface Terminations Intrinsically Active for Electrocatalytic Oxygen Evolution Reaction. Dalton Trans 2022; 51:15094-15110. [DOI: 10.1039/d2dt01860h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to poor conductivity, electrocatalytic performance of independently prepared iron oxy-hydroxide (FeO(OH)) is inferior whereas in-situ derived FeO(OH) from the iron based electro(pre)catalyst shows superior oxygen evolution reaction (OER). Use...
Collapse
|
30
|
Li Y, Ma W, Yang H, Tian Q, Xu Q, Han B. CO2-assisted synthesis of crystalline/amorphous NiFe-MOF heterostructure for high-efficiency electrocatalytic water oxidation. Chem Commun (Camb) 2022; 58:6833-6836. [DOI: 10.1039/d2cc01163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulating the crystalline phase and structure of metal organic frameworks (MOFs) for superior electrocatalytic oxygen evolution reaction (OER) performance is a significant but challenging topic. Herein, a facile CO2-assisted strategy...
Collapse
|
31
|
Nai J, Xu X, Xie Q, Lu G, Wang Y, Luan D, Tao X, Lou XWD. Construction of Ni(CN) 2 /NiSe 2 Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104405. [PMID: 34726305 DOI: 10.1002/adma.202104405] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Exploiting effective electrocatalysts based on elaborate heterostructures for the oxygen evolution reaction (OER) has been considered as a promising strategy for boosting water splitting efficiency to produce the clean energy-hydrogen. However, constructing catalytically active heterostructures with novel composition and architecture remains poorly developed due to the synthetic challenge. In this work, it is demonstrated that unique Ni(CN)2 /NiSe2 heterostructures, composed of single-crystalline Ni(CN)2 nanoplates surrounded by crystallographically aligned NiSe2 nanosatellites, can be created from nickel-based Hofmann-type coordination polymers through stepwise topochemical pathways. When employed as the OER electrocatalyst, the Ni(CN)2 /NiSe2 heterostructures show enhanced performance, which could be attributed to optimized geometric and electronic structures of the catalytic sites endowed by the synergy between the two components. This work demonstrates a rational synthetic route for creating a novel Ni-based OER electrocatalyst that possesses nanoscale heterostructure, whose composition, spatial organization, and interface configuration can be finely manipulated.
Collapse
Affiliation(s)
- Jianwei Nai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangzhen Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qifan Xie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Deyan Luan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
32
|
Han X, Wu G, Du J, Pi J, Yan M, Hong X. Metal and metal oxide amorphous nanomaterials towards electrochemical applications. Chem Commun (Camb) 2021; 58:223-237. [PMID: 34878467 DOI: 10.1039/d1cc04141j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous nanomaterials have aroused extensive interest due to their unique properties. Their performance is highly related with their distinct atomic arrangements, which have no long-range order but possess short- to medium-range order. Herein, an overview of state-of-the-art synthesis methods of amorphous nanomaterials, structural characteristics and their electrochemical properties is presented. Advanced characterization methods for analyzing and proving the local order of amorphous structures, such as X-ray absorption fine structure spectroscopy, atomic electron tomography and nanobeam electron diffraction, are introduced. Various synthesis strategies for amorphous nanomaterials are covered, especially the salt-assisted metal organic decomposition method to prepare ultrathin amorphous nanosheets. Furthermore, the design and structure-activity relationship of amorphous nanomaterials towards electrochemical applications, including electrocatalysts and battery anode/cathode materials, is discussed.
