1
|
Duan LJ, Jiang Y, Fong GH. Endothelial HIF2α suppresses retinal angiogenesis in neonatal mice by upregulating NOTCH signaling. Development 2024; 151:dev202802. [PMID: 38770916 PMCID: PMC11190433 DOI: 10.1242/dev.202802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.
Collapse
Affiliation(s)
- Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Patil MJ, Kim SH, Bahia PK, Nair SS, Darcey TS, Fiallo J, Zhu XX, Frisina RD, Hadley SH, Taylor-Clark TE. A Novel Flp Reporter Mouse Shows That TRPA1 Expression Is Largely Limited to Sensory Neuron Subsets. eNeuro 2023; 10:ENEURO.0350-23.2023. [PMID: 37989590 PMCID: PMC10698635 DOI: 10.1523/eneuro.0350-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that is activated by electrophilic irritants, oxidative stress, cold temperature, and GPCR signaling. TRPA1 expression has been primarily identified in subsets of nociceptive sensory afferents and is considered a target for future analgesics. Nevertheless, TRPA1 has been implicated in other cell types including keratinocytes, epithelium, enterochromaffin cells, endothelium, astrocytes, and CNS neurons. Here, we developed a knock-in mouse that expresses the recombinase FlpO in TRPA1-expressing cells. We crossed the TRPA1Flp mouse with the R26ai65f mouse that expresses tdTomato in a Flp-sensitive manner. We found tdTomato expression correlated well with TRPA1 mRNA expression and sensitivity to TRPA1 agonists in subsets of TRPV1 (transient receptor potential vanilloid receptor type 1)-expressing neurons in the vagal ganglia and dorsal root ganglia (DRGs), although tdTomato expression efficiency was limited in DRG. We observed tdTomato-expressing afferent fibers centrally (in the medulla and spinal cord) and peripherally in the esophagus, gut, airways, bladder, and skin. Furthermore, chemogenetic activation of TRPA1-expressing nerves in the paw evoked flinching behavior. tdTomato expression was very limited in other cell types. We found tdTomato in subepithelial cells in the gut mucosa but not in enterochromaffin cells. tdTomato was also observed in supporting cells within the cochlea, but not in hair cells. Lastly, tdTomato was occasionally observed in neurons in the somatomotor cortex and the piriform area, but not in astrocytes or vascular endothelium. Thus, this novel mouse strain may be useful for mapping and manipulating TRPA1-expressing cells and deciphering the role of TRPA1 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Mayur J Patil
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Seol-Hee Kim
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Parmvir K Bahia
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Sanjay S Nair
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Teresa S Darcey
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Jailene Fiallo
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Xiao Xia Zhu
- Medical Engineering, College of Engineering, University of South Florida, Tampa, Florida 33620
| | - Robert D Frisina
- Medical Engineering, College of Engineering, University of South Florida, Tampa, Florida 33620
| | - Stephen H Hadley
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
3
|
Ivy CM, Guglielmo CG. Migratory songbirds exhibit seasonal modulation of the oxygen cascade. J Exp Biol 2023; 226:jeb245975. [PMID: 37534524 PMCID: PMC10482389 DOI: 10.1242/jeb.245975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Migratory flight requires birds to maintain intensive aerobic exercise for many hours or days. Maintaining O2 supply to flight muscles is therefore important during migration, especially since migratory songbirds have been documented flying at altitudes greater than 5000 m above sea level, where O2 is limited. Whether songbirds exhibit seasonal plasticity of the O2 cascade to maintain O2 uptake and transport during migratory flight is not well understood. We investigated changes in the hypoxic ventilatory response, haematology and pectoralis (flight) muscle phenotype of 6 songbird species from 3 families during migratory and non-migratory conditions. Songbirds were captured during southbound migration in southern Ontario, Canada. Half of the birds were assessed during migration, and the rest were transitioned onto a winter photoperiod to induce a non-migratory phenotype and measured. All species exhibited seasonal plasticity at various stages along the O2 cascade, but not all species exhibited the same responses. Songbirds tended to be more hypoxia tolerant during migration, withstanding 5 kPa O2 and breathed more effectively through slower, deeper breaths. Warblers had a stronger haemoglobin-O2 affinity during autumn migration (decrease of ∼4.7 Torr), while the opposite was observed in thrushes (increase of ∼2.6 Torr). In the flight muscle there was an ∼1.2-fold increase in the abundance of muscle fibres with smaller fibre transverse areas during autumn migration, but no changes in capillary:fibre ratio. These adjustments would enhance O2 uptake and transport to the flight muscle. Our findings demonstrate that in the O2 cascade there is no ideal migratory phenotype for all songbirds.
Collapse
Affiliation(s)
- Catherine M. Ivy
- Department of Biology, Advanced Facility for Avian Research, Western University, London, ON, Canada, N6A 3K7
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, Western University, London, ON, Canada, N6A 3K7
| |
Collapse
|
4
|
Nigro P, Vamvini M, Yang J, Caputo T, Ho LL, Carbone NP, Papadopoulos D, Conlin R, He J, Hirshman MF, White JD, Robidoux J, Hickner RC, Nielsen S, Pedersen BK, Kellis M, Middelbeek RJW, Goodyear LJ. Exercise training remodels inguinal white adipose tissue through adaptations in innervation, vascularization, and the extracellular matrix. Cell Rep 2023; 42:112392. [PMID: 37058410 PMCID: PMC10374102 DOI: 10.1016/j.celrep.2023.112392] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Inguinal white adipose tissue (iWAT) is essential for the beneficial effects of exercise training on metabolic health. The underlying mechanisms for these effects are not fully understood, and here, we test the hypothesis that exercise training results in a more favorable iWAT structural phenotype. Using biochemical, imaging, and multi-omics analyses, we find that 11 days of wheel running in male mice causes profound iWAT remodeling including decreased extracellular matrix (ECM) deposition and increased vascularization and innervation. We identify adipose stem cells as one of the main contributors to training-induced ECM remodeling, show that the PRDM16 transcriptional complex is necessary for iWAT remodeling and beiging, and discover neuronal growth regulator 1 (NEGR1) as a link between PRDM16 and neuritogenesis. Moreover, we find that training causes a shift from hypertrophic to insulin-sensitive adipocyte subpopulations. Exercise training leads to remarkable adaptations to iWAT structure and cell-type composition that can confer beneficial changes in tissue metabolism.
Collapse
Affiliation(s)
- Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiekun Yang
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Lun Ho
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas P Carbone
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Danae Papadopoulos
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Royce Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jie He
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joseph D White
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Robert C Hickner
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Manolis Kellis
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Holden JM, Al Hussein Al Awamlh S, Croteau LP, Boal AM, Rex TS, Risner ML, Calkins DJ, Wareham LK. Dysfunctional cGMP Signaling Leads to Age-Related Retinal Vascular Alterations and Astrocyte Remodeling in Mice. Int J Mol Sci 2022; 23:3066. [PMID: 35328488 PMCID: PMC8954518 DOI: 10.3390/ijms23063066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The nitric oxide-guanylyl cyclase-1-cyclic guanylate monophosphate (NO-GC-1-cGMP) pathway is integral to the control of vascular tone and morphology. Mice lacking the alpha catalytic domain of guanylate cyclase (GC1-/-) develop retinal ganglion cell (RGC) degeneration with age, with only modest fluctuations in intraocular pressure (IOP). Increasing the bioavailability of cGMP in GC1-/- mice prevents neurodegeneration independently of IOP, suggesting alternative mechanisms of retinal neurodegeneration. In continuation to these studies, we explored the hypothesis that dysfunctional cGMP signaling leads to changes in the neurovascular unit that may contribute to RGC degeneration. We assessed retinal vasculature and astrocyte morphology in young and aged GC1-/- and wild type mice. GC1-/- mice exhibit increased peripheral retinal vessel dilation and shorter retinal vessel branching with increasing age compared to Wt mice. Astrocyte cell morphology is aberrant, and glial fibrillary acidic protein (GFAP) density is increased in young and aged GC1-/- mice, with areas of dense astrocyte matting around blood vessels. Our results suggest that proper cGMP signaling is essential to retinal vessel morphology with increasing age. Vascular changed are preceded by alterations in astrocyte morphology which may together contribute to retinal neurodegeneration and loss of visual acuity observed in GC1-/- mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lauren K. Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.M.H.); (S.A.H.A.A.); (L.-P.C.); (A.M.B.); (T.S.R.); (M.L.R.); (D.J.C.)
| |
Collapse
|
6
|
Millien G, Wang H, Zhang Z, Alkon DL, Hongpaisan J. PKCε Activation Restores Loss of PKCε, Manganese Superoxide Dismutase, Vascular Endothelial Growth Factor, and Microvessels in Aged and Alzheimer’s Disease Hippocampus. Front Aging Neurosci 2022; 14:836634. [PMID: 35299945 PMCID: PMC8922019 DOI: 10.3389/fnagi.2022.836634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial dysfunction and capillary loss are currently considered to be a primary phenotype of normal human aging and Alzheimer’s disease (AD). Activation of protein kinase C (PKCε) improves several molecular, cellular, physiological, and behavioral endpoints, yet it is not known whether a loss of PKCε activity occurs in the microvascular endothelium in aged and AD hippocampi, whether this loss contributes to microvascular change, or whether activation of PKCε protects against microvascular damage, an early change that induces age-associated memory defect and AD. We investigated the effect of the PKCε activation on microvascular loss in the hippocampus, important for memory storage. In cultured human brain microvascular endothelial cells, tert-butyl hydroperoxide induced oxidative stress and a decrease in manganese superoxide dismutase (MnSOD) mRNA and protein expression that were blocked by the antioxidant drugs. The PKCε activators bryostatin and DCPLA methyl ester increased PKCε, associated with an increase in MnSOD mRNA and its protein as well as vascular endothelial growth factor (VEGF), which was inhibited by the mRNA-stabilizing HuR inhibitors. In rats (>24 months old) and AD transgenic mice Tg2576 (5 months old), bryostatin or DCP-LA prevented a decrease in vascular PKCε, MnSOD, and VEGF and prevented microvascular loss and age-related memory impairment. An autopsy-confirmed AD hippocampus showed a decrease in PKCε and MnSOD mRNAs and their proteins and VEGF as well as in microvascular density compared to non-AD controls. In conclusion, the PKCε activation can rescue a decrease in PKCε, MnSOD, and VEGF via posttranscription regulation and alleviate oxidative stress, and in doing so, prevent microvascular loss during aging and AD.
