1
|
Díaz-González F, Sentchordi-Montané L, Lucas-Castro E, Modamio-Høybjør S, Heath KE. Variants in both the N- or C-terminal domains of IHH lead to defective secretion causing short stature and skeletal defects. Eur J Endocrinol 2024; 191:38-46. [PMID: 38917024 DOI: 10.1093/ejendo/lvae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Heterozygous Indian Hedgehog gene (IHH) variants are associated with brachydactyly type A1 (BDA1). However, in recent years, numerous variants have been identified in patients with short stature and more variable forms of brachydactyly. Many are located in the C-terminal domain of IHH (IHH-C), which lacks signaling activity but is critical for auto-cleavage and activation of the N-terminal (IHH-N) peptide. The absence of functional studies of IHH variants, particularly for those located in IHH-C, has led to these variants being classified as variants of uncertain significance (VUS). OBJECTIVE To establish a simple functional assay to determine the pathogenicity of IHH VUS and confirm that variants in the C-terminal domain affect protein function. DESIGN/METHODS In vitro studies were performed for 9 IHH heterozygous variants, to test their effect on secretion and IHH intracellular processing by western blot of cells expressing each variant. RESULTS IHH secretion was significantly reduced in all mutants, regardless of the location. Similarly, intracellular levels of N-terminal and C-terminal IHH peptides were severely reduced in comparison with the control. Two variants present at a relatively high frequency in the general population also reduced secretion but to a lesser degree in the heterozygous state. CONCLUSIONS These studies provide the first evidence that variants in the C-terminal domain affect the secretion capacity of IHH and thus, reduce availability of IHH ligand, resulting in short stature and mild skeletal defects. The secretion assay permits a relatively easy test to determine the pathogenicity of IHH variants. All studied variants affected secretion and interestingly, more frequent population variants appear to have a deleterious effect and thus contribute to height variation.
Collapse
Affiliation(s)
- Francisca Díaz-González
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Lucía Sentchordi-Montané
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Department of Pediatrics, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elsa Lucas-Castro
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Silvia Modamio-Høybjør
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
2
|
Leović M, Jakovčević A, Mumlek I, Zagorac I, Sabol M, Leović D. A Pilot Immunohistochemical Study Identifies Hedgehog Pathway Expression in Sinonasal Adenocarcinoma. Int J Mol Sci 2024; 25:4630. [PMID: 38731849 PMCID: PMC11083810 DOI: 10.3390/ijms25094630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.
Collapse
Affiliation(s)
- Matko Leović
- Clinical Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| | - Antonija Jakovčević
- Department of Pathology, Cllinical Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| | - Ivan Mumlek
- Department of Maxillofacial and Oral Surgery, Clinical Hospital Center Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Irena Zagorac
- Department of Pathology, Clinical Hospital Center Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Dinko Leović
- Maxillofacial Surgery Unit, Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Picker-Minh S, Luperi I, Ravindran E, Kraemer N, Zaqout S, Stoltenburg-Didinger G, Ninnemann O, Hernandez-Miranda LR, Mani S, Kaindl AM. PTRH2 is Necessary for Purkinje Cell Differentiation and Survival and its Loss Recapitulates Progressive Cerebellar Atrophy and Ataxia Seen in IMNEPD Patients. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1137-1151. [PMID: 36219306 PMCID: PMC10657312 DOI: 10.1007/s12311-022-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Hom ozygous variants in the peptidyl-tRNA hydrolase 2 gene (PTRH2) cause infantile-onset multisystem neurologic, endocrine, and pancreatic disease. The objective is to delineate the mechanisms underlying the core cerebellar phenotype in this disease. For this, we generated constitutive (Ptrh2LoxPxhCMVCre, Ptrh2-/- mice) and Purkinje cell (PC) specific (Ptrh2LoxPxPcp2Cre, Ptrh2ΔPCmice) Ptrh2 mutant mouse models and investigated the effect of the loss of Ptrh2 on cerebellar development. We show that Ptrh2-/- knockout mice had severe postnatal runting and lethality by postnatal day 14. Ptrh2ΔPC PC specific knockout mice survived until adult age; however, they showed progressive cerebellar atrophy and functional cerebellar deficits with abnormal gait and ataxia. PCs of Ptrh2ΔPC mice had reduced cell size and density, stunted dendrites, and lower levels of ribosomal protein S6, a readout of the mammalian target of rapamycin pathway. By adulthood, there was a marked loss of PCs. Thus, we identify a cell autonomous requirement for PTRH2 in PC maturation and survival. Loss of PTRH2 in PCs leads to downregulation of the mTOR pathway and PC atrophy. This suggests a molecular mechanism underlying the ataxia and cerebellar atrophy seen in patients with PTRH2 mutations leading to infantile-onset multisystem neurologic, endocrine, and pancreatic disease.
