1
|
Jung HJ, Park HS, Kim HJ, Park HS, Kim YE, Jeong DE, Noh SG, Park Y, Chun P, Chung HY, Moon HR. Exploring 2-mercapto- N-arylacetamide analogs as promising anti-melanogenic agents: in vitro and in vivo evaluation. Org Biomol Chem 2024; 22:7671-7689. [PMID: 39222053 DOI: 10.1039/d4ob01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Based on the hypothesis that the 2-mercaptoacetamide moiety chelates the copper ions of tyrosinase, 2-mercapto-N-arylacetamide (2-MAA) analogs were designed and synthesized as potential tyrosinase inhibitors. Four 2-MAA analogs showed low IC50 values ranging from 0.95 to 2.0 μM against mushroom tyrosinase, which was 12-26 times lower than that of kojic acid (IC50 value = 24.3 μM). However, according to a copper ion chelation experiment performed, the 2-MAA analogs did not participate in chelation with copper ions. To identify the mode of inhibition of the 2-MAA analogs, kinetic studies were performed, and the results were supported by docking results. In addition, docking simulation results suggested that the 2-MAA analogs strongly inhibited tyrosinase activity because of the hydrogen bonding of the amide NH group and the hydrophobic interaction of the aryl ring instead of chelation with copper ions. In experiments using B16F10 cells, 2-MAA analogs were shown to inhibit melanin production by inhibiting cellular tyrosinase activity. Western blotting showed that in addition to directly inhibiting tyrosinase activity, analog 7 also has an anti-melanogenic effect by inhibiting the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. The 2-MAA analogs showed no appreciable cytotoxicity against HaCaT and B16F10 cells, making them suitable for dermal applications. In a depigmentation experiment using zebrafish embryos, analogs 1 and 2 showed more potent depigmentation effects than kojic acid even at 1000 times lower concentration than that of kojic acid. These results suggest that the 2-MAA analogs are promising anti-melanogenic agents that can inhibit most tyrosinases in various species.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyeon Seo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Young Eun Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Da Eun Jeong
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Yin L, Zhao B, Zhou J, Huang Y, Ma H, Zhou T, Mou J, Min P, Chen J, Ge G, Qian X, Luo X, Yang Y. A Carbon-Caged Rhodamine Generating Nitrosoperoxycarbonate for Photoimmunotherapy. Angew Chem Int Ed Engl 2024; 63:e202402949. [PMID: 38644342 DOI: 10.1002/anie.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2 -), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2 - is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2 - generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2 -, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yunxia Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ting Zhou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Alsharabasy AM, Farràs P, Pandit A. Hemin as a Molecular Probe for Nitric Oxide Detection in Physiological Solutions: Experimental and Theoretical Assessment. Anal Chem 2024; 96:7763-7771. [PMID: 38699865 PMCID: PMC11099896 DOI: 10.1021/acs.analchem.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland H91 W2TY
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland H91 W2TY
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland H91 TK33
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland H91 W2TY
| |
Collapse
|
4
|
Glover MR, Davies MJ, Fuentes-Lemus E. Oxidation of the active site cysteine residue of glyceraldehyde-3-phosphate dehydrogenase to the hyper-oxidized sulfonic acid form is favored under crowded conditions. Free Radic Biol Med 2024; 212:1-9. [PMID: 38122871 DOI: 10.1016/j.freeradbiomed.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key cellular enzyme, with major roles in both glycolysis, and 'moonlighting' activities in the nucleus (uracil DNA glycosylase activity, nuclear protein nitrosylation), as a regulator of mRNA stability, a transferrin receptor, and as an antimicrobial agent. These activities are dependent, at least in part, on the integrity of an active site Cys residue, and a second neighboring Cys. These residues are differentially sensitive to oxidation, and determine both its catalytic activity and the redox signaling capacity of the protein. Such Cys modification is critical to cellular adaptation to oxidative environments by re-routing metabolic pathways to favor NADPH generation and antioxidant defenses. Despite the susceptibility of GAPDH to oxidation, it remains a puzzle as to how this enzyme acts as a redox signaling hub for oxidants such as hydrogen peroxide (H2O2) in the presence of high concentrations of specialized high-efficiency peroxide-removing enzymes. One possibility is that crowded environments, such as the cell cytosol, alter the oxidation pathways of GAPDH. In this study, we investigated the role of crowding (induced by dextran) on H2O2- and SIN-1-induced GAPDH oxidation, with data for crowded and dilute conditions compared. LC-MS/MS data revealed a lower extent of modification of the catalytic Cys under crowded conditions (i.e. less monomer units modified), but enhanced formation of the sulfonic acid resulting from hyper-oxidation. This effect was not observed with SIN-1. These data indicate that molecular crowding can modulate the oxidation pathways of GAPDH and its extent of oxidation and inactivation.
Collapse
Affiliation(s)
- Mia R Glover
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| |
Collapse
|
5
|
Bartosz G, Pieńkowska N, Kut K, Cieniek B, Stefaniuk I, Sadowska-Bartosz I. Effect of Low Concentration of Nitroxides on SH-SY5Y Cells Transfected with the Tau Protein. Int J Mol Sci 2023; 24:16675. [PMID: 38069000 PMCID: PMC10706669 DOI: 10.3390/ijms242316675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Nitroxides, stable synthetic free radicals, are promising antioxidants, showing many beneficial effects both at the cellular level and in animal studies. However, the cells are usually treated with high millimolar concentrations of nitroxides which are not relevant to the concentrations that could be attained in vivo. This paper aimed to examine the effects of low (≤10 μM) concentrations of three nitroxides, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), 4-hydroxy-TEMPO (TEMPOL) and 4-amino-TEMPO (TEMPAMINE), in pure chemical systems and on SH-SY5Y cells transfected with the human tau protein (TAU cells), a model of chronic cellular oxidative stress, and transfected with the empty plasmid (EP cells). All nitroxides were active in antioxidant-activity tests except for the 2,2'-azinobis-(3-ethylbenzthiazolin-6-sulfonate) radical (ABTS•) decolorization assay and reduced Fe3+, inhibited autoxidation of adrenalin and pyrogallol and oxidation of dihydrorhodamine123 by 3-morpholino-sydnonimine SIN-1. TEMPO protected against fluorescein bleaching from hypochlorite, but TEMPAMINE enhanced the bleaching. Nitroxides showed no cytotoxicity and were reduced by the cells to non-paramagnetic derivatives. They decreased the level of reactive oxygen species, depleted glutathione, and increased mitochondrial-membrane potential in both types of cells, and increased lipid peroxidation in TAU cells. These results demonstrate that even at low micromolar concentrations nitroxides can affect the cellular redox equilibrium and other biochemical parameters.
Collapse
Affiliation(s)
- Grzegorz Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Natalia Pieńkowska
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Kacper Kut
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Bogumił Cieniek
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (B.C.); (I.S.)
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (B.C.); (I.S.)
| | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| |
Collapse
|
6
|
Jørgensen SM, Lorentzen LG, Hammer A, Hoefler G, Malle E, Chuang CY, Davies MJ. The inflammatory oxidant peroxynitrous acid modulates the structure and function of the recombinant human V3 isoform of the extracellular matrix proteoglycan versican. Redox Biol 2023; 64:102794. [PMID: 37402332 DOI: 10.1016/j.redox.2023.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.
