1
|
Pang S, Wang S, Fan C, Li F, Zhao W, Shi B, Wang Y, Wu X. The CMLA score: A novel tool for early prediction of renal replacement therapy in patients with cardiogenic shock. Curr Probl Cardiol 2024; 49:102870. [PMID: 39343053 DOI: 10.1016/j.cpcardiol.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Early identification of cardiogenic shock (CS) patients at risk for renal replacement therapy (RRT) is crucial for improving clinical outcomes. This study aimed to develop and validate a prediction model using readily available clinical variables. METHODS A retrospective cohort study was conducted using data from 4,133 CS patients from the MIMIC and eICU-CRD databases. Patients from MIMIC databases were randomly divided into 80 % training and 20 % validation cohorts, while those from eICU-CRD constituted the test cohort. Feature selection involved univariate logistic regression (LR), LASSO, and Boruta methods. Prediction models for RRT were developed using stepwise selection by LR and five machine learning (ML) algorithms (naive bayes, support vector machines, k-nearest neighbors, random forest, extreme gradient boosting) in the training cohort. Model performance was evaluated in both validation and test cohorts. A nomogram was constructed based on LR model. Kaplan-Meier survival analysis assessed 28-day mortality. RESULTS The incidence of RRT was approximately 13 % across all cohorts. Ten variables were selected: age, anion gap, chloride, bun, creatinine, potassium, ast, lactate, estimated glomerular filtration rate (eGFR), and mechanical ventilation. Compared with ML models, the LR model showed superior predictive performance with an AUC of 0.731 in the validation cohort and 0.714 in the test cohort. Four variables that best predicted the need for RRT (age, lactate, mechanical ventilation, and creatinine) were used to generate the CMLA nomogram risk score. The CMLA model showed better predictive accuracy for RRT in the test cohort compared to the previous CALL-K model (AUC: 0.731 vs. 0.699, DeLong test P < 0.05). Calibration curves and decision curve analysis (DCA) indicated that the CMLA model also had good calibration (Hosmer-Lemeshow P=0.323) and clinical utility in the test cohort. Kaplan-Meier analysis indicated significantly higher 28-day mortality in the high-risk CMLA group. CONCLUSIONS A clinically applicable nomogram with four key variables was developed to predict RRT risk in CS patients. It demonstrated good performance, promising enhanced clinical decision-making.
Collapse
Affiliation(s)
- Shuo Pang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Shen Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Chu Fan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Fadong Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Wenxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Boqun Shi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yue Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xiaofan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
2
|
Chen S, Li Z, Xiao Y, Zhou Z, Zhan Q, Yu L. Rutin targets AKT to inhibit ferroptosis in ventilator-induced lung injury. Phytother Res 2024; 38:3401-3416. [PMID: 38666397 DOI: 10.1002/ptr.8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 07/12/2024]
Abstract
Our previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghao Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhaobin Zhou
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingling Yu
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Baldi RF, Koh MW, Thomas C, Sabbat T, Wang B, Tsatsari S, Young K, Wilson-Slomkowski A, Soni S, O'Dea KP, Patel BV, Takata M, Wilson MR. Ventilator-induced Lung Injury Promotes Inflammation within the Pleural Cavity. Am J Respir Cell Mol Biol 2024; 71:43-52. [PMID: 38767348 PMCID: PMC11225872 DOI: 10.1165/rcmb.2023-0332oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Mechanical ventilation contributes to the morbidity and mortality of patients in intensive care, likely through the exacerbation and dissemination of inflammation. Despite the proximity of the pleural cavity to the lungs and exposure to physical forces, little attention has been paid to its potential as an inflammatory source during ventilation. Here, we investigate the pleural cavity as a novel site of inflammation during ventilator-induced lung injury. Mice were subjected to low or high tidal volume ventilation strategies for up to 3 hours. Ventilation with a high tidal volume significantly increased cytokine and total protein levels in BAL and pleural lavage fluid. In contrast, acid aspiration, explored as an alternative model of injury, only promoted intraalveolar inflammation, with no effect on the pleural space. Resident pleural macrophages demonstrated enhanced activation after injurious ventilation, including upregulated ICAM-1 and IL-1β expression, and the release of extracellular vesicles. In vivo ventilation and in vitro stretch of pleural mesothelial cells promoted ATP secretion, whereas purinergic receptor inhibition substantially attenuated extracellular vesicles and cytokine levels in the pleural space. Finally, labeled protein rapidly translocated from the pleural cavity into the circulation during high tidal volume ventilation, to a significantly greater extent than that of protein translocation from the alveolar space. Overall, we conclude that injurious ventilation induces pleural cavity inflammation mediated through purinergic pathway signaling and likely enhances the dissemination of mediators into the vasculature. This previously unidentified consequence of mechanical ventilation potentially implicates the pleural space as a focus of research and novel avenue for intervention in critical care.
Collapse
Affiliation(s)
- Rhianna F Baldi
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Marissa W Koh
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Chubicka Thomas
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Tomasz Sabbat
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Bincheng Wang
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Stefania Tsatsari
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Kieron Young
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Alexander Wilson-Slomkowski
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Sanooj Soni
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Kieran P O'Dea
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Brijesh V Patel
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Masao Takata
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Michael R Wilson
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Ziaka M, Exadaktylos A. Exploring the lung-gut direction of the gut-lung axis in patients with ARDS. Crit Care 2024; 28:179. [PMID: 38802959 PMCID: PMC11131229 DOI: 10.1186/s13054-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a life-threatening inflammatory reaction marked by refractory hypoxaemia and pulmonary oedema. Despite advancements in treatment perspectives, ARDS still carries a high mortality rate, often due to systemic inflammatory responses leading to multiple organ dysfunction syndrome (MODS). Indeed, the deterioration and associated mortality in patients with acute lung injury (LI)/ARDS is believed to originate alongside respiratory failure mainly from the involvement of extrapulmonary organs, a consequence of the complex interaction between initial inflammatory cascades related to the primary event and ongoing mechanical ventilation-induced injury resulting in multiple organ failure (MOF) and potentially death. Even though recent research has increasingly highlighted the role of the gastrointestinal tract in this process, the pathophysiology of gut dysfunction in patients with ARDS remains mainly underexplored. This review aims to elucidate the complex interplay between lung and gut in patients with LI/ARDS. We will examine various factors, including systemic inflammation, epithelial barrier dysfunction, the effects of mechanical ventilation (MV), hypercapnia, and gut dysbiosis. Understanding these factors and their interaction may provide valuable insights into the pathophysiology of ARDS and potential therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Deniel G, Dhelft F, Lancelot S, Orkisz M, Roux E, Mouton W, Benzerdjeb N, Richard JC, Bitker L. Pulmonary inflammation decreases