Collapse
Affiliation(s)
- Sylvie Picker-Minh
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Ilaria Luperi
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ethiraj Ravindran
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nadine Kraemer
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sami Zaqout
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Gisela Stoltenburg-Didinger
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Shyamala Mani
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
4
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
6
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
7
|
Wang S, Tanaka Y, Xu Y, Takeda S, Hirokawa N. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 2022; 57:2273-2289.e11. [DOI: 10.1016/j.devcel.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
|
8
|
Reibring CG, El Shahawy M, Hallberg K, Harfe BD, Linde A, Gritli-Linde A. Loss of BMP2 and BMP4 Signaling in the Dental Epithelium Causes Defective Enamel Maturation and Aberrant Development of Ameloblasts. Int J Mol Sci 2022; 23:6095. [PMID: 35682776 PMCID: PMC9180982 DOI: 10.3390/ijms23116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
BMP signaling is crucial for differentiation of secretory ameloblasts, the cells that secrete enamel matrix. However, whether BMP signaling is required for differentiation of maturation-stage ameloblasts (MA), which are instrumental for enamel maturation into hard tissue, is hitherto unknown. To address this, we used an in vivo genetic approach which revealed that combined deactivation of the Bmp2 and Bmp4 genes in the murine dental epithelium causes development of dysmorphic and dysfunctional MA. These fail to exhibit a ruffled apical plasma membrane and to reabsorb enamel matrix proteins, leading to enamel defects mimicking hypomaturation amelogenesis imperfecta. Furthermore, subsets of mutant MA underwent pathological single or collective cell migration away from the ameloblast layer, forming cysts and/or exuberant tumor-like and gland-like structures. Massive apoptosis in the adjacent stratum intermedium and the abnormal cell-cell contacts and cell-matrix adhesion of MA may contribute to this aberrant behavior. The mutant MA also exhibited severely diminished tissue non-specific alkaline phosphatase activity, revealing that this enzyme's activity in MA crucially depends on BMP2 and BMP4 inputs. Our findings show that combined BMP2 and BMP4 signaling is crucial for survival of the stratum intermedium and for proper development and function of MA to ensure normal enamel maturation.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Maha El Shahawy
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia 61511, Egypt
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| |
Collapse
|
9
|
Thomas DC, Moorthy JD, Prabhakar V, Ajayakumar A, Pitchumani PK. Role of primary cilia and Hedgehog signaling in craniofacial features of Ellis-van Creveld syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:36-46. [PMID: 35393766 DOI: 10.1002/ajmg.c.31969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Ellis-van Creveld syndrome (EvC) is an autosomal recessive genetic disorder involving pathogenic variants of EVC and EVC2 genes and classified as a ciliopathy. The syndrome is caused by mutations in the EVC gene on chromosome 4p16, and EVC2 gene, located close to the EVC gene, in a head-to-head configuration. Regardless of the affliction of EVC or EVC2, the clinical features of Ellis-van Creveld syndrome are similar. Both these genes are expressed in tissues such as, but not limited to, the heart, liver, skeletal muscle, and placenta, while the predominant expression in the craniofacial tissues is that of EVC2. Biallelic mutations of EVC and EVC2 affect Hedgehog signaling and thereby ciliary function, crucial factors in vertebrate development, culminating in the phenotypical features characteristic of EvC. The clinical features of Ellis-van Creveld syndrome are consistent with significant abnormalities in morphogenesis and differentiation of the affected tissues. The robust role of primary cilia in histodifferentiation and morphodifferentiation of oral, perioral, and craniofacial tissues is becoming more evident in the most recent literature. In this review, we give a summary of the mechanistic role of primary cilia in craniofacial development, taking Ellis-van Creveld syndrome as a representative example.
Collapse
Affiliation(s)
- Davis C Thomas
- Center for TMD and Orofacial Pain, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
10
|
Ho EK, Stearns T. Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. Development 2021; 148:dev195552. [PMID: 33914866 PMCID: PMC8126410 DOI: 10.1242/dev.195552] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of vertebrate Hedgehog signaling are linked to the biology of the primary cilium, an antenna-like organelle that projects from the surface of most vertebrate cell types. Although the advantages of restricting signal transduction to cilia are often noted, the constraints imposed are less frequently considered, and yet they are central to how Hedgehog signaling operates in developing tissues. In this Review, we synthesize current understanding of Hedgehog signal transduction, ligand secretion and transport, and cilia dynamics to explore the temporal and spatial constraints imposed by the primary cilium on Hedgehog signaling in vivo.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Developmental Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Gu Y, Liu X, Liao L, Gao Y, Shi Y, Ni J, He G. Relationship between lipid metabolism and Hedgehog signaling pathway. J Steroid Biochem Mol Biol 2021; 209:105825. [PMID: 33529733 DOI: 10.1016/j.jsbmb.2021.105825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
The Hedgehog (Hh) signaling pathway is highly conserved signaling pathway in cells. Steroids was found to play a vital role in Hh signaling pathway and aberrant Hh signaling was found to lead a series of disease correlate with abnormal lipid metabolism. This paper aimed to elucidate the relationship between lipid metabolism and Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Xiaochen Liu
- University of Toledo Medical Center 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Lele Liao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Yongquan Gao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Yu Shi
- West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China.
| |
Collapse
|
12
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
13
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
14
|
Kahane N, Kalcheim C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 2020; 147:dev183996. [PMID: 32345743 PMCID: PMC7272346 DOI: 10.1242/dev.183996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| |
Collapse
|
15
|
Jiang Z, Derrick-Roberts ALK, Reichstein C, Byers S. Cell cycle progression is disrupted in murine MPS VII growth plate leading to reduced chondrocyte proliferation and transition to hypertrophy. Bone 2020; 132:115195. [PMID: 31863960 DOI: 10.1016/j.bone.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023]
Abstract
Endochondral bone growth is abnormal in 6 of the 11 types of mucopolysaccharidoses (MPS) disorders; resulting in short stature, reduced size of the thoracic cavity and compromised manual dexterity. Current therapies for MPS have had a limited effect on bone growth and to improve these therapies or develop adjunct approaches requires an understanding of the underlying basis of abnormal bone growth in MPS. The MPS VII mouse model replicates the reduction in long bone and vertebral length observed in human MPS. Using this model we have shown that the growth plate is elongated but contains fewer chondrocytes in the proliferative and hypertrophic zones. Endochondral bone growth is in part regulated by entry and exit from the cell cycle by growth plate chondrocytes. More MPS VII chondrocytes were positive for Ki67, a marker for active phases of the cell cycle, suggesting that more MPS VII chondrocytes were in the cell cycle. The number of cells positive for phosphorylated histone H3 was significantly reduced in MPS VII chondrocytes, suggesting fewer MPS VII chondrocytes progressed to mitotic division. While MPS VII HZ chondrocytes continued to express cyclin D1 and more cells were positive for E2F1 and phos pRb than normal, fewer MPS VII HZ chondrocytes were positive for p57kip2 a marker of terminal differentiation, suggesting fewer MPS VII chondrocytes were able to exit the cell cycle. In addition, multiple markers typical of PZ to HZ transition were not downregulated in MPS VII, in particular Sox9, Pthrpr and Wnt5a. These findings are consistent with MPS VII growth plates elongating at a slower rate than normal due to a delay in progression through the cell cycle, in particular the transition between G1 and S phases, leading to both reduced cell division and transition to the hypertrophic phenotype.