Collapse
Affiliation(s)
- Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Junyi Du
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Jinglin Pi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Muyu Yan
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
33
|
Wang P, Wang B. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59593-59617. [PMID: 34878246 DOI: 10.1021/acsami.1c17448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical water splitting is regarded as the most attractive technique to store renewable electricity in the form of hydrogen fuel. However, the corresponding anodic oxygen evolution reaction (OER) and cathodic hydrogen evolution reaction (HER) remain challenging, which exhibit complex reactions and sluggish kinetic behaviors at the triple-phase interface. Material surface and interface engineering provide a feasible approach to improve catalytic activity. Besides, self-supported electrocatalysts have been proven to be highly efficient toward water splitting, because of the regulated catalyst/substrate interface. In this Review, the state-of-the-art achievements in self-supported electrocatalyst for HER/OER have demonstrated the feasibility of surface and interface engineering strategies to boost performance. The six key effective surface/interface engineering approaches for rational catalysts design are systematically reviewed, including defect engineering, morphology engineering, crystallographic tailoring, heterostructure design, catalyst/substrate interface engineering, and catalyst/electrolyte interface regulation. Finally, the challenges and opportunities on the valuable directions are proposed to inspire future investigation of highly active and durable HER/OER electrocatalysts.
Collapse
Affiliation(s)
- Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| |
Collapse
|
34
|
Sun X, Guan X, Feng H, Zheng D, Tian W, Li C, Li C, Yan M, Yao Y. Enhanced activity promoted by amorphous metal oxyhydroxides on CeO 2 for alkaline oxygen evolution reaction. J Colloid Interface Sci 2021; 604:719-726. [PMID: 34293530 DOI: 10.1016/j.jcis.2021.06.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
Herein, we demonstrate a direct growth of amorphous metal oxyhydroxide (AMO) attached on CeO2 by a galvanic replacement mechanism as advanced oxygen evolution reaction (OER) catalyst. In this unique structure, the CeO2 substrate not only offers high specific surface area for the formation of AMO, but also provides high conductivity, guaranteeing the promoted electron transfer for the catalytic reaction. In addition, the AMO on the surface of the CeO2 exposes abundant active sites for the OER. Benefiting from the above advantages, the as-prepared AMO@CeO2 supported on nickel foam (AMO@CeO2/NF) exhibits excellent OER performance with low overpotential of 261 mV at 10 mA cm-2, high turnover frequency of 0.07 s-1 at 20 mA cm-2 and superior stability in 1.0 M KOH.
Collapse
Affiliation(s)
- Xun Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xin Guan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hao Feng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dengchao Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Wenli Tian
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengyi Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chuiyu Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Minglei Yan
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Yadong Yao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
35
|
Shao W, Xiao M, Yang C, Cheng M, Cao S, He C, Zhou M, Ma T, Cheng C, Li S. Assembling and Regulating of Transition Metal-Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. SMALL 2021; 18:e2105763. [PMID: 34866325 DOI: 10.1002/smll.202105763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Developing efficient, durable, and low-cost earth-abundant elements-based oxygen evolution reaction (OER) catalysts by rapid and scalable strategies is of great importance for future sustainable electrochemical hydrogen production. The earth-abundant high-valency metals, especially vanadium, can modulate the electronic structure of 3d metal oxides and oxyhydroxides and offer the active sites near-optimal adsorption energies for OER intermediates. Here, the authors propose a facile assembling and regulating strategy to controllably synthesize a serial of transition metal (CoFe, NiFe, and NiCo)-based vanadates for efficient OER catalysis. By tuning the reaction concentrations, NiFe-based vanadates with different crystallinities can be facilely regulated, where the catalyst with moderate heterophase (mixed crystalline and amorphous structures) shows the best OER catalytic activity in terms of low overpotential (267 mV at the current density of 10 mA cm-2 ), low Tafel slope (38 mV per decade), and excellent long-term durability in alkaline electrolyte, exceeding its noble metal-based counterparts (RuO2 ) and most current existing OER catalysts. This work not only reports a facile and controllable method to synthesize a series of vanadates-based catalysts with heterophase nanostructures for high-performance OER catalysis, but also may expand the scope of designing cost-effective transition metal-based electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingjun Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Menghao Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
36
|
Malavekar DB, Lokhande VC, Patil DJ, Kale SB, Patil UM, Ji T, Lokhande CD. Amorphous nickel tungstate films prepared by SILAR method for electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2021; 609:734-745. [PMID: 34839910 DOI: 10.1016/j.jcis.2021.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
Development of electrocatalyst using facile way from non-noble metal compounds with high efficiency for effective water electrolysis is highly demanding for production of hydrogen energy. Nickel based electrocatalysts were currently developed for electrochemical water oxidation in alkaline pH. Herein, amorphous nickel tungstate (NiWO4) was synthesized using the facile successive ionic layer adsorption and reaction method. The films were characterized by X-ray diffraction, Raman spectroscopy, Fourier transfer infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy techniques. The electrochemical analysis showed 315 mV of overpotential at 100 mA cm-2 with lowest Tafel slope of 32 mV dec-1 for oxygen evolution reaction (OER) making films of NiWO4 compatible towards electrocatalysis of water in alkaline media. The chronopotentiometry measurements at 100 mA cm-2 over 24 h showed 97% retention of OER activity. The electrochemical active surface area (ECSA) of NW120 film was 25.5 cm-2.