Collapse
Affiliation(s)
- Guetchyn Millien
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Huaixing Wang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Zongxiu Zhang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan L. Alkon
- Neurotrope Bioscience, Inc., New York, NY, United States
| | - Jarin Hongpaisan
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Jarin Hongpaisan,
| |
Collapse
|
7
|
Quantitative Methods to Assess Adipose Vasculature. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:201-221. [PMID: 35099739 DOI: 10.1007/978-1-0716-2059-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adipose tissue depots are invested with an extensive capillary network that is closely associated with maintenance of adipose functions and enables healthy tissue expansion. The capillary network displays a high level of plasticity, demonstrating either growth (angiogenesis) or regression (rarefaction) under various physiological/pathological conditions, which has significant consequences for cardiometabolic health. Thus, the visualization and quantification of adipose vascular networks is an important aspect of studying factors that regulate adipose tissue health. This chapter provides an overview of several methods to quantify adipose vascularization. In-depth protocols are provided for the visualization of vascular structures by staining and imaging of whole-mount adipose tissues or paraffin-embedded adipose tissue sections, together with the quantitative analysis of vascularization from these images.
Collapse
|
8
|
Proangiogenic Effect of Affinin and an Ethanolic Extract from Heliopsis longipes Roots: Ex Vivo and In Vivo Evidence. Molecules 2021; 26:molecules26247670. [PMID: 34946751 PMCID: PMC8706137 DOI: 10.3390/molecules26247670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, underlies tissue development and repair. Some medicinal plant-derived compounds can modulate the angiogenic response. Heliopsis longipes, a Mexican medicinal plant, is widely used because of its effects on pain and inflammation. The main bioactive phytochemicals from H. longipes roots are alkamides, where affinin is the most abundant. Scientific studies show various medical effects of organic extracts of H. longipes roots and affinin that share some molecular pathways with the angiogenesis process, with the vasodilation mechanism of action being the most recent. This study investigates whether pure affinin and the ethanolic extract from Heliopsis longipes roots (HLEE) promote angiogenesis. Using the aortic ring rat assay (ex vivo method) and the direct in vivo angiogenesis assay, where angioreactors were implanted in CD1 female mice, showed that affinin and the HLEE increased vascular growth in a dose-dependent manner in both bioassays. This is the first study showing the proangiogenic effect of H. longipes. Further studies should focus on the mechanism of action and its possible therapeutic use in diseases characterized by insufficient angiogenesis.
Collapse
|
9
|
Mai-Morente SP, Irigoyen JP, Carriquiry VM, Marset VM, Di Doménico M, Isasi E, Abudara V. Pericyte Mapping in Cerebral Slices with the Far-red Fluorophore TO-PRO-3. Bio Protoc 2021; 11:e4222. [PMID: 34909443 DOI: 10.21769/bioprotoc.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/02/2022] Open
Abstract
This protocol describes a method for high-resolution confocal imaging of pericytes with the far-red fluorophore TO-PROTM-3 Iodide 642/661 in cerebral slices of murine. Identification of pericytes with TO-PRO-3 is a short time-consuming, high cost-effective and robust technique to label pericytes with no need for immunostaining or generation of reporter mice. Since the TO-PRO-3 stain resists immunofluorescence, and lacks spectral overlap, the probe is well suited for multiple labelling. Our procedures also combine TO-PRO-3-staining of pericytes with fluorescent markers for astrocytes and vessels in brain slices. These approaches should enable the assessment of pericyte biology in gliovascular unit.
Collapse
Affiliation(s)
- Sandra P Mai-Morente
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Juan P Irigoyen
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Victoria M Carriquiry
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Virginia M Marset
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Mariana Di Doménico
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Eugenia Isasi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| |
Collapse
|
10
|
Zhu J, Liu X, Deng Y, Li D, Yu T, Zhu D. Tissue optical clearing for 3D visualization of vascular networks: A review. Vascul Pharmacol 2021; 141:106905. [PMID: 34506969 DOI: 10.1016/j.vph.2021.106905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Reconstruction of the vasculature of intact tissues/organs down to the capillary level is essential for understanding the development and remodeling of vascular networks under physiological and pathological conditions. Optical imaging techniques can provide sufficient resolution to distinguish small vessels with several microns, but the imaging depth is somewhat limited due to the high light scattering of opaque tissue. Recently, various tissue optical clearing methods have been developed to overcome light attenuation and improve the imaging depth both for ex-vivo and in-vivo visualizations. Tissue clearing combined with vessel labeling techniques and advanced optical tomography enables successful mapping of the vasculature of different tissues/organs, as well as dynamically monitoring vessel function under normal and pathological conditions. Here, we briefly introduce the commonly-used labeling strategies for entire vascular networks, the current tissue optical clearing techniques available for various tissues, as well as the advanced optical imaging techniques for fast, high-resolution structural and functional imaging for blood vessels. We also discuss the applications of these techniques in the 3D visualization of vascular networks in normal tissues, and the vascular remodeling in several typical pathological models in clinical research. This review is expected to provide valuable insights for researchers to study the potential mechanisms of various vessel-associated diseases using tissue optical clearing pipeline.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Abcouwer SF, Shanmugam S, Muthusamy A, Lin CM, Kong D, Hager H, Liu X, Antonetti DA. Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury. J Neuroinflammation 2021; 18:186. [PMID: 34446062 PMCID: PMC8394696 DOI: 10.1186/s12974-021-02237-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Several retinal pathologies exhibit both inflammation and breakdown of the inner blood-retinal barrier (iBRB) resulting in vascular permeability, suggesting that treatments that trigger resolution of inflammation may also promote iBRB restoration. Methods Using the mouse retinal ischemia-reperfusion (IR) injury model, we followed the time course of neurodegeneration, inflammation, and iBRB disruption and repair to examine the relationship between resolution of inflammation and iBRB restoration and to determine if minocycline, a tetracycline derivative shown to reverse microglial activation, can hasten these processes. Results A 90-min ischemic insult followed by reperfusion in the retina induced cell apoptosis and inner retina thinning that progressed for approximately 2 weeks. IR increased vascular permeability within hours, which resolved between 3 and 4 weeks after injury. Increased vascular permeability coincided with alteration and loss of endothelial cell tight junction (TJ) protein content and disorganization of TJ protein complexes. Shunting of blood flow away from leaky vessels and dropout of leaky capillaries were eliminated as possible mechanisms for restoring the iBRB. Repletion of TJ protein contents occurred within 2 days after injury, long before restoration of the iBRB. In contrast, the eventual re-organization of TJ complexes at the cell border coincided with restoration of the barrier. A robust inflammatory response was evident a 1 day after IR and progressed to resolution over the 4-week time course. The inflammatory response included a rapid and transient infiltration of granulocytes and Ly6C+ classical inflammatory monocytes, a slow accumulation of Ly6Cneg monocyte/macrophages, and activation, proliferation, and mobilization of resident microglia. Extravasation of the majority of CD45+ leukocytes occurred from the superficial plexus. The presence of monocyte/macrophages and increased numbers of microglia were sustained until the iBRB was eventually restored. Intervention with minocycline to reverse microglial activation at 1 week after injury promoted early restoration of the iBRB coinciding with decreased expression of mRNAs for the microglial M1 markers TNF-α, IL-1β, and Ptgs2 (Cox-2) and increased expression of secreted serine protease inhibitor Serpina3n mRNA. Conclusions These results suggest that iBRB restoration occurs as TJ complexes are reorganized and that resolution of inflammation and restoration of the iBRB following retinal IR injury are functionally linked. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02237-5.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | | | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.,Department of Molecular and Integrative Physiology, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
CD112 Regulates Angiogenesis and T Cell Entry into the Spleen. Cells 2021; 10:cells10010169. [PMID: 33467729 PMCID: PMC7830896 DOI: 10.3390/cells10010169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Junctional adhesion proteins play important roles in controlling angiogenesis, vascular permeability and leukocyte trafficking. CD112 (nectin-2) belongs to the immunoglobulin superfamily and was shown to engage in homophilic and heterophilic interactions with a variety of binding partners expressed on endothelial cells and on leukocytes. Recent in vitro studies suggested that CD112 regulates human endothelial cell migration and proliferation as well as transendothelial migration of leukocytes. However, so far, the role of CD112 in endothelial cell biology and in leukocyte trafficking has not been elucidated in vivo. We found CD112 to be expressed by lymphatic and blood endothelial cells in different murine tissues. In CD112-deficient mice, the blood vessel coverage in the retina and spleen was significantly enhanced. In functional in vitro studies, a blockade of CD112 modulated endothelial cell migration and significantly enhanced endothelial tube formation. An antibody-based blockade of CD112 also significantly reduced T cell transmigration across endothelial monolayers in vitro. Moreover, T cell homing to the spleen was significantly reduced in CD112-deficient mice. Overall, our results identify CD112 as a regulator of angiogenic processes in vivo and demonstrate a novel role for CD112 in T cell entry into the spleen.