Collapse
Affiliation(s)
- Zhirui Jiang
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.
| | - Ainslie L K Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Clare Reichstein
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Reibring CG, Hallberg K, Linde A, Gritli-Linde A. Distinct and Overlapping Expression Patterns of the Homer Family of Scaffolding Proteins and Their Encoding Genes in Developing Murine Cephalic Tissues. Int J Mol Sci 2020; 21:ijms21041264. [PMID: 32070057 PMCID: PMC7072945 DOI: 10.3390/ijms21041264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Public Dental Service, Region Västra Götaland, SE-45131 Uddevalla, Sweden
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Correspondence: ; Tel.: +46-31-7863392
| |
Collapse
|
17
|
Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cell Mol Life Sci 2019; 76:3939-3952. [PMID: 31201464 PMCID: PMC11105481 DOI: 10.1007/s00018-019-03191-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
18
|
Qi C, Di Minin G, Vercellino I, Wutz A, Korkhov VM. Structural basis of sterol recognition by human hedgehog receptor PTCH1. SCIENCE ADVANCES 2019; 5:eaaw6490. [PMID: 31555730 PMCID: PMC6750913 DOI: 10.1126/sciadv.aaw6490] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Hedgehog signaling is central in embryonic development and tissue regeneration. Disruption of the pathway is linked to genetic diseases and cancer. Binding of the secreted ligand, Sonic hedgehog (ShhN) to its receptor Patched (PTCH1) activates the signaling pathway. Here, we describe a 3.4-Å cryo-EM structure of the human PTCH1 bound to ShhNC24II, a modified hedgehog ligand mimicking its palmitoylated form. The membrane-embedded part of PTCH1 is surrounded by 10 sterol molecules at the inner and outer lipid bilayer portion of the protein. The annular sterols interact at multiple sites with both the sterol-sensing domain (SSD) and the SSD-like domain (SSDL), which are located on opposite sides of PTCH1. The structure reveals a possible route for sterol translocation across the lipid bilayer by PTCH1 and homologous transporters.
Collapse
Affiliation(s)
- Chao Qi
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Irene Vercellino
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Volodymyr M. Korkhov
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
- Corresponding author.
| |
Collapse
|
19
|
Bertucci C, Koppes R, Dumont C, Koppes A. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull 2019; 152:265-284. [PMID: 31323281 DOI: 10.1016/j.brainresbull.2019.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Electrical stimulation (ES) to manipulate the central (CNS) and peripheral nervous system (PNS) has been explored for decades, recently gaining momentum as bioelectronic medicine advances. The application of ES in vitro to modulate a variety of cellular functions, including regenerative potential, migration, and stem cell fate, are being explored to aid neural degeneration, dysfunction, and injury. This review describes the materials and approaches for the application of ES to the PNS and CNS microenvironments, towards an improved understanding of how ES can be harnessed for beneficial clinical applications. Emphasized are some recent advances in ES, including conductive polymers, methods of charge transfer, impact on neural cells, and a brief overview of alternative methodologies for cellular targeting including magneto, ultrasonic, and optogenetic stimulation. This review will examine how heterogenous cell populations, including neurons, glia, and neural stem cells respond to a wide range of conductive 2D and 3D substrates, stimulation regimes, known mechanisms of response, and how cellular sources impact the response to ES.
Collapse
Affiliation(s)
- Christopher Bertucci
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Ryan Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Courtney Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, United States.
| | - Abigail Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States; Department of Biology, Boston, 02115, MA, United States.
| |
Collapse
|
20
|
Shen L, Ma G, Shi Y, Ruan Y, Yang X, Wu X, Xiong Y, Wan C, Yang C, Cai L, Xiong L, Gong X, He L, Qin S. p.E95K mutation in Indian hedgehog causing brachydactyly type A1 impairs IHH/Gli1 downstream transcriptional regulation. BMC Genet 2019; 20:10. [PMID: 30651074 PMCID: PMC6335781 DOI: 10.1186/s12863-018-0697-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Brachydactyly type A1 (BDA1, OMIM 112500) is a rare inherited malformation characterized primarily by shortness or absence of middle bones of fingers and toes. It is the first recorded disorder of the autosomal dominant Mendelian trait. Indian hedgehog (IHH) gene is closely associated with BDA1, which was firstly mapped and identified in Chinese families in 2000. Previous studies have demonstrated that BDA1-related mutant IHH proteins affected interactions with its receptors and impaired IHH signaling. However, how the altered signaling pathway affects downstream transcriptional regulation remains unclear. Results Based on the mouse C3H10T1/2 cell model for IHH signaling activation, two recombinant human IHH-N proteins, including a wild type protein (WT, amino acid residues 28–202) and a mutant protein (MT, p.E95k), were analyzed. We identified 347, 47 and 4 Gli1 binding sites in the corresponding WT, MT and control group by chromatin immunoprecipitation and the overlapping of these three sets was poor. The putative cis regulated genes in WT group were enriched in sensory perception and G-protein coupled receptor-signaling pathway. On the other hand, putative cis regulated genes were enriched in Runx2-related pathways in MT group. Differentially expressed genes in WT and MT groups indicated that the alteration of mutant IHH signaling involved cell-cell signaling and cellular migration. Cellular assay of migration and proliferation validated that the mutant IHH signaling impaired these two cellular functions. Conclusions In this study, we performed integrated genome-wide analyses to characterize differences of IHH/Gli1 downstream regulation between wild type IHH signaling and the E95K mutant signaling. Based on the cell model, our results demonstrated that the E95K mutant signaling altered Gli1-DNA binding pattern, impaired downstream gene expressions, and leaded to weakened cellular proliferation and migration. This study may help to deepen the understanding of pathogenesis of BDA1 and the role of IHH signaling in chondrogenesis. Electronic supplementary material The online version of this article (10.1186/s12863-018-0697-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuyu Xiong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Chao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Likuan Xiong
- Center Laboratory, Baoan Maternal and Children Healthcare Hospital, Shenzhen, China.,Key Laboratory of Birth Defects Research, Shenzhen, China.,Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Xueli Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China. .,Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China. .,Shanghai Center for Women and Children's Health, Shanghai, 200062, People's Republic of China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China. .,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, People's Republic of China.
