1
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Kessler F, Arnke K, Eggerschwiler B, Neldner Y, Märsmann S, Gröninger O, Casanova EA, Weber FA, König MA, Stark WJ, Pape HC, Cinelli P, Tiziani S. Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects. Int J Mol Sci 2024; 25:5555. [PMID: 38791592 PMCID: PMC11121928 DOI: 10.3390/ijms25105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
In certain situations, bones do not heal completely after fracturing. One of these situations is a critical-size bone defect where the bone cannot heal spontaneously. In such a case, complex fracture treatment over a long period of time is required, which carries a relevant risk of complications. The common methods used, such as autologous and allogeneic grafts, do not always lead to successful treatment results. Current approaches to increasing bone formation to bridge the gap include the application of stem cells on the fracture side. While most studies investigated the use of mesenchymal stromal cells, less evidence exists about induced pluripotent stem cells (iPSC). In this study, we investigated the potential of mouse iPSC-loaded scaffolds and decellularized scaffolds containing extracellular matrix from iPSCs for treating critical-size bone defects in a mouse model. In vitro differentiation followed by Alizarin Red staining and quantitative reverse transcription polymerase chain reaction confirmed the osteogenic differentiation potential of the iPSCs lines. Subsequently, an in vivo trial using a mouse model (n = 12) for critical-size bone defect was conducted, in which a PLGA/aCaP osteoconductive scaffold was transplanted into the bone defect for 9 weeks. Three groups (each n = 4) were defined as (1) osteoconductive scaffold only (control), (2) iPSC-derived extracellular matrix seeded on a scaffold and (3) iPSC seeded on a scaffold. Micro-CT and histological analysis show that iPSCs grafted onto an osteoconductive scaffold followed by induction of osteogenic differentiation resulted in significantly higher bone volume 9 weeks after implantation than an osteoconductive scaffold alone. Transplantation of iPSC-seeded PLGA/aCaP scaffolds may improve bone regeneration in critical-size bone defects in mice.
Collapse
Affiliation(s)
- Franziska Kessler
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Kevin Arnke
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Benjamin Eggerschwiler
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Yvonne Neldner
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Sonja Märsmann
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Elisa A. Casanova
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Fabienne A. Weber
- Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland
| | | | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Hans-Christoph Pape
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8057 Zurich, Switzerland
| | - Simon Tiziani
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| |
Collapse
|
3
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
4
|
Ely EV, Kapinski AT, Paradi SG, Tang R, Guilak F, Collins KH. Designer Fat Cells: Adipogenic Differentiation of CRISPR-Cas9 Genome-Engineered Induced Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564206. [PMID: 37961399 PMCID: PMC10634849 DOI: 10.1101/2023.10.26.564206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adipose tissue is an active endocrine organ that can signal bidirectionally to many tissues and organ systems in the body. With obesity, adipose tissue is a source of low-level inflammation that contributes to various co-morbidities and damage to downstream effector tissues. The ability to synthesize genetically engineered adipose tissue could have critical applications in studying adipokine signaling and the use of adipose tissue for novel therapeutic strategies. This study aimed to develop a method for non-viral adipogenic differentiation of genome-edited murine induced pluripotent stem cells (iPSCs) and to test the ability of such cells to engraft in mice in vivo . Designer adipocytes were created from iPSCs, which can be readily genetically engineered using CRISPR-Cas9 to knock out or insert individual genes of interest. As a model system for adipocyte-based drug delivery, an existing iPSC cell line that transcribes interleukin 1 receptor antagonist under the endogenous macrophage chemoattractant protein-1 promoter was tested for adipogenic capabilities under these same differentiation conditions. To understand the role of various adipocyte subtypes and their impact on health and disease, an efficient method was devised for inducing browning and whitening of IPSC-derived adipocytes in culture. Finally, to study the downstream effects of designer adipocytes in vivo , we transplanted the designer adipocytes into fat-free lipodystrophic mice as a model system for studying adipose signaling in different models of disease or repair. This novel translational tissue engineering and regenerative medicine platform provides an innovative approach to studying the role of adipose interorgan communication in various conditions.
Collapse
|
5
|
Yin P, Jiang Y, Fang X, Wang D, Li Y, Chen M, Deng H, Tang P, Zhang L. Cell-Based Therapies for Degenerative Musculoskeletal Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207050. [PMID: 37199688 PMCID: PMC10375105 DOI: 10.1002/advs.202207050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Degenerative musculoskeletal diseases (DMDs), including osteoporosis, osteoarthritis, degenerative disc disease, and sarcopenia, present major challenges in the aging population. Patients with DMDs present with pain, functional decline, and reduced exercise tolerance, which result in long-term or permanent deficits in their ability to perform daily activities. Current strategies for dealing with this cluster of diseases focus on relieving pain, but they have a limited capacity to repair function or regenerate tissue. Cell-based therapies have attracted considerable attention in recent years owing to their unique mechanisms of action and remarkable effects on regeneration. In this review, current experimental attempts to use cell-based therapies for DMDs are highlighted, and the modes of action of different cell types and their derivatives, such as exosomes, are generalized. In addition, the latest findings from state-of-the-art clinical trials are reviewed, approaches to improve the efficiency of cell-based therapies are summarized, and unresolved questions and potential future research directions for the translation of cell-based therapies are identified.
Collapse
Affiliation(s)
- Pengbin Yin
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yuheng Jiang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
- Department of OrthopedicsGeneral Hospital of Southern Theater Command of PLANo. 111, Liuhua AvenueGuangzhou510010China
| | - Xuan Fang
- Department of Anatomy, Histology and EmbryologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Daofeng Wang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yi Li
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Ming Chen
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Hao Deng
- Department of OrthopedicsThird Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoning Province121000China
| | - Peifu Tang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Licheng Zhang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| |
Collapse
|
6
|
Kim SHL, Cho S, Kim S, Kwon J, Lee J, Koh RH, Park JH, Lee H, Park TH, Hwang NS. Cellular direct conversion by cell penetrable OCT4-30Kc19 protein and BMP4 growth factor. Biomater Res 2022; 26:33. [PMID: 35836274 PMCID: PMC9281139 DOI: 10.1186/s40824-022-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background The number of patients suffering from osteoporosis is increasing as the elderly population increases. The demand for investigating bone regeneration strategies naturally arises. One of the approaches to induce bone regeneration is somatic cell transdifferentiation. Among the transcriptional regulators for transdifferentiation, octamer-binding transcription factor 4 (OCT4) is famous for its role in the regulation of pluripotency of stem cells. Bone morphogenetic protein 4 (BMP4) is another factor that is known to have a significant role in osteogenic differentiation. Previous studies have achieved transdifferentiation of cells into osteoblasts using viral and plasmid deliveries of these factors. Although these methods are efficient, viral and plasmid transfection have safety issues such as permanent gene incorporations and bacterial DNA insertions. Herein, we developed a cell penetrating protein-based strategy to induce transdifferentiation of endothelial cells into osteoblasts via nuclear delivery of OCT4 recombinant protein combined with the BMP4 treatment. For the nuclear delivery of OCT4 protein, we fused the protein with 30Kc19, a cell-penetrating and protein stabilizing protein derived from a silkworm hemolymph of Bombyx mori with low cytotoxic properties. This study proposes a promising cell-based therapy without any safety issues that existing transdifferentiation approaches had. Methods OCT4-30Kc19 protein with high penetrating activities and stability was synthesized for a protein-based osteogenic transdifferentiation system. Cells were treated with OCT4-30Kc19 and BMP4 to evaluate their cellular penetrating activity, cytotoxicity, osteogenic and angiogenic potentials in vitro. The osteogenic potential of 3D cell spheroids was also analyzed. In addition, in vivo cell delivery into subcutaneous tissue and cranial defect model was performed. Results OCT4-30Kc19 protein was produced in a soluble and stable form. OCT4-30Kc19 efficiently penetrated cells and were localized in intracellular compartments and the nucleus. Cells delivered with OCT4-30Kc19 protein combined with BMP4 showed increased osteogenesis, both in 2D and 3D culture, and showed increased angiogenesis capacity in vitro. Results from in vivo subcutaneous tissue delivery of cell-seeded scaffolds confirmed enhanced osteogenic properties of transdifferentiated HUVECs via treatment with both OCT4-30Kc19 and BMP4. In addition, in vivo mouse cranial defect experiment demonstrated successful bone regeneration of HUVECs pretreated with both OCT4-30Kc19 and BMP4. Conclusions Using a protein-based transdifferentiation method allows an alternative approach without utilizing any genetic modification strategies, thus providing a possibility for safer use of cell-based therapies in clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00280-8.