Collapse
|
13
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Oliveira MV, Lossio CF, Silva MTL, Bari AU, Lima LD, Souza-Filho CHD, Nascimento KS. Comprehensive review on Caelsalpinioideae lectins: From purification to biological activities. Int J Biol Macromol 2020; 162:333-348. [DOI: 10.1016/j.ijbiomac.2020.06.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
14
|
Mai-Morente SP, Marset VM, Blanco F, Isasi EE, Abudara V. A nuclear fluorescent dye identifies pericytes at the neurovascular unit. J Neurochem 2020; 157:1377-1391. [PMID: 32974913 DOI: 10.1111/jnc.15193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
Perivascular pericytes are key regulators of the blood-brain barrier, vascular development, and cerebral blood flow. Deciphering pericyte roles in health and disease requires cellular tracking; yet, pericyte identification remains challenging. A previous study reported that the far-red fluorophore TO-PRO-3 (642/661), usually employed as a nuclear dye in fixed tissue, was selectively captured by live pericytes from the subventricular zone. Herein, we validated TO-PRO-3 as a specific pericyte tracer in the nervous system (NS). Living pericytes from ex vivo murine hippocampus, cortex, spinal cord, and retina robustly incorporated TO-PRO-3. Classical pericyte immunomarkers such as chondroitin sulphate proteoglycan neuron-glial antigen 2 (NG2) and platelet-derived growth factor receptor beta antigen (PDGFrβ) and the new pericyte dye NeuroTrace 500/525 confirmed cellular specificity of dye uptake. The TO-PRO-3 signal enabled quantification of pericytes density and morphometry; likewise, TO-PRO-3 labeling allowed visualization of pericytes associated with other components of the neurovascular unit. A subset of TO-PRO-3 stained cells expressed the contractile protein α-SMA, indicative of their ability to control the capillary diameter. Uptake of TO-PRO-3 was independent of connexin/pannexin channels but was highly sensitive to temperature and showed saturation, suggesting that a yet unidentified protein-mediated active transport sustained dye incorporation. We conclude that TO-PRO-3 labeling provides a reliable and simple tool for the bioimaging of pericytes in the murine NS microvasculature.
Collapse
Affiliation(s)
- Sandra P Mai-Morente
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Virginia M Marset
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Fabiana Blanco
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Eugenia E Isasi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Histone H2A and Bovine Neutrophil Extracellular Traps Induce Damage of Besnoitia besnoiti-Infected Host Endothelial Cells but Fail to Affect Total Parasite Proliferation. BIOLOGY 2019; 8:biology8040078. [PMID: 31614617 PMCID: PMC6956067 DOI: 10.3390/biology8040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Besnoitia besnoiti tachyzoites infect and develop in bovine endothelial cells in vivo and trigger the release of neutrophil extracellular traps (NETs) from bovine polymorphonuclear neutrophils (PMN). The purpose of this study was to analyze if pure B. besnoiti tachyzoite-triggered NETs would damage endothelial host cells and subsequently influence intracellular development and proliferation of B. besnoiti tachyzoites in primary bovine endothelial cells. For comparison purposes, isolated A23187-induced NETs were also used. Thus, we here evaluated endothelial host cell damage triggered by histone 2A (H2A) and B. besnoiti tachyzoite-induced NET preparations and furthermore estimated the effects of PMN floating over B. besnoiti-infected endothelium under physiological flow conditions on endothelial host cell viability. Overall, all treatments (H2A, B. besnoiti-triggered NETs and floating PMN) induced endothelial cell death of B. besnoiti-infected host cells. However, though host cell damage led to significantly altered intracellular parasite development with respect to parasitophorous vacuole diameter and numbers, the total proliferation of the parasite over time was not significantly affected by these treatments thereby denying any direct effect of NETs on intracellular B. besnoiti replication.
Collapse
|
16
|
3D analysis of capillary network in skeletal muscle of obese insulin-resistant mice. Histochem Cell Biol 2019; 152:323-331. [PMID: 31473807 DOI: 10.1007/s00418-019-01810-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2019] [Indexed: 12/29/2022]
Abstract
In obesity, the skeletal muscle capillary network regresses and the insulin-mediated capillary recruitment is impaired. However, it has been shown that in the early stage of advanced obesity, an increased functional vascular response can partially compensate for other mechanisms of insulin resistance. The present study aimed to investigate the changes in the capillary network around individual muscle fibres during the early stage of obesity and insulin resistance in mice using 3D analysis. Capillaries and muscle fibres of the gluteus maximus muscles of seven high-fat-diet-induced obese and insulin-resistant mice and seven age-matched lean healthy mice were immunofluorescently labelled in thick transverse muscle sections. Stacks of images were acquired using confocal microscope. Capillary network characteristics were estimated by methods of quantitative image analysis. Muscle fibre typing was performed by histochemical analysis of myosin heavy chain isoforms on thin serial sections of skeletal muscle. Capillary length per muscle fibre length and capillary length per muscle fibre surface were increased by 27% and 23%, respectively, around small muscle fibres in obese mice, while there were no significant comparative differences around large fibres of obese and lean mice. Furthermore, the capillarization was larger around small compared to large fibres and there was a shift toward fast type myosin heavy chain isoforms, with no significant changes in muscle fibre diameters, tortuosity and anisotropy in obese mice. Overall, the results show that obese insulin-resistant mice have selective increase in capillarization around small predominantly intermediate muscle fibres, which is most likely related to the impaired glucose metabolism characteristic of type 2 diabetes.
Collapse
|
17
|
Benitez SG, Seltzer AM, Messina DN, Foscolo MR, Patterson SI, Acosta CG. Cutaneous inflammation differentially regulates the expression and function of Angiotensin-II types 1 and 2 receptors in rat primary sensory neurons. J Neurochem 2019; 152:675-696. [PMID: 31386177 DOI: 10.1111/jnc.14848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic and inflammatory pain results from cellular and molecular changes in dorsal root ganglion (DRG) neurons. The type-2 receptor for Angiotensin-II (AT2R) has been involved in this type of pain. However, the underlying mechanisms are poorly understood, including the role of the type-1 receptor for Angiotensin-II (AT1R). Here, we used a combination of immunohistochemistry and immunocytochemistry, RT-PCR and in vitro and in vivo pharmacological manipulation to examine how cutaneous inflammation affected the expression of AT1R and AT2R in subpopulations of rat DRG neurons and studied their impact on inflammation-induced neuritogenesis. We demonstrated that AT2R-neurons express C- or A-neuron markers, primarily IB4, trkA, and substance-P. AT1R expression was highest in small neurons and co-localized significantly with AT2R. In vitro, an inflammatory soup caused significant elevation of AT2R mRNA, whereas AT1R mRNA levels remained unchanged. In vivo, we found a unique pattern of change in the expression of AT1R and AT2R after cutaneous inflammation. AT2R increased in small neurons at 1 day and in medium size neurons at 4 days. Interestingly, cutaneous inflammation increased AT1R levels only in large neurons at 4 days. We found that in vitro and in vivo AT1R and AT2R acted co-operatively to regulate DRG neurite outgrowth. In vivo, AT2R inhibition impacted more on non-peptidergic C-neurons neuritogenesis, whereas AT1R blockade affected primarily peptidergic nerve terminals. Thus, cutaneous-induced inflammation regulated AT1R and AT2R expression and function in different DRG neuronal subpopulations at different times. These findings must be considered when targeting AT1R and AT2R to treat chronic inflammatory pain. Cover Image for this issue: doi: 10.1111/jnc.14737.
Collapse
Affiliation(s)
- Sergio G Benitez
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alicia M Seltzer
- Laboratorio de Neurobiología, Instituto de Embriología e Histología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego N Messina
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mabel R Foscolo
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sean I Patterson
- Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Histología y Embriología - CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratorio de Neurobiología del Dolor, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
18
|
Boriushkin E, Fancher IS, Levitan I. Shear-Stress Sensitive Inwardly-Rectifying K + Channels Regulate Developmental Retinal Angiogenesis by Vessel Regression. Cell Physiol Biochem 2019; 52:1569-1583. [PMID: 31145841 PMCID: PMC7063968 DOI: 10.33594/000000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Shear stress plays major roles in developmental angiogenesis, particularly in blood vessel remodeling and maturation but little is known about the shear stress sensors involved in this process. Our recent study identified endothelial Kir2.1 channels as major contributors to flow-induced vasodilation, a hallmark of the endothelial flow response. The goal of this study is to establish the role of Kir2.1 in the regulation of retinal angiogenesis. METHODS The retina of newly born Kir2.1+/- mice were used to investigate the sprouting angiogenesis and remodeling of newly formed branched vessels. The structure, blood density and mural cell coverage have been evaluated by immunohistochemistry of the whole-mount retina. Endothelial cell alignment was assessed using CD31 staining. The experiments with flow-induced vasodilation were used to study the cerebrovascular response to flow. RESULTS Using Kir2.1-deficient mice, we show that the retinas of Kir2.1+/- mice have higher vessel density, increased lengths and increased number of the branching points, as compared to WT littermates. In contrast, the coverage by αSMA is decreased in Kir2.1+/- mice while pericyte coverage does not change. Furthermore, to determine whether deficiency of Kir2.1 affects vessel pruning, we discriminated between intact and degraded vessels or "empty matrix sleeves" and found a significant reduction in the number of empty sleeves on the peripheral part of the retina or "angiogenic front" in Kir2.1+/- mice. We also show that Kir2.1 deficiency results in decreased endothelial alignment in retinal endothelium and impaired flow-induced vasodilation of cerebral arteries, verifying the involvement of Kir2.1 in shear-stress sensing in retina and cerebral circulation. CONCLUSION This study shows that shear-stress sensitive Kir2.1 channels play an important role in pruning of excess vessels and vascular remodeling during retinal angiogenesis. We propose that Kir2.1 mediates the effect of shear stress on vessel maturation.