| |
Collapse
|
21
|
Smith DR, Margul DJ, Dumont CM, Carlson MA, Munsell MK, Johnson M, Cummings BJ, Anderson AJ, Shea LD. Combinatorial lentiviral gene delivery of pro-oligodendrogenic factors for improving myelination of regenerating axons after spinal cord injury. Biotechnol Bioeng 2019; 116:155-167. [PMID: 30229864 PMCID: PMC6289889 DOI: 10.1002/bit.26838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) results in paralysis below the injury and strategies are being developed that support axonal regrowth, yet recovery lags, in part, because many axons are not remyelinated. Herein, we investigated strategies to increase myelination of regenerating axons by overexpression of platelet-derived growth factor (PDGF)-AA and noggin either alone or in combination in a mouse SCI model. Noggin and PDGF-AA have been identified as factors that enhance recruitment and differentiation of endogenous progenitors to promote myelination. Lentivirus encoding for these factors was delivered from a multichannel bridge, which we have previously shown creates a permissive environment and supports robust axonal growth through channels. The combination of noggin+PDGF enhanced total myelination of regenerating axons relative to either factor alone, and importantly, enhanced functional recovery relative to the control condition. The increase in myelination was consistent with an increase in oligodendrocyte-derived myelin, which was also associated with a greater density of cells of an oligodendroglial lineage relative to each factor individually and control conditions. These results suggest enhanced myelination of regenerating axons by noggin+PDGF that act on oligodendrocyte-lineage cells post-SCI, which ultimately led to improved functional outcomes.
Collapse
Affiliation(s)
- Dominique R. Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Margul
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Courtney M. Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mitchell A. Carlson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mitchell Johnson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian J. Cummings
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J. Anderson
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
23
|
Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination. Exp Neurol 2018; 299:122-136. [DOI: 10.1016/j.expneurol.2017.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/23/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022]
|
24
|
Dumont CM, Piselli J, Temple S, Dai G, Thompson DM. Endothelial Cells Exposed to Fluid Shear Stress Support Diffusion Based Maturation of Adult Neural Progenitor Cells. Cell Mol Bioeng 2017; 11:117-130. [PMID: 31719881 DOI: 10.1007/s12195-017-0516-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction The neural stem cell (NSC) niche is a highly complex cellular and biochemical milieu supporting proliferating NSCs and neural progenitor cells (NPCs) with close apposition to the vasculature, primarily comprised of endothelial cells (ECs). Current in vitro models of the niche incorporate EC-derived factors, but do not reflect the physiologically relevant hemodynamic state of the ECs or the spatial resolution observed between cells within the niche. Methods In this work, we developed a novel in vitro model of the niche that (1) incorporates ECs cultured with fluid shear stress and (2) fosters paracrine cytokine gradients between ECs and NSCs in a spatiotemporal configuration mimicking the cytoarchitecture of the subventricular niche. A modified cone and plate viscometer was used to generate a shear stress of 10 dynes cm-2 for ECs cultured on a membrane, while statically cultured NPCs are 10 or 1000 μm below the ECs. Results NPCs cultured within 10 μm of dynamic ECs exhibit increased PSA-NCAM+ and OLIG2+ cells compared to progenitors in all other culture regimes and the hemodynamic EC phenotype results in distinct progeny phenotypes. This co-culture regime yields greater release of pro-neurogenic factors, suggesting a potential mechanism for the observed progenitor maturation. Conclusions Based on these results, models incorporating ECs exposed to shear stress allow for paracrine signaling gradients and regulate NPC lineage progression with appropriate niche spatial resolution occurring at 10 μm. This model could be used to evaluate cellular or pharmacological interactions within the healthy, diseased, or aged brain.
Collapse
Affiliation(s)
- C M Dumont
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - J Piselli
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - S Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144 USA
| | - G Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - D M Thompson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
25
|
Diniz MG, Gomes CC, de Sousa SF, Xavier GM, Gomez RS. Oncogenic signalling pathways in benign odontogenic cysts and tumours. Oral Oncol 2017; 72:165-173. [DOI: 10.1016/j.oraloncology.2017.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023]
|
26
|
Dumont CM, Piselli JM, Kazi N, Bowman E, Li G, Linhardt RJ, Temple S, Dai G, Thompson DM. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage. Stem Cells Dev 2017; 26:1199-1213. [PMID: 28557666 DOI: 10.1089/scd.2016.0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Jennifer M Piselli
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Nadeem Kazi
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Evan Bowman
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Guoyun Li
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Robert J Linhardt
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Sally Temple
- 4 Neural Stem Cell Institute , Rensselaer, New York
| | - Guohao Dai
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Deanna M Thompson
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
27
|
Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid. PLoS Genet 2017; 13:e1006914. [PMID: 28715412 PMCID: PMC5536368 DOI: 10.1371/journal.pgen.1006914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/31/2017] [Accepted: 07/09/2017] [Indexed: 12/20/2022] Open
Abstract
The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity. Knowledge of the biological mechanisms controlling cell fate specification is of paramount importance for cell-based therapies. Sonic hedgehog (SHH) and retinoic acid (RA) pathways play key roles in development and disease. The role of SHH during in vivo tongue development is a subject of great interest, and whether RA signaling has any function in the developing tongue is unknown. The tongue is covered by a mucosa made of lingual epithelium and lingual mesenchyme. Various structures, including mechanosensory filiform papillae, gustatory papillae harboring taste buds, and minor salivary glands, arise from the epithelium, but how these entities are specified remains unclear. Here we show that in the mesenchyme SHH signaling drives growth and morphogenesis, whereas in the epithelium, SHH controls patterning and cell fate specification. We demonstrate that SHH inhibits taste placode and lingual gland formation by antagonizing RA inputs. We also show that loss of SHH signaling elicits Merkel cell formation in the lingual epithelium, a tissue normally bereft of Merkel cells. This is at odds with the hairy epidermis where Merkel cell specification has been shown to be SHH-dependent. Our study establishes SHH and RA as key players in the control of cell identity within the lingual epithelium.