with ultra-protective ventilation in experimental ARDS under VV-ECMO: a positron emission tomography study. Front Med (Lausanne) 2024; 11:1338602. [PMID: 38444415 PMCID: PMC10912585 DOI: 10.3389/fmed.2024.1338602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Background Experimentally, ultra-protective ventilation (UPV, tidal volumes [VT] < 4 mL.kg-1) strategies in conjunction with veno-venous extracorporeal membrane oxygenation (VV-ECMO) are associated with lesser ventilator-induced lung injuries (VILI) during acute respiratory distress syndrome (ARDS). However, whether these strategies reduce lung inflammation more effectively than protective ventilation (PV) remains unclear. We aimed to demonstrate that a UPV strategy decreases acute lung inflammation in comparison with PV in an experimental swine model of ARDS. Methods ARDS was induced by tracheal instillation of chlorhydric acid in sedated and paralyzed animals under mechanical ventilation. Animals were randomized to receive either UPV (VT 1 mL.kg-1, positive end-expiration pressure [PEEP] set to obtain plateau pressure between 20 and 25 cmH2O and respiratory rate [RR] at 5 min-1 under VV-ECMO) or PV (VT 6 mL.kg-1, PEEP set to obtain plateau pressure between 28 and 30 cmH2O and RR at 25 min-1) during 4 h. After 4 h, a positron emission tomography with [11C](R)-PK11195 (ligand to TSPO-bearing macrophages) injection was realized, coupled with quantitative computerized tomography (CT). Pharmacokinetic multicompartment models were used to quantify regional [11C](R)-PK11195 lung uptake. [11C](R)-PK11195 lung uptake and CT-derived respiratory variables were studied regionally across eight lung regions distributed along the antero-posterior axis. Results Five pigs were randomized to each study group. Arterial O2 partial pressure to inspired O2 fraction were not significantly different between study groups after experimental ARDS induction (75 [68-80] mmHg in a PV group vs. 87 [69-133] mmHg in a UPV group, p = 0.20). Compared to PV animals, UPV animals exhibited a significant decrease in the regional non-aerated compartment in the posterior lung levels, in mechanical power, and in regional dynamic strain and no statistical difference in tidal hyperinflation after 4 h. UPV animals had a significantly lower [11C](R)-PK11195 uptake, compared to PV animals (non-displaceable binding potential 0.35 [IQR, 0.20-0.59] in UPV animals and 1.01 [IQR, 0.75-1.59] in PV animals, p = 0.01). Regional [11C](R)-PK11195 uptake was independently associated with the interaction of regional tidal hyperinflation and regional lung compliance. Conclusion In an experimental model of ARDS, 4 h of UPV strategy significantly decreased lung inflammation, in relation to the control of VT-derived determinants of VILI.
Collapse
Affiliation(s)
- Guillaume Deniel
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
| | - François Dhelft
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, Université LYON 1, Lyon, France
| | - Sophie Lancelot
- Université de Lyon, Université LYON 1, Lyon, France
- CERMEP – Imagerie du Vivant, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Maciej Orkisz
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
| | - Emmanuel Roux
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
| | - William Mouton
- Laboratoire Commun de Recherche Hospices Civils de Lyon/bioMérieux, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Nazim Benzerdjeb
- Université de Lyon, Université LYON 1, Lyon, France
- Centre d’Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
- Université de Lyon, Université LYON 1, Lyon, France
| | - Laurent Bitker
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
- Université de Lyon, Université LYON 1, Lyon, France
| |
Collapse
|
6
|
Wong H, Chi Y, Zhang R, Yin C, Jia J, Wang B, Liu Y, Shang Y, Wang R, Long Y, Zhao Z, He H. Multicentre, parallel, open-label, two-arm, randomised controlled trial on the prognosis of electrical impedance tomography-guided versus low PEEP/FiO2 table-guided PEEP setting: a trial protocol. BMJ Open 2024; 14:e080828. [PMID: 38307528 PMCID: PMC10836340 DOI: 10.1136/bmjopen-2023-080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Previous studies suggested that electrical impedance tomography (EIT) has the potential to guide positive end-expiratory pressure (PEEP) titration via quantifying the alveolar collapse and overdistension. The aim of this trial is to compare the effect of EIT-guided PEEP and acute respiratory distress syndrome (ARDS) network low PEEP/fraction of inspired oxygen (FiO2) table strategy on mortality and other clinical outcomes in patients with ARDS. METHODS This is a parallel, two-arm, multicentre, randomised, controlled trial, conducted in China. All patients with ARDS under mechanical ventilation admitted to the intensive care unit will be screened for eligibility. The enrolled patients are stratified by the aetiology (pulmonary/extrapulmonary) and partial pressure of arterial oxygen/FiO2 (≥150 mm Hg or <150 mm Hg) and randomised into the intervention group or the control group. The intervention group will receive recruitment manoeuvre and EIT-guided PEEP titration. The EIT-guided PEEP will be set for at least 12 hours after titration. The control group will not receive recruitment manoeuvre routinely and the PEEP will be set according to the lower PEEP/FiO2 table proposed by the ARDS Network. The primary outcome is 28-day survival. ANALYSIS Qualitative data will be analysed using the χ2 test or Fisher's exact test, quantitative data will be analysed using independent samples t-test or Mann-Whitney U test. Kaplan-Meier analysis with log-rank test will be used to evaluate the 28-day survival rate between two groups. All outcomes will be analysed based on the intention-to-treat principle. ETHICS AND DISSEMINATION The trial is approved by the Institutional Research and Ethics Committee of the Peking Union Medical College Hospital. Data will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05307913.
Collapse
Affiliation(s)
- HouPeng Wong
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yi Chi
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Rui Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai, China
| | | | - Jianwei Jia
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - You Shang
- Critical Care Medicine, Wuhan Union Hospital, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
7
|
Soong C, Lee YS, Lin CH, Chen CH, Soong WJ. Sustained pharyngeal inflation in infant airway-Flexible bronchoscopy measurements. PLoS One 2023; 18:e0294029. [PMID: 37992011 PMCID: PMC10664907 DOI: 10.1371/journal.pone.0294029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023] Open
Abstract
Sustained pharyngeal inflation (SPI) with pharyngeal oxygen flow and nasal closure (PhO2-NC) technique create positive inflation pressure in the airway. This study measured the peak inflation pressure (PIP) levels and image changes with SPI-assisted flexible bronchoscopy (SPI-FB) and compared the effects in the pharyngeal space and mid-tracheal lumen. This prospective study enrolled 20 participants aged 6 months to 3 years. Each participant underwent sequential SPI-FB of four different durations (0, 1s, 3s, and 5s) for three cycles. We used a 3.8 mm OD flexible bronchoscope to measure and analyze PIP levels, images, and lumen dimension scores. A total of 480 data were collected. The mean (SD) age and body weight were 12.0 (11.5) months and 7.8 (7.5) kg, respectively. The mean (IQR) PIPs were 4.2 (2.0), 18.5 (6.1), 30.6 (13.5), and 46.1 (25.0) cmH2O in the pharynx and 5.0 (1.6), 17.5 (6.5), 28.0 (12.3), 46.0 (28.5) cmH2O in the mid-trachea at SPI durations of 0, 1s, 3s, and 5s, respectively. The PIP levels had a positive correlation (p <0.001) with different SPI durations in both pharynx and trachea, and were nearly identical (p = 0.695, 0.787, and 0.725 at 1s, 3s, and 5s, respectively) at the same duration except the 0 s (p = 0.015). Lumen dimension scores also significantly increased with increasing SPI durations (p <0.05) in both locations. The identified lesions significantly increased as PIP levels increased (p <0.001). Conclusion: SPI-FB using PhO2-NC with durations up to 3s is safe and informative technique that provides controllable PIP, dilates airway lumens, and benefits lesion detection in the pharyngeal space and mid-tracheal lumen.