Collapse
Affiliation(s)
- Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Medicine, Standford University, 450 Serra Mall, Standford, 94305, USA
| | - Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoyeon Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Janet Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Jaeyoung Lee
- Department of Biomedical Science, Kangwon National University, Gangwon-do, Chuncheon, 24321, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.,Max/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Gangwon-do, Chuncheon, 24321, Republic of Korea
| | - Hwajin Lee
- School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea. .,Uppthera, BRC Laboratory, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea. .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Max/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea. .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Max/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Superior Alignment of Human iPSC-Osteoblasts Associated with Focal Adhesion Formation Stimulated by Oriented Collagen Scaffold. Int J Mol Sci 2021; 22:ijms22126232. [PMID: 34207766 PMCID: PMC8228163 DOI: 10.3390/ijms22126232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration.
Collapse
|
8
|
A selective cytotoxic adenovirus vector for concentration of pluripotent stem cells in human pluripotent stem cell-derived neural progenitor cells. Sci Rep 2021; 11:11407. [PMID: 34075124 PMCID: PMC8169681 DOI: 10.1038/s41598-021-90928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
Highly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.
Collapse
|
9
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
10
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
11
|
Sanjurjo-Rodríguez C, Castro-Viñuelas R, Piñeiro-Ramil M, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco FJ, Díaz-Prado S. Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases. Int J Mol Sci 2020; 21:ijms21176124. [PMID: 32854405 PMCID: PMC7504376 DOI: 10.3390/ijms21176124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodríguez
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| | - Rocío Castro-Viñuelas
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - María Piñeiro-Ramil
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Silvia Rodríguez-Fernández
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Francisco J. Blanco
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Tissular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology Group, 15006 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| |
Collapse
|
12
|
Size-Optimized Microspace Culture Facilitates Differentiation of Mouse Induced Pluripotent Stem Cells into Osteoid-Rich Bone Constructs. Stem Cells Int 2020; 2020:7082679. [PMID: 32508932 PMCID: PMC7244985 DOI: 10.1155/2020/7082679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 01/15/2023] Open
Abstract
Microspace culture is promising for self-organization of induced pluripotent stem cells (iPSCs). However, the optimal size of microspaces for osteogenic differentiation is unclear. We hypothesized that a specific microspace size could facilitate self-organizing iPSC differentiation to form bone-like tissue in vitro. The objectives of this study were to investigate such effects of microspace size and to evaluate bone regeneration upon transplantation of the resulting osteogenic constructs. Dissociated mouse gingival fibroblast-derived iPSCs were plated in ultra-low-attachment microspace culture wells containing hundreds of U-bottom-shaped microwell spots per well to form cell aggregates in growth medium. The microwells had different aperture diameters/depths (400/560 μm (Elp400), 500/700 μm (Elp500), and 900/700 μm (Elp900)) (Kuraray; Elplasia). After 5 days of aggregation, cells were maintained in osteogenic induction medium for 35 days. Only cells in the Elp500 condition tightly aggregated and maintained high viability during osteogenic induction. After 10 days of induction, Elp500 cell constructs showed significantly higher gene expression of Runx2, Osterix, Collagen 1a1, Osteocalcin, Bone sialoprotein, and Osteopontin compared to constructs in Elp400 and Elp900. In methylene blue-counterstained von Kossa staining and Movat's pentachrome staining, only Elp500 constructs showed robust osteoid formation on day 35, with high expression of type I collagen (a major osteoid component) and osteocalcin proteins. Cell constructs were transplanted into rat calvarial bone defects, and micro-CT analysis after 3 weeks showed better bone repair with significantly higher bone mineral density in the Elp500 group compared to the Elp900 group. These results suggest that microspace size affects self-organized osteogenic differentiation of iPSCs. Elp500 microspace culture specifically induces mouse iPSCs into osteoid-rich bone-like tissue possessing high bone regeneration capacity.
Collapse
|
13
|
Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells Int 2020; 2020:1941629. [PMID: 32300365 PMCID: PMC7146092 DOI: 10.1155/2020/1941629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies currently represent the state of art for tissue regenerative treatment approaches for various diseases and disorders. Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells, using vectors carrying definite transcription factors, have manifested a breakthrough in regenerative medicine, relying on their pluripotent nature and ease of generation in large amounts from various dental and nondental tissues. In addition to their potential applications in regenerative medicine and dentistry, iPSCs can also be used in disease modeling and drug testing for personalized medicine. The current review discusses various techniques for the production of iPSC-derived osteogenic and odontogenic progenitors, the therapeutic applications of iPSCs, and their regenerative potential in vivo and in vitro. Through the present review, we aim to explore the potential applications of iPSCs in dental and nondental tissue regeneration and to highlight different protocols used for the generation of different tissues and cell lines from iPSCs.
Collapse
|
14
|
Qasim M, Chae DS, Lee NY. Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J Biomed Mater Res A 2019; 108:394-411. [PMID: 31618509 DOI: 10.1002/jbm.a.36817] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Bone and cartilage tissue engineering is an integrative approach that is inspired by the phenomena associated with wound healing. In this respect, growth factors have emerged as important moieties for the control and regulation of this process. Growth factors act as mediators and control the important physiological functions of bone regeneration. Herein, we discuss the importance of growth factors in bone and cartilage tissue engineering, their loading and delivery strategies, release kinetics, and their integration with biomaterials and stem cells to heal bone fractures. We also highlighted the role of growth factors in the determination of the bone tissue microenvironment based on the reciprocal signaling with cells and biomaterial scaffolds on which future bone and cartilage tissue engineering technologies and medical devices will be based upon.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, Seongnam-si, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
15
|
Zhou P, Han Y, Shi J, Zhang R, Ren X, Li H, Lan F. Investigation of the optimal suspension culture time for the osteoblastic differentiation of human induced pluripotent stem cells using the embryoid body method. Biochem Biophys Res Commun 2019; 515:586-592. [PMID: 31178132 DOI: 10.1016/j.bbrc.2019.05.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) into osteoblasts provides a new paradigm in the field of bone tissue regeneration. The embryoid body (EB) differentiation method is commonly used for the osteogenic differentiation of hiPSCs. However, the spontaneous differentiation process of EBs is poorly understood, as evidenced by the inconsistency of the suspension time among previously reported studies as well as the low osteoblastic differentiation efficiency of hiPSCs. In the present study, we investigated the effects of the suspension culture time of EBs on the osteogenic differentiation of hiPSCs. Under chemically defined conditions, the expression of key genes related to presomitic mesoderm, neural crest, mesenchymal and pre-osteoblast cells in EBs derived from hiPSCs was examined daily by quantitative RT-PCR. Then, EBs with varying times in suspension (3, 5, 7 or 10 days) were attached onto gelatine surfaces, and their osteoblastic differentiation efficiencies after 14 days of culture in osteogenic induction medium were determined. Our results showed that EBs derived from hiPSCs subjected to 4 days of suspension culture produced the most mesenchymal stem cells, and exhibited the best osteogenic differentiation efficiency. Our research is valuable to standardizing, the time in suspension for the osteogenic differentiation of hiPSCs through the EB method, and facilitated the development of a high-efficiency in vitro osteogenic differentiation system for hiPSCs.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Yu Han
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Rui Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Xiaolin Ren
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Hongjiao Li
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Feng Lan
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
16
|
Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int 2019; 2019:1730978. [PMID: 31281368 PMCID: PMC6589256 DOI: 10.1155/2019/1730978] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic disease that affects the skeleton, causing reduction of bone density and mass, resulting in destruction of bone microstructure and increased risk of bone fractures. Since osteoporosis is a disease affecting the elderly and the aging of the world's population is constantly increasing, it is expected that the incidence of osteoporosis and its financial burden on the insurance systems will increase continuously and there is a need for more understanding this condition in order to prevent and/or treat it. At present, available drug therapy for osteoporosis primarily targets the inhibition of bone resorption and agents that promote bone mineralization, designed to slow disease progression. Safe and predictable pharmaceutical means to increase bone formation have been elusive. Stem cell therapy of osteoporosis, as a therapeutic strategy, offers the promise of an increase in osteoblast differentiation and thus reversing the shift towards bone resorption in osteoporosis. This review is focused on the current views regarding the implication of the stem cells in the cellular and physiologic mechanisms of osteoporosis and discusses data obtained from stem cell-based therapies of osteoporosis in experimental animal models and the possibility of their future application in clinical trials.