Collapse
Affiliation(s)
- Sara M Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, 8010, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
7
|
Calbiague García V, Cadiz B, Herrera P, Díaz A, Schmachtenberg O. Evaluation of Photobiomodulation and Boldine as Alternative Treatment Options in Two Diabetic Retinopathy Models. Int J Mol Sci 2023; 24:ijms24097918. [PMID: 37175628 PMCID: PMC10178531 DOI: 10.3390/ijms24097918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.
Collapse
Affiliation(s)
- Víctor Calbiague García
- Ph. D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Bárbara Cadiz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Herrera
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
8
|
Kim YL, Plank JT, Li B, Lippert AR. Kinetics-Based Quantification of Peroxynitrite Using the Oxidative Decarbonylation of Isatin. Anal Chem 2022; 94:17803-17809. [PMID: 36520991 DOI: 10.1021/acs.analchem.2c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxynitrite and its radical decomposition products are highly reactive nitrogen and oxygen species that can influence the balance between health and disease in multiple organ systems. Despite vigorous research activity, real-time quantitative monitoring of peroxynitrite generated by donor compounds remains challenging. Here, we report a kinetics-based fluorescence method for quantitative tracking of peroxynitrite generation using the oxidative decarbonylation of isatin to form anthranilic acid as a fluorescent probe. This method relies on knowledge of the rate of the reaction of peroxynitrite with the probe, which we measure using stopped-flow fluorescence techniques. To the best of our knowledge, this is the first optical method capable of providing real-time quantitative measures of peroxynitrite concentrations generated from donor compounds, as demonstrated herein for SIN-1 and Angeli's salt.
Collapse
Affiliation(s)
- Yujin L Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Joshua T Plank
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| |
Collapse
|
9
|
Ciacka K, Staszek P, Sobczynska K, Krasuska U, Gniazdowska A. Nitric Oxide in Seed Biology. Int J Mol Sci 2022; 23:ijms232314951. [PMID: 36499279 PMCID: PMC9736209 DOI: 10.3390/ijms232314951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) has been recognized as a gasotransmitter in the mainstream of plant research since the beginning of the 21st century. It is produced in plant tissue and the environment. It influences plant physiology during every ontogenetic stage from seed germination to plant senescence. In this review, we demonstrate the increased interest in NO as a regulatory molecule in combination with other signalling molecules and phytohormones in the information network of plant cells. This work is a summary of the current knowledge on NO action in seeds, starting from seed pretreatment techniques applied to increase seed quality. We describe mode of action of NO in the regulation of seed dormancy, germination, and aging. During each stage of seed physiology, NO appears to act as a key agent with a predominantly beneficial effect.
Collapse
|
10
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
11
|
Larrea divaricata: anti-inflammatory and antioxidant effects of on macrophages and low density lipoproteins. BMC Complement Med Ther 2022; 22:84. [PMID: 35321702 PMCID: PMC8941816 DOI: 10.1186/s12906-022-03547-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
Background The oxidized low density lipoprotein (ox-LDL) contributes to inflammation and oxidative stress through the activation of macrophages under hyperglycemia contributing to the development of diabetes mellitus and to atherosclerosis. Plants are a source of effective and innocuous antioxidants. Larrea divaricata Cav. (Zygophyllaceae) is used in Argentina folk medicine for its anti-inflammatory properties. Methods The aim of this work was to study the antioxidant and anti-inflammatory effects of the aqueous extract (AE) of L. divaricata on macrophages under glucose stimulation and on human LDL and HDL particles under free radical generators. Results AE reduced the lipid peroxidation (17%), nitric oxide (NO) (47-50%), tumor necrosis factor-α (TNF-α) (32%) and free radicals (50%) induced by glucose on macrophages. Also prevented HDL nitration (28%), thus preserving its function and structure and inhibited LDL oxidation. The effect on the nitrosative stress was mainly driven by nordihydroguaiaretic acid (NDGA). Conclusions These results suggest a potential usefulness of AE as an adjuvant phytotherapy in patients with diabetes mellitus and atherosclerosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03547-8.
Collapse
|
12
|
Kuldyushev N, Schönherr R, Coburger I, Ahmed M, Hussein RA, Wiesel E, Godbole A, Pfirrmann T, Hoshi T, Heinemann SH. A GFP-based ratiometric sensor for cellular methionine oxidation. Talanta 2022; 243:123332. [PMID: 35276500 DOI: 10.1016/j.talanta.2022.123332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.
Collapse
Affiliation(s)
- Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Ina Coburger
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Eric Wiesel
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Amod Godbole
- Center for Molecular Biomedicine, Institute for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Thorsten Pfirrmann
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystr. 1, 06144, Halle/Saale, Germany; Department of Medicine, Health and Medical University, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104-6085, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
13
|
Grzelakowska A, Modrzejewska J, Kolińska J, Szala M, Zielonka M, Dębowska K, Zakłos-Szyda M, Sikora A, Zielonka J, Podsiadły R. Water-soluble cationic boronate probe based on coumarin imidazolium scaffold: Synthesis, characterization, and application to cellular peroxynitrite detection. Free Radic Biol Med 2022; 179:34-46. [PMID: 34923103 DOI: 10.1016/j.freeradbiomed.2021.12.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in addition to the major phenolic product CI-OH, the minor nitrated product CI-Bz-NO2, which is not formed by other oxidants tested or via myeloperoxidase-catalyzed oxidation/nitration. Both CI-OH and CI-Bz-NO2 products were also formed in the presence of cogenerated fluxes of nitric oxide and superoxide radical anion produced during decomposition of a SIN-1 donor. Using RAW 264.7 cells, we demonstrate the ability of the probe to report endogenously produced ONOO-via fluorescence measurements, including plate reader real time monitoring and two-photon fluorescence imaging. Liquid chromatography/mass spectrometry analyses of cell extracts and media confirmed the formation of both CI-OH and CI-Bz-NO2 in macrophages activated to produce ONOO-. We propose the use of a combination of real-time monitoring of probe oxidation using fluorimetry and fluorescence microscopy with liquid chromatography/mass spectrometry-based product identification for rigorous detection and quantitative analyses of ONOO- in biological systems.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Jolanta Kolińska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| |
Collapse
|
14
|
Deleterious effect of bone marrow-resident macrophages on hematopoietic stem cells in response to total body irradiation. Blood Adv 2022; 6:1766-1779. [PMID: 35100346 PMCID: PMC8941479 DOI: 10.1182/bloodadvances.2021005983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/29/2022] [Indexed: 11/20/2022] Open
Abstract
Bone marrow resident macrophages interact with a population of long-term hematopoietic stem cell (LT-HSC) but their role on LT-HSC properties after stress is not well defined. Here, we show that a 2 Gy total body irradiation (TBI)-mediated death of LT-HSC is associated with increased percentages of LT-HSC with reactive oxygen species (ROS) and of bone marrow resident macrophages producing nitric oxide (NO), resulting in an increased percentage of LT-HSC with endogenous cytotoxic peroxynitrites. Pharmacological or genetic depletion of bone marrow resident macrophages impairs the radio-induced increases in the percentage of both ROS+ LT-HSC and peroxynitrite+ LT-HSC and results in a complete recovery of a functional pool of LT-HSC. Finally, we show that after a 2 Gy-TBI, a specific decrease of NO production by bone marrow resident macrophages improves the LT-HSC recovery, whereas an exogenous NO delivery decreases the LT-HSC compartment. Altogether, these results show that bone marrow resident macrophages are involved in the response of LT-HSC to a 2 Gy-TBI and suggest that regulation of NO production can be used to modulate some deleterious effects of a TBI on LT-HSC.