Collapse
Affiliation(s)
- D B Malavekar
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur 416 006, India
| | - V C Lokhande
- Department of Electronics and Computer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - D J Patil
- Department of General Engineering, D. Y. Patil Technical Campus, Talsande 416 112, India
| | - S B Kale
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur 416 006, India
| | - U M Patil
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur 416 006, India
| | - T Ji
- Department of Electronics and Computer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - C D Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur 416 006, India.
| |
Collapse
|
37
|
Catalytic Activity of High-Surface-Area Amorphous MgO Obtained from Upsalite. Catalysts 2021. [DOI: 10.3390/catal11111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The first aim of the research was to synthesize a pure Upsalite, which is an amorphous form of MgCO3, by modifying a procedure described in the literature, so that it would be the precursor of a high-surface, amorphous magnesium oxide. The results indicate that within the studied reaction conditions, the type of alcohol used as the reactant has the most pronounced effect on the yield of reaction. From the two alcohols that led to the highest yield of Upsalite, methanol gave a substantially larger surface area (794 vs. 191 m2 g−1). The optimized synthesis conditions of Upsalite were used to obtain MgO via thermolysis, whose activity in the transfer hydrogenation reaction (THR) from ethanol, 2-propanol and 2-pentanol to various carbonyl compounds was determined. The optimal conditions for the thermolysis were as follows: vacuum, T = 673 K as the final temperature, and a heating rate of 2 deg min−1. The high-surface, amorphous magnesia (SBET = 488 m2 g−1) was found to be a very selective catalyst to 4-t-butylcyclohexanone in THR, which led to a diastereoselectivity of over 94% to the E-isomer of 4-t-butylcyclohexanol for more than 3 h, with conversions of up to 97% with either 2-propanol or 2-pentanol as the hydrogen donor. In the case of acrolein and 2-n-propylacrolein being used as the hydrogen acceptors, the unsaturated alcohol (UOL) was the main product of the reaction, with higher UOL yields noted for ethanol than 2-propanol.
Collapse
|
38
|
Gu Z, Wei X, Zhang X, Duan Z, Gu Z, Gong Q, Luo K. Bimetallic-MOF-Derived Amorphous Zinc/Cobalt-Iron-Based Hollow Nanowall Arrays via Ion Exchange for Highly Efficient Oxygen Evolution. SMALL 2021; 17:e2104125. [PMID: 34655163 DOI: 10.1002/smll.202104125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Oxygen evolution reaction (OER) is critical for optimizing renewable energy systems, including metal-air batteries and water electrolysis. One major challenge for OER is to develop durable and cost-effective electrocatalysts with high catalytic performance. Herein, a controllable ion-exchange method to synthesize amorphous zinc/cobalt-iron hydroxide-based hollow nanowall arrays (A-Zn/Co-Fe HNAs) derived from bimetallic metal-organic frameworks (MOFs) on carbon cloth is reported. The amorphous characteristic enables the presented materials with more electrocatalytic sites and short diffusion paths for rapid access to the electrolyte, achieving efficient charge transfer for OER. The optimized nanostructure of A-Zn/Co-Fe HNAs via tuning the amount of iron sulfate in the reaction solution delivers a low overpotential of 226 mV to reach a current density of 10 mA cm-2 with a small Tafel slope of 37.81 mV dec-1 while exhibiting high durability at varied current densities over 80 h. The remarkable electrochemical performance can be attributed to the synergistic effect from chemical elements of Zn, Co-Fe, and a robust hollow structure. This simple method of fabricating bimetallic-MOF-derived amorphous Zn/Co-Fe HNAs on carbon cloth can be applied as a practical platform for other OER electrocatalysts.