Collapse
|
28
|
Seppala M, Fraser GJ, Birjandi AA, Xavier GM, Cobourne MT. Sonic Hedgehog Signaling and Development of the Dentition. J Dev Biol 2017; 5:jdb5020006. [PMID: 29615564 PMCID: PMC5831762 DOI: 10.3390/jdb5020006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 01/20/2023] Open
Abstract
Sonic hedgehog (Shh) is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.
Collapse
Affiliation(s)
- Maisa Seppala
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
- Department of Orthodontics, King's College London Dental Institute, Floor 22, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN, UK.
| | - Anahid A Birjandi
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| | - Guilherme M Xavier
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
- Department of Orthodontics, King's College London Dental Institute, Floor 22, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
- Department of Orthodontics, King's College London Dental Institute, Floor 22, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| |
Collapse
|
29
|
Danesin C, Soula C. Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J Dev Biol 2017; 5:jdb5020004. [PMID: 29615562 PMCID: PMC5831764 DOI: 10.3390/jdb5020004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| |
Collapse
|
30
|
Tickle C, Towers M. Sonic Hedgehog Signaling in Limb Development. Front Cell Dev Biol 2017; 5:14. [PMID: 28293554 PMCID: PMC5328949 DOI: 10.3389/fcell.2017.00014] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of BathBath, UK
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of SheffieldWestern Bank, Sheffield, UK
| |
Collapse
|
31
|
Merchant JL, Ding L. Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell Mol Gastroenterol Hepatol 2017; 3:201-210. [PMID: 28275687 PMCID: PMC5331830 DOI: 10.1016/j.jcmgh.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
Since its initial discovery in Drosophila, Hedgehog (HH) signaling has long been associated with foregut development. The mammalian genome expresses 3 HH ligands, with sonic hedgehog (SHH) levels highest in the mucosa of the embryonic foregut. More recently, interest in the pathway has shifted to improving our understanding of its role in gastrointestinal cancers. The use of reporter mice proved instrumental in our ability to probe the expression pattern of SHH ligand and the cell types responding to canonical HH signaling during homeostasis, inflammation, and neoplastic transformation. SHH is highly expressed in parietal cells and is required for these cells to produce gastric acid. Furthermore, myofibroblasts are the predominant cell type responding to HH ligand in the uninfected stomach. Chronic infection caused by Helicobacter pylori and associated inflammation induces parietal cell atrophy and the expansion of metaplastic cell types, a precursor to gastric cancer in human subjects. During Helicobacter infection in mice, canonical HH signaling is required for inflammatory cells to be recruited from the bone marrow to the stomach and for metaplastic development. Specifically, polarization of the invading myeloid cells to myeloid-derived suppressor cells requires the HH-regulated transcription factor GLI1, thereby creating a microenvironment favoring wound healing and neoplastic transformation. In mice, GLI1 mediates the phenotypic shift to gastric myeloid-derived suppressor cells by directly inducing Schlafen 4 (slfn4). However, the human homologs of SLFN4, designated SLFN5 and SLFN12L, also correlate with intestinal metaplasia and could be used as biomarkers to predict the subset of individuals who might progress to gastric cancer and benefit from treatment with HH antagonists.
Collapse
Key Words
- ATPase, adenosine triphosphatase
- DAMP, damage-associated molecular pattern
- DAMPs
- GLI, glioma-associated protein
- GLI1
- Gr-MDSC, granulocytic myeloid-derived suppressor cell
- HH, hedgehog
- HHIP, hedgehog-interacting protein
- IFN, interferon
- IL, interleukin
- MDSC, myeloid-derived suppressor cell
- MDSCs
- Metaplasia
- Mo-MDSC, monocytic myeloid-derived suppressor cell
- PTCH, Patched
- SHH
- SHH, sonic hedgehog
- SLFN4, Schlafen 4
- SMO, Smoothened
- SP, spasmolytic polypeptide
- SPEM
- SPEM, spasmolytic polypeptide–expressing mucosa
- SST, somatostatin
- TLR, Toll-like receptor
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Juanita L. Merchant, MD, PhD, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200. fax: (734) 763-4686.University of Michigan109 Zina Pitcher PlaceAnn ArborMichigan 48109-2200
| | - Lin Ding
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
32
|
Rodgers U, Lanyon-Hogg T, Masumoto N, Ritzefeld M, Burke R, Blagg J, Magee AI, Tate EW. Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells. ACS Chem Biol 2016; 11:3256-3262. [PMID: 27779865 PMCID: PMC5349656 DOI: 10.1021/acschembio.6b00896] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 01/01/2023]
Abstract
The Sonic Hedgehog (Shh) signaling pathway plays a critical role during embryonic development and cancer progression. N-terminal palmitoylation of Shh by Hedgehog acyltransferase (Hhat) is essential for efficient signaling, raising interest in Hhat as a novel drug target. A recently identified series of dihydrothienopyridines has been proposed to function via this mode of action; however, the lead compound in this series (RUSKI-43) was subsequently shown to possess cytotoxic activity unrelated to canonical Shh signaling. To identify a selective chemical probe for cellular studies, we profiled three RUSKI compounds in orthogonal cell-based assays. We found that RUSKI-43 exhibits off-target cytotoxicity, masking its effect on Hhat-dependent signaling, hence results obtained with this compound in cells should be treated with caution. In contrast, RUSKI-201 showed no off-target cytotoxicity, and quantitative whole-proteome palmitoylation profiling with a bioorthogonal alkyne-palmitate reporter demonstrated specific inhibition of Hhat in cells. RUSKI-201 is the first selective Hhat chemical probe in cells and should be used in future studies of Hhat catalytic function.