Collapse
Affiliation(s)
- Christina Soong
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Sheng Lee
- Department of Pediatrics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Chieh-Ho Chen
- Division of Pediatric Pulmonology, Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Wen-Jue Soong
- Department of Pediatrics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Pediatric Pulmonology, Children’s Hospital, China Medical University, Taichung, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Chen S, Bai Y, Xia J, Zhang Y, Zhan Q. Rutin alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation. iScience 2023; 26:107866. [PMID: 37817937 PMCID: PMC10561045 DOI: 10.1016/j.isci.2023.107866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Whether rutin relieves ventilator-induced lung injury (VILI) remains unclear. Here, we used network pharmacology, bioinformatics, and molecular docking to predict the therapeutic targets and potential mechanisms of rutin in the treatment of VILI. Subsequently, a mouse model of VILI was established to confirm the effects of rutin on VILI. HE staining showed that rutin alleviated VILI. TUNEL staining showed that rutin reduced apoptosis in the lung tissue of mice with VILI, and the same change was observed in the ratio of Bax/Bcl2. Furthermore, rutin reduced the expression of NLRP3, ASC, Caspase1, IL1β, and IL18 in the lung tissues of mice with VILI. Mechanistically, rutin suppressed the TLR4/NF-κB-P65 pathway, which promoted the M1 to M2 macrophage transition and alleviated inflammation in mice with VILI. Rutin relieved NLRP3 inflammasome activation by regulating M1/M2 macrophage polarization and inhibiting the activation of the TLR4/NF-κB-P65 pathway, resulting in the amelioration of VILI in mice.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| |
Collapse
|
9
|
Puuvuori E, Chiodaroli E, Estrada S, Cheung P, Lubenow N, Sigfridsson J, Romelin H, Ingvast S, Elgland M, Liggieri F, Korsgren O, Perchiazzi G, Eriksson O, Antoni G. PET Imaging of Neutrophil Elastase with 11C-GW457427 in Acute Respiratory Distress Syndrome in Pigs. J Nucl Med 2023; 64:423-429. [PMID: 36109184 PMCID: PMC10071803 DOI: 10.2967/jnumed.122.264306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Today, there is a lack of clinically available imaging techniques to detect and quantify specific immune cell populations. Neutrophils are one of the first immune cells at the site of inflammation, and they secrete the serine protease neutrophil elastase (NE), which is crucial in the fight against pathogens. However, the prolonged lifespan of neutrophils increases the risk that patients will develop severe complications, such as acute respiratory distress syndrome (ARDS). Here, we evaluated the novel radiolabeled NE inhibitor 11C-GW457427 in a pig model of ARDS, for detection and quantification of neutrophil activity in the lungs. Methods: ARDS was induced by intravenous administration of oleic acid to 5 farm pigs, and 4 were considered healthy controls. The severity of ARDS was monitored by clinical parameters of lung function and plasma biomarkers. Each pig was studied with 11C-GW457427 and PET/CT, before and after pretreatment with the NE inhibitor GW311616 to determine in vivo binding specificity. PET image data were analyzed as SUVs and correlated with immunohistochemical staining for NE in biopsies. Results: The binding of 11C-GW457427 was increased in pig lungs with induced ARDS (median SUVmean, 1.91; interquartile range [IQR], 1.67-2.55) compared with healthy control pigs (P < 0.05 and P = 0.03, respectively; median SUVmean, 1.04; IQR, 0.66-1.47). The binding was especially strong in lung regions with high levels of NE and ongoing inflammation, as verified by immunohistochemistry. The binding was successfully blocked by pretreatment of an NE inhibitor drug, which demonstrated the in vivo specificity of 11C-GW457427 (P < 0.05 and P = 0.04, respectively; median SUVmean, 0.60; IQR, 0.58-0.77). The binding in neutrophil-rich tissues such as bone marrow (P < 0.05 and P = 0.04, respectively; baseline median SUVmean, 5.01; IQR, 4.48-5.49; block median SUVmean, 1.57; IQR, 0.95-1.85) and spleen (median SUVmean, 2.14; IQR, 1.19-2.36) was also high in all pigs. Conclusion: 11C-GW457427 binds to NE in a porcine model of oleic acid-induced lung inflammation in vivo, with a specific increase in regional lung, bone marrow, and spleen SUV. 11C-GW457427 is a promising tool for localizing, tracking, and quantifying neutrophil-facilitated inflammation in clinical diagnostics and drug development.
Collapse
Affiliation(s)
- Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Elena Chiodaroli
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Sergio Estrada
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Norbert Lubenow
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Hampus Romelin
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Mathias Elgland
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Francesco Liggieri
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
10
|
Chopski SG, Govender K, May A, Garven E, Stevens RM, Tchantchaleishvili V, Throckmorton AL. Novel hybrid total artificial heart with integrated oxygenator. J Card Surg 2022; 37:5172-5186. [PMID: 36403254 PMCID: PMC9812888 DOI: 10.1111/jocs.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
There continues to be an unmet therapeutic need for an alternative treatment strategy for respiratory distress and lung disease. We are developing a portable cardiopulmonary support system that integrates an implantable oxygenator with a hybrid, dual-support, continuous-flow total artificial heart (TAH). The TAH has a centrifugal flow pump that is rotating about an axial flow pump. By attaching the hollow fiber bundle of the oxygenator to the base of the TAH, we establish a new cardiopulmonary support technology that permits a patient to be ambulatory during usage. In this study, we investigated the design and improvement of the blood flow pathway from the inflow-to-outflow of four oxygenators using a mathematical model and computational fluid dynamics (CFD). Pressure loss and gas transport through diffusion were examined to assess oxygenator design. The oxygenator designs led to a resistance-driven pressure loss range of less than 35 mmHg for flow rates of 1-7 L/min. All of the designs met requirements. The configuration having an outside-to-inside blood flow direction was found to have higher oxygen transport. Based on this advantageous flow direction, two designs (Model 1 and 3) were then integrated with the axial-flow impeller of the TAH for simulation. Flow rates of 1-7 L/min and speeds of 10,000-16,000 RPM were analyzed. Blood damage studies were performed, and Model 1 demonstrated the lowest potential for hemolysis. Future work will focus on developing and testing a physical prototype for integration into the new cardiopulmonary assist system.