Collapse
Affiliation(s)
| | - Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Merz SF, Korste S, Bornemann L, Michel L, Stock P, Squire A, Soun C, Engel DR, Detzer J, Lörchner H, Hermann DM, Kamler M, Klode J, Hendgen-Cotta UB, Rassaf T, Gunzer M, Totzeck M. Contemporaneous 3D characterization of acute and chronic myocardial I/R injury and response. Nat Commun 2019; 10:2312. [PMID: 31127113 PMCID: PMC6534576 DOI: 10.1038/s41467-019-10338-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Cardioprotection by salvage of the infarct-affected myocardium is an unmet yet highly desired therapeutic goal. To develop new dedicated therapies, experimental myocardial ischemia/reperfusion (I/R) injury would require methods to simultaneously characterize extent and localization of the damage and the ensuing inflammatory responses in whole hearts over time. Here we present a three-dimensional (3D), simultaneous quantitative investigation of key I/R injury-components by combining bleaching-augmented solvent-based non-toxic clearing (BALANCE) using ethyl cinnamate (ECi) with light sheet fluorescence microscopy. This allows structural analyses of fluorescence-labeled I/R hearts with exceptional detail. We discover and 3D-quantify distinguishable acute and late vascular I/R damage zones. These contain highly localized and spatially structured neutrophil infiltrates that are modulated upon cardiac healing. Our model demonstrates that these characteristic I/R injury patterns can detect the extent of damage even days after the ischemic index event hence allowing the investigation of long-term recovery and remodeling processes.
Collapse
Affiliation(s)
- Simon F Merz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147, Essen, Germany
| | - Sebastian Korste
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Pia Stock
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Camille Soun
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Julia Detzer
- Dept. of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Holger Lörchner
- Dept. of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, 45147, Essen, Germany
| | - Joachim Klode
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
20
|
Chung J, Franklin JF, Lee HJ. Central expression of synaptophysin and synaptoporin in nociceptive afferent subtypes in the dorsal horn. Sci Rep 2019; 9:4273. [PMID: 30862809 PMCID: PMC6414693 DOI: 10.1038/s41598-019-40967-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Central sprouting of nociceptive afferents in response to neural injury enhances excitability of nociceptive pathways in the central nervous system, often causing pain. A reliable quantification of central projections of afferent subtypes and their synaptic terminations is essential for understanding neural plasticity in any pathological condition. We previously characterized central projections of cutaneous nociceptive A and C fibers, selectively labeled with cholera toxin subunit B (CTB) and Isolectin B4 (IB4) respectively, and found that they expressed a general synaptic molecule, synaptophysin, largely depending on afferent subtypes (A vs. C fibers) across thoracic dorsal horns. The current studies extended the central termination profiles of nociceptive afferents with synaptoporin, an isoform of synaptophysin, known to be preferentially expressed in C fibers in lumbar dorsal root ganglions. Our findings demonstrated that synaptophysin was predominantly expressed in both peptidergic and IB4-binding C fiber populations in superficial laminae of the thoracic dorsal horn. Cutaneous IB4-labeled C fibers showed comparable expression levels of both isoforms, while cutaneous CTB-labeled A fibers exclusively expressed synaptophysin. These data suggest that central expression of synaptophysin consistently represents synaptic terminations of projecting afferents, at least in part, including nociceptive A-delta and C fibers in the dorsal horn.
Collapse
Affiliation(s)
- Jumi Chung
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, 39216, USA
| | - John F Franklin
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Hyun Joon Lee
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA. .,Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
21
|
Mazio C, Casale C, Imparato G, Urciuolo F, Attanasio C, De Gregorio M, Rescigno F, Netti PA. Pre-vascularized dermis model for fast and functional anastomosis with host vasculature. Biomaterials 2019; 192:159-170. [DOI: 10.1016/j.biomaterials.2018.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
|
22
|
Del Valle Guaytima E, Brandán YR, Favale NO, Sterin-Speziale NB, Márquez MG. Novel cellular mechanism that mediates the collecting duct formation during postnatal renal development. J Cell Physiol 2019; 234:13387-13402. [PMID: 30624780 DOI: 10.1002/jcp.28016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/30/2018] [Indexed: 11/11/2022]
Abstract
We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.
Collapse
Affiliation(s)
- Edith Del Valle Guaytima
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Yamila Romina Brandán
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Nicolás Octavio Favale
- Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Márquez
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| |
Collapse
|
23
|
Amyloid Beta Peptide Is Released during Thrombosis in the Skin. Int J Mol Sci 2018; 19:ijms19061705. [PMID: 29890636 PMCID: PMC6032379 DOI: 10.3390/ijms19061705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
While it is known that amyloid beta (Aβ) deposits are found in different tissues of both Alzheimer’s disease (AD) patients and healthy individuals, there remain questions about the physiological role of these deposits, the origin of the Aβ peptide, and the mechanisms of its localization to the tissues. Using immunostaining with specific antibodies, as well as enzyme-linked immunosorbent assay, this study demonstrated Aβ40 peptide accumulation in the skin during local experimental photothrombosis in mice. Specifically, Aβ peptide accumulation was concentrated near the dermal blood vessels in thrombotic skin. It was also studied whether the released peptide affects microorganisms. Application of Aβ40 (4 µM) to the external membrane of yeast cells significantly increased membrane conductance with no visible effect on mouse host cells. The results suggest that Aβ release in the skin is related to skin injury and thrombosis, and occurs along with clotting whenever skin is damaged. These results support the proposition that Aβ release during thrombosis serves as part of a natural defense against infection.
Collapse
|
24
|
Proniewski B, Czarny J, Khomich TI, Kus K, Zakrzewska A, Chlopicki S. Immuno-Spin Trapping-Based Detection of Oxidative Modifications in Cardiomyocytes and Coronary Endothelium in the Progression of Heart Failure in Tgαq*44 Mice. Front Immunol 2018; 9:938. [PMID: 29867936 PMCID: PMC5949515 DOI: 10.3389/fimmu.2018.00938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest both beneficial and detrimental role of increased reactive oxygen species and oxidative stress in heart failure (HF). However, it is not clear at which stage oxidative stress and oxidative modifications occur in the endothelium in relation to cardiomyocytes in non-ischemic HF. Furthermore, most methods used to date to study oxidative stress are either non-specific or require tissue homogenization. In this study, we used immuno-spin trapping (IST) technique with fluorescent microscopy-based detection of DMPO nitrone adducts to localize and quantify oxidative modifications of the hearts from Tgαq*44 mice; a murine model of HF driven by cardiomyocyte-specific overexpression of Gαq* protein. Tgαq*44 mice and age-matched FVB controls at early, transition, and late stages of HF progression were injected with DMPO in vivo and analyzed ex vivo for DMPO nitrone adducts signals. Progressive oxidative modifications in cardiomyocytes, as evidenced by the elevation of DMPO nitrone adducts, were detected in hearts from 10- to 16-month-old, but not in 8-month-old Tgαq*44 mice, as compared with age-matched FVB mice. The DMPO nitrone adducts were detected in left and right ventricle, septum, and papillary muscle. Surprisingly, significant elevation of DMPO nitrone adducts was also present in the coronary endothelium both in large arteries and in microcirculation simultaneously, as in cardiomyocytes, starting from 10-month-old Tgαq*44 mice. On the other hand, superoxide production in heart homogenates was elevated already in 6-month-old Tgαq*44 mice and progressively increased to high levels in 14-month-old Tgαq*44 mice, while the enzymatic activity of catalase, glutathione reductase, and glutathione peroxidase was all elevated as early as in 4-month-old Tgαq*44 mice and stayed at a similar level in 14-month-old Tgαq*44. In summary, this study demonstrates that IST represents a unique method that allows to quantify oxidative modifications in cardiomyocytes and coronary endothelium in the heart. In Tgαq*44 mice with slowly developing HF, driven by cardiomyocyte-specific overexpression of Gαq* protein, an increase in superoxide production, despite compensatory activation of antioxidative mechanisms, results in the development of oxidative modifications not only in cardiomyocytes but also in coronary endothelium, at the transition phase of HF, before the end-stage disease.