Collapse
Affiliation(s)
- Ursula
R. Rodgers
- Molecular
Medicine Section, National Heart & Lung
Institute, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Thomas Lanyon-Hogg
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Naoko Masumoto
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Markus Ritzefeld
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Julian Blagg
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Anthony I. Magee
- Molecular
Medicine Section, National Heart & Lung
Institute, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Edward W. Tate
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
33
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
34
|
Xavier GM, Seppala M, Barrell W, Birjandi AA, Geoghegan F, Cobourne MT. Hedgehog receptor function during craniofacial development. Dev Biol 2016; 415:198-215. [PMID: 26875496 DOI: 10.1016/j.ydbio.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - William Barrell
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Anahid A Birjandi
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Finn Geoghegan
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
35
|
The many lives of SHH in limb development and evolution. Semin Cell Dev Biol 2016; 49:116-24. [DOI: 10.1016/j.semcdb.2015.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
|
36
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
37
|
Holtz AM, Griffiths SC, Davis SJ, Bishop B, Siebold C, Allen BL. Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function. J Cell Biol 2015; 209:739-57. [PMID: 26056142 PMCID: PMC4460154 DOI: 10.1083/jcb.201411024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Vertebrate Hedgehog (HH) signaling is controlled by several ligand-binding antagonists including Patched-1 (PTCH1), PTCH2, and HH-interacting protein 1 (HHIP1), whose collective action is essential for proper HH pathway activity. However, the molecular mechanisms used by these inhibitors remain poorly understood. In this paper, we investigated the mechanisms underlying HHIP1 antagonism of HH signaling. Strikingly, we found evidence that HHIP1 non-cell-autonomously inhibits HH-dependent neural progenitor patterning and proliferation. Furthermore, this non-cell-autonomous antagonism of HH signaling results from the secretion of HHIP1 that is modulated by cell type-specific interactions with heparan sulfate (HS). These interactions are mediated by an HS-binding motif in the cysteine-rich domain of HHIP1 that is required for its localization to the neuroepithelial basement membrane (BM) to effectively antagonize HH pathway function. Our data also suggest that endogenous, secreted HHIP1 localization to HS-containing BMs regulates HH ligand distribution. Overall, the secreted activity of HHIP1 represents a novel mechanism to regulate HH ligand localization and function during embryogenesis.
Collapse
Affiliation(s)
- Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109 Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Samantha J Davis
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
38
|
Cohen M, Kicheva A, Ribeiro A, Blassberg R, Page KM, Barnes CP, Briscoe J. Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat Commun 2015; 6:6709. [PMID: 25833741 PMCID: PMC4396374 DOI: 10.1038/ncomms7709] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022] Open
Abstract
In the vertebrate neural tube, the morphogen Sonic Hedgehog (Shh) establishes a characteristic pattern of gene expression. Here we quantify the Shh gradient in the developing mouse neural tube and show that while the amplitude of the gradient increases over time, the activity of the pathway transcriptional effectors, Gli proteins, initially increases but later decreases. Computational analysis of the pathway suggests three mechanisms that could contribute to this adaptation: transcriptional upregulation of the inhibitory receptor Ptch1, transcriptional downregulation of Gli and the differential stability of active and inactive Gli isoforms. Consistent with this, Gli2 protein expression is downregulated during neural tube patterning and adaptation continues when the pathway is stimulated downstream of Ptch1. Moreover, the Shh-induced upregulation of Gli2 transcription prevents Gli activity levels from adapting in a different cell type, NIH3T3 fibroblasts, despite the upregulation of Ptch1. Multiple mechanisms therefore contribute to the intracellular dynamics of Shh signalling, resulting in different signalling dynamics in different cell types.
Collapse
Affiliation(s)
- Michael Cohen
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Anna Kicheva
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ana Ribeiro
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Robert Blassberg
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Karen M Page
- Department of Mathematics and CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| | - Chris P Barnes
- 1] Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK [2] Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - James Briscoe
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
39
|
Long J, Tokhunts R, Old WM, Houel S, Rodgriguez-Blanco J, Singh S, Schilling N, J Capobianco A, Ahn NG, Robbins DJ. Identification of a family of fatty-acid-speciated sonic hedgehog proteins, whose members display differential biological properties. Cell Rep 2015; 10:1280-1287. [PMID: 25732819 DOI: 10.1016/j.celrep.2015.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/14/2015] [Accepted: 01/26/2015] [Indexed: 01/25/2023] Open
Abstract
Hedgehog (HH) proteins are proteolytically processed into a biologically active form that is covalently modified by cholesterol and palmitate. However, most studies of HH biogenesis have characterized protein from cells in which HH is overexpressed. We purified Sonic Hedgehog (SHH) from cells expressing physiologically relevant levels and showed that it was more potent than SHH isolated from overexpressing cells. Furthermore, the SHH in our preparations was modified with a diverse spectrum of fatty acids on its amino termini, and this spectrum of fatty acids varied dramatically depending on the growth conditions of the cells. The fatty acid composition of SHH affected its trafficking to lipid rafts as well as its potency. Our results suggest that HH proteins exist as a family of diverse lipid-speciated proteins that might be altered in different physiological and pathological contexts in order to regulate distinct properties of HH proteins.
Collapse
Affiliation(s)
- Jun Long
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Robert Tokhunts
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Program in Experimental and Molecular Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Stephane Houel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Jezabel Rodgriguez-Blanco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Samer Singh
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Neal Schilling
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Program in Experimental and Molecular Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.,Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| |
Collapse
|
40
|
Kornberg TB. The contrasting roles of primary cilia and cytonemes in Hh signaling. Dev Biol 2014; 394:1-5. [PMID: 25072627 DOI: 10.1016/j.ydbio.2014.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 12/16/2022]
Abstract
Hedgehog (Hh) is a paracrine signaling protein with major roles in development and disease. In vertebrates and invertebrates, Hh signal transduction is carried out almost entirely by evolutionarily conserved components, and in both, intercellular movement of Hh is mediated by cytonemes - specialized filopodia that serve as bridges that bring distant cells into contact. A significant difference is the role of the primary cilium, a slender, tubulin-based protuberance of many vertebrate cells. Although the primary cilium is essential for Hh signaling in cells that have one, most Drosophila cells lack a primary cilium. This perspective addresses the roles of primary cilia and cytonemes, and proposes that for Hh signaling, the role of primary cilia is to provide a specialized hydrophobic environment that hosts lipid-modified Hh and other components of Hh signal transduction after Hh has traveled from elsewhere in the cell. Implicit in this model is the idea that initial binding and uptake of Hh is independent of and segregated from the processes of signal transduction and activation.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
41
|
Lopez-Rios J, Duchesne A, Speziale D, Andrey G, Peterson KA, Germann P, Ünal E, Liu J, Floriot S, Barbey S, Gallard Y, Müller-Gerbl M, Courtney AD, Klopp C, Rodriguez S, Ivanek R, Beisel C, Wicking C, Iber D, Robert B, McMahon AP, Duboule D, Zeller R. Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs. Nature 2014; 511:46-51. [DOI: 10.1038/nature13289] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/27/2014] [Indexed: 11/09/2022]
|
42
|
Transcriptional regulation of graded Hedgehog signaling. Semin Cell Dev Biol 2014; 33:73-80. [PMID: 24862856 DOI: 10.1016/j.semcdb.2014.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023]
Abstract
The Hedgehog (Hh) pathway plays conserved roles in regulating a diverse spectrum of developmental processes. In some developmental contexts, a gradient of Hh protein specifies multiple cell types in a dose-dependent fashion, thereby acting as a morphogen. Hh signaling ultimately acts on the transcriptional level through GLI proteins. In the presence of Hh signaling full length GLI proteins act as transcriptional activators of target genes. Conversely, in the absence of Hh, GLI proteins act as transcriptional repressors. This review will highlight mechanisms contributing to how graded Hh signaling might translate to differential GLI activity and be interpreted into distinct transcriptional responses.