Collapse
Affiliation(s)
- Zhengxiang Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuelian Wei
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Xiaoqin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhengyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
39
|
Zhang K, Zou R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100129. [PMID: 34114334 DOI: 10.1002/smll.202100129] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/06/2021] [Indexed: 05/14/2023]
Abstract
Oxygen evolution reaction (OER) is an important half-reaction involved in many electrochemical applications, such as water splitting and rechargeable metal-air batteries. However, the sluggish kinetics of its four-electron transfer process becomes a bottleneck to the performance enhancement. Thus, rational design of electrocatalysts for OER based on thorough understanding of mechanisms and structure-activity relationship is of vital significance. This review begins with the introduction of OER mechanisms which include conventional adsorbate evolution mechanism and lattice-oxygen-mediated mechanism. The reaction pathways and related intermediates are discussed in detail, and several descriptors which greatly assist in catalyst screen and optimization are summarized. Some important parameters suggested as measurement criteria for OER are also mentioned and discussed. Then, recent developments and breakthroughs in experimental achievements on transition metal-based OER electrocatalysts are reviewed to reveal the novel design principles. Finally, some perspectives and future directions are proposed for further catalytic performance enhancement and deeper understanding of catalyst design. It is believed that iterative improvements based on the understanding of mechanisms and fundamental design principles are essential to realize the applications of efficient transition metal-based OER electrocatalysts for electrochemical energy storage and conversion technologies.
Collapse
Affiliation(s)
- Kexin Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| |
Collapse
|
40
|
Guo C, Shi Y, Lu S, Yu Y, Zhang B. Amorphous nanomaterials in electrocatalytic water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63740-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Zhang L, Chen H, Wei Z. Recent Advances in Nanoparticles Confined in Two‐Dimensional Materials as High‐Performance Electrocatalysts for Energy‐Conversion Technologies. ChemCatChem 2021. [DOI: 10.1002/cctc.202001260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Zhang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Hongmei Chen
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| |
Collapse
|
42
|
Koppisetti HVSRM, Ganguli S, Ghosh S, Mahalingam V. Rejuvenating the Geometric Electrocatalytic OER Performance of Crystalline Co 3 O 4 by Microstructure Engineering with Sulfate. Chem Asian J 2021; 16:988-998. [PMID: 33667035 DOI: 10.1002/asia.202100175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 11/06/2022]
Abstract
Despite significant research on its electrocatalytic OER activity, the geometric performance of Co3 O4 has remained unsatisfactory compared to relatively amorphous Co-based materials. In particular, the activity of Co3 O4 prepared through annealing always gets inferior compared to its amorphous precursor. This demands the development of synthetic techniques to prepare Co3 O4 with superior activity as the unpredictable crystal structure of the amorphous materials makes it difficult to understand their structure-activity relationships despite higher geometric activity. In this article, we have shown that incorporation of sulfate in pre-annealed materials plays a pivotal role in boosting the OER activity of annealed Co3 O4 irrespective of the pre-annealed phase. In contrast to commonly used nitrate or carbonate that leaves the structure upon annealing and renders the resulting Co3 O4 with poor activity, sulfate remains in the annealed structure due to its thermal stability and causes a dramatic enhancement in the geometric electrocatalytic OER activity of resulting Co3 O4 compared to the pre-annealed phase. This was due to the "pore-alteration ability" and "crystallization hindrance effect" of sulfate ions that significantly alter the microstructure of the resulting Co3 O4 during annealing process by dramatically improving the surface area, pore size, and pore volume. Moreover, sulfate incorporation provided structures with considerably higher mesoporosity that is known to be conducive for reactant and product diffusion within the network. The improved textural properties led to better exposure of the catalytic centres to the electrolyte leading to higher geometric OER activity despite identical intrinsic activity of both sulfate free and incorporated Co3 O4 as confirmed from their specific activities. Further, the Co3 O4 synthesized by annealing sulfate incorporated precursor was found to be rich with oxygen defects that are known to increase the potency of a material towards electrocatalytic OER. The sulfate ions also etched out in the electrolyte during electrocatalysis leading to complete unblocking of the pores thereby helping in sustaining the high geometric OER activity. To our knowledge, this is the first report where the geometric electrocatalytic OER activity of an annealed Co3 O4 is significantly better compared to its pre-annealed phase and is in fact comparable to the activity of amorphous Co-hydroxide based compounds.