Collapse
Affiliation(s)
- Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Czarny
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tamara I Khomich
- Institute of Pharmacology and Biochemistry, NAS of Belarus, Grodno, Belarus
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
25
|
Zhou H, Yang YH, Basile JR. Characterization of the Effects of Semaphorin 4D Signaling on Angiogenesis. Methods Mol Biol 2018; 1493:429-441. [PMID: 27787869 DOI: 10.1007/978-1-4939-6448-2_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The semaphorins and plexins comprise a family of cysteine-rich cell surface and secreted proteins originally shown to control nerve growth and the immune response, but that have recently been implicated in a wide variety of developmental and pathological processes that are influenced by cell adhesion and migration. Along those lines, our group and others have found that Semaphorin 4D (SEMA4D) plays an important role in angiogenesis by promoting chemotaxis of endothelial cells, which express its receptor, Plexin-B1. Indeed, some neoplasms produce SEMA4D along with other pro-angiogenic proteins for the purpose of enhancing blood vessel growth into a developing neoplasm. Here we describe the application of in vitro migration and tubulogenesis assays and the directed in vivo angiogenesis assay (DIVAA) in the measurement of the angiogenic potential of cell-derived and soluble SEMA4D.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD, 21201, USA
| | - Ying-Hua Yang
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD, 21201, USA
| | - John R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore Street, 7-North, Baltimore, MD, 21201, USA. .,The Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
Eržen I, Janáček J, Kreft M, Kubínová L, Cvetko E. Capillary Network Morphometry of Pig Soleus Muscle Significantly Changes in 24 Hours After Death. J Histochem Cytochem 2018; 66:23-31. [PMID: 29095670 PMCID: PMC5761944 DOI: 10.1369/0022155417737061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/20/2017] [Indexed: 11/22/2022] Open
Abstract
Capillary network characteristics are invaluable for diagnostics of muscle diseases. Biopsy material is limited in size and mostly not accessible for intensive research. Therefore, especially in human tissue, studies are performed on autopsy material. To approach the problem whether it is reliable to deduce hypotheses from autopsy material to explain physiological and pathological processes, we studied capillarity in pig soleus muscle 1 and 24 hr after death. Capillaries and muscle fibers were immunofluorescently marked, and images were acquired with a confocal microscope. Characteristics of the capillary network were estimated by image analysis methods using several plugins of the Ellipse program. Twenty-four hours after death, the measured characteristics of the capillary network differ by up to 50% when compared with samples excised 1 hr after death. Muscle fiber diameter, the measured capillary length, and tortuosity were reduced, and capillary network became more anisotropic. The main postmortem change that affects capillaries is evidently geometric deformation of muscle tissue. In conclusion, when comparing results from biopsy samples with those from autopsy samples, the effect of postmortem changes on the measured parameters must be carefully considered.
Collapse
Affiliation(s)
- Ida Eržen
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marko Kreft
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Lucie Kubínová
- Department of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Nikel KE, Shanishchara NK, Ivy CM, Dawson NJ, Scott GR. Effects of hypoxia at different life stages on locomotory muscle phenotype in deer mice native to high altitudes. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:98-104. [PMID: 29175484 DOI: 10.1016/j.cbpb.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Animals native to high altitude must overcome the constraining effects of hypoxia on tissue O2 supply to support routine metabolism, thermoregulation in the cold, and exercise. Deer mice (Peromyscus maniculatus) native to high altitude have evolved an enhanced aerobic capacity in hypoxia, along with increased capillarity and oxidative capacity of locomotory muscle. Here, we examined whether exposure to chronic hypoxia during development or adulthood affects muscle phenotype. Deer mice from a highland population were bred in captivity at sea level, and exposed to normoxia or one of four treatments of hypobaric hypoxia (12kPa O2, simulating hypoxia at ~4300m): adult hypoxia (6-8weeks), post-natal hypoxia (birth to adulthood), pre-natal hypoxia (before conception to adulthood), and parental hypoxia (in which mice were conceived and raised in normoxia, but their parents were previously exposed to hypoxia). Litter size was similar across treatments, and pups survived the hypoxia exposures and grew to similar body masses at ~6-8months of age. Hypoxia had no effect on the masses of gastrocnemius and soleus muscles. There was a strong concordance between two distinct histological methods for staining capillaries in the gastrocnemius - alkaline phosphatase activity and binding of Griffonia simplicifolia lectin I - each of which showed that capillarity and muscle fibre size were largely unaffected by hypoxia. Maximal activities of several metabolic enzymes (cytochrome c oxidase, citrate synthase, isocitrate dehydrogenase, and lactate dehydrogenase) in the gastrocnemius were also largely unaffected by hypoxia. Therefore, the evolved muscle phenotype of high-altitude deer mice is relatively insensitive to hypoxia across life stages.
Collapse
Affiliation(s)
- Kirsten E Nikel
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Neal J Dawson
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
28
|
Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A 2017; 114:E6381-E6389. [PMID: 28716943 DOI: 10.1073/pnas.1701806114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In experimental autoimmune encephalitis (EAE), autoimmune T cells are activated in the periphery before they home to the CNS. On their way, the T cells pass through a series of different cellular milieus where they receive signals that instruct them to invade their target tissues. These signals involve interaction with the surrounding stroma cells, in the presence or absence of autoantigens. To portray the serial signaling events, we studied a T-cell-mediated model of EAE combining in vivo two-photon microscopy with two different activation reporters, the FRET-based calcium biosensor Twitch1 and fluorescent NFAT. In vitro activated T cells first settle in secondary (2°) lymphatic tissues (e.g., the spleen) where, in the absence of autoantigen, they establish transient contacts with stroma cells as indicated by sporadic short-lived calcium spikes. The T cells then exit the spleen for the CNS where they first roll and crawl along the luminal surface of leptomeningeal vessels without showing calcium activity. Having crossed the blood-brain barrier, the T cells scan the leptomeningeal space for autoantigen-presenting cells (APCs). Sustained contacts result in long-lasting calcium activity and NFAT translocation, a measure of full T-cell activation. This process is sensitive to anti-MHC class II antibodies. Importantly, the capacity to activate T cells is not a general property of all leptomeningeal phagocytes, but varies between individual APCs. Our results identify distinct checkpoints of T-cell activation, controlling the capacity of myelin-specific T cells to invade and attack the CNS. These processes may be valuable therapeutic targets.
Collapse
|
29
|
Syed AM, Sindhwani S, Wilhelm S, Kingston BR, Lee DSW, Gommerman JL, Chan WCW. Three-Dimensional Imaging of Transparent Tissues via Metal Nanoparticle Labeling. J Am Chem Soc 2017. [PMID: 28641018 DOI: 10.1021/jacs.7b04022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical probes are key components of the bioimaging toolbox, as they label biomolecules in cells and tissues. The new challenge in bioimaging is to design chemical probes for three-dimensional (3D) tissue imaging. In this work, we discovered that light scattering of metal nanoparticles can provide 3D imaging contrast in intact and transparent tissues. The nanoparticles can act as a template for the chemical growth of a metal layer to further enhance the scattering signal. The use of chemically grown nanoparticles in whole tissues can amplify the scattering to produce a 1.4 million-fold greater photon yield than obtained using common fluorophores. These probes are non-photobleaching and can be used alongside fluorophores without interference. We demonstrated three distinct biomedical applications: (a) molecular imaging of blood vessels, (b) tracking of nanodrug carriers in tumors, and (c) mapping of lesions and immune cells in a multiple sclerosis mouse model. Our strategy establishes a distinct yet complementary set of imaging probes for understanding disease mechanisms in three dimensions.
Collapse
Affiliation(s)
- Abdullah Muhammad Syed
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Shrey Sindhwani
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Stefan Wilhelm
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin R Kingston
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Dennis S W Lee
- Department of Immunology, University of Toronto , Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Jennifer L Gommerman
- Department of Immunology, University of Toronto , Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Room 230, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Department of Chemical Engineering, University of Toronto , 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Department of Material Science and Engineering, University of Toronto , Room 450, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
30
|
Shah RS, Soetikno BT, Yi J, Liu W, Skondra D, Zhang HF, Fawzi AA. Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice. Invest Ophthalmol Vis Sci 2017; 57:OCT86-95. [PMID: 27409510 PMCID: PMC4968775 DOI: 10.1167/iovs.15-18891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study sought to determine the earliest time-point at which evidence of choroidal neovascularization (CNV) could be detected with visible-light optical coherence tomography angiography (vis-OCTA) in a mouse model of laser-induced CNV. Methods Visible light-OCTA was used to study laser-induced CNV at different time-points after laser injury to monitor CNV development and measure CNV lesion size. Measurements obtained from vis-OCTA angiograms were compared with histopathologic measurements from isolectin-stained choroidal flatmounts. Results Choroidal neovascularization area measurements between the vis-OCTA system and isolectin-stained choroidal flatmounts were significantly different in area for days 2 to 4 postlaser injury, and were not significantly different in area for days 5, 7, and 14. Choroidal neovascularization area measurements taken from the stained flatmounts were larger than their vis-OCTA counterparts for all time-points. Both modalities showed a similar trend of CNV size increasing from the day of laser injury until a peak of day 7 postlaser injury and subsequently decreasing by day 14. Conclusions The earliest vis-OCTA can detect the presence of aberrant vessels in a mouse laser-induced CNV model is 5 days after laser injury. Visible light-OCTA was able to visualize the maximum of the CNV network 7 days postlaser injury, in accordance with choroidal flatmount immunostaining. Visible light-OCTA is a reliable tool in both detecting the presence of CNV development, as well as accurately determining the size of the lesion in a mouse laser-induced CNV model.