Collapse
|
17
|
Li WJ, Jiao H, Walczak BE. Emerging opportunities for induced pluripotent stem cells in orthopaedics. J Orthop Translat 2019; 17:73-81. [PMID: 31194067 PMCID: PMC6551359 DOI: 10.1016/j.jot.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/15/2023] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has revolutionized biomedicine. Although the potential of iPSCs for tissue regeneration, disease modeling and drug screening has been largely recognized, findings of iPSC research to date are mostly focused on neurology, cardiology and haematology. For orthopaedics, growing interest in the unique cell type has prompted more researchers to get involved in iPSC research. In this article, we introduce the brief history of cellular reprogramming and different reprogramming methods that have been developed, discuss the biology of iPSCs and review previously reported findings of iPSC studies in orthopaedics. The Translational potential of this article Stem cell therapies hold great promise for treating orthopaedic diseases, manifested in recent study findings and results of clinical trials. iPSCs are a unique stem cell type derived from a patient’s own cells while still possessing the embryonic stem cell-featured pluripotency for generation of all tissues in the body. The distinctive properties make iPSCs much desirable to fulfill the promise of regenerative medicine for clinical orthopaedics.
Collapse
Affiliation(s)
- Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - Hongli Jiao
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| | - Brian E Walczak
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
18
|
Kono K, Sawada R, Kuroda T, Yasuda S, Matsuyama S, Matsuyama A, Mizuguchi H, Sato Y. Development of selective cytotoxic viral vectors for concentration of undifferentiated cells in cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2019; 9:3630. [PMID: 30842516 PMCID: PMC6403330 DOI: 10.1038/s41598-018-36848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022] Open
Abstract
Cell-processed therapeutic products (CTPs) derived from human pluripotent stem cells (hPSCs) have innovative applications in regenerative medicine. However, undifferentiated hPSCs possess tumorigenic potential; thus, sensitive methods for the detection of residual undifferentiated hPSCs are essential for the clinical use of hPSC-derived CTPs. The detection limit of the methods currently available is 1/105 (0.001%, undifferentiated hPSCs/differentiated cells) or more, which could be insufficient for the detection of residual hPSCs when CTPs contain more than 1 × 105 cells. In this study, we developed a novel approach to overcome this challenge, using adenovirus and adeno-associated virus (AdV and AAV)-based selective cytotoxic vectors. We constructed AdV and AAV vectors that possess a suicide gene, iCaspase 9 (iCasp9), regulated by the CMV promoter, which is dormant in hPSCs, for the selective expression of iCasp9 in differentiated cells. As expected, AdV/CMV-iCasp9 and AAV/CMV-iCasp9 exhibited cytotoxicity in cardiomyocytes but not in human induced pluripotent stem cells (hiPSCs). The vectors also induced apoptosis in hiPSC-derived cardiomyocytes, and the surviving cells exhibited higher levels of hPSC marker expression. These results indicate that the AdV- and AAV-based cytotoxic vectors concentrate cells expressing the undifferentiated cell markers in hiPSC-derived products and are promising biological tools for verifying the quality of CTPs.
Collapse
Affiliation(s)
- Ken Kono
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Rumi Sawada
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoko Matsuyama
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Hyogo, Japan
| | - Akifumi Matsuyama
- Department of Regenerative Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan.
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan.
- Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
19
|
Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
|
20
|
Nejad-Moghaddam A, Tahmasbpour E, Sohrabiyan M, Jafari H, Ghanei M. Stem cells therapy: a review on approaches that can be used for treatment of respiratory failures in sulfur mustard-injured patients. Immunopharmacol Immunotoxicol 2018; 40:359-367. [PMID: 30488735 DOI: 10.1080/08923973.2018.1510961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sulfur mustard (SM) is a toxic agent which causes severe abnormalities in an airway system such as necrosis and inflammation, oxidative stress, chronic bronchitis, shortness of breath, and chronic obstructive pulmonary disease. Although possible mechanisms of SM toxicity have been extensively considered, there is still need to find an appropriate clinical treatment to decrease chronic lung injuries caused by SM. Due to extensive progresses and achievement in tissue repairing through stem cells therapy, the importance of cell therapy for the treatment of lung injuries has been increased. However, several factors such as types of stem cells, necessary conditions for growth and proliferation of stem cells, and their homing into the target tissues are considered as the most important problems in this issue. Mesenchymal stem cells (MSCs) are a class of multipotent stem cells with proliferative and self-renewal capacity which are able to differentiate into different cell lines such as lung epithelial cells. They have a potential repairing and immune modulatory properties which make them as a good candidate for the regeneration of bronchioles tract in SM-exposed patients. Unlike chemical drugs, the differentiation and high-level safety properties of MSCs can be considered as a new strategy for the treatment of SM-injured patients with pulmonary complications. This review aims to consider the therapeutic effects of MSCs in the treatment of SM-induced pulmonary injuries in both animals and humans.
Collapse
Affiliation(s)
- Amir Nejad-Moghaddam
- a Marine Medicine Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eisa Tahmasbpour
- b Laboratory of Regenerative Medicine & Biomedical Innovations , Pasteur Institute of Iran , Tehran , Iran
| | - Milad Sohrabiyan
- c Chemical Injuries Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hosein Jafari
- a Marine Medicine Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Mostafa Ghanei
- c Chemical Injuries Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
21
|
Lee J, Lee J, Cho YS. Peroxisome Proliferator-Activated Receptor α Agonist and Its Target Nanog Cooperate to Induce Pluripotency. J Clin Med 2018; 7:jcm7120488. [PMID: 30486372 PMCID: PMC6306698 DOI: 10.3390/jcm7120488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/23/2023] Open
Abstract
The pharmaceutical compounds that modulate pluripotent stem cell (PSC) identity and function are increasingly adopted to generate qualified PSCs and their derivatives, which have promising potential in regenerative medicine, in pursuit of more accuracy and safety and less cost. Here, we demonstrate the peroxisome proliferator-activated receptor α (PPARα) agonist as a novel enhancer of pluripotency acquisition and induced pluripotent stem cell (iPSC) generation. We found that PPARα agonist, examined and selected Food and Drug Administration (FDA) -approved compound libraries, increase the expression of pluripotency-associated genes, such as Nanog, Nr5A2, Oct4, and Rex1, during the reprogramming process and facilitate iPSC generation by enhancing their reprogramming efficiency. A reprogramming-promoting effect of PPARα occurred via the upregulation of Nanog, which is essential for the induction and maintenance of pluripotency. Through bioinformatic analysis, we identified putative peroxisome proliferator responsive elements (PPREs) located within the promoter region of the Nanog gene. We also determined that PPARα can activate Nanog transcription by specific binding to putative PPREs. Taken together, our findings suggest that PPARα is an important regulator of PSC pluripotency and reprogramming, and PPARα agonists can be used to improve PSC technology and regenerative medicine.