Collapse
Affiliation(s)
- Steven G. Chopski
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Krianthan Govender
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alexandra May
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, Swanson School of Engineering, University, Pittsburgh, Pennsylvania, USA
| | - Ellen Garven
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Randy M. Stevens
- College of Medicine, St. Christopher’s Hospital for Children, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Amy L. Throckmorton
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Bae J, Lee SJ, Lee HC, Lee S, Ju JW, Cho YJ, Jeon Y, Nam K. Relationship between intraoperative tidal volume and acute kidney injury following off-pump coronary artery bypass grafting: A retrospective observational study. Medicine (Baltimore) 2022; 101:e31563. [PMID: 36451441 PMCID: PMC9704961 DOI: 10.1097/md.0000000000031563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The effect of intraoperative tidal volume (VT) on clinical outcomes after off-pump coronary artery bypass grafting (OPCAB) has not been studied. The aim of this study was to assess the relationship between intraoperative tidal volume (VT) and acute kidney injury (AKI ) after OPCAB. A total of 1049 patients who underwent OPCAB between January 2009 and December 2018 were analyzed. Patients were divided into high (>8 ml/kg) and low VT (≤8 ml/kg) groups (intraoperative median VT standardized to predicted body weight). The data were fitted using a multivariable logistic regression model. Subgroup analyses were performed according to age, sex, comorbidities, preoperative laboratory variables, operative profiles, and Cleveland score. The risk of AKI was not significantly higher in the high than the low VT group (OR: 1.15, 95% CI: 0.80-1.66; P = .459); however, subgroup analyses revealed that a high VT may increase the risk of AKI in males, patients aged < 70 years, with chronic kidney disease, a left ventricular ejection fraction < 35%, or a long duration of surgery. High intraoperative VTs were not associated with an increased risk of AKI after OPCAB. Nonetheless, it may increase the risk of AKI in certain subgroups, such as younger age, male sex, reduced renal and cardiac function, and a long surgery time.
Collapse
Affiliation(s)
- Jinyoung Bae
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Jin Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Chul Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seohee Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Woo Ju
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yunseok Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Karam Nam
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Ismaiel N, Whynot S, Geldenhuys L, Xu Z, Slutsky AS, Chappe V, Henzler D. Lung-Protective Ventilation Attenuates Mechanical Injury While Hypercapnia Attenuates Biological Injury in a Rat Model of Ventilator-Associated Lung Injury. Front Physiol 2022; 13:814968. [PMID: 35530505 PMCID: PMC9068936 DOI: 10.3389/fphys.2022.814968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Objective: Lung-protective mechanical ventilation is known to attenuate ventilator-associated lung injury (VALI), but often at the expense of hypoventilation and hypercapnia. It remains unclear whether the main mechanism by which VALI is attenuated is a product of limiting mechanical forces to the lung during ventilation, or a direct biological effect of hypercapnia. Methods: Acute lung injury (ALI) was induced in 60 anesthetized rats by the instillation of 1.25 M HCl into the lungs via tracheostomy. Ten rats each were randomly assigned to one of six experimental groups and ventilated for 4 h with: 1) Conventional HighVENormocapnia (high VT, high minute ventilation, normocapnia), 2) Conventional Normocapnia (high VT, normocapnia), 3) Protective Normocapnia (VT 8 ml/kg, high RR), 4) Conventional iCO2Hypercapnia (high VT, low RR, inhaled CO2), 5) Protective iCO2Hypercapnia (VT 8 ml/kg, high RR, added CO2), 6) Protective endogenous Hypercapnia (VT 8 ml/kg, low RR). Blood gasses, broncho-alveolar lavage fluid (BALF), and tissue specimens were collected and analyzed for histologic and biologic lung injury assessment. Results: Mild ALI was achieved in all groups characterized by a decreased mean PaO2/FiO2 ratio from 428 to 242 mmHg (p < 0.05), and an increased mean elastance from 2.46 to 4.32 cmH2O/L (p < 0.0001). There were no differences in gas exchange among groups. Wet-to-dry ratios and formation of hyaline membranes were significantly lower in low VT groups compared to conventional tidal volumes. Hypercapnia reduced diffuse alveolar damage and IL-6 levels in the BALF, which was also true when CO2 was added to conventional VT. In low VT groups, hypercapnia did not induce any further protective effect except increasing pulmonary IL-10 in the BALF. No differences in lung injury were observed when hypercapnia was induced by adding CO2 or decreasing minute ventilation, although permissive hypercapnia decreased the pH significantly and decreased liver histologic injury. Conclusion: Our findings suggest that low tidal volume ventilation likely attenuates VALI by limiting mechanical damage to the lung, while hypercapnia attenuates VALI by limiting pro-inflammatory and biochemical mechanisms of injury. When combined, both lung-protective ventilation and hypercapnia have the potential to exert an synergistic effect for the prevention of VALI.
Collapse
Affiliation(s)
- Nada Ismaiel
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sara Whynot
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Laurette Geldenhuys
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Zhaolin Xu
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Dietrich Henzler
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Zamani M, Kallio M, Bayford R, Demosthenous A. Generation of Anatomically Inspired Human Airway Tree Using Electrical Impedance Tomography: A Method to Estimate Regional Lung Filling Characteristics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1125-1137. [PMID: 34914583 DOI: 10.1109/tmi.2021.3136434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The purpose of lung recruitment is to improve and optimize the air exchange flow in the lungs by adjusting the respiratory settings during mechanical ventilation. Electrical impedance tomography (EIT) is a monitoring tool that permits measurement of regional pulmonary filling characteristics or filling index (FI) during ventilation. The conventional EIT system has limitations which compromise the accuracy of the FI. This paper proposes a novel and automated methodology for accurate FI estimation based on EIT images of recruitable regional collapse and hyperdistension during incremental positive end-expiratory pressure. It identifies details of the airway tree (AT) to generate a correction factor to the FIs providing an accurate measurement. Multi-scale image enhancement followed by identification of the AT skeleton with a robust and self-exploratory tracing algorithm is used to automatically estimate the FI. AT tracing was validated using phantom data on a ground-truth lung. Based on generated phantom EIT images, including an established reference, the proposed method results in more accurate FI estimation of 65% in all quadrants compared with the current state-of-the-art. Measured regional filling characteristics were also examined by comparing regional and global impedance variations in clinically recorded data from ten different subjects. Clinical tests on filling characteristics based on extraction of the AT from the resolution enhanced EIT images indicated a more accurate result compared with the standard EIT images.