Collapse
Affiliation(s)
- Ronil S Shah
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Brian T Soetikno
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States 2Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States 3Med
| | - Ji Yi
- Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Wenzhong Liu
- Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Hao F Zhang
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States 2Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Amani A Fawzi
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
31
|
Lajko M, Cardona HJ, Taylor JM, Shah RS, Farrow KN, Fawzi AA. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS One 2016; 11:e0166886. [PMID: 27861592 PMCID: PMC5115836 DOI: 10.1371/journal.pone.0166886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/05/2016] [Indexed: 11/26/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a major cause of neonatal morbidity in premature infants, occurring as a result of arrested lung development combined with multiple postnatal insults. Infants with BPD exposed to supplemental oxygen are at risk of retinopathy of prematurity as well. Thus, we studied the effects of hyperoxia on the retinal vasculature in a murine model of BPD. The retinal phenotype of this model, which we termed hyperoxia-induced proliferative retinopathy (HIPR), shows severe disruption of retinal vasculature and loss of vascular patterning, disorganized intra-retinal angiogenesis, inflammation and retinal detachment. Neonatal mice were subjected to 75% oxygen exposure from postnatal day (P)0 to P14 to model BPD, then allowed to recover in room air for 1 (P15), 7 (P21), or 14 days (P28). We quantified retinal thickness, protein levels of HIF-1α, NOX2, and VEGF, and examined the cellular locations of these proteins by immunohistochemistry. We examined the retinal blood vessel integrity and inflammatory markers, including macrophages (F4/80) and lymphocytes (CD45R). Compared to controls, normal retinal vascular development was severely disrupted and replaced by a disorganized sheet of intra-retinal angiogenesis in the HIPR mice. At all time-points, HIPR showed persistent hyaloidal vasculature and a significantly thinner central retina compared to controls. HIF-1α protein levels were increased at P15, while VEGF levels continued to increase until P21. Intra-retinal fibrinogen was observed at P21 followed by sub-retinal deposition in at P28. Inflammatory lymphocytes and macrophages were observed at P21 and P28, respectively. This model presents a severe phenotype of disrupted retinal vascular development, intra-retinal angiogenesis inflammation and retinal detachment.
Collapse
Affiliation(s)
- Michelle Lajko
- Department of Ophthalmology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States
| | - Herminio J. Cardona
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States
| | - Joann M. Taylor
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States
| | - Ronil S. Shah
- Department of Ophthalmology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States
| | - Kathryn N. Farrow
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States
- * E-mail:
| |
Collapse
|
32
|
Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves. Cell Tissue Res 2016; 366:587-599. [DOI: 10.1007/s00441-016-2473-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
|
33
|
Okyere B, Giridhar K, Hazy A, Chen M, Keimig D, Bielitz RC, Xie H, He JQ, Huckle WR, Theus MH. Endothelial-Specific EphA4 Negatively Regulates Native Pial Collateral Formation and Re-Perfusion following Hindlimb Ischemia. PLoS One 2016; 11:e0159930. [PMID: 27467069 PMCID: PMC4965112 DOI: 10.1371/journal.pone.0159930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023] Open
Abstract
Leptomeningeal anastomoses play a critical role in regulating vascular re-perfusion following obstruction, however, the mechanisms regulating their development remains under investingation. Our current findings indicate that EphA4 receptor is a novel negative regulator of collaterogenesis. We demonstrate that EphA4 is highly expressed on pial arteriole collaterals at post-natal day (P) 1 and 7, then significantly reduced by P21. Endothelial cell (EC)-specific loss of EphA4, EphA4f/f/Tie2::Cre (KO), resulted in an increase in the density but not diameter of pial collaterals compared to WT mice. ECs isolated from KO mice displayed a 3-fold increase in proliferation, enhanced migration, tube formation and elevated levels of phospho(p)-Akt compared to WT ECs. Attenuating p-Akt, using LY294002, reduced the proliferative and migration effects in the KO ECs. RNAseq analysis also revealed altered expression patterns for genes that regulate cell proliferation, vascular development, extracellular matrix and immune-mediate responses, namely MCP-1, MMP2 and angiopoietin-1. Lastly, we show that induction of hindlimb ischemia resulted in accelerated re-perfusion, collateral remodeling and reduced tissue necrosis in the absence of EC-specific EphA4 compared to WT mice. These findings demonstrate a novel role for EphA4 in the early development of the pial collateral network and suggests a role in regulating vascular remodeling after obstruction.
Collapse
Affiliation(s)
- Benjamin Okyere
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| | - Kaavya Giridhar
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| | - Amanda Hazy
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| | - Miao Chen
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| | - David Keimig
- Virginia BioComplexity Institute, Virginia Polytechnic Insititue and State University, 1015 Life Science Circle, Blacksburg, Virginia, 24061, United States of America
| | - Robert C. Bielitz
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| | - Hehuang Xie
- Virginia BioComplexity Institute, Virginia Polytechnic Insititue and State University, 1015 Life Science Circle, Blacksburg, Virginia, 24061, United States of America
| | - Jia-Qiang He
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| | - William R. Huckle
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Insititue and State University, 215 Duck Pond Drive, Blacksburg, Virginia, 24061, United States of America
| |
Collapse
|
34
|
Somers E, Lees RD, Hoban K, Sleigh JN, Zhou H, Muntoni F, Talbot K, Gillingwater TH, Parson SH. Vascular Defects and Spinal Cord Hypoxia in Spinal Muscular Atrophy. Ann Neurol 2016; 79:217-30. [PMID: 26506088 DOI: 10.1002/ana.24549] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 09/11/2015] [Accepted: 10/18/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Spinal muscular atrophy (SMA) is a major inherited cause of infant death worldwide. It results from mutations in a single, ubiquitously expressed gene (SMN1), with loss of lower motor neurons being the primary pathological signature. Systemic defects have also been reported in SMA patients and animal models. We investigated whether defects associated with the vasculature contribute to motor neuron pathology in SMA. METHODS Development and integrity of the capillary bed was examined in skeletal muscle and spinal cord of SMA mice, and muscle biopsies from SMA patients and controls, using quantitative morphometric approaches on immunohistochemically labeled tissue. Pimonidazole hydrochloride-based assays were used to identify functional hypoxia. RESULTS The capillary bed in muscle and spinal cord was normal in presymptomatic SMA mice (postnatal day 1), but failed to match subsequent postnatal development in control littermates. At mid- and late-symptomatic time points, the extent of the vascular architecture observed in two distinct mouse models of SMA was ∼50% of that observed in control animals. Skeletal muscle biopsies from human patients confirmed the presence of developmentally similar, significant vascular depletion in severe SMA. Hypovascularity in SMA mouse spinal cord was accompanied by significant functional hypoxia and defects in the blood-spinal cord barrier. INTERPRETATION Our results indicate that vascular defects are a major feature of severe forms of SMA, present in both mouse models and patients, resulting in functional hypoxia of motor neurons. Thus, abnormal vascular development and resulting hypoxia may contribute to the pathogenesis of SMA.
Collapse
Affiliation(s)
- Eilidh Somers
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert D Lees
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Hoban
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Haiyan Zhou
- Dubowitz Neuromuscular Center, Institute of Child Health, University College London, London, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Center, Institute of Child Health, University College London, London, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Thomas H Gillingwater
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon H Parson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Euan MacDonald Center for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Scroyen I, Bauters D, Vranckx C, Lijnen HR. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1. PLoS One 2015; 10:e0145608. [PMID: 26719988 PMCID: PMC4697848 DOI: 10.1371/journal.pone.0145608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic. METHODS AND RESULTS Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue. CONCLUSIONS These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.
Collapse
Affiliation(s)
- Ilse Scroyen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - Dries Bauters
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - Christine Vranckx
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - H. Roger Lijnen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
- * E-mail:
| |
Collapse
|
36
|
Abstract
A multifunctional microRNA, miR-155, has been recently recognized as an important modulator of numerous biological processes. In our previous in vitro studies, miR-155 was identified as a potential regulator of the endothelial morphogenesis. The present study demonstrates that in vivo inhibition of miR-155 supports cerebral vasculature after experimental stroke. Intravenous injections of a specific miR-155 inhibitor were initiated at 48 h after mouse distal middle cerebral artery occlusion (dMCAO). Microvasculature in peri-infarct area, infarct size, and animal functional recovery were assessed at 1, 2, and 3 weeks after dMCAO. Using in vivo two-photon microscopy, we detected improved blood flow and microvascular integrity in the peri-infarct area of miR-155 inhibitor-injected mice. Electron microscopy revealed that, in contrast to the control group, these animals demonstrated well preserved capillary tight junctions (TJs). Western blot analysis data indicate that improved TJ integrity in the inhibitor-injected animals could be associated with stabilization of the TJ protein ZO-1 and mediated by the miR-155 target protein Rheb. MRI analysis showed significant (34%) reduction of infarct size in miR-155 inhibitor-injected animals at 21 d after dMCAO. Reduced brain injury was confirmed by electron microscopy demonstrating decreased neuronal damage in the peri-infarct area of stroke. Preservation of brain tissue was reflected in efficient functional recovery of inhibitor-injected animals. Based on our findings, we propose that in vivo miR-155 inhibition after ischemia supports brain microvasculature, reduces brain tissue damage, and improves the animal functional recovery. Significance statement: In the present study, we investigated an effect of the in vivo inhibition of a microRNA, miR-155, on brain recovery after experimental cerebral ischemia. To our knowledge, this is the first report describing the efficiency of intravenous anti-miRNA injections in a mouse model of ischemic stroke. The role of miRNAs in poststroke revascularization has been unexplored and in vivo regulation of miRNAs during the subacute phase of stroke has not yet been proposed. Our investigation introduces a new and unexplored approach to cerebral regeneration: regulation of poststroke angiogenesis and recovery through direct modulation of specific miRNA activity. We expect that our findings will lead to the development of novel strategies for regulating neurorestorative processes in the postischemic brain.