Collapse
Affiliation(s)
- Jungwoon Lee
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Yee Sook Cho
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Bioscience, KRIBB School, University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|
22
|
Jin YZ, Lee JH. Mesenchymal Stem Cell Therapy for Bone Regeneration. Clin Orthop Surg 2018; 10:271-278. [PMID: 30174801 PMCID: PMC6107811 DOI: 10.4055/cios.2018.10.3.271] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in clinic for approximately 20 years. During this period, various new populations of MSCs have been found or manipulated. However, their characters and relative strength for bone regeneration have not been well known. For a comprehensive understanding of MSCs, we reviewed the literature on the multipotent cells ranging from the definition to the current research progress for bone regeneration. Based on our literature review, bone marrow MSCs have been most widely studied and utilized in clinical settings. Among other populations of MSCs, adipose-derived MSCs and perivascular MSCs might be potential candidates for bone regeneration, whose efficacy and safety still require further investigation.
Collapse
Affiliation(s)
- Yuan-Zhe Jin
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul, Korea.,Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
23
|
Hepatocyte Nuclear Factor 4 Alpha Promotes Definitive Endoderm Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2018; 13:542-551. [PMID: 28000155 DOI: 10.1007/s12015-016-9709-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) is a key transcription factor for liver development. Although HNF4α is necessary for hepatoblast differentiation, the function of HNF4α before the hepatoblast differentiation, such as in definitive endoderm differentiation, is not well known. In addition, it is known that there are nine HNF4α isoforms, but the expression and function of each HNF4α isoform during the definitive endoderm differentiation is also not clear. In this study, we examined the expression pattern of HNF4α and its functions in the definitive endoderm differentiation from human induced pluripotent stem (iPS) cells. We found that the HNF4α-1D isoform expression levels were significantly increased during the definitive endoderm differentiation, while the HNF4α-1A isoform expression levels did not change. Therefore, we further examined the function of the HNF4α-1D isoform in definitive endoderm differentiation. HNF4α-1D overexpression or knockdown was found to promote or prevent the definitive endoderm differentiation, respectively. Interestingly, Lefty1 was directly regulated by HNF4α-1D, and Lefty1 knockdown also prevented the definitive endoderm differentiation. These results suggest that HNF4α-1D promotes definitive endoderm differentiation through the regulation of Lefty1. To our knowledge, this is the first report to clarify the expression pattern and function of HNF4α during the definitive endoderm differentiation.
Collapse
|
24
|
Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials 2018; 196:31-45. [PMID: 29456164 DOI: 10.1016/j.biomaterials.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Appropriate and abundant sources of bone-forming osteoblasts are essential for bone tissue engineering. Pluripotent stem cells can self-renew and thereby offer a potentially unlimited supply of osteoblasts, a significant advantage over other cell sources. We generated mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) from transgenic mice expressing rat 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP), a reporter of the osteoblast lineage. We demonstrated that Col2.3GFP ESCs and iPSCs can be successfully differentiated to osteoblast lineage cells that express Col2.3GFP in vitro. We harvested GFP+ osteoblasts differentiated from ESCs. Genome wide gene expression profiles validated that ESC- and iPSC-derived osteoblasts resemble calvarial osteoblasts, and that Col2.3GFP expression serves as a marker for mature osteoblasts. Our results confirm the cell identity of ESC- and iPSC-derived osteoblasts and highlight the potential of pluripotent stem cells as a source of osteoblasts for regenerative medicine.
Collapse
|
25
|
Tsukamoto T, Sakai E, Iizuka S, Taracena-Gándara M, Sakurai F, Mizuguchi H. Generation of the Adenovirus Vector-Mediated CRISPR/Cpf1 System and the Application for Primary Human Hepatocytes Prepared from Humanized Mice with Chimeric Liver. Biol Pharm Bull 2018; 41:1089-1095. [PMID: 29962404 DOI: 10.1248/bpb.b18-00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 9 system is now widely used as a genome editing tool. CRISPR-associated endonuclease in Prevotella and Francisella 1 (Cpf1) is a recently discovered Cas endonuclease that is designable and highly specific with efficiencies comparable to those of Cas9. Here we generated the adenovirus (Ad) vector carrying an Acidaminococcus sp. Cpf1 (AsCpf1) expression cassette (Ad-AsCpf1) for the first time. Ad-AsCpf1 was applied to primary human hepatocytes prepared from humanized mice with chimeric liver in combination with the Ad vector expressing the guide RNA (gRNA) directed to the Adeno-associated virus integration site 1 (AAVS1) region. The mutation rates were estimated by T7 endonuclease I assay around 12% of insertion/deletion (indel). Furthermore, the transduced human hepatocytes were viable (ca. 60%) at two weeks post transduction. These observations suggest that the Ad vector-mediated delivery of the CRISPR/AsCpf1 system provides a useful tool for genome manipulation of human hepatocytes.
Collapse
Affiliation(s)
- Tomohito Tsukamoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shunsuke Iizuka
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Marcos Taracena-Gándara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
- Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition
- iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University
- Global Center for Advanced Medical Engineering and Informatics, Osaka University
| |
Collapse
|
26
|
Morita N, Hosaka T, Kitahara A, Murashima T, Onuma H, Sumitani Y, Takahashi K, Tanaka T, Kondo T, Ishida H. Novel Mechanisms Modulating Palmitate-Induced Inflammatory Factors in Hypertrophied 3T3-L1 Adipocytes by AMPK. J Diabetes Res 2018; 2018:9256482. [PMID: 29713651 PMCID: PMC5866861 DOI: 10.1155/2018/9256482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/10/2018] [Accepted: 01/21/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE A growing body of evidence indicates that AMP-activated protein kinase (AMPK) contributes to not only energy metabolic homeostasis but also the inhibition of inflammatory responses. However, the underlying mechanisms remain unclear. To elucidate the role of AMPK, in this study, we observed the effects of AMPK activation on monocyte chemoattractant protein-1 (MCP-1) release in mature 3T3-L1 adipocytes. METHODS We observed signal transduction pathways regulating MCP-1, which increased in obese adipocytes, in an in vitro model of hypertrophied 3T3-L1 adipocytes preloaded with palmitate. RESULTS Palmitate-preloaded cells exhibited significant increase in MCP-1 release and triglyceride (TG) deposition. Increased MCP-1 release and TG deposition were significantly decreased by an AMPK activator. In addition, the AMPK activator not only markedly diminished MCP-1 secretion but also augmented phosphorylation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase (ERK) 1/2. In contrast, MCP-1 release suppression was abolished by the AMPK inhibitor compound C and the MEK inhibitor U0126. CONCLUSIONS MCP-1 release from hypertrophied adipocytes is suppressed by AMPK activation through the NF-κB and ERK pathways. These findings provide evidence that AMPK plays a crucial role in ameliorating obesity-induced inflammation.