Collapse
Affiliation(s)
- Heramba V S R M Koppisetti
- NanoLab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Nadia, West Bengal, India
| | - Sagar Ganguli
- NanoLab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Nadia, West Bengal, India
| | - Sourav Ghosh
- NanoLab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Nadia, West Bengal, India
| | - Venkataramanan Mahalingam
- NanoLab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Nadia, West Bengal, India
| |
Collapse
|
43
|
Zeng L, Cao B, Wang X, Liu H, Shang J, Lang J, Cao X, Gu H. Ultrathin amorphous iron-doped cobalt-molybdenum hydroxide nanosheets for advanced oxygen evolution reactions. NANOSCALE 2021; 13:3153-3160. [PMID: 33527975 DOI: 10.1039/d0nr08408e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing the highly efficient and low-cost electrocatalysts for the oxygen evolution reactions (OERs), as vital half reactions of water splitting, is crucial for renewable energy technology. The electrocatalysts based on multi-component and hierarchically structured non-noble metal hydr(oxy)oxide materials are of great prospects. Herein, we report an efficient strategy at low temperatures for synthesizing amorphous iron-doped cobalt-molybdenum ultrathin hydroxide (Fe-CoMo UH) nanosheets. Benefiting from the ultrathin amorphous structure and multi-metal coordination, Fe-CoMo UH nanosheets exhibit outstanding performance for OERs with a low overpotential of 245 mV at 10 mA cm-2, a small Tafel slope of 37 mV dec-1 and an excellent stability for 90 h. The mass activity of Fe-CoMo UH is higher than that of commercial Ir/C and most of the transition metal hydroxide catalysts. This work provides a feasible consideration for the construction of promising efficient non-noble metal catalysts.
Collapse
Affiliation(s)
- Lingjian Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abd-Elrahim A, Chun DM. Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium. JOURNAL OF ALLOYS AND COMPOUNDS 2021; 853:156946. [DOI: 10.1016/j.jallcom.2020.156946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Wu T, Meng H, Dang R. Amorphous Ta 2O 5-supported Ru as an efficient electrocatalyst for selective hydrogenation of cinnamaldehyde with water as the hydrogen source. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00712b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amorphous Ta2O5-supported Ru as an efficient electrocatalyst for electrocatalytic selective hydrogenation of cinnamaldehyde.
Collapse
Affiliation(s)
- Tianxing Wu
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Hanqi Meng
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Rui Dang
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| |
Collapse
|
46
|
Xiong Y, Yu F, Arnold S, Wang L, Presser V, Ren Y, Ma J. Three-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9754145. [PMID: 34806019 PMCID: PMC8566195 DOI: 10.34133/2021/9754145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022]
Abstract
Faradaic electrode materials have significantly improved the performance of membrane capacitive deionization, which offers an opportunity to produce freshwater from seawater or brackish water in an energy-efficient way. However, Faradaic materials hold the drawbacks of slow desalination rate due to the intrinsic low ion diffusion kinetics and inferior stability arising from the volume expansion during ion intercalation, impeding the engineering application of capacitive deionization. Herein, a pseudocapacitive material with hollow architecture was prepared via template-etching method, namely, cuboid cobalt hydroxide, with fast desalination rate (3.3 mg (NaCl)·g-1 (h-Co(OH)2)·min-1 at 100 mA·g-1) and outstanding stability (90% capacity retention after 100 cycles). The hollow structure enables swift ion transport inside the material and keeps the electrode intact by alleviating the stress induced from volume expansion during the ion capture process, which is corroborated well by in situ electrochemical dilatometry and finite element simulation. Additionally, benefiting from the elimination of unreacted bulk material and vertical cobalt hydroxide nanosheets on the exterior surface, the synthesized material provides a high desalination capacity (117 ± 6 mg (NaCl)·g-1 (h-Co(OH)2) at 30 mA·g-1). This work provides a new strategy, constructing microscale hollow faradic configuration, to further boost the desalination performance of Faradaic materials.