Collapse
|
15
|
Krenn K, Tretter V, Kraft F, Ullrich R. The Renin-Angiotensin System as a Component of Biotrauma in Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:806062. [PMID: 35498160 PMCID: PMC9043684 DOI: 10.3389/fphys.2021.806062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major concern in critical care medicine with a high mortality of over 30%. Injury to the lungs is caused not only by underlying pathological conditions such as pneumonia, sepsis, or trauma, but also by ventilator-induced lung injury (VILI) resulting from high positive pressure levels and a high inspiratory oxygen fraction. Apart from mechanical factors that stress the lungs with a specific physical power and cause volutrauma and barotrauma, it is increasingly recognized that lung injury is further aggravated by biological mediators. The COVID-19 pandemic has led to increased interest in the role of the renin-angiotensin system (RAS) in the context of ARDS, as the RAS enzyme angiotensin-converting enzyme 2 serves as the primary cell entry receptor for severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. Even before this pandemic, studies have documented the involvement of the RAS in VILI and its dysregulation in clinical ARDS. In recent years, analytical tools for RAS investigation have made major advances based on the optimized precision and detail of mass spectrometry. Given that many clinical trials with pharmacological interventions in ARDS were negative, RAS-modifying drugs may represent an interesting starting point for novel therapeutic approaches. Results from animal models have highlighted the potential of RAS-modifying drugs to prevent VILI or treat ARDS. While these drugs have beneficial pulmonary effects, the best targets and application forms for intervention still have to be determined to avoid negative effects on the circulation in clinical settings.
Collapse
|
16
|
Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, Mohamed T, Madhukar BV, Uhal BD. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells 2022; 11:cells11081275. [PMID: 35455954 PMCID: PMC9025385 DOI: 10.3390/cells11081275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Premature newborns are at a higher risk for the development of respiratory distress syndrome (RDS), acute lung injury (ALI) associated with lung inflammation, disruption of alveolar structure, impaired alveolar growth, lung fibrosis, impaired lung angiogenesis, and development of bronchopulmonary dysplasia (BPD) with severe long-term developmental adverse effects. The current therapy for BPD is limited to supportive care including high-oxygen therapy and pharmacotherapy. Recognizing more feasible treatment options to improve lung health and reduce complications associated with BPD is essential for improving the overall quality of life of premature infants. There is a reduction in the resident stem cells in lungs of premature infants with BPD, which strongly suggests a critical role of stem cells in BPD pathogenesis; this warrants the exploration of the potential therapeutic use of stem-cell therapy. Stem-cell-based therapies have shown promise for the treatment of many pathological conditions including acute lung injury and BPD. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) including exosomes are promising and effective therapeutic modalities for the treatment of BPD. Treatment with MSCs and EVs may help to reduce lung inflammation, improve pulmonary architecture, attenuate pulmonary fibrosis, and increase the survival rate.
Collapse
Affiliation(s)
- Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
- Correspondence: ; Tel.: +1-517-364-2948
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Sherif Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Natasha Pillai
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Mohammed Abdulmageed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Ranga Prasanth Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
17
|
Scendoni R, Gattari D, Cingolani M. COVID-19 Pulmonary Pathology, Ventilator-Induced Lung Injury (VILI), or Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS)? Healthcare Considerations Arising From an Autopsy Case and Miny-Review. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2022; 15:2632010X221083223. [PMID: 35284825 PMCID: PMC8905213 DOI: 10.1177/2632010x221083223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 01/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) caused by coronavirus disease (COVID-19) is a serious complication that requires early recognition. Autopsy reports or biopsies of the lungs in patients with COVID-19 revealed diffuse alveolar damage (DAD) at different stages; the fibrotic phase is usually associated with long-standing severe disease. Care management of hospitalized patients is not easy, given that the risk of incurring a ventilator-induced lung injury (VILI) is high. Additionally, if the patient develops nosocomial infections, sepsis-induced ARDS should be considered in the study of the pathophysiological processes. We present an autopsy case of a hospitalized patient whose death was linked to COVID-19 infection, with the histopathological pattern of advanced pulmonary fibrosis. After prolonged use of non-invasive and invasive ventilation, the patient developed polymicrobial superinfection oh the lungs. After analyzing the individual’s clinical history and pulmonary anatomopathological findings, we consider healthcare issues that should lead to an improvement in diagnosis and to more adequate standards of care management among health professionals.
Collapse
Affiliation(s)
- Roberto Scendoni
- Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy
| | - Diego Gattari
- Anesthesia and Resuscitation Unit, ASUR Marche AV3, Macerata, Italy
| | - Mariano Cingolani
- Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy
| |
Collapse
|
18
|
Nof E, Artzy‐Schnirman A, Bhardwaj S, Sabatan H, Waisman D, Hochwald O, Gruber M, Borenstein‐Levin L, Sznitman J. Ventilation‐induced epithelial injury drives biological onset of lung trauma in vitro and is mitigated with prophylactic anti‐inflammatory therapeutics. Bioeng Transl Med 2021; 7:e10271. [PMID: 35600654 PMCID: PMC9115701 DOI: 10.1002/btm2.10271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mortality rates among patients suffering from acute respiratory failure remain perplexingly high despite the maintenance of blood oxygen homeostasis during ventilatory support. The biotrauma hypothesis advocates that mechanical forces from invasive ventilation trigger immunological mediators that spread systemically. Yet, how these forces elicit an immune response remains unclear. Here, a biomimetic in vitro three‐dimensional (3D) upper airways model allows to recapitulate lung injury and immune responses induced during invasive mechanical ventilation in neonates. Under such ventilatory support, flow‐induced stresses injure the bronchial epithelium of the intubated airways model and directly modulate epithelial cell inflammatory cytokine secretion associated with pulmonary injury. Fluorescence microscopy and biochemical analyses reveal site‐specific susceptibility to epithelial erosion in airways from jet‐flow impaction and are linked to increases in cell apoptosis and modulated secretions of cytokines IL‐6, ‐8, and ‐10. In an effort to mitigate the onset of biotrauma, prophylactic pharmacological treatment with Montelukast, a leukotriene receptor antagonist, reduces apoptosis and pro‐inflammatory signaling during invasive ventilation of the in vitro model. This 3D airway platform points to a previously overlooked origin of lung injury and showcases translational opportunities in preclinical pulmonary research toward protective therapies and improved protocols for patient care.