Collapse
|
15
|
Sergeeva SV, Petrovsky DV, Kobzeva TV, Stass DV. Model bacterial system to study the possible effect of strong magnetic fields on biochemical reactions involving free radicals at the cellular level. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Sibisi NC, Snyman C, Myburgh KH, Niesler CU. Evaluating the role of nitric oxide in myogenesis in vitro. Biochimie 2021; 196:216-224. [PMID: 34838884 DOI: 10.1016/j.biochi.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
Skeletal muscle injury activates satellite cells to proliferate as myoblasts and migrate, differentiate and fuse with existing fibres at the site of injury. Nitric oxide (NO), a free radical produced by NO synthase, is elevated and supports healing after in vivo injury. NOS-independent elevation of NO levels in vitro is possible via donors such as molsidomine (SIN-1). We hypothesized that alterations in NO levels may directly influence myogenic processes critical for skeletal muscle wound healing. This study aimed to clarify the role of NO in myoblast proliferation, migration and differentiation. Baseline NO levels were established in vitro, whereafter NO levels were manipulated during myogenesis using l-NAME (NOS inhibitor) or SIN-1. Baseline NO levels generated by myoblasts in proliferation media did not change 1 h after stimulation. Addition of a pro-proliferative dose of HGF slightly elevated NO levels 1 h post-stimulation, whereas cell numbers assessed 24 h later increased significantly; l-NAME reduced the HGF-driven increase in NO and proliferation, reducing wound closure over 16 h. In differentiation media, NO levels increased significantly within 24 h, returning to baseline over several days. Regular addition of l-NAME to differentiating cells significantly reduced NO levels and fusion. SIN-1 increased NO levels in a dose-dependent manner, reaching maximal levels 16 h post-treatment. SIN-1, added at 0, 2 and 4 days, significantly increased myofiber area (26 ± 1.8% vs 18.6 ± 3.4% in control at 5 day, p < 0.0001), without affecting proliferation or migration. In conclusion, this study demonstrates that, during skeletal muscle regeneration, increased NO specifically stimulates myoblast differentiation.
Collapse
Affiliation(s)
- N C Sibisi
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - C Snyman
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - K H Myburgh
- Department Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - C U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
17
|
Zohar K, Lezmi E, Eliyahu T, Linial M. Ladostigil Attenuates Induced Oxidative Stress in Human Neuroblast-like SH-SY5Y Cells. Biomedicines 2021; 9:biomedicines9091251. [PMID: 34572436 PMCID: PMC8471141 DOI: 10.3390/biomedicines9091251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
A hallmark of the aging brain is the robust inflammation mediated by microglial activation. Pathophysiology of common neurodegenerative diseases involves oxidative stress and neuroinflammation. Chronic treatment of aging rats by ladostigil, a compound with antioxidant and anti-inflammatory function, prevented microglial activation and learning deficits. In this study, we further investigate the effect of ladostigil on undifferentiated SH-SY5Y cells. We show that SH-SY5Y cells exposed to acute (by H2O2) or chronic oxidative stress (by Sin1, 3-morpholinosydnonimine) induced apoptotic cell death. However, in the presence of ladostigil, the decline in cell viability and the increase of oxidative levels were partially reversed. RNA-seq analysis showed that prolonged oxidation by Sin1 resulted in a simultaneous reduction of the expression level of endoplasmic reticulum (ER) genes that participate in proteostasis. By comparing the differential gene expression profile of Sin1 treated cells to cells incubated with ladostigil before being exposed to Sin1, we observed an over-expression of Clk1 (Cdc2-like kinase 1) which was implicated in psychophysiological stress in mice and Alzheimer’s disease. Ladostigil also suppressed the expression of Ccpg1 (Cell cycle progression 1) and Synj1 (Synaptojanin 1) that are involved in ER-autophagy and endocytic pathways. We postulate that ladostigil alleviated cell damage induced by oxidation. Therefore, under conditions of chronic stress that are observed in the aging brain, ladostigil may block oxidative stress processes and consequently reduce neurotoxicity.
Collapse
Affiliation(s)
- Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
| | - Elyad Lezmi
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
- Correspondence:
| |
Collapse
|
18
|
Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Chumikina LV, Arabova LI, Yaglova NV, Obernikhin SS, Topunov AF. Dinitrosyl Iron Complexes with Glutathione Ligands Intercept Peroxynitrite and Protect Hemoglobin from Oxidative Modification. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Aizpurua JM, Miranda JI, Irastorza A, Torres E, Eceiza M, Sagartzazu-Aizpurua M, Ferrón P, Aldanondo G, Lasa-Fernández H, Marco-Moreno P, Dadie N, López de Munain A, Vallejo-Illarramendi A. Discovery of a novel family of FKBP12 "reshapers" and their use as calcium modulators in skeletal muscle under nitro-oxidative stress. Eur J Med Chem 2021; 213:113160. [PMID: 33493827 DOI: 10.1016/j.ejmech.2021.113160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The hypothesis of rescuing FKBP12/RyR1 interaction and intracellular calcium homeostasis through molecular "reshaping" of FKBP12 was investigated. To this end, novel 4-arylthioalkyl-1-carboxyalkyl-1,2,3-triazoles were designed and synthesized, and their efficacy was tested in human myotubes. A library of 17 compounds (10a-n) designed to dock the FKBP12/RyR1 hot-spot interface contact residues, was readily prepared from free α-amino acids and arylthioalkynes using CuAAC "click" protocols amenable to one-pot transformations in high overall yields and total configurational integrity. To model nitro-oxidative stress, human myotubes were treated with the peroxynitrite donor SIN1, and evidence was found that some triazoles 10 were able to normalize calcium levels, as well as FKBP12/RyR1 interaction. For example, compound 10 b at 150 nM rescued 46% of FKBP12/RyR1 interaction and up to 70% of resting cytosolic calcium levels in human myotubes under nitro-oxidative stress. All compounds 10 analyzed showed target engagement to FKBP12 and low levels of cytotoxicity in vitro. Compounds 10b, 10c, 10h, and 10iR were identified as potential therapeutic candidates to protect myotubes in muscle disorders with underlying nitro-oxidative stress, FKBP12/RyR1 dysfunction and calcium dysregulation.