Collapse
|
43
|
Reibring CG, El Shahawy M, Hallberg K, Kannius-Janson M, Nilsson J, Parkkila S, Sly WS, Waheed A, Linde A, Gritli-Linde A. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation. PLoS One 2014; 9:e96007. [PMID: 24789143 PMCID: PMC4006843 DOI: 10.1371/journal.pone.0096007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA) but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for future single or multiple gene targeting strategies aiming at deciphering the function of CAs during odontogenesis.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Maha El Shahawy
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
- Department of Oral Biology, Minia University, Minia, Egypt
| | - Kristina Hallberg
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Jeanette Nilsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Seppo Parkkila
- School of Medicine and BioMediTech, University of Tampere and Fimlab, Tampere University Hospital, Tampere, Finland
| | - William S. Sly
- Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Abdul Waheed
- Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Anders Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
44
|
Kim WK, Kim D, Cui J, Jang HH, Kim KS, Lee HJ, Kim SU, Ahn SM. Secretome analysis of human oligodendrocytes derived from neural stem cells. PLoS One 2014; 9:e84292. [PMID: 24392122 PMCID: PMC3879300 DOI: 10.1371/journal.pone.0084292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
In this study, we investigated the secretome of human oligodendrocytes (F3.Olig2 cells) generated from human neural stem cells by transduction with the gene encoding the Olig2 transcription factor. Using mRNA sequencing and protein cytokine arrays, we identified a number of biologically important secretory proteins whose expression has not been previously reported in oligodendrocytes. We found that F3.Olig2 cells secrete IL-6, PDGF-AA, GRO, GM-CSF, and M-CSF, and showed prominent expression of their corresponding receptors. Co-expression of ligands and receptors suggests that autocrine signaling loops may play important roles in both differentiation and maintenance of oligodendrocytes. We also found that F3.Olig2 cells secrete matrix metalloproteinases and matrix metalloproteinase-associated proteins associated with functional competence of oligodendrocytes. The results of our secretome analysis provide insights into the functional and molecular details of human oligodendrocytes. To the best of our knowledge, this is the first systematic analysis of the secretome of oligodendrocytes.
Collapse
Affiliation(s)
- Woo Kyung Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea
- BRC Genome Research Center, Bio Research Complex, Incheon, Korea
| | - Deokhoon Kim
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jun Cui
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ho Hee Jang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Kwang Sei Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung U. Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (SUK); (SMA)
| | - Sung-Min Ahn
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Oncology, Ulsan University College of Medicine, Seoul, Korea
- * E-mail: (SUK); (SMA)
| |
Collapse
|
45
|
Mis EK, Liem KF, Kong Y, Schwartz NB, Domowicz M, Weatherbee SD. Forward genetics defines Xylt1 as a key, conserved regulator of early chondrocyte maturation and skeletal length. Dev Biol 2014; 385:67-82. [PMID: 24161523 PMCID: PMC3895954 DOI: 10.1016/j.ydbio.2013.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022]
Abstract
The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation.
Collapse
Affiliation(s)
- Emily K. Mis
- Department of Genetics, Yale University, New Haven, CT 06520
| | - Karel F. Liem
- Department of Pediatrics, Yale University, New Haven, CT 06520
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06520
| | | | - Miriam Domowicz
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
46
|
A new role for Hedgehogs in juxtacrine signaling. Mech Dev 2013; 131:137-49. [PMID: 24342078 DOI: 10.1016/j.mod.2013.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022]
Abstract
The Hedgehog pathway plays important roles in embryonic development, adult stem cell maintenance and tumorigenesis. In mammals these effects are mediated by Sonic, Desert and Indian Hedgehog (Shh, Dhh and Ihh). Shh undergoes autocatalytic cleavage and dual lipidation prior to secretion and forming a response gradient. Post-translational processing and secretion of Dhh and Ihh ligands has not previously been investigated. This study reports on the synthesis, processing, secretion and signaling activities of SHH, IHH and DHH preproteins expressed in cultured cells, providing unexpected evidence that DHH does not undergo substantial autoprocessing or secretion, and does not function in paracrine signaling. Rather, DHH functions as a juxtacrine signaling ligand to activate a cell contact-mediated HH signaling response, consistent with its localised signaling in vivo. Further, the LnCAP prostate cancer cell, when induced to express endogenous DHH and SHH, is active only in juxtacrine signaling. Domain swap studies reveal that the C-terminal domain of HH regulates its processing and secretion. These findings establish a new regulatory role for HHs in cell-mediated juxtacrine signaling in development and cancer.