Collapse
|
37
|
Geys L, Scroyen I, Roose E, Vanhoorelbeke K, Lijnen HR. ADAMTS13 deficiency in mice does not affect adipose tissue development. Biochim Biophys Acta Gen Subj 2015; 1850:1368-74. [DOI: 10.1016/j.bbagen.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/26/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
38
|
Preissl S, Schwaderer M, Raulf A, Hesse M, Grüning BA, Köbele C, Backofen R, Fleischmann BK, Hein L, Gilsbach R. Deciphering the Epigenetic Code of Cardiac Myocyte Transcription. Circ Res 2015; 117:413-23. [PMID: 26105955 DOI: 10.1161/circresaha.115.306337] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Epigenetic mechanisms are crucial for cell identity and transcriptional control. The heart consists of different cell types, including cardiac myocytes, endothelial cells, fibroblasts, and others. Therefore, cell type-specific analysis is needed to gain mechanistic insight into the regulation of gene expression in cardiac myocytes. Although cytosolic mRNA represents steady-state levels, nuclear mRNA more closely reflects transcriptional activity. To unravel epigenetic mechanisms of transcriptional control, cell type-specific analysis of nuclear mRNA and epigenetic modifications is crucial. OBJECTIVE The aim was to purify cardiac myocyte nuclei from hearts of different species by magnetic- or fluorescent-assisted sorting and to determine the nuclear and cellular RNA expression profiles and epigenetic marks in a cardiac myocyte-specific manner. METHODS AND RESULTS Frozen cardiac tissue samples were used to isolate cardiac myocyte nuclei. High sorting purity was confirmed for cardiac myocyte nuclei isolated from mice, rats, and humans. Deep sequencing of nuclear RNA revealed a major fraction of nascent, unspliced RNA in contrast to results obtained from purified cardiac myocytes. Cardiac myocyte nuclear and cellular RNA expression profiles showed differences, especially for metabolic genes. Genome-wide maps of the transcriptional elongation mark H3K36me3 were generated by chromatin-immunoprecipitation. Transcriptome and epigenetic data confirmed the high degree of cardiac myocyte-specificity of our protocol. An integrative analysis of nuclear mRNA and histone mark occurrence indicated a major impact of the chromatin state on transcriptional activity in cardiac myocytes. CONCLUSIONS This study establishes cardiac myocyte-specific sorting of nuclei as a universal method to investigate epigenetic and transcriptional processes in cardiac myocytes of different origins. These data sets provide novel insight into cardiac myocyte transcription.
Collapse
Affiliation(s)
- Sebastian Preissl
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Martin Schwaderer
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Alexandra Raulf
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Michael Hesse
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Björn A Grüning
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Claudia Köbele
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Rolf Backofen
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Bernd K Fleischmann
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Lutz Hein
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.).
| | - Ralf Gilsbach
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.).
| |
Collapse
|
39
|
Abstract
Angiogenesis, defined as the sprouting of new blood vessels from preexisting ones, is a biological process of great clinical relevance due to its involvement in disease as well as its therapeutic potential for revascularizing ischemic tissues. The embryonic mouse hindbrain provides an excellent model to study the molecular and cellular mechanisms of angiogenesis in vivo due the simple geometry of the hindbrain vasculature and its easy accessibility for fluorescent or histochemical staining, and for image capture and quantitation. This chapter outlines protocols for dissection, staining, and analysis of the mouse embryo hindbrain vasculature.
Collapse
|
40
|
Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat Protoc 2014; 10:53-74. [PMID: 25502884 DOI: 10.1038/nprot.2015.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and in various diseases of the CNS, new blood vessel formation starts with endothelial tip cell selection and vascular sprout migration, followed by the establishment of functional, perfused blood vessels. Here we describe a method that allows the assessment of these distinct angiogenic steps together with antibody-based protein detection in the postnatal mouse brain. Intravascular and perivascular markers such as Evans blue (EB), isolectin B4 (IB4) or laminin (LN) are used alongside simultaneous immunofluorescence on the same sections. By using confocal laser-scanning microscopy and stereological methods for analysis, detailed quantification of the 3D postnatal brain vasculature for perfused and nonperfused vessels (e.g., vascular volume fraction, vessel length and number, number of branch points and perfusion status of the newly formed vessels) and characterization of sprouting activity (e.g., endothelial tip cell density, filopodia number) can be obtained. The entire protocol, from mouse perfusion to vessel analysis, takes ∼10 d.
Collapse
|
41
|
Immortalized multipotent pericytes derived from the vasa vasorum in the injured vasculature. A cellular tool for studies of vascular remodeling and regeneration. J Transl Med 2014; 94:1340-54. [PMID: 25329003 DOI: 10.1038/labinvest.2014.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 01/09/2023] Open
Abstract
Adventitial microvessels, vasa vasorum in the vessel walls, have an active role in the vascular remodeling, although its mechanisms are still unclear. It has been reported that microvascular pericytes (PCs) possess mesenchymal plasticity. Therefore, microvessels would serve as a systemic reservoir of stem cells and contribute to the tissues remodeling. However, most aspects of the biology of multipotent PCs (mPCs), in particular of pathological microvessels are still obscure because of the lack of appropriate methods to detect and isolate these cells. In order to examine the characteristics of mPCs, we established immortalized cells residing in adventitial capillary growing at the injured vascular walls. We recently developed in vivo angiogenesis to observe adventitial microvessels using collagen-coated tube (CCT), which also can be used as an adventitial microvessel-rich tissue. By using the CCT, CD146- or NG2-positive cells were isolated from the adventitial microvessels in the injured arteries of mice harboring a temperature-sensitive SV40 T-antigen gene. Several capillary-derived endothelial cells (cECs) and PCs (cPCs) cell lines were established. cECs and cPCs maintain a number of key endothelial and PC features. Co-incubation of cPCs with cECs formed capillary-like structure in Matrigel. Three out of six cPC lines, termed capillary mPCs demonstrated both mesenchymal stem cell- and neuronal stem cell-like phenotypes, differentiating effectively into adipocytes, osteoblasts, as well as schwann cells. mPCs differentiated to ECs and PCs, and formed capillary-like structure on their own. Transplanted DsRed-expressing mPCs were resident in the capillary and muscle fibers and promoted angiogenesis and myogenesis in damaged skeletal muscle. Adventitial mPCs possess transdifferentiation potential with unique phenotypes, including the reconstitution of capillary-like structures. Their phenotype would contribute to the pathological angiogenesis associated with vascular remodeling. These cell lines also provide a reproducible cellular tool for high-throughput studies on angiogenesis, vascular remodeling, and regeneration as well.
Collapse
|
42
|
Stagg BC, Uehara H, Lambert N, Rai R, Gupta I, Radmall B, Bates T, Ambati BK. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth. Cancers (Basel) 2014; 6:2330-42. [PMID: 25534570 PMCID: PMC4276969 DOI: 10.3390/cancers6042330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/12/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.
Collapse
Affiliation(s)
- Brian C Stagg
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Hironori Uehara
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Nathan Lambert
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Ruju Rai
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Isha Gupta
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Bryce Radmall
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Taylor Bates
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Balamurali K Ambati
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
43
|
Zhuang X, Ahmed F, Zhang Y, Ferguson HJ, Steele JC, Steven NM, Nagy Z, Heath VL, Toellner KM, Bicknell R. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis 2014; 18:83-95. [PMID: 25348086 DOI: 10.1007/s10456-014-9448-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/13/2014] [Indexed: 01/24/2023]
Abstract
Tumor endothelial specific expression of Robo4 in adults identifies this plasma membrane protein as an anti-cancer target for immunotherapeutic approaches, such as vaccination. In this report, we describe how vaccination against Robo4 inhibits angiogenesis and tumor growth. To break tolerance to the auto-antigen Robo4, mice were immunised with the extracellular domain of mouse Robo4, fused to the Fc domain of human immunoglobulin within an adjuvant. Vaccinated mice show a strong antibody response to Robo4, with no objectively detectable adverse effects on health. Robo4 vaccinated mice showed impaired fibrovascular invasion and angiogenesis in a rodent sponge implantation assay, as well as a reduced growth of implanted syngeneic Lewis lung carcinoma. The anti-tumor effect of Robo4 vaccination was present in CD8 deficient mice but absent in B cell or IgG1 knockout mice, suggesting antibody dependent cell mediated cytotoxicity as the anti-vascular/anti-tumor mechanism. Finally, we show that an adjuvant free soluble Robo4-carrier conjugate can retard tumor growth in carrier primed mice. These results point to appropriate Robo4 conjugates as potential anti-angiogenic vaccines for cancer patients.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Institute for Biomedical Research, Schools of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The isolation of endothelial cells (ECs) from knockout and transgenic mouse lines provides the opportunity to study the endothelial-specific activities of a targeted molecule. As a means of pursuing these types of investigations, the protocols described in this unit provide a reliable method for isolating lung microvascular ECs from mouse neonatal pups that can be serially passaged. These protocols are useful in settings where mouse age is irrelevant and a pure population of pulmonary vascular ECs, uncontaminated by other cells, is needed. When a specific source of ECs is not required, these procedures also represent a reliable means of obtaining murine ECs in general.