Collapse
Affiliation(s)
- Jesus M Aizpurua
- Joxe Mari Korta R&D Center, Departamento de Química Orgánica-I, Universidad Del País Vasco UPV/EHU, Avda. Tolosa-72, 20018, San Sebastián, Spain.
| | - José I Miranda
- Joxe Mari Korta R&D Center, Departamento de Química Orgánica-I, Universidad Del País Vasco UPV/EHU, Avda. Tolosa-72, 20018, San Sebastián, Spain
| | - Aitziber Irastorza
- Joxe Mari Korta R&D Center, Departamento de Química Orgánica-I, Universidad Del País Vasco UPV/EHU, Avda. Tolosa-72, 20018, San Sebastián, Spain
| | - Endika Torres
- Joxe Mari Korta R&D Center, Departamento de Química Orgánica-I, Universidad Del País Vasco UPV/EHU, Avda. Tolosa-72, 20018, San Sebastián, Spain
| | - Maite Eceiza
- Joxe Mari Korta R&D Center, Departamento de Química Orgánica-I, Universidad Del País Vasco UPV/EHU, Avda. Tolosa-72, 20018, San Sebastián, Spain
| | - Maialen Sagartzazu-Aizpurua
- Joxe Mari Korta R&D Center, Departamento de Química Orgánica-I, Universidad Del País Vasco UPV/EHU, Avda. Tolosa-72, 20018, San Sebastián, Spain
| | - Pablo Ferrón
- Miramoon Pharma S.L., Avda Tolosa-72, 20018, San Sebastián, Spain
| | - Garazi Aldanondo
- Instituto de Investigación Sanitaria Biodonostia, Grupo de Enfermedades Neuromusculares, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain; CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain
| | - Haizpea Lasa-Fernández
- Instituto de Investigación Sanitaria Biodonostia, Grupo de Enfermedades Neuromusculares, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain; CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain; Grupo de Neurosciencias, Departamentos de Pediatría y Neurociencias, Universidad Del País Vasco UPV/EHU, Hospital Donostia, Paseo Dr Begiristain S/n, 20014, San Sebastián, Spain
| | - Pablo Marco-Moreno
- Instituto de Investigación Sanitaria Biodonostia, Grupo de Enfermedades Neuromusculares, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain; CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain
| | - Naroa Dadie
- Grupo de Neurosciencias, Departamentos de Pediatría y Neurociencias, Universidad Del País Vasco UPV/EHU, Hospital Donostia, Paseo Dr Begiristain S/n, 20014, San Sebastián, Spain
| | - Adolfo López de Munain
- Instituto de Investigación Sanitaria Biodonostia, Grupo de Enfermedades Neuromusculares, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain; CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain; Grupo de Neurosciencias, Departamentos de Pediatría y Neurociencias, Universidad Del País Vasco UPV/EHU, Hospital Donostia, Paseo Dr Begiristain S/n, 20014, San Sebastián, Spain
| | - Ainara Vallejo-Illarramendi
- Instituto de Investigación Sanitaria Biodonostia, Grupo de Enfermedades Neuromusculares, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain; CIBERNED, Instituto de Salud Carlos III, 28031, Madrid, Spain; Grupo de Neurosciencias, Departamentos de Pediatría y Neurociencias, Universidad Del País Vasco UPV/EHU, Hospital Donostia, Paseo Dr Begiristain S/n, 20014, San Sebastián, Spain.
| |
Collapse
|
20
|
Zhang Z, Luo X, Yang Y. From Spontaneous to Photo‐Triggered and Photo‐Calibrated Nitric Oxide Donors. Isr J Chem 2020. [DOI: 10.1002/ijch.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine Guangxi University of Chinese Medicine Wuhe avenue 13 Nanning 530200 China
| | - Xiao Luo
- School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
21
|
Huang Q, Li J, Shi T, Liang J, Wang Z, Bai L, Deng Z, Zhao YL. Defense Mechanism of Phosphorothioated DNA under Peroxynitrite-Mediated Oxidative Stress. ACS Chem Biol 2020; 15:2558-2567. [PMID: 32816442 DOI: 10.1021/acschembio.0c00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA phosphorothioation (PT) exists in many pathogenic bacteria; however, the mechanism of PT-DNA resistance to the immune response is unclear. In this work, we meticulously investigated the peroxynitrite (PN) tolerance using PT-bioengineered E. coli strains. The in vivo experiment confirms that the S+ strain survives better than the S- strain under moderately oxidative stress. The LCMS, IC, and GCMS experiments demonstrated that phosphorothioate partially converted to phosphate, and the byproduct included sulfate and elemental sulfur. When O,O-diethyl thiophosphate ester (DETP) was used, the reaction rate k1 was determined to be 4.3 ± 0.5 M-1 s-1 in the first-order for both phosphorothioate and peroxynitrite at 35 °C and pH of 8.0. The IC50 values of phosphorothioate dinucleotides are dramatically increased by 400-700-fold compared to DETP. The SH/OH Yin-Yang mechanism rationalizes the in situ DNA self-defense against PN-mediated oxidative stress at the extra bioenergetic cost of DNA modification.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Activatable red emitting fluorescent probe for rapid and sensitive detection of intracellular peroxynitrite. Talanta 2020; 217:121053. [DOI: 10.1016/j.talanta.2020.121053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
|
23
|
He J, Becares ER, Thulstrup PW, Gamon LF, Pedersen JN, Otzen D, Gourdon P, Davies MJ, Hägglund P. Peroxynitrous acid (ONOOH) modifies the structure of anastellin and influences its capacity to polymerize fibronectin. Redox Biol 2020; 36:101631. [PMID: 32807731 PMCID: PMC7364157 DOI: 10.1016/j.redox.2020.101631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022] Open
Abstract
Anastellin (AN), a fragment of the first type III module in fibronectin (FN), initiates formation of superfibronectin, a polymer which resembles the native cell-derived fibrillar FN found in the extracellular matrix of many tissues, but which displays remarkably different functional properties. Here we demonstrate that exposure of AN to the biologically-important inflammatory oxidant, peroxynitrous acid (ONOOH), either as a bolus or formed at low levels in a time-dependent manner from SIN-1, impairs the capability of AN to polymerize FN. In contrast, exposure of FN to ONOOH does not seem to affect superfibronectin formation to the same extent. This oxidant-induced loss-of-function in AN occurs in a dose-dependent manner, and correlates with structural perturbations, loss of the amino acid tyrosine and tryptophan, and dose-dependent formation of modified amino acid side-chains (3-nitrotyrosine, di-tyrosine and 6-nitrotryptophan). Reagent ONOOH also induces formation of oligomeric species which decrease in the presence of bicarbonate, whereas SIN-1 mainly generates dimers. Modifications were detected at sub-stoichiometric (0.1-fold), or greater, molar excesses of oxidant compared to AN. These species have been localized to specific sites by peptide mass mapping. With high levels of oxidant (>100 times molar excess), ONOOH also induces unfolding of the beta-sheet structure of AN, thermal destabilization, and formation of high molecular mass aggregates. These results have important implications for the understanding of FN fibrillogenesis in vivo, and indicates that AN is highly sensitive to pathophysiological levels of oxidants such as ONOOH.