Collapse
|
47
|
Ortega JA, Radonjić NV, Zecevic N. Sonic hedgehog promotes generation and maintenance of human forebrain Olig2 progenitors. Front Cell Neurosci 2013; 7:254. [PMID: 24379757 PMCID: PMC3861791 DOI: 10.3389/fncel.2013.00254] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022] Open
Abstract
Function of oligodendrocytes (OLs), myelin forming cells in the CNS, is disrupted in demyelinating diseases such as periventricular leukomalacia or multiple sclerosis. It is, thus, important to better understand factors that can affect generation or differentiation of human OLs. In rodents, Sonic hedgehog (Shh) is influencing expression of Olig2, a helix-loop-helix transcription factor required for development of OLs. In humans, Olig2 is present in cortical progenitors at midgestation, however the role of Shh in the specification of human OLs, including Olig2 positive (Olig2+) progenitors, is not fully understood. Here we studied in vitro effects of Shh signaling on proliferation and specification of human cortical Olig2+ progenitors at midgestation. First, we established that the spatial pattern of Olig2 expression in the human developing CNS, described on cryosections, was preserved in mixed and enriched radial glia cell (RGC) cultures. Next, we demonstrated that in vitro treatment with Shh induced an increase in the number of Olig2+ progenitors. Shh treatment increased the density of early oligodendrocyte progenitors (OPCs) at the expense of RGC, while the number of late OPCs, did not change. However, inhibition of endogenous Shh with cyclopamine did not reduce the density of Olig2+ cells, implying the presence of an additional Shh-independent mechanism for OLs generation in vitro. These results suggest that the primary role of Shh signaling in the human dorsal oligodendrogenesis is the expansion and specification of multipotent radial glia progenitors into Olig2+ early OPCs. These results obtained in vitro are relevant to understand primary myelination during CNS development, as well as remyelination in demyelinating diseases.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| | - Nevena V Radonjić
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA ; Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade Belgrade, Serbia
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
48
|
Verbeni M, Sánchez O, Mollica E, Siegl-Cachedenier I, Carleton A, Guerrero I, Ruiz i Altaba A, Soler J. Morphogenetic action through flux-limited spreading. Phys Life Rev 2013; 10:457-75. [PMID: 23831049 DOI: 10.1016/j.plrev.2013.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
A central question in biology is how secreted morphogens act to induce different cellular responses within a group of cells in a concentration-dependent manner. Modeling morphogenetic output in multicellular systems has so far employed linear diffusion, which is the normal type of diffusion associated with Brownian processes. However, there is evidence that at least some morphogens, such as Hedgehog (Hh) molecules, may not freely diffuse. Moreover, the mathematical analysis of such models necessarily implies unrealistic instantaneous spreading of morphogen molecules, which are derived from the assumptions of Brownian motion in its continuous formulation. A strict mathematical model considering Fick's diffusion law predicts morphogen exposure of the whole tissue at the same time. Such a strict model thus does not describe true biological patterns, even if similar and attractive patterns appear as results of applying such simple model. To eliminate non-biological behaviors from diffusion models we introduce flux-limited spreading (FLS), which implies a restricted velocity for morphogen propagation and a nonlinear mechanism of transport. Using FLS and focusing on intercellular Hh-Gli signaling, we model a morphogen gradient and highlight the propagation velocity of morphogen particles as a new key biological parameter. This model is then applied to the formation and action of the Sonic Hh (Shh) gradient in the vertebrate embryonic neural tube using our experimental data on Hh spreading in heterologous systems together with published data. Unlike linear diffusion models, FLS modeling predicts concentration fronts and the evolution of gradient dynamics and responses over time. In addition to spreading restrictions by extracellular binding partners, we suggest that the constraints imposed by direct bridges of information transfer such as nanotubes or cytonemes underlie FLS. Indeed, we detect and measure morphogen particle velocity in such cell extensions in different systems.
Collapse
Affiliation(s)
- M Verbeni
- Departamento de Matemática Aplicada, Universidad de Granada, 18071-Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Johnson NR, Wang Y. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair. PLoS One 2013; 8:e63075. [PMID: 23690982 PMCID: PMC3653884 DOI: 10.1371/journal.pone.0063075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/27/2013] [Indexed: 12/20/2022] Open
Abstract
The morphogen Sonic hedgehog (Shh) holds great promise for repair or regeneration of tissues suffering ischemic injury, however clinical translation is limited by its short half-life in the body. Here, we describe a coacervate delivery system which incorporates Shh, protects it from degradation, and sustains its release for at least 3 weeks. Shh released from the coacervate stimulates cardiac fibroblasts to upregulate the expression of multiple trophic factors including VEGF, SDF-1α, IGF-1, and Shh itself, for at least 48 hours. Shh coacervate also demonstrates cytoprotective effects for cardiomyocytes in a hydrogen peroxide-induced oxidative stress environment. In each of these studies the bioactivity of the Shh coacervate is enhanced compared to free Shh. These results warrant further investigation of the in vivo efficacy of Shh coacervate for cardiac repair.
Collapse
Affiliation(s)
- Noah Ray Johnson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Sulfatase 1 promotes the motor neuron-to-oligodendrocyte fate switch by activating Shh signaling in Olig2 progenitors of the embryonic ventral spinal cord. J Neurosci 2013; 32:18018-34. [PMID: 23238718 DOI: 10.1523/jneurosci.3553-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing ventral spinal cord, motor neurons (MNs) and oligodendrocyte precursor cells (OPCs) are sequentially generated from a common pool of neural progenitors included in the so-called pMN domain characterized by Olig2 expression. Here, we establish that the secreted Sulfatase 1 (Sulf1) is a major component of the mechanism that causes these progenitors to stop producing MNs and change their fate to generate OPCs. We show that specification of OPCs is severely affected in sulf1-deficient mouse embryos. This defect does not rely on abnormal patterning of the spinal cord or failure in maintenance of pMN progenitors at the onset of OPC specification. Instead, the efficiency of OPC induction is reduced, only few Olig2 progenitors are recruited to generate OPCs, meanwhile they continue to produce MNs beyond the normal timing of the neuroglial switch. Using the chicken embryo, we show that Sulf1 activity is required precisely at the stage of the MN-to-OPC fate switch. Finally, we bring arguments supporting the view that Sulf1 controls the level of Sonic Hedgehog (Shh) signaling activity, behaving as an enhancer rather than an obligatory component in the Shh pathway. Our study provides additional insights into the temporal control of Olig2 progenitor cell fate change by the identification of Sulf1 as an extracellular timing signal in the ventral spinal cord.
Collapse
|