Collapse
Affiliation(s)
- Naru Morita
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshio Hosaka
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Atsuko Kitahara
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshitaka Murashima
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Hirohisa Onuma
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshikazu Sumitani
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Kazuto Takahashi
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiaki Tanaka
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Takuma Kondo
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Hitoshi Ishida
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Chubb R, Oh J, Riley AK, Kimura T, Wu SM, Wu JY. In Vivo Rescue of the Hematopoietic Niche By Pluripotent Stem Cell Complementation of Defective Osteoblast Compartments. Stem Cells 2017; 35:2150-2159. [PMID: 28741855 DOI: 10.1002/stem.2670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
Bone-forming osteoblasts play critical roles in supporting bone marrow hematopoiesis. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSC), are capable of differentiating into osteoblasts. To determine the capacity of stem cells needed to rescue aberrant skeletal development and bone marrow hematopoiesis in vivo, we used a skeletal complementation model. Mice deficient in Runx2, a master transcription factor for osteoblastogenesis, fail to form a mineralized skeleton and bone marrow. Wild-type (WT) green fluorescent protein (GFP)+ ESCs and yellow fluorescent protein (YFP)+ iPSCs were introduced into Runx2-null blastocyst-stage embryos. We assessed GFP/YFP+ cell contribution by whole-mount fluorescence and histological analysis and found that the proportion of PSCs in the resulting chimeric embryos is directly correlated with the degree of mineralization in the skull. Moreover, PSC contribution to long bones successfully restored bone marrow hematopoiesis. We validated this finding in a separate model with diphtheria toxin A-mediated ablation of hypertrophic chondrocytes and osteoblasts. Remarkably, chimeric embryos harboring as little as 37.5% WT PSCs revealed grossly normal skeletal morphology, suggesting a near-complete rescue of skeletogenesis. In summary, we demonstrate that fractional contribution of PSCs in vivo is sufficient to complement and reconstitute an osteoblast-deficient skeleton and hematopoietic marrow. Further investigation using genetically modified PSCs with conditional loss of gene function in osteoblasts will enable us to address the specific roles of signaling mediators to regulate bone formation and hematopoietic niches in vivo. Stem Cells 2017;35:2150-2159.
Collapse
Affiliation(s)
- Rhiannon Chubb
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James Oh
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alyssa K Riley
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takaharu Kimura
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | - Sean M Wu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Joy Y Wu
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthritis Cartilage 2017; 25:616-624. [PMID: 27919783 DOI: 10.1016/j.joca.2016.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA.
Collapse
|
29
|
Bastami F, Nazeman P, Moslemi H, Rezai Rad M, Sharifi K, Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review. Cell Prolif 2017; 50:e12321. [PMID: 27905670 PMCID: PMC6529104 DOI: 10.1111/cpr.12321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are frequently used for bone regeneration, however, they are limited in quantity. Moreover, their proliferation and differentiation capabilities reduce during cell culture expansion. Potential application of induced pluripotent stem cells (iPSCs) has been reported as a promising alternative source for bone regeneration. This study aimed to systematically review the available literature on osteogenic potential of iPSCs and to discuss methods applied to enhance their osteogenic potential. METHODS AND MATERIALS A thorough search of MEDLINE database was performed from January 2006 to September 2016, limited to English-language articles. All in vitro and in vivo studies on application of iPSCs in bone regeneration were included. RESULTS The current review is organized according to the PRISMA statement. Studies were categorized according to three different approaches used for osteo-induction of iPSCs. Data are summarized and reported according to the following variables: types of study, cell sources used for iPSC generation, applied reprogramming methods, applied osteo-induction methods and treatment groups. CONCLUSION According to the articles reviewed, osteo-induced iPSCs revealed osteogenic capability equal to or superior than MSCs; cell sources do not significantly affect osteogenic potential of iPSCs; addition of resveratrol to the osteogenic medium (OM) and irradiatiation after osteogenic induction reduce teratoma formation in animal models; transfection with lentiviral bone morphogenetic protein 2 results in higher mineralization compared to osteo-induction in OM; addition of TGF-β, IGF-1 and FGF-β to OM increases osteogenic capability of iPSCs.
Collapse
Affiliation(s)
- Farshid Bastami
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Pantea Nazeman
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hamidreza Moslemi
- School of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Rezai Rad
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Kazem Sharifi
- Department of BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arash Khojasteh
- Department of Tissue EngineeringSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
30
|
iPS cell technologies and their prospect for bone regeneration and disease modeling: A mini review. J Adv Res 2017; 8:321-327. [PMID: 28386481 PMCID: PMC5374850 DOI: 10.1016/j.jare.2017.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/27/2022] Open
Abstract
Bone disorders are a group of varied acute and chronic traumatic, degenerative, malignant or congenital conditions affecting the musculoskeletal system. They are prevalent in society and, with an ageing population, the incidence and impact on the population’s health is growing. Severe persisting pain and limited mobility are the major symptoms of the disorder that impair the quality of life in affected patients. Current therapies only partially treat the disorders, offering management of symptoms, or temporary replacement with inert materials. However, during the last few years, the options for the treatment of bone disorders have greatly expanded, thanks to the advent of regenerative medicine. Skeletal cell-based regeneration medicine offers promising reparative therapies for patients. Mesenchymal stem (stromal) cells from different tissues have been gradually translated into clinical practice; however, there are a number of limitations. The introduction of reprogramming methods and the subsequent production of induced pluripotent stem cells provides a possibility to create human-specific models of bone disorders. Furthermore, human-induced pluripotent stem cell-based autologous transplantation is considered to be future breakthrough in the field of regenerative medicine. The main goal of the present paper is to review recent applications of induced pluripotent stem cells in bone disease modeling and to discuss possible future therapy options. The present article contributes to the dissemination of scientific and pre-clinical results between physicians, mainly orthopedist and thus supports the translation to clinical practice.
Collapse
|
31
|
Imaizumi M, Li-Jessen NY, Sato Y, Yang DT, Thibeault SL. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering. Ann Otol Rhinol Laryngol 2017; 126:304-314. [DOI: 10.1177/0003489417691296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: One prospective treatment option for vocal fold scarring is regeneration with an engineered scaffold containing induced pluripotent stem cells (iPS). In the present study, we investigated the feasibility of utilizing an injectable hyaluronic acid (HA) scaffold encapsulated with human-iPS cell (hiPS) for regeneration of vocal folds. Methods: Thirty athymic nude rats underwent unilateral vocal fold injury. Contralateral vocal folds served as uninjured controls. Hyaluronic acid hydrogel scaffold, HA hydrogel scaffold containing hiPS, and HA hydrogel scaffold containing hiPS with epidermal growth factor (EGF) were injected in both vocal folds immediately after surgery. One and 2 weeks after injection, larynges were excised for histology, immunohistochemistry, and fluorescence in situ hybridization (FISH). Results: Presence of HA hydrogel was confirmed in vocal folds 1 and 2 weeks post injection. The FISH analysis confirmed the presence and viability of hiPS in the injected vocal folds. Histological results demonstrated that vocal folds injected with HA hydrogel scaffold containing EGF demonstrated less fibrosis than those with HA hydrogel only. Conclusions: Human-iPS survived in injured rat vocal folds. The HA hydrogel with hiPS and EGF ameliorated the fibrotic response. Additional work is necessary to optimize hiPS differentiation and further confirm the safety of hiPS for clinical applications.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - Nicole Y.K. Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
| | - Yuka Sato
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - David T. Yang
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Ma MS, Kannan V, de Vries AE, Czepiel M, Wesseling EM, Balasubramaniyan V, Kuijer R, Vissink A, Copray SCVM, Raghoebar GM. Characterization and comparison of osteoblasts derived from mouse embryonic stem cells and induced pluripotent stem cells. J Bone Miner Metab 2017; 35:21-30. [PMID: 26747612 DOI: 10.1007/s00774-015-0730-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 11/30/2015] [Indexed: 11/30/2022]
Abstract
New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and therefore do not raise ethical concerns. Proper characterization of iPS-derived osteoblasts is important for future development of safe clinical applications of these cells. For this reason, we differentiated mouse ES and iPS cells toward osteoblasts using osteogenic medium and compared their functionality. Immunocytochemical analysis showed significant expression of bone markers (osteocalcin and collagen type I) in osteoblasts differentiated from ES and iPS cells on days 7 and 30. An in vitro mineralization assay confirmed the functionality of osteogenically differentiated ES and iPS cells. Gene expression arrays focusing on osteogenic differentiation were performed in order to compare the gene expression pattern in both differentiated and undifferentiated ES cells and iPS cells. We observed a significant upregulation of osteogenesis-related genes such as Runx2, osteopontin, collagen type I, Tnfsf11, Csf1, and alkaline phosphatase upon osteogenic differentiation of the ES and iPS cells. We further validated the expression of key osteogenic genes Runx2, osteopontin, osteocalcin, collagen type I, and osterix in both differentiated and undifferentiated ES and iPS cells by means of quantified real-time polymerase chain reaction. We conclude that ES and iPS cells are similar in their osteogenic differentiation capacities, as well as in their gene expression patterns.