Collapse
Affiliation(s)
- Jianfei He
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Ramos Becares
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Paes de Barros M, Casares Araujo-Chaves J, Marlise Mendes Brito A, Lourenço Nantes-Cardoso I. Oxidative/Nitrative Mechanism of Molsidomine Mitotoxicity Assayed by the Cytochrome c Reaction with SIN-1 in Models of Biological Membranes. Chem Res Toxicol 2020; 33:2775-2784. [DOI: 10.1021/acs.chemrestox.0c00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, Rua Galvão Bueno 868, São Paulo, São Paulo 01506-000, Brazil
| | | | | | | |
Collapse
|
25
|
Peters EB, Tsihlis ND, Karver MR, Chin SM, Musetti B, Ledford BT, Bahnson EM, Stupp SI, Kibbe MR. Atheroma Niche-Responsive Nanocarriers for Immunotherapeutic Delivery. Adv Healthc Mater 2019; 8:e1801545. [PMID: 30620448 PMCID: PMC6367050 DOI: 10.1002/adhm.201801545] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/24/2018] [Indexed: 11/12/2022]
Abstract
Nanomedicine is a promising, noninvasive approach to reduce atherosclerotic plaque burden. However, drug delivery is limited without the ability of nanocarriers to sense and respond to the diseased microenvironment. In this study, nanomaterials are developed from peptide amphiphiles (PAs) that respond to the increased levels of matrix metalloproteinases 2 and 9 (MMP2/9) or reactive oxygen species (ROS) found within the atherosclerotic niche. A pro-resolving therapeutic, Ac2-26, derived from annexin-A1 protein, is tethered to PAs using peptide linkages that cleave in response to MMP2/9 or ROS. By adjusting the molar ratios and processing conditions, the Ac2-26 PA can be co-assembled with a PA containing an apolipoprotein A1-mimetic peptide to create a targeted, therapeutic nanofiber (ApoA1-Ac226 PA). The ApoA1-Ac2-26 PAs demonstrate release of Ac2-26 within 24 h after treatment with MMP2 or ROS. The niche-responsive ApoA1-Ac2-26 PAs are cytocompatible and reduce macrophage activation from interferon gamma and lipopolysaccharide treatment, evidenced by decreased nitric oxide production. Interestingly, the linkage chemistry of ApoA1-Ac2-26 PAs significantly affects macrophage uptake and retention. Taken together, these findings demonstrate the potential of PAs to serve as an atheroma niche-responsive nanocarrier system to modulate the inflammatory microenvironment, with implications for atherosclerosis treatment.
Collapse
Affiliation(s)
- Erica B. Peters
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Mark R. Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Stacey M. Chin
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Bruno Musetti
- Institute of Biological Chemistry, Universidad de la República, Montevideo, 11400, Uruguay
| | - Benjamin T. Ledford
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Edward M. Bahnson
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melina R. Kibbe
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
27
|
Aulas A, Lyons SM, Fay MM, Anderson P, Ivanov P. Nitric oxide triggers the assembly of "type II" stress granules linked to decreased cell viability. Cell Death Dis 2018; 9:1129. [PMID: 30425239 PMCID: PMC6234215 DOI: 10.1038/s41419-018-1173-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
We show that 3-morpholinosydnonimine (SIN-1)-induced nitric oxide (NO) triggers the formation of SGs. Whereas the composition of NO-induced SGs is initially similar to sodium arsenite (SA)-induced type I (cytoprotective) SGs, the progressive loss of eIF3 over time converts them into pro-death (type II) SGs. NO-induced SG assembly requires the phosphorylation of eIF2α, but the transition to type II SGs is temporally linked to the mTOR-regulated displacement of eIF4F complexes from the m7 guanine cap. Whereas SA does not affect mitochondrial morphology or function, NO alters mitochondrial integrity and function, resulting in increased ROS production, decreased cytoplasmic ATP, and plasma membrane permeabilization, all of which are supported by type II SG assembly. Thus, cellular energy balance is linked to the composition and function of NO-induced SGs in ways that determine whether cells live or die.
Collapse
Affiliation(s)
- Anaïs Aulas
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Marta M Fay
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Anderson
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,The Broad Institute of Harvard and M.I.T., Cambridge, MA, 02142, USA.
| |
Collapse
|
28
|
He Y, Zhang Y, Zhang D, Zhang M, Wang M, Jiang Z, Otero M, Chen J. 3-morpholinosydnonimine (SIN-1)-induced oxidative stress leads to necrosis in hypertrophic chondrocytes in vitro. Biomed Pharmacother 2018; 106:1696-1704. [PMID: 30119244 DOI: 10.1016/j.biopha.2018.07.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/24/2018] [Indexed: 01/06/2023] Open
Abstract
Chondrocyte is targeted for disruption in Osteoarthritis (OA) and Kashin-Beck Disease (KBD), and chondrocyte death in cartilage may contribute to the progression of OA and KBD. Oxidative stress leads to increased risk for OA. Previous work in our laboratory implicates oxidative stress as a potential mediator in children with KBD. While these studies suggest a role for oxidative stress in the modulation of OA and KBD, the direct effects of reactive oxygen species/reactive nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, decreased the cell viability in hypertrophic chondrocytes in a dose- and time- dependent manner. SIN-1 induced necrosis in hypertrophic chondrocytes, whereas triggered apoptosis in non-hypertrophic cells of non-differentiated ATDC5 cells and C28/I2 cells. Ultrastructural analysis of hypertrophic chondrocyte treated with SIN-1 revealed morphological changes, such as plasma membrane breakdown, generalized swelling of the cytoplasm and organelles, even to disappearance. Moreover, SIN-1 induced chondronecrosis in the deep zone of engineered cartilage tissue, such as cell-free vacancy and "red ghost" cells. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenous ROS/RNS, leads to necrosis in hypertrophic chondrocytes. Oxidative stress-mediated necrotic cell death contributes to chondronecrosis in the deep zone of cartilage in both OA and KBD.
Collapse
Affiliation(s)
- Ying He
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China; Graduate Students Teaching Experiment Center, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Dan Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Meng Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Mengying Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Zhuocheng Jiang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Miguel Otero
- Research Division, HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, 535 East 70th Street, New York, New York, 10021, USA
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
29
|
Abstract
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.
Collapse
Affiliation(s)
- Kareem Clark
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,2 Neuroscience Curriculum, 72054 Virginia Commonwealth University , Richmond, VA, USA
| | - Brooke A Sword
- 3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| | - Jeffrey L Dupree
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| |
Collapse
|
30
|
Wu YP, Chew CY, Li TN, Chung TH, Chang EH, Lam CH, Tan KT. Target-activated streptavidin-biotin controlled binding probe. Chem Sci 2017; 9:770-776. [PMID: 29629147 PMCID: PMC5872805 DOI: 10.1039/c7sc04014h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/16/2017] [Indexed: 11/21/2022] Open
Abstract
Target-activated chemical probes are important tools in basic biological research and medical diagnosis for monitoring enzyme activities and reactive small molecules. Based on the fluorescence turn-on mechanism, they can be divided into two classes: dye-based fluorescent probes and caged-luciferin. In this paper, we introduce a new type of chemical probe in which the fluorescence turn-on is based on controlled streptavidin-biotin binding. Compared to conventional probes, the streptavidin-biotin controlled binding probe has several advantages, such as minimal background at its "OFF" state, multiple signal amplification steps, and unlimited selection of the optimal dyes for detection. To expand the scope, a new synthetic method was developed, through which a wider range of analyte recognition groups can be easily introduced to construct the binding probe. This probe design was successfully applied to image and study secreted peroxynitrite (ONOO-) at the cell surface of macrophages where information on ONOO- is difficult to obtain. As the signals are generated upon the binding of streptavidin to the biotin probe, this highly versatile design can not only be used in fluorescence detection but can also be applied in various other detection modes, such as electrochemical and enzyme-amplified luminescence detection.