Collapse
Affiliation(s)
- Eliram Nof
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Arbel Artzy‐Schnirman
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Saurabh Bhardwaj
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Hadas Sabatan
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Dan Waisman
- Faculty of Medicine Technion ‐ Israel Institute of Technology Haifa Israel
- Department of Neonatology Carmel Medical Center Haifa Israel
| | - Ori Hochwald
- Faculty of Medicine Technion ‐ Israel Institute of Technology Haifa Israel
- Department of Neonatology Ruth Rappaport Children's Hospital, Rambam Healthcare Haifa Israel
| | - Maayan Gruber
- Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel
- Department of Otolaryngology‐Head and Neck Surgery Galilee Medical Center Nahariya Israel
| | - Liron Borenstein‐Levin
- Faculty of Medicine Technion ‐ Israel Institute of Technology Haifa Israel
- Department of Neonatology Ruth Rappaport Children's Hospital, Rambam Healthcare Haifa Israel
| | - Josué Sznitman
- Faculty of Biomedical Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| |
Collapse
|
19
|
Wilkins D, Lane AS, Orde SR. Audit of low tidal volume ventilation in patients with hypoxic respiratory failure in a tertiary Australian intensive care unit. Anaesth Intensive Care 2021; 49:301-308. [PMID: 34324389 DOI: 10.1177/0310057x21993132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A low tidal volume ventilation (LTVV) strategy improves outcomes in patients with acute respiratory distress syndrome (ARDS). Subsequently, a LTVV strategy has become the standard of care for patients receiving mechanical ventilation. This strategy is poorly adhered to within intensive care units (ICUs). A retrospective analysis was conducted of prescribed tidal volumes in mechanically ventilated patients with hypoxic respiratory failure between April 2013 and March 2017. Data collection included the establishment of a new data-entry box for patient height in March 2016, aimed at assisting the calculation of LTVV. We reviewed 836 ICU admissions, comprising 19,884 hours of ventilation. A total of 92% of admissions lacked patient height recording. When height was recorded, 54% of hours of ventilation were LTVV adherent. Non-LTVV hours for both groups involved higher tidal volumes (38%) rather than lower tidal volumes (8%). Non-LTVV-adherent hours were significantly (P<0.001) more likely to be associated with patient mortality than LTVV-adherent hours were. For all hours of ventilation, mean tidal volume before March 2016 was significantly higher (496 (standard deviation (SD) 101) ml, compared to after March 2016 (451 (SD 107) ml, P<0.001, 95% confidence interval for true difference in means 42 to 48 ml). However, this trend gradually reversed over time. There was a clinician preference for multiples of 50 ml. There was poor adherence to LTVV strategy in patients with hypoxic respiratory failure, which was associated with an increase in patient mortality. An electronic medical record intervention was successful in producing change, but this was not sustainable over time. Clinician ventilation prescribing habits were based on numerical simplicity rather than evidence-based practice.
Collapse
Affiliation(s)
- David Wilkins
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Andrew S Lane
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Intensive Care Unit, Nepean Hospital, Penrith, Australia
| | - Sam R Orde
- Intensive Care Unit, Nepean Hospital, Penrith, Australia
| |
Collapse
|
20
|
Shao S, Kang H, Qian Z, Wang Y, Tong Z. Effect of different levels of PEEP on mortality in ICU patients without acute respiratory distress syndrome: systematic review and meta-analysis with trial sequential analysis. J Crit Care 2021; 65:246-258. [PMID: 34274832 PMCID: PMC8253690 DOI: 10.1016/j.jcrc.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether higher positive end- expiratory pressure (PEEP) could provide a survival advantage for patients without acute respiratory distress syndrome (ARDS) compared with lower PEEP. METHODS Eligible studies were identified through searches of Embase, Cochrane Library, Web of Science, Medline, and Wanfang database from inception up to 1 June 2021. Trial sequential analysis (TSA) was used in this meta-analysis. DATA SYNTHESIS Twenty-seven randomized controlled trials (RCTs) were identified for further evaluation. Higher and lower PEEP arms included 1330 patients and 1650 patients, respectively. A mean level of 9.6±3.4 cmH2O was applied in the higher PEEP groups and 1.9±2.6 cmH2O was used in the lower PEEP groups. Higher PEEP, compared with lower PEEP, was not associated with reduction of all-cause mortality (RR 1.03; 95% CI 0.91-1.18; P =0.627), and 28-day mortality (RR 1.07 ; 95% CI 0.92-1.24; P =0.365). In terms of risk of ARDS (RR 0.43; 95% CI 0.24-0.78; P =0.005), duration of intensive care unit (MD -1.04; 95%CI-1.36 to -0.73; P < 0.00001), and oxygenation (MD 40.30; 95%CI 0.94 to 79.65; P = 0.045), higher PEEP was superior to lower PEEP. Besides, the pooled analysis showed no significant differences between groups both in the duration of mechanical ventilation (MD 0.00; 95%CI-0.13 to 0.13; P = 0.996) and hospital stay (MD -0.66; 95%CI-1.94 to 0.61; P = 0.309). More importantly, lower PEEP did not increase the risk of pneumonia, atelectasis, barotrauma, hypoxemia, or hypotension among patients compared with higher PEEP. The TSA analysis showed that the results of all-cause mortality and 28-day mortality might be false-negative results. CONCLUSIONS Our results suggest that a lower PEEP ventilation strategy was non-inferior to a higher PEEP ventilation strategy in ICU patients without ARDS, with no increased risk of all-cause mortality and 28-day mortality. Further high-quality RCTs should be performed to confirm these findings.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhenbei Qian
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingquan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
21
|
Mikolka P, Kosutova P, Balentova S, Cierny D, Kopincova J, Kolomaznik M, Adamkov M, Calkovska A, Mokra D. Early cardiac injury in acute respiratory distress syndrome: comparison of two experimental models. Physiol Res 2020; 69:S421-S432. [PMID: 33471542 DOI: 10.33549/physiolres.934591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung damage, inflammation, oedema formation, and surfactant dysfunction leading to hypoxemia. Severe ARDS can accelerate the injury of other organs, worsening the patient´s status. There is an evidence that the lung tissue injury affects the right heart function causing cor pulmonale. However, heart tissue changes associated with ARDS are still poorly known. Therefore, this study evaluated oxidative and inflammatory modifications of the heart tissue in two experimental models of ARDS induced in New Zealand rabbits by intratracheal instillation of neonatal meconium (100 mg/kg) or by repetitive lung lavages with saline (30 ml/kg). Since induction of the respiratory insufficiency, all animals were oxygen-ventilated for next 5 h. Total and differential counts of leukocytes were measured in the arterial blood, markers of myocardial injury [(troponin, creatine kinase - myocardial band (CK-MB), lactate dehydrogenase (LD)] in the plasma, and markers of inflammation [tumour necrosis factor (TNF)alpha, interleukin (IL)-6], cardiovascular risk [galectin-3 (Gal-3)], oxidative changes [thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine (3NT)], and vascular damage [receptor for advanced glycation end products (RAGE)] in the heart tissue. Apoptosis of heart cells was investigated immunohistochemically. In both ARDS models, counts of total leukocytes and neutrophils in the blood, markers of myocardial injury, inflammation, oxidative and vascular damage in the plasma and heart tissue, and heart cell apoptosis increased compared to controls. This study indicates that changes associated with ARDS may contribute to early heart damage what can potentially deteriorate the cardiac function and contribute to its failure.