Collapse
Affiliation(s)
- Ming-San Ma
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Vishnu Kannan
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Anneriek E de Vries
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Marcin Czepiel
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Evelyn M Wesseling
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Veerakumar Balasubramaniyan
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Roel Kuijer
- Department of BioMedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Sjef C V M Copray
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Gerry M Raghoebar
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
33
|
Wang CL, Xiao F, Wang CD, Zhu JF, Shen C, Zuo B, Wang H, Li D, Wang XY, Feng WJ, Li ZK, Hu GL, Zhang X, Chen XD. Gremlin2 Suppression Increases the BMP-2-Induced Osteogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells Via the BMP-2/Smad/Runx2 Signaling Pathway. J Cell Biochem 2016; 118:286-297. [PMID: 27335248 DOI: 10.1002/jcb.25635] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Osteoblasts are essential for maintaining skeletal architecture and modulating bone microenvironment homeostasis. From numerous associated investigations, the BMP-2 pathway has been well-defined as a vital positive modulator of bone homeostasis. Gremlin2 (Grem2) is a bone morphogenetic protein (BMP) antagonists. However, the effect of Grem2 on the BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) remains ambiguous. This study aimed to analyze the procedure in vitro and in vivo. The differentiation of hBMSCs was assessed by determining the expression levels of several osteoblastic genes, as well as the enzymatic activity and calcification of alkaline phosphatase. We found that Grem2 expression was upregulated by BMP-2 within the range of 0-1 μg/mL, and significant increases were evident at 48, 72, and 96 h after BMP-2 treatment. Si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs, whereas overexpression of Grem2 had the opposite trend. The result was confirmed using a defective femur model. We also discovered that the BMP-2/Smad/Runx2 pathway played an important role in the process. This study showed that si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs via the BMP-2/Smad/Runx2 pathway. J. Cell. Biochem. 118: 286-297, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-Long Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuan-Dong Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Jun-Feng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xu-Yi Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Wei-Jia Feng
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhuo-Kai Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Guo-Li Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
34
|
Wu Q, Yang B, Hu K, Cao C, Man Y, Wang P. Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:1-8. [PMID: 27392674 DOI: 10.1089/ten.teb.2015.0559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells using defined transcription factors, are regarded as a promising cell source for tissue engineering. For the purpose of bone tissue regeneration, efficient in vitro differentiation of iPSCs into downstream cells, such as mesenchymal stem cells (MSCs), osteoblasts, or osteocyte-like cells, before use is necessary to limit undesired tumorogenesis associated with the pluripotency of iPSCs. Until recently numerous techniques on the production of iPSC-derived osteogenic progenitors have been introduced. We reviewed these protocols and provided a perspective on the comparisons of osteogenic potentials of (1) iPSC-derived osteogenic cells produced by different protocols, (2) iPSCs from different somatic origins, and (3) iPSC-derived MSC-like cells and bone marrow stem cells. Finally, we discussed the potential application of the diseased iPSCs for systematic bone disorders.
Collapse
Affiliation(s)
- Qingqing Wu
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bo Yang
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Kevin Hu
- 2 University of Maryland Dental School , Baltimore, Maryland
| | - Cong Cao
- 3 Department of Stomatology, China-Japan Friendship Hospital , Beijing, China
| | - Yi Man
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Ping Wang
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China .,2 University of Maryland Dental School , Baltimore, Maryland
| |
Collapse
|
35
|
Induced Pluripotent Stem Cells as a new Strategy for Osteogenesis and Bone Regeneration. Stem Cell Rev Rep 2016; 11:645-51. [PMID: 26022504 DOI: 10.1007/s12015-015-9594-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Induced pluripotent stem (iPS) cells, possess high proliferation and differentiation ability, are now considered an attractive option for osteogenic differentiation and bone regeneration. In fact, recent discoveries have demonstrated that iPS cells can be differentiated into osteoblasts, suggesting that iPS cells have the potential to advance future bone regenerative therapies. Herein, we provide an overview of the recent findings on osteogenic characteristics and differentiation potential of iPS cells. In addition, we discuss current methods for inducing their specification towards osteogenic phenotype as well as in vivo evidence supporting the therapeutic benefit of iPS-derived osteoblasts. Finally, we describe recent findings regarding the use of iPS-derived cells for osteogenic differentiation and bone regeneration, which have indicated that these pluripotent cells represent an ideal tool for regenerative cell therapies and might contribute to the development of future bone tissue engineering.
Collapse
|
36
|
Fan D, Liu S, Jiang S, Li Z, Mo X, Ruan H, Zou GM, Fan C. The use of SHP-2 gene transduced bone marrow mesenchymal stem cells to promote osteogenic differentiation and bone defect repair in rat. J Biomed Mater Res A 2016; 104:1871-81. [PMID: 26999642 DOI: 10.1002/jbm.a.35718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/23/2016] [Accepted: 03/10/2016] [Indexed: 12/30/2022]
Abstract
Bone tissue engineering is a promising approach for bone regeneration, in which growth factors play an important role. The tyrosine phosphatase Src-homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by the PTPN11 gene, is essential for the differentiation, proliferation and metabolism of osteoblasts. However, SHP-2 has never been systematically studied for its effect in osteogenesis. We predicted that overexpression of SHP-2 could promote bone marrow-derived mesenchymal stem cell (BMSC)osteogenic differentiation and SHP-2 transduced BMSCs could enhance new bone formation, determined using the following study groups: (1) BMSCs transduced with SHP-2 and induced with osteoblast-inducing liquid (BMSCs/SHP-2/OL); (2) BMSCs transduced with SHP-2 (BMSCs/-SHP-2); (3) BMSCs induced with osteoblast-inducing liquid (BMSCs/OL) and (4) pure BMSCs. Cells were assessed for osteogenic differentiation by quantitative real-time polymerase chain reaction analysis, western blot analysis, alkaline phosphatase activity and alizarin red S staining. For in vivo assessment, cells were combined with beta-tricalcium phosphate scaffolds and transplanted into rat calvarial defects for 8 weeks. Following euthanasia, skull samples were explanted for osteogenic evaluation, including micro-computed tomography measurement, histology and immunohistochemistry staining. SHP-2 and upregulation of its gene promoted BMSC osteogenic differentiation and therefore represents a potential new therapeutic approach to bone repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1871-1881, 2016.