Collapse
Affiliation(s)
- Yung-Peng Wu
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Chee Ying Chew
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology , Department of Life Science , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China
| | - Tzu-Hsuan Chung
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - En-Hao Chang
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Chak Hin Lam
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Kui-Thong Tan
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| |
Collapse
|
31
|
Gao W, Zhao J, Li H, Gao Z. Triosephosphate isomerase tyrosine nitration induced by heme-NaNO2-H2O2or peroxynitrite: Effects of different natural phenolic compounds. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Wanxia Gao
- School of Chemistry and Chemical Engineering; Huazhong University of Science & Technology; Wuhan 430074 People's Republic of China
- Basis Medical College; Hubei University of Science and Technology; Xianning 437100 People's Republic of China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering; Huazhong University of Science & Technology; Wuhan 430074 People's Republic of China
| | - Hailing Li
- School of Chemistry and Chemical Engineering; Huazhong University of Science & Technology; Wuhan 430074 People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; Wuhan 430074 People's Republic of China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering; Huazhong University of Science & Technology; Wuhan 430074 People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; Wuhan 430074 People's Republic of China
| |
Collapse
|
32
|
Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy: Spin-Trapping with Iron-Dithiocarbamates. Methods Mol Biol 2016; 1424:81-102. [PMID: 27094413 DOI: 10.1007/978-1-4939-3600-7_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is the ideal methodology to identify radicals (detection and characterization of molecular structure) and to study their kinetics, in both simple and complex biological systems. The very low concentration and short life-time of NO and of many other radicals do not favor its direct detection and spin-traps are needed to produce a new and persistent radical that can be subsequently detected by EPR spectroscopy.In this chapter, we present the basic concepts of EPR spectroscopy and of some spin-trapping methodologies to study NO. The "strengths and weaknesses" of iron-dithiocarbamates utilization, the NO traps of choice for the authors, are thoroughly discussed and a detailed description of the method to quantify the NO formation by molybdoenzymes is provided.
Collapse
|
33
|
Are cardioprotective effects of NO-releasing drug molsidomine translatable to chronic anthracycline cardiotoxicity settings? Toxicology 2016; 372:52-63. [DOI: 10.1016/j.tox.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/27/2023]
|
34
|
Zhang Z, Wu J, Shang Z, Wang C, Cheng J, Qian X, Xiao Y, Xu Z, Yang Y. Photocalibrated NO Release from N-Nitrosated Napthalimides upon One-Photon or Two-Photon Irradiation. Anal Chem 2016; 88:7274-80. [DOI: 10.1021/acs.analchem.6b01603] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | - Chao Wang
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | | | | | - Yi Xiao
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | | | | |
Collapse
|
35
|
Khodade VS, Kulkarni A, Gupta AS, Sengupta K, Chakrapani H. A Small Molecule for Controlled Generation of Peroxynitrite. Org Lett 2016; 18:1274-7. [DOI: 10.1021/acs.orglett.6b00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vinayak S. Khodade
- Indian
Institute of Science Education
and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune 411
008, Maharashtra, India
| | - Apoorva Kulkarni
- Indian
Institute of Science Education
and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune 411
008, Maharashtra, India
| | - Ayantika Sen Gupta
- Indian
Institute of Science Education
and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune 411
008, Maharashtra, India
| | - Kundan Sengupta
- Indian
Institute of Science Education
and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune 411
008, Maharashtra, India
| | - Harinath Chakrapani
- Indian
Institute of Science Education
and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune 411
008, Maharashtra, India
| |
Collapse
|
36
|
de Campos RPS, Siegel JM, Fresta CG, Caruso G, da Silva JAF, Lunte SM. Indirect detection of superoxide in RAW 264.7 macrophage cells using microchip electrophoresis coupled to laser-induced fluorescence. Anal Bioanal Chem 2015; 407:7003-12. [PMID: 26159570 DOI: 10.1007/s00216-015-8865-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022]
Abstract
Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE(+)) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE(+) per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE(+) signal from possible interferences.
Collapse
Affiliation(s)
- Richard P S de Campos
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, KS, 66047-1620, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ulrich V, Konaniah ES, Lee WR, Khadka S, Shen YM, Herz J, Salmon JE, Hui DY, Shaul PW, Mineo C. Antiphospholipid antibodies attenuate endothelial repair and promote neointima formation in mice. J Am Heart Assoc 2014; 3:e001369. [PMID: 25315347 PMCID: PMC4323803 DOI: 10.1161/jaha.114.001369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Antiphospholipid syndrome patients have antiphospholipid antibodies (aPLs) that promote thrombosis, and they have increased cardiovascular disease risk. Although the basis for the thrombosis has been well delineated, it is not known why antiphospholipid syndrome patients also have an increased prevalence of nonthrombotic vascular occlusion. The aims of this work were to determine if aPLs directly promote medial hypertrophy or neointima formation in mice and to identify the underlying mechanisms. Methods and Results Medial hypertrophy and neointima formation invoked by carotid artery endothelial denudation were evaluated in mice administered normal human IgG or aPLs. While aPLs had no effect on medial hypertrophy, they caused exaggerated neointima development. This was related to an aPL‐induced impairment in reendothelialization post denudation, and scratch assays in cell culture revealed that there are direct effects of aPLs on endothelium that retard cell migration. Further experiments showed that aPL antagonism of endothelial migration and repair is mediated by antibody recognition of β2‐glycoprotein I, apolipoprotein E receptor 2, and a decline in bioavailable NO. Consistent with these mechanisms, the adverse impacts of aPLs on reendothelialization and neointima formation were fully prevented by the NO donor molsidomine. Conclusions APLs blunt endothelial repair, and there is related aPL‐induced exaggeration in neointima formation after endothelial injury in mice. The initiating process entails NO deficiency mediated by β2‐glycoprotein I recognition by aPLs and apolipoprotein E receptor 2. The modulation of endothelial apolipoprotein E receptor 2 function or NO bioavailability may represent new interventions to prevent the nonthrombotic vascular occlusion and resulting cardiovascular disorders that afflict antiphospholipid syndrome patients.
Collapse
Affiliation(s)
- Victoria Ulrich
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX (V.U., W.R.L., S.K., P.W.S., C.M.)
| | - Eddy S Konaniah
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH (E.S.K., D.Y.H.)
| | - Wan-Ru Lee
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX (V.U., W.R.L., S.K., P.W.S., C.M.)
| | - Sadiksha Khadka
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX (V.U., W.R.L., S.K., P.W.S., C.M.)
| | - Yu-Min Shen
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (Y.M.S.)
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (J.H.)
| | - Jane E Salmon
- Department of Medicine, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY (J.E.S.)
| | - David Y Hui
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH (E.S.K., D.Y.H.)