Collapse
Affiliation(s)
- P Mikolka
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Banavasi H, Nguyen P, Osman H, Soubani AO. Management of ARDS - What Works and What Does Not. Am J Med Sci 2020; 362:13-23. [PMID: 34090669 PMCID: PMC7997862 DOI: 10.1016/j.amjms.2020.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a clinically and biologically heterogeneous disorder associated with a variety of disease processes that lead to acute lung injury with increased non-hydrostatic extravascular lung water, reduced compliance, and severe hypoxemia. Despite significant advances, mortality associated with this syndrome remains high. Mechanical ventilation remains the most important aspect of managing patients with ARDS. An in-depth knowledge of lung protective ventilation, optimal PEEP strategies, modes of ventilation and recruitment maneuvers are essential for ventilatory management of ARDS. Although, the management of ARDS is constantly evolving as new studies are published and guidelines being updated; we present a detailed review of the literature including the most up-to-date studies and guidelines in the management of ARDS. We believe this review is particularly helpful in the current times where more than half of the acute care hospitals lack in-house intensivists and the burden of ARDS is at large.
Collapse
Affiliation(s)
- Harsha Banavasi
- Division of Pulmonary Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Paul Nguyen
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Heba Osman
- Department of Medicine-Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ayman O Soubani
- Division of Pulmonary Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
23
|
Schmid C, Ignjatovic V, Pang B, Nie S, Williamson NA, Tingay DG, Pereira-Fantini PM. Proteomics reveals region-specific hemostatic alterations in response to mechanical ventilation in a preterm lamb model of lung injury. Thromb Res 2020; 196:466-475. [PMID: 33075590 DOI: 10.1016/j.thromres.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Preterm infants often require assisted ventilation, however ventilation when applied to the immature lung can initiate ventilator-induced lung injury (VILI). The biotrauma which underscores VILI is largely undefined, and is likely to involve vascular injury responses, including hemostasis. We aimed to use a ventilated, preterm lamb model to: (1) characterize regional alterations in hemostatic mediators within the lung and (2) assess the functional impact of protein alterations on hemostasis by analyzing temporal thrombin generation. MATERIALS AND METHODS Preterm lambs delivered at 124 to 127 days gestation received 90 min of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, VT = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and gravity-dependent regions, and Orbitrap-mass spectrometry and KEGG were used to identify and map regional alterations in hemostasis pathway members. Temporal alterations in plasma thrombin generation were assessed. RESULTS Ventilation was distributed towards the nondependent lung. Significant changes in hemostatic protein abundance, were detected at a two-fold higher rate in the nondependent lung when compared with the gravity-dependent lung. Seven proteins were uniquely altered in non-dependent lung (SERPINA1, MYL12A, RAP1B, RHOA, ITGB1, A2M, GNAI2), compared with a single proteins in gravity-dependent lung (COL1A2). Four proteins were altered in both regions (VTN, FGG, FGA, and ACTB). Tissue protein alterations were mirrored by plasma hypocoagulability at 90-minutes of ventilation. CONCLUSIONS We observed regionally specific, hemostatic alterations within the preterm lung together with disturbed fibrinolysis following a short period of mechanical ventilation.
Collapse
Affiliation(s)
- Christine Schmid
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Haematology Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Boyuan Pang
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Australia
| | | | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Neonatology, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| |
Collapse
|
24
|
Suzumura EA, Zazula AD, Moriya HT, Fais CQA, Alvarado AL, Cavalcanti AB, Rodrigues RG. Challenges for the development of alternative low-cost ventilators during COVID-19 pandemic in Brazil. Rev Bras Ter Intensiva 2020; 32:444-457. [PMID: 33053036 PMCID: PMC7595729 DOI: 10.5935/0103-507x.20200075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic has brought concerns to managers, healthcare professionals, and the general population related to the potential mechanical ventilators’ shortage for severely ill patients. In Brazil, there are several initiatives aimed at producing alternative ventilators to cover this gap. To assist the teams that work in these initiatives, we provide a discussion of some basic concepts on physiology and respiratory mechanics, commonly used mechanical ventilation terms, the differences between triggering and cycling, the basic ventilation modes and other relevant aspects, such as mechanisms of ventilator-induced lung injury, respiratory drive, airway heating and humidification, cross-contamination risks, and aerosol dissemination. After the prototype development phase, preclinical bench-tests and animal model trials are needed to determine the safety and performance of the ventilator, following the minimum technical requirements. Next, it is mandatory going through the regulatory procedures as required by the Brazilian Health Regulatory Agency (Agência Nacional de Vigilância Sanitária - ANVISA). The manufacturing company should be appropriately registered by ANVISA, which also must be notified about the conduction of clinical trials, following the research protocol approval by the Research Ethics Committee. The registration requisition of the ventilator with ANVISA should include a dossier containing the information described in this paper, which is not intended to cover all related matters but to provide guidance on the required procedures.
Collapse
Affiliation(s)
- Erica Aranha Suzumura
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo - São Paulo (SP), Brasil
| | - Ana Denise Zazula
- Faculdade de Medicina, Pontifícia Universidade Católica do Paraná - Curitiba (PR), Brasil
| | - Henrique Takachi Moriya
- Laboratório de Engenharia Biomédica, Escola Politécnica, Universidade de São Paulo - São Paulo (SP), Brasil
| | - Cristina Quemelo Adami Fais
- Gerência de Tecnologia em Equipamentos, Gerência-Geral de Tecnologia em Produtos para a Saúde, 3ª Diretoria, Agência Nacional de Vigilância Sanitária - Brasília (DF), Brasil
| | - Alembert Lino Alvarado
- Laboratório de Engenharia Biomédica, Escola Politécnica, Universidade de São Paulo - São Paulo (SP), Brasil
| | | | - Ricardo Goulart Rodrigues
- Serviço de Terapia Intensiva, Hospital do Servidor Público Estadual "Francisco Morato de Oliveira" - São Paulo (SP), Brasil
| |
Collapse
|
25
|
Wang J, Zhu L, Li Y, Yin C, Hou Z, Wang Q. The Potential Role of Lung-Protective Ventilation in Preventing Postoperative Delirium in Elderly Patients Undergoing Prone Spinal Surgery: A Preliminary Study. Med Sci Monit 2020; 26:e926526. [PMID: 33011734 PMCID: PMC7542993 DOI: 10.12659/msm.926526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Postoperative delirium (POD) is a frequent complication in elderly patients, usually occurring within a few days after surgery. This study investigated the effect of lung-protective ventilation (LPV) on POD in elderly patients undergoing spinal surgery and the mechanism by which LPV suppresses POD. Material/Methods Seventy-one patients aged ≥65 years were randomized to receive LPV or conventional mechanical ventilation (MV), consisting of intermittent positive pressure ventilation following induction of anesthesia. The tidal volume in patients who received MV was 8 ml/kg predicted body weight (PBW), and the ventilation frequency was 12 times/min. The tidal volume in patients who received LPV was 6 ml/kg PBW, the positive end-expiratory pressure was 5 cmH2O, and the ventilation frequency was 15 times/min, with a lung recruitment maneuver performed every 30 min. Blood samples were collected immediately before anesthesia induction (T0), 10 min (T1) and 60 min (T2) after turning over, immediately after the operation (T3), and 15 min after extubation (T4) for blood gas analysis. Simultaneous cerebral oxygen saturation (rSO2) and cerebral desaturation were recorded. Preoperative and postoperative serum concentrations of interleukin (IL)-6, IL-10 and glial fibrillary acidic protein (GFAP) were measured by ELISA. POD was assessed by nursing delirium screening score. Results Compared with the MV group, pH was lower and PaCO2 higher in the LPV group at T2. In addition PaO2, SaO2, and PaO2/FiO2 were higher at T1, and T4, and rSO2 was higher at T3, and T4 in the LPV than in the MV group (P<0.05 each). Postoperative serum GFAP and IL-6 were lower and IL-10 higher in the LPV group. The incidences of cerebral desaturation and POD were significantly lower in the LPV group (P<0.05). Conclusions LPV may reduce POD in elderly patients undergoing spinal surgery by inhibiting inflammation and improving cerebral oxygen metabolism.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Lian Zhu