Collapse
Affiliation(s)
- Dapeng Fan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Shichao Jiang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324 Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Zhiwei Li
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Xiumei Mo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hongjiang Ruan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Gang-Ming Zou
- Hawaii Gangze Inc, 421 Nahua Street, Suite 146, Honolulu, Hawaii, 96815
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| |
Collapse
|
37
|
Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:6240794. [PMID: 27110251 PMCID: PMC4826709 DOI: 10.1155/2016/6240794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell constructs are expected to provide osteoinductive materials to develop cell-based therapies for bone regeneration. The proliferation and spontaneous aggregation capability of induced pluripotent stem cells (iPSCs) thus prompted us to fabricate a scaffold-free iPSC construct as a transplantation vehicle. Embryoid bodies of mouse gingival fibroblast-derived iPSCs (GF-iPSCs) were seeded in a cell chamber with a round-bottom well made of a thermoresponsive hydrogel. Collected ball-like cell constructs were cultured in osteogenic induction medium for 30 days with gentle shaking, resulting in significant upregulation of osteogenic marker genes. The constructs consisted of an inner region of unstructured cell mass and an outer osseous tissue region that was surrounded by osteoblast progenitor-like cells. The outer osseous tissue was robustly calcified with elemental calcium and phosphorous as well as hydroxyapatite. Subcutaneous transplantation of the GF-iPSC constructs into immunodeficient mice contributed to extensive ectopic bone formation surrounded by teratoma tissue. These results suggest that mouse GF-iPSCs could facilitate the fabrication of osteoinductive scaffold-free 3D cell constructs, in which the calcified regions and surrounding osteoblasts may function as scaffolds and drivers of osteoinduction, respectively. With incorporation of technologies to inhibit teratoma formation, this system could provide a promising strategy for bone regenerative therapies.
Collapse
|
38
|
Dong X, Li H, Zhou Y, Ou L, Cao J, Chang J. The stimulation of osteogenic differentiation of embryoid bodies from human induced pluripotent stem cells by akermanite bioceramics. J Mater Chem B 2016; 4:2369-2376. [PMID: 32263232 DOI: 10.1039/c6tb00398b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have great potential as seed cells for tissue engineering applications. Previous studies have shown that iPSCs could be induced to differentiate into bone forming cells. However, in a tissue engineering approach, seeding cells in biomaterials is required, and the effect of biomaterials on cell growth and differentiation is critical for the success of the formation of engineered tissues. In this study, we investigated the effect of akermanite, a bioactive ceramic, on the osteogenic differentiation of embryoid body (EB) cells derived from human iPSCs. The results showed that, in the presence of osteogenic factors (ascorbic acid, dexamethasone, and β-glycerophosphate), ionic extracts of akermanite enhanced the osteogenic differentiation of EB cells as compared with normal osteogenic medium. Alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes such as osteocalcin (OCN), collagen (COL-1), RUNX2, and BMP2 are significantly increased by the stimulation of akermanite ceramic extracts at certain concentration ranges. More interesting is that the medium containing extracts of akermanite but without osteogenic factors also showed stimulatory effects on the osteogenic differentiation of EB cells as compared to normal growth medium without osteogenic factors, such as ascorbic acid, dexamethasone, and β-glycerophosphate, not at the early stage of culture, but only at the later stage of the culture period (21 days). These results suggest that akermanite as a bioactive material together with human iPSCs might be used for bone tissue engineering applications.
Collapse
Affiliation(s)
- Xixi Dong
- Stomatology Department, General Hospital of Chinese PLA, 28 Fu Xing Road, Beijing 100853, China.
| | | | | | | | | | | |
Collapse
|
39
|
Zhang W, Ouyang H, Dass CR, Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 2016; 4:15040. [PMID: 26962464 PMCID: PMC4772471 DOI: 10.1038/boneres.2015.40] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/05/2015] [Accepted: 12/06/2015] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disorder commonly encountered in clinical practice, and is the leading cause of disability in elderly people. Due to the poor self-healing capacity of articular cartilage and lack of specific diagnostic biomarkers, OA is a challenging disease with limited treatment options. Traditional pharmacologic therapies such as acetaminophen, non-steroidal anti-inflammatory drugs, and opioids are effective in relieving pain but are incapable of reversing cartilage damage and are frequently associated with adverse events. Current research focuses on the development of new OA drugs (such as sprifermin/recombinant human fibroblast growth factor-18, tanezumab/monoclonal antibody against β-nerve growth factor), which aims for more effectiveness and less incidence of adverse effects than the traditional ones. Furthermore, regenerative therapies (such as autologous chondrocyte implantation (ACI), new generation of matrix-induced ACI, cell-free scaffolds, induced pluripotent stem cells (iPS cells or iPSCs), and endogenous cell homing) are also emerging as promising alternatives as they have potential to enhance cartilage repair, and ultimately restore healthy tissue. However, despite currently available therapies and research advances, there remain unmet medical needs in the treatment of OA. This review highlights current research progress on pharmacologic and regenerative therapies for OA including key advances and potential limitations.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth WA 6009, Australia
| | - Hongwei Ouyang
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Crispin R Dass
- School of Pharmacy, Building 306, Curtin University, Bentley, Perth WA 6102, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
40
|
Ji J, Tong X, Huang X, Zhang J, Qin H, Hu Q. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes. Stem Cells Transl Med 2016; 5:95-105. [PMID: 26586776 PMCID: PMC4704877 DOI: 10.5966/sctm.2015-0139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Human embryonic stem cells and adult stem cells have always been the cell source for bone tissue engineering. However, their limitations are obvious, including ethical concerns and/or a short lifespan. The use of human induced pluripotent stem cells (hiPSCs) could avoid these problems. Nanohydroxyapatite (nHA) is an important component of natural bone and bone tissue engineering scaffolds. However, its regulation on osteogenic differentiation with hiPSCs from human gingival fibroblasts (hGFs) is unknown. The purpose of the present study was to investigate the osteogenic differentiation of hiPSCs from patient-derived hGFs regulated by nHA/chitosan/gelatin (HCG) scaffolds with different nHA ratios, such as HCG-111 (1 wt/vol% nHA) and HCG-311 (3 wt/vol% nHA). First, hGFs were reprogrammed into hiPSCs, which have enhanced osteogenic differentiation capability. Second, HCG-111 and HCG-311 scaffolds were successfully synthesized. Finally, hiPSC/HCG complexes were cultured in vitro or subcutaneously transplanted into immunocompromised mice in vivo. The osteogenic differentiation effects of two types of HCG scaffolds on hiPSCs were assessed for up to 12 weeks. The results showed that HCG-311 increased osteogenic-related gene expression of hiPSCs in vitro proved by quantitative real-time polymerase chain reaction, and hiPSC/HCG-311 complexes formed much bone-like tissue in vivo, indicated by cone-beam computed tomography imaging, H&E staining, Masson staining, and RUNX-2, OCN immunohistochemistry staining. In conclusion, our study has shown that osteogenic differentiation of hiPSCs from hGFs was improved by HCG-311. The mechanism might be that the nHA addition stimulates osteogenic marker expression of hiPSCs from hGFs. Our work has provided an innovative autologous cell-based bone tissue engineering approach with soft tissues such as clinically abundant gingiva. SIGNIFICANCE The present study focused on patient-personalized bone tissue engineering. Human induced pluripotent stem cells (hiPSCs) were established from clinically easily derived human gingival fibroblasts (hGFs) and defined nanohydroxyapatite/chitosan/gelatin (HCG) scaffolds. hiPSCs derived from hGFs had better osteogenesis capability than that of hGFs. More interestingly, osteogenic differentiation of hiPSCs from hGFs was elevated significantly when composited with HCG-311 scaffolds in vitro and in vivo. The present study has uncovered the important role of different nHA ratios in HCG scaffolds in osteogenesis induction of hiPSCs derived from hGFs. This technique could serve as a potential innovative approach for bone tissue engineering, especially large bone regeneration clinically.
Collapse
Affiliation(s)
- Jun Ji
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xin Tong
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiaofeng Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Haiyan Qin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
41
|
Abstract
The bone is a regenerative tissue, capable of healing itself after fractures. However, some circumstances such as critical-size defects, malformations, and tumor destruction may exceed the skeleton's capacity for self-repair. In addition, bone mass and strength decline with age, leading to an increase in fragility fractures. Therefore, the ability to generate large numbers of patient-specific osteoblasts would have enormous clinical implications for the treatment of skeletal defects and diseases. This review will highlight recent advances in the derivation of pluripotent stem cells, and in their directed differentiation towards bone-forming osteoblasts.