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX (V.U., W.R.L., S.K., P.W.S., C.M.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX (V.U., W.R.L., S.K., P.W.S., C.M.)
| |
Collapse
|
38
|
Kim HY, Sin SM, Lee S, Cho KM, Cho EJ. The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress. Prev Nutr Food Sci 2014; 18:18-22. [PMID: 24471105 PMCID: PMC3867156 DOI: 10.3746/pnf.2013.18.1.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/10/2013] [Indexed: 11/06/2022] Open
Abstract
To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-PK1 renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and 500 μg/mL, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (·OH). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-PK1 cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion (O2 (-)). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite (ONOO(-)) formed by simultaneous releases of nitric oxide and O2 (-), caused cytotoxicity in the LLC-PK1 cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by ONOO(-). These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Gyeongnam 660-758, Korea
| | - Seung Mi Sin
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Gyeonggi 456-756, Korea
| | - Kye Man Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Gyeongnam 660-758, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
39
|
Thomas GD. Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Front Physiol 2013; 4:381. [PMID: 24391598 PMCID: PMC3866652 DOI: 10.3389/fphys.2013.00381] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/04/2013] [Indexed: 11/14/2022] Open
Abstract
Duchenne and Becker muscular dystrophy (DMD/BMD) comprise a spectrum of devastating X-linked muscle wasting disease for which there is no treatment. DMD/BMD is caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that stabilizes the muscle membrane and also targets other proteins to the sarcolemma. Among these is the muscle-specific isoform of neuronal nitric oxide synthase (nNOSμ) which binds spectrin-like repeats within dystrophin's rod domain and the adaptor protein α-syntrophin. Dystrophin deficiency causes loss of sarcolemmal nNOSμ and reduces paracrine signaling of muscle-derived nitric oxide (NO) to the microvasculature, which renders the diseased muscle fibers susceptible to functional muscle ischemia during exercise. Repeated bouts of functional ischemia superimposed on muscle fibers already weakened by dystrophin deficiency result in use-dependent focal muscle injury. Genetic and pharmacologic strategies to boost nNOSμ-NO signaling in dystrophic muscle alleviate functional muscle ischemia and show promise as novel therapeutic interventions for the treatment of DMD/BMD.
Collapse
Affiliation(s)
- Gail D Thomas
- Heart and Vascular Institute, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
40
|
Pérez-Cruz F, Vazquez-Rodriguez S, Matos MJ, Herrera-Morales A, Villamena FA, Das A, Gopalakrishnan B, Olea-Azar C, Santana L, Uriarte E. Synthesis and Electrochemical and Biological Studies of Novel Coumarin–Chalcone Hybrid Compounds. J Med Chem 2013; 56:6136-45. [DOI: 10.1021/jm400546y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fernanda Pérez-Cruz
- Free Radical and Antioxidants
Laboratory, Inorganic and Analytical Department, Faculty of Chemical
and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Saleta Vazquez-Rodriguez
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| | - Maria João Matos
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| | - Alejandra Herrera-Morales
- Free Radical and Antioxidants
Laboratory, Inorganic and Analytical Department, Faculty of Chemical
and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Frederick A. Villamena
- Department of Pharmacology and
Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Amlan Das
- Department of Pharmacology and
Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Bhavani Gopalakrishnan
- Department of Pharmacology and
Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Claudio Olea-Azar
- Free Radical and Antioxidants
Laboratory, Inorganic and Analytical Department, Faculty of Chemical
and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Lourdes Santana
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Pérez-Cruz F, Villamena FA, Zapata-Torres G, Das A, Headley CA, Quezada E, Lopez-Alarcon C, Olea-Azar C. Selected hydroxycoumarins as antioxidants in cells: physicochemical and reactive oxygen species scavenging studies. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fernanda Pérez-Cruz
- Free Radical and Antioxidants Laboratory, Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Frederick A. Villamena
- Department of Pharmacology, Davis Heart and Lung Research Institute, College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Gerald Zapata-Torres
- Molecular Graphics Unit, Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Amlan Das
- Department of Pharmacology, Davis Heart and Lung Research Institute, College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Colwyn A. Headley
- Department of Pharmacology, Davis Heart and Lung Research Institute, College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Elias Quezada
- Departamento de Química Orgánica, Facultad de Farmacia; Universidad de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | | | - Claudio Olea-Azar
- Free Radical and Antioxidants Laboratory, Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| |
Collapse
|
42
|
Deshpande SR, Satyanarayana K, Rao MNA, Pai KV. Nitric oxide modulators: an emerging class of medicinal agents. Indian J Pharm Sci 2013; 74:487-97. [PMID: 23798773 PMCID: PMC3687917 DOI: 10.4103/0250-474x.110572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide, a unique messenger in biological system, is ubiquitously present virtually in all tissues revealing its versatile nature of being involved in diverse physiological functions such as vascular tone, inhibition of platelet aggregation, cell adhesion, neurotransmission and enzyme and immune regulation. The tremendous advancements made in the past few decades in this area suggests that the nitric oxide modulation either by its exogenous release through nitric oxide donors or inhibition of its synthesis by nitric oxide synthase inhibitors in physiological milieu may provide newer clinical strategies for the treatment of some diseases. In this review, an attempt is made to document and understand the biological chemistry of different classes of nitric oxide modulators that would prove to be a fruitful area in the years to come.
Collapse
Affiliation(s)
- S R Deshpande
- Department of Medicinal and Pharmaceutical Chemistry, HSK College of Pharmacy, Bagalkote-587 101, India
| | | | | | | |
Collapse
|
43
|
Bobko AA, Ivanov A, Khramtsov VV. Discriminative EPR detection of NO and HNO by encapsulated nitronyl nitroxides. Free Radic Res 2012; 47:74-81. [PMID: 23136998 DOI: 10.3109/10715762.2012.746460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nitric oxide, •NO, is one of the most important molecules in the biochemistry of living organisms. By contrast, nitroxyl, NO-, one-electron reduced analog of •NO which exists at physiological conditions in its protonated form, HNO, has been relatively overlooked. Recent data show that HNO might be produced endogenously and display unique biological effects. However, there is a lack of specific and quantitative methods of detection of endogenous HNO production. Here we present a new method for discriminative •NO and HNO detection by nitronyl nitroxides (NNs) using electron paramagnetic resonance (EPR). It was found that NNs react with •NO and HNO with similar rate constants of about 10(4) M(-1) s(-1) but yield different products: imino nitroxides and the hydroxylamine of imino nitroxides, correspondingly. An EPR approach for discriminative •NO and HNO detection using liposome-encapsulated NNs was developed. The membrane barrier of liposomes protects NNs against reduction in biological systems while is permeable to both analytes, •NO and HNO. The sensitivity of this approach for the detection of the rates of •NO/HNO generation is about 1 nM/s. The application of encapsulated NNs for real-time discriminative •NO/HNO detection might become a valuable tool in nitric oxide-related studies.
Collapse
Affiliation(s)
- Andrey A Bobko
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
44
|
Nichols SP, Storm WL, Koh A, Schoenfisch MH. Local delivery of nitric oxide: targeted delivery of therapeutics to bone and connective tissues. Adv Drug Deliv Rev 2012; 64:1177-88. [PMID: 22433782 PMCID: PMC3383916 DOI: 10.1016/j.addr.2012.03.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/17/2012] [Accepted: 03/05/2012] [Indexed: 01/15/2023]
Abstract
Non-invasive treatment of injuries and disorders affecting bone and connective tissue remains a significant challenge facing the medical community. A treatment route that has recently been proposed is nitric oxide (NO) therapy. Nitric oxide plays several important roles in physiology with many conditions lacking adequate levels of NO. As NO is a radical, localized delivery via NO donors is essential to promoting biological activity. Herein, we review current literature related to therapeutic NO delivery in the treatment of bone, skin and tendon repair.