Collapse
Affiliation(s)
- Gaoyuan Cao
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
45
|
Moding EJ, Lee CL, Castle KD, Oh P, Mao L, Zha S, Min HD, Ma Y, Das S, Kirsch DG. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest 2014; 124:3325-38. [PMID: 25036710 DOI: 10.1172/jci73932] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/15/2014] [Indexed: 02/06/2023] Open
Abstract
Cells isolated from patients with ataxia telangiectasia are exquisitely sensitive to ionizing radiation. Kinase inhibitors of ATM, the gene mutated in ataxia telangiectasia, can sensitize tumor cells to radiation therapy, but concern that inhibiting ATM in normal tissues will also increase normal tissue toxicity from radiation has limited their clinical application. Endothelial cell damage can contribute to the development of long-term side effects after radiation therapy, but the role of endothelial cell death in tumor response to radiation therapy remains controversial. Here, we developed dual recombinase technology using both FlpO and Cre recombinases to generate primary sarcomas in mice with endothelial cell-specific deletion of Atm to determine whether loss of Atm in endothelial cells sensitizes tumors and normal tissues to radiation. Although deletion of Atm in proliferating tumor endothelial cells enhanced the response of sarcomas to radiation, Atm deletion in quiescent endothelial cells of the heart did not sensitize mice to radiation-induced myocardial necrosis. Blocking cell cycle progression reversed the effect of Atm loss on tumor endothelial cell radiosensitivity. These results indicate that endothelial cells must progress through the cell cycle in order to be radiosensitized by Atm deletion.
Collapse
|
46
|
Cosentino S, Castiglioni L, Colazzo F, Nobili E, Tremoli E, Rosa P, Abbracchio MP, Sironi L, Pesce M. Expression of dual nucleotides/cysteinyl-leukotrienes receptor GPR17 in early trafficking of cardiac stromal cells after myocardial infarction. J Cell Mol Med 2014; 18:1785-96. [PMID: 24909956 PMCID: PMC4196654 DOI: 10.1111/jcmm.12305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/25/2014] [Indexed: 12/23/2022] Open
Abstract
GPR17 is a Gi-coupled dual receptor activated by uracil-nucleotides and cysteinyl-leukotrienes. These mediators are massively released into hypoxic tissues. In the normal heart, GPR17 expression has been reported. By contrast, its role in myocardial ischaemia has not yet been assessed. In the present report, the expression of GPR17 was investigated in mice before and at early stages after myocardial infarction by using immunofluorescence, flow cytometry and RT-PCR. Before induction of ischaemia, results indicated the presence of the receptor in a population of stromal cells expressing the stem-cell antigen-1 (Sca-1). At early stages after ligation of the coronary artery, the receptor was expressed in Sca-1+ cells, and cells stained with Isolectin-B4 and anti-CD45 antibody. GPR17+ cells also expressed mesenchymal marker CD44. GPR17 function was investigated in vitro in a Sca-1+/CD31− cell line derived from normal hearts. These experiments showed a migratory function of the receptor by treatment with UDP-glucose and leukotriene LTD4, two GPR17 pharmacological agonists. The GPR17 function was finally assessed in vivo by treating infarcted mice with Cangrelor, a pharmacological receptor antagonist, which, at least in part, inhibited early recruitment of GPR17+ and CD45+ cells. These findings suggest a regulation of heart-resident mesenchymal cells and blood-borne cellular species recruitment following myocardial infarction, orchestrated by GPR17.
Collapse
Affiliation(s)
- Simona Cosentino
- Laboratorio di Biologia e Biochimica dell'Aterotrombosi, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bando Y, Yamamoto M, Sakiyama K, Inoue K, Takizawa S, Owada Y, Iseki S, Kondo H, Amano O. Expression of epidermal fatty acid binding protein (E-FABP) in septoclasts in the growth plate cartilage of mice. J Mol Histol 2014; 45:507-18. [PMID: 24879443 DOI: 10.1007/s10735-014-9576-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 12/25/2022]
Abstract
n-3 Polyunsaturated fatty acids play a role in regulating the growth of the long bones. Fatty acid-binding proteins (FABPs) bind and transport hydrophobic long-chain fatty acids intracellularly, and epidermal-type FABP (E-FABP) has an affinity for n-3 fatty acids. This study aimed to clarify the localization of E-FABP in the growth plate of the mouse tibia. At the chondro-osseous junction (COJ) of the growth plate, E-FABP-immunoreactivity was exclusively localized in mononuclear, spindle-shaped cells with several long processes. These E-FABP-immunoreactive cells were identified as being septoclasts, i.e., cells that resorb uncalcified transverse septa. The processes of these immunoreactive septoclasts terminated between the longitudinal and transverse septa. E-FABP-immunoreactivity was found in the entire cytoplasm and on the mitochondrial outer membrane. In ontogeny, immunoreactive septoclasts were observed immediately after emergence of the primary ossifying center and were distributed not only at the COJ but also in the metaphysis near the COJ. The number of septoclasts increased at the postnatal age of 1 week (P1w)-P2w, and thereafter gradually decreased; and the cells became concentrated at the COJ after P3w-P4w. The immunoreactivity for peroxisome proliferator-activated receptor (PPAR)β/δ was detected in these E-FABP-immunoreactive septoclasts. The present results suggest that fatty acids, preferably n-3 ones, are intracellularly transported by E-FABP to various targets, including mitochondria and nucleus, in which PPARβ/δ may play functional roles in the transcriptional regulation of genes involved in the endochondral ossification.
Collapse
Affiliation(s)
- Yasuhiko Bando
- Division of Anatomy, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 2014; 508:55-60. [PMID: 24670647 PMCID: PMC3976267 DOI: 10.1038/nature13165] [Citation(s) in RCA: 1282] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/19/2014] [Indexed: 01/12/2023]
Abstract
Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke.
Collapse
Affiliation(s)
- Catherine N Hall
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Clare Reynell
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Bodil Gesslein
- Department of Neuroscience & Pharmacology and Center for Healthy Aging, and Department of Clinical Neurophysiology, Glostrup Hospital, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Nicola B Hamilton
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Anusha Mishra
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Fergus M O'Farrell
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Martin Lauritzen
- Department of Neuroscience & Pharmacology and Center for Healthy Aging, and Department of Clinical Neurophysiology, Glostrup Hospital, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology University College London, Gower St., London, WC1E 6BT, UK
| |
Collapse
|
49
|
Mishra A, O'Farrell FM, Reynell C, Hamilton NB, Hall CN, Attwell D. Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc 2014; 9:323-36. [PMID: 24434801 DOI: 10.1038/nprot.2014.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cerebral circulation is highly specialized, both structurally and functionally, and it provides a fine-tuned supply of oxygen and nutrients to active regions of the brain. Our understanding of blood flow regulation by cerebral arterioles has evolved rapidly. Recent work has opened new avenues in microvascular research; for example, it has been demonstrated that contractile pericytes found on capillary walls induce capillary diameter changes in response to neurotransmitters, suggesting that pericytes could have a role in neurovascular coupling. This concept is at odds with traditional models of brain blood flow regulation, which assume that only arterioles control cerebral blood flow. The investigation of mechanisms underlying neurovascular coupling at the capillary level requires a range of approaches, which involve unique technical challenges. Here we provide detailed protocols for the successful physiological and immunohistochemical study of pericytes and capillaries in brain slices and isolated retinae, allowing investigators to probe the role of capillaries in neurovascular coupling. This protocol can be completed within 6-8 h; however, immunohistochemical experiments may take 3-6 d.
Collapse
Affiliation(s)
- Anusha Mishra
- 1] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK. [2]
| | - Fergus M O'Farrell
- 1] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK. [2]
| | - Clare Reynell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicola B Hamilton
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Catherine N Hall
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
50
|
Abcouwer SF, Lin CM, Shanmugam S, Muthusamy A, Barber AJ, Antonetti DA. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J Neuroinflammation 2013; 10:149. [PMID: 24325836 PMCID: PMC3866619 DOI: 10.1186/1742-2094-10-149] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/24/2013] [Indexed: 12/21/2022] Open
Abstract
Background Many retinal diseases are associated with vascular dysfunction accompanied by neuroinflammation. We examined the ability of minocycline (Mino), a tetracycline derivative with anti-inflammatory and neuroprotective properties, to prevent vascular permeability and inflammation following retinal ischemia-reperfusion (IR) injury, a model of retinal neurodegeneration with breakdown of the blood-retinal barrier (BRB). Methods Male Sprague–Dawley rats were subjected to 45 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Rats were treated with Mino prior to and following IR. At 48 h after reperfusion, retinal gene expression, cellular inflammation, Evan’s blue dye leakage, tight junction protein organization, caspase-3 activation, and DNA fragmentation were measured. Cellular inflammation was quantified by flow-cytometric evaluation of retinal tissue using the myeloid marker CD11b and leukocyte common antigen CD45 to differentiate and quantify CD11b+/CD45low microglia, CD11b+/CD45hi myeloid leukocytes and CD11bneg/CD45hi lymphocytes. Major histocompatibility complex class II (MHCII) immunoreactivity was used to determine the inflammatory state of these cells. Results Mino treatment significantly inhibited IR-induced retinal vascular permeability and disruption of tight junction organization. Retinal IR injury significantly altered mRNA expression for 21 of 25 inflammation- and gliosis-related genes examined. Of these, Mino treatment effectively attenuated IR-induced expression of lipocalin 2 (LCN2), serpin peptidase inhibitor clade A member 3 N (SERPINA3N), TNF receptor superfamily member 12A (TNFRSF12A), monocyte chemoattractant-1 (MCP-1, CCL2) and intercellular adhesion molecule-1 (ICAM-1). A marked increase in leukostasis of both myeloid leukocytes and lymphocytes was observed following IR. Mino treatment significantly reduced retinal leukocyte numbers following IR and was particularly effective in decreasing the appearance of MHCII+ inflammatory leukocytes. Surprisingly, Mino did not significantly inhibit retinal cell death in this model. Conclusions IR induces a retinal neuroinflammation within hours of reperfusion characterized by inflammatory gene expression, leukocyte adhesion and invasion, and vascular permeability. Despite Mino significantly inhibiting these responses, it failed to block neurodegeneration.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|