Collapse
Affiliation(s)
- Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Dr., S-025, Stanford, CA, 94305, USA,
| |
Collapse
|
42
|
Bai C, Chen S, Gao Y, Shan Z, Guan W, Ma Y. Multi-lineage potential research of bone marrow mesenchymal stem cells from Bama miniature pig. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:671-85. [DOI: 10.1002/jez.b.22646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/03/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Chunyu Bai
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing PR China
| | - Shuming Chen
- College of Animal Science and Technology; Shanxi Agricultural University; Taigu PR China
| | - Yuhua Gao
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing PR China
| | - Zhiqiang Shan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing PR China
- College of Animal Science and Technology; Shanxi Agricultural University; Taigu PR China
| | - Weijun Guan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing PR China
| | - Yuehui Ma
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing PR China
| |
Collapse
|
43
|
Kato H, Ochiai-Shino H, Onodera S, Saito A, Shibahara T, Azuma T. Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biol 2015; 5:140201. [PMID: 25652541 PMCID: PMC4345281 DOI: 10.1098/rsob.140201] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We recently reported a new method to purify the induced pluripotent stem (iPS)-derived osteoprogenitors (iPSop). In this paper, we optimized the procedure and characterized cells at each process step. We observed that 10 days of treatment with FGF-2, IGF-1 and TGF-β (FIT) resulted in early-phase osteoblasts and 14 days of treatment resulted in late-phase osteoblasts. We found that treatment with 1,25(OH)2 vitamin D3 increased expression of osteocalcin and decreased expression of tissue-non-specific alkaline phosphatase and runt-related transcription factor 2 (RUNX2) in iPSop-day14 cells (cells treated with FIT for 14 days). Therefore, iPSop-day14 cells were promoted to mature osteoblasts by 1,25(OH)2 vitamin D3 treatment. In addition, we found that 1,25(OH)2 vitamin D3 treatment for 14 days enhanced not only mineralization but also expression of osteocyte markers, including dentin matrix protein-1 and fibroblast growth factor-23, in iPSop cells. Therefore, 1,25(OH)2 vitamin D3 is a potent promoter of osteoblast–osteocyte transition. The results of this study suggest that it is possible to evaluate both early- and late-phase osteoblasts and to apply cells to drug screening for anabolic drugs that stimulate bone formation.
Collapse
Affiliation(s)
- Hiroshi Kato
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | | | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
44
|
Gamie Z, MacFarlane RJ, Tomkinson A, Moniakis A, Tran GT, Gamie Y, Mantalaris A, Tsiridis E. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data. Expert Opin Biol Ther 2015; 14:1611-39. [PMID: 25303322 DOI: 10.1517/14712598.2014.945414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. AREAS COVERED In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. EXPERT OPINION Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.
Collapse
Affiliation(s)
- Zakareya Gamie
- Aristotle University Medical School, 'PapaGeorgiou' Hospital, Academic Orthopaedic Unit , Thessaloniki , Greece
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
46
|
Ji J, Tong X, Huang X, Wang T, Lin Z, Cao Y, Zhang J, Dong L, Qin H, Hu Q. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. ACTA ACUST UNITED AC 2015; 10:045005. [PMID: 26154827 DOI: 10.1088/1748-6041/10/4/045005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite (HA) is an important component of human bone and bone tissue engineering scaffolds. A plethora of bone tissue engineering scaffolds have been synthesized so far, including nano-HA/chitosan/gelatin (nHA/CG) scaffolds; and for seeding cells, stem cells, especially induced pluripotent stem cells (iPSCs), have been a promising cell source for bone tissue engineering recently. However, the influence of different HA nano-particle morphologies on the osteogenic differentiation of human iPSCs (hiPSCs) from human gingival fibroblasts (hGFs) is unknown. The purpose of this study was to investigate the osteogenic differentiation of hiPSCs from hGFs seeded on nHA/CG scaffolds with 2 shapes (rod and sphere) of nHA particles. Firstly, hGFs isolated from discarded normal gingival tissues were reprogrammed into hiPSCs. Secondly, hiPSCs were seeded on rod-like nHA/CG (rod-nHA/CG) and sphere-shaped nHA/CG (sphere-nHA/CG) scaffolds respectively and then cell/scaffold complexes were cultured in vitro. Scanning electron microscope, hematoxyline and eosin (HE) staining, Masson's staining, and quantitative real-time polymerase chain reaction techniques were used to examine hiPSC morphology, proliferation, and differentiation on rod-nHA/CG and sphere-nHA/CG scaffolds. Finally, hiPSCs composited with 2 kinds of nHA/CG were transplanted in vivo in a subcutaneous implantation model for 12 weeks; pure scaffolds were also transplanted as a blank control. HE, Masson's, and immunohistochemistry staining were applied to detect new bone regeneration ability. The results showed that sphere-nHA/CG significantly increased hiPSCs from hGF proliferation and osteogenic differentiation in vitro. hiPSCs and sphere-nHA/CG composities generated large bone, whereas hiPSCs and rod-nHA/CG composities produced tiny bone in vivo. Moreover, pure scaffolds without cells almost produced no bone. In conclusion, our work provided a potential innovative bone tissue engineering approach using clinically discarded gingival tissues and sphere-nHA/CG scaffolds.
Collapse
Affiliation(s)
- Jun Ji
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China. Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yamamoto K, Kishida T, Sato Y, Nishioka K, Ejima A, Fujiwara H, Kubo T, Yamamoto T, Kanamura N, Mazda O. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci U S A 2015; 112:6152-7. [PMID: 25918395 PMCID: PMC4434770 DOI: 10.1073/pnas.1420713112] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Osteoblasts produce calcified bone matrix and contribute to bone formation and remodeling. In this study, we established a procedure to directly convert human fibroblasts into osteoblasts by transducing some defined factors and culturing in osteogenic medium. Osteoblast-specific transcription factors, Runt-related transcription factor 2 (Runx2), and Osterix, in combination with Octamer-binding transcription factor 3/4 (Oct4) and L-Myc (RXOL) transduction, converted ∼ 80% of the fibroblasts into osteocalcin-producing cells. The directly converted osteoblasts (dOBs) induced by RXOL displayed a similar gene expression profile as normal human osteoblasts and contributed to bone repair after transplantation into immunodeficient mice at artificial bone defect lesions. The dOBs expressed endogenous Runx2 and Osterix, and did not require continuous expression of the exogenous genes to maintain their phenotype. Another combination, Oct4 plus L-Myc (OL), also induced fibroblasts to produce bone matrix, but the OL-transduced cells did not express Osterix and exhibited a more distant gene expression profile to osteoblasts compared with RXOL-transduced cells. These findings strongly suggest successful direct reprogramming of fibroblasts into functional osteoblasts by RXOL, a technology that may provide bone regeneration therapy against bone disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroyoshi Fujiwara
- Orthopedics, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshikazu Kubo
- Orthopedics, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | |
Collapse
|
48
|
Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 2015; 4:948-68. [PMID: 25656682 DOI: 10.1002/adhm.201400773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/10/2015] [Indexed: 12/16/2022]
Abstract
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.
Collapse
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| | - Yu-Chen Hu
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| |
Collapse
|
49
|
Wang P, Liu X, Zhao L, Weir MD, Sun J, Chen W, Man Y, Xu HHK. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater 2015; 18:236-48. [PMID: 25712391 DOI: 10.1016/j.actbio.2015.02.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/03/2015] [Accepted: 02/13/2015] [Indexed: 02/05/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (p<0.05). No significant differences were detected among the three types of stem cells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (p<0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration.
Collapse
Affiliation(s)
- Ping Wang
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xian Liu
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Zhao
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Jirun Sun
- Dr. Anthony Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Wenchuan Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
50
|
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7:315-328. [PMID: 25815117 PMCID: PMC4369489 DOI: 10.4252/wjsc.v7.i2.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
Collapse
|