Collapse
Affiliation(s)
- Yuecheng Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Stefanie Arnold
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Lei Wang
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Volker Presser
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
- Saarene-Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Yifan Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
47
|
Bao X, Li Y, Wang J, Zhong Q. Amorphous‐crystalline Co−B−P Catalyst for Synergistically Enhanced Hydrogen Evolution Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xinghong Bao
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Yuting Li
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Juan Wang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Qin Zhong
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| |
Collapse
|
48
|
Abd-Elrahim A, Chun DM. Fabrication of efficient nanostructured Co3O4-Graphene bifunctional catalysts: Oxygen evolution, hydrogen evolution, and H2O2 sensing. CERAMICS INTERNATIONAL 2020; 46:23479-23498. [DOI: 10.1016/j.ceramint.2020.06.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
49
|
Muthukumar P, Ranganathan P, Pannipara M, Al‐Sehemi AG, Anthony SP. Highly Enhanced OER Activity of Amorphous Co
3
O
4
via Fabricating Hybrid Amorphous‐Crystalline Gold Nanostructures. ChemistrySelect 2020. [DOI: 10.1002/slct.202002248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pandi Muthukumar
- Department of chemistry School of chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Prabha Ranganathan
- Department of chemistry School of chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Mehboobali Pannipara
- Department of chemistry King Khalid University Abha 61413 Saudi Arabia
- Research center for Advanced Materials Science King Khalid University Abha 61413 Saudi Arabia
| | - Abdullah G. Al‐Sehemi
- Department of chemistry King Khalid University Abha 61413 Saudi Arabia
- Research center for Advanced Materials Science King Khalid University Abha 61413 Saudi Arabia
| | - Savarimuthu Philip Anthony
- Department of chemistry School of chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| |
Collapse
|
50
|
Chen C, Lu Y, Fan R, Shen M. Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation. CHEMSUSCHEM 2020; 13:3893-3900. [PMID: 32400054 DOI: 10.1002/cssc.202000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Photoelectrochemical (PEC) water splitting has the potential to efficiently convert intermittent solar energy into storable hydrogen fuel. However, poor charge separation and transfer ability as well as sluggish surface oxygen evolution reaction (OER) kinetics of the photoelectrode severely hinder the advance in PEC performance. Herein, a facile electrodeposition method was used to integrate Mo-doped NiFe-layered double hydroxide onto a NiOx /Ni-protected Si photoanode for enhanced PEC water oxidation. Mo doping contributed to an increased amount of oxygen vacancies, whereas a dynamic surface self-reconstruction was induced by Mo leaching under PEC OER conditions. This led to enhanced PEC performance with an onset potential of 0.87 V vs. reversible hydrogen electrode (RHE), a photocurrent density of 39.3 mA cm-2 at 1.23 V vs. RHE, a fill factor of 0.38, and a solar-to-oxygen conversion efficiency of 5.3 %, along with a stability of 130 h continuous PEC reaction. The performance was superior to that of the undoped NiFe-LDH/NiOx /Ni/Si (4.3 %), which was attributed to the elevated interface charge separation, fast charge transfer, and accelerated OER kinetics.
Collapse
Affiliation(s)
- Cong Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, P.R. China
| | - Yao Lu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, P.R. China
| | - Ronglei Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, P.R. China
| | - Mingrong Shen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, P.R. China
| |
Collapse
|