Collapse
Affiliation(s)
- Scott P Nichols
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
45
|
Bicarbonate plays a critical role in the generation of cytotoxicity during SIN-1 decomposition in culture medium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:326731. [PMID: 22848780 PMCID: PMC3400428 DOI: 10.1155/2012/326731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
Abstract
3-Morpholinosydnonimine (SIN-1) is used as a donor of peroxynitrite (ONOO−) in various studies. We demonstrated, however, that, the cell-culture medium remains cytotoxic to PC12 cells even after almost complete SIN-1 decomposition, suggesting that reaction product(s) in the medium, rather than ONOO−, exert cytotoxic effects. Here, we clarified that significant cytotoxicity persists after SIN-1 decomposes in bicarbonate, a component of the culture medium, but not in NaOH. Cytotoxic SIN-1-decomposed bicarbonate, which lacks both oxidizing and nitrosating activities, degrades to innocuous state over time. The extent of SIN-1 cytotoxicity, irrespective of its fresh or decomposed state, appears to depend on the total number of initial SIN-1 molecules per cell, rather than its concentration, and involves oxidative/nitrosative stress-related cell damage. These results suggest that, despite its low abundance, the bicarbonate-dependent cytotoxic substance that accumulates in the medium during SIN-1 breakdown is the cytotoxic entity of SIN-1.
Collapse
|
46
|
Protective effect of Perilla frutescens cv. Chookyoupjaso mutant water extract against oxidative injury in vitro and in vivo. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
47
|
Wesseling S, Essers PB, Koeners MP, Pereboom TC, Braam B, van Faassen EE, Macinnes AW, Joles JA. Perinatal exogenous nitric oxide in fawn-hooded hypertensive rats reduces renal ribosomal biogenesis in early life. Front Genet 2011; 2:52. [PMID: 22303348 PMCID: PMC3268605 DOI: 10.3389/fgene.2011.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 08/02/2011] [Indexed: 01/21/2023] Open
Abstract
Nitric oxide (NO) is known to depress ribosome biogenesis in vitro. In this study we analyzed the influence of exogenous NO on ribosome biogenesis in vivo using a proven antihypertensive model of perinatal NO administration in genetically hypertensive rats. Fawn-hooded hypertensive rat (FHH) dams were supplied with the NO-donor molsidomine in drinking water from 2 weeks before to 4 weeks after birth, and the kidneys were subsequently collected from 2 day, 2 week, and 9 to 10-month-old adult offspring. Although the NO-donor increased maternal NO metabolite excretion, the NO status of juvenile renal (and liver) tissue was unchanged as assayed by EPR spectroscopy of NO trapped with iron-dithiocarbamate complexes. Nevertheless, microarray analysis revealed marked differential up-regulation of renal ribosomal protein genes at 2 days and down-regulation at 2 weeks and in adult males. Such differential regulation of renal ribosomal protein genes was not observed in females. These changes were confirmed in males at 2 weeks by expression analysis of renal ribosomal protein L36a and by polysome profiling, which also revealed a down-regulation of ribosomes in females at that age. However, renal polysome profiles returned to normal in adults after early exposure to molsidomine. No direct effects of molsidomine were observed on cellular proliferation in kidneys at any age, and the changes induced by molsidomine in renal polysome profiles at 2 weeks were absent in the livers of the same rats. Our results suggest that the previously found prolonged antihypertensive effects of perinatal NO administration may be due to epigenetically programmed alterations in renal ribosome biogenesis during a critical fetal period of renal development, and provide a salient example of a drug-induced reduction of ribosome biogenesis that is accompanied by a beneficial long-term health effect in both males and females.
Collapse
Affiliation(s)
- Sebastiaan Wesseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bedioui F, Griveau S, Quinton D. Comment on “Electrochemical Detection of Peroxynitrite Using a Biosensor Based on a Conducting Polymer–Manganese Ion Complex”. Anal Chem 2011; 83:5463-4; author reply 5465-6. [DOI: 10.1021/ac1032319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fethi Bedioui
- Unité de Pharmacologie Chimique et Génétique et Imagerie, CNRS No. 8151, École Nationale Supérieure de Chimie de Paris, Chimie ParisTech, Université Paris Descartes, Paris, France
- INSERM, Unité de Pharmacologie Chimique et Génétique et Imagerie No. 1022, Paris, France
| | - Sophie Griveau
- Unité de Pharmacologie Chimique et Génétique et Imagerie, CNRS No. 8151, École Nationale Supérieure de Chimie de Paris, Chimie ParisTech, Université Paris Descartes, Paris, France
- INSERM, Unité de Pharmacologie Chimique et Génétique et Imagerie No. 1022, Paris, France
| | - Damien Quinton
- Unité de Pharmacologie Chimique et Génétique et Imagerie, CNRS No. 8151, École Nationale Supérieure de Chimie de Paris, Chimie ParisTech, Université Paris Descartes, Paris, France
- INSERM, Unité de Pharmacologie Chimique et Génétique et Imagerie No. 1022, Paris, France
| |
Collapse
|
49
|
Karogodina TY, Dranov IG, Sergeeva SV, Stass DV, Steiner UE. Kinetic Magnetic-Field Effect Involving the Small Biologically Relevant Inorganic Radicals NO and O2.−. Chemphyschem 2011; 12:1714-28. [DOI: 10.1002/cphc.201100178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Indexed: 11/05/2022]
|
50
|
Sex and Death: The Effects of Innate Immune Factors on the Sexual Reproduction of Malaria Parasites. PLoS Pathog 2011; 7:e1001309. [PMID: 21408620 PMCID: PMC3048364 DOI: 10.1371/journal.ppat.1001309] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 02/01/2011] [Indexed: 12/31/2022] Open
Abstract
Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction – that host immune responses have differential effects on the mating ability of males and females – have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be ‘evolution-proof’ than interventions directed at killing males or females. Given the drive to develop medical interventions that interfere with parasite mating, our data and theoretical models have important implications. Malaria and related parasites cause some of the most serious infectious diseases of humans, domestic animals and wildlife. To be transmitted, these parasites produce male and female sexual stages that differentiate into gametes and mate when taken up in a mosquito blood meal. Despite the need to develop a transmission-blocking intervention, remarkably little is understood about the evolution of parasite mating strategies. However, recent research demonstrates that producing the right ratio of male to female stages is central to mating success. Evolutionary theory predicts that sex ratios are adjusted in line with a variety of factors that affect mating success, including host immunity. We test this theory by investigating whether ubiquitous immune factors differentially affect the production and fertility of males and females. Our experiments demonstrate that immune factors have complex, sex-specific effects, from reducing gamete production to affecting offspring viability. We use these results to generate theory predicting how such effects shape the evolutionary trajectories of parasite sex ratio strategies. Given the drive to develop medical interventions that prevent transmission by blocking parasite mating, our results have important implications. Specifically, we suggest that medical interventions targeting offspring development are more likely to be ‘evolution-proof’ than interventions with sex-specific effects.
Collapse
|