- Department of Emergency Center of Trauma, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Zhiyong Hou
- Department of Emergency Center of Trauma, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
26
|
Marraro GA, Spada C. Consideration of the respiratory support strategy of severe acute respiratory failure caused by SARS-CoV-2 infection in children. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020. [PMID: 32204751 DOI: 10.7499/j.issn.1008-8830.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent ongoing outbreak of severe pneumonia associated with a novel coronavirus (SARS-CoV-2), currently of unknown origin, creates a world emergency that has put global public health institutions on high alert. At present there is limited clinical information of the SARS-CoV-2 and there is no specific treatment recommended, although technical guidances and suggestions have been developed and will continue to be updated as additional information becomes available. Preventive treatment has an important role to control and avoid the spread of severe respiratory disease, but often is difficult to obtain and sometimes cannot be effective to reduce the risk of deterioration of the underlining lung pathology. In order to define an effective and safe treatment for SARS-CoV-2-associated disease, we provide considerations on the actual treatments, on how to avoid complications and the undesirable side effects related to them and to select and apply earlier the most appropriate treatment. Approaching to treat severe respiratory disease in infants and children, the risks related to the development of atelectasis starting invasive or non-invasive ventilation support and the risk of oxygen toxicity must be taken into serious consideration. For an appropriate and effective approach to treat severe pediatric respiratory diseases, two main different strategies can be proposed according to the stage and severity of the patient conditions: patient in the initial phase and with non-severe lung pathology and patient with severe initial respiratory impairment and/or with delay in arrival to observation. The final outcome is strictly connected with the ability to apply an appropriate treatment early and to reduce all the complications that can arise during the intensive care admission.
Collapse
|
27
|
Cheng CD, Lin WL, Chen YW, Cherng CH. Effects of lung protective ventilation on postoperative pulmonary outcomes for prolonged oral cancer combined with free flap surgery. Medicine (Baltimore) 2020; 99:e18999. [PMID: 32000439 PMCID: PMC7004797 DOI: 10.1097/md.0000000000018999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The intraoperative lung protective ventilation with low tidal volume, positive end expiratory pressure (PEEP) and intermittent lungs recruitment was found to decrease postoperative pulmonary complications. In this retrospective medical records study, we investigated the effects of lung protective ventilation on postoperative pulmonary outcomes among the patients received prolonged oral cancer combined with free flap surgery.We collected the medical records of the patients received oral cancer surgery with the operation time more than 12 hours from January 2011 to December 2015. We recordedFifty nine cases were included. Thirty cases received the lung protective ventilation and 29 cases received conventional ventilation. Compared to the patients received conventional ventilation, the patients received intraoperative lung protective ventilation showedIn conclusion, for the prolonged oral cancer combined with free flap surgery, the intraoperative lung protective ventilation improves postoperative pulmonary outcomes and decreases the duration of ICU stay.
Collapse
Affiliation(s)
| | - Wei-Lin Lin
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | | | - Chen-Hwan Cherng
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
28
|
Zhang P, Wu L, Shi X, Zhou H, Liu M, Chen Y, Lv X. Positive End-Expiratory Pressure During Anesthesia for Prevention of Postoperative Pulmonary Complications: A Meta-analysis With Trial Sequential Analysis of Randomized Controlled Trials. Anesth Analg 2019; 130:879-889. [PMID: 31567322 DOI: 10.1213/ane.0000000000004421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Whether intraoperative positive end-expiratory pressure (PEEP) can reduce the risk of postoperative pulmonary complications remains controversial. We performed a systematic review of currently available literature to investigate whether intraoperative PEEP decreases pulmonary complications in anesthetized patients undergoing surgery. METHODS We searched PubMed, Embase, and the Cochrane Library to identify randomized controlled trials (RCTs) that compared intraoperative PEEP versus zero PEEP (ZEEP) for postoperative pulmonary complications in adults. The prespecified primary outcome was postoperative pulmonary atelectasis. RESULTS Fourteen RCTs enrolling 1238 patients met the inclusion criteria. Meta-analysis using a random-effects model showed a decrease in postoperative atelectasis (relative risk [RR], 0.51; 95% confidence interval [CI], 0.35-0.76; trial sequential analyses [TSA]-adjusted CI, 0.10-2.55) and postoperative pneumonia (RR, 0.48; 95% CI, 0.27-0.84; TSA-adjusted CI, 0.05-4.86) in patients receiving PEEP ventilation. However, TSA showed that the cumulative Z-curve of 2 outcomes crossed the conventional boundary but did not cross the trial sequential monitoring boundary, indicating a possible false-positive result. We observed no effect of PEEP versus ZEEP ventilation on postoperative mortality (RR, 1.78; 95% CI, 0.55-5.70). CONCLUSIONS The evidence that intraoperative PEEP reduces postoperative pulmonary complications is suggestive but too unreliable to allow definitive conclusions to be drawn.
Collapse
Affiliation(s)
- Pengcheng Zhang
- From the Department of Anesthesiology, The First Hospital of Anhui Medical University, Hefei, China
| | - Lingmin Wu
- From the Department of Anesthesiology, The First Hospital of Anhui Medical University, Hefei, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Lv
- From the Department of Anesthesiology, The First Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
An X, Sun X, Yang X, Liu D, Hou Y, Chen H, Wu J. Oxidative stress promotes ventilator-induced lung injury through activating NLRP3 inflammasome and TRPM2 channel. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3448-3455. [PMID: 31411068 DOI: 10.1080/21691401.2019.1652631] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaona An
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Anesthesiology, Zibo Center Hospital of Shandong, Zibo, Shandong, China
| | - Xiaotong Sun
- Department of Anesthesiology, Weifang Medical University, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang, Shandong, China
| | - Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dejie Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yonghao Hou
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongli Chen
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Kang H, Yang H, Tong Z. Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation: a systematic review and meta-analysis. J Crit Care 2019; 50:1-10. [PMID: 30453220 PMCID: PMC10013696 DOI: 10.1016/j.jcrc.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To determine if recruitment manoeuvres (RMs) would decrease 28-day mortality of patients with acute respiratory distress syndrome (ARDS) compared with standard care. MATERIALS AND METHODS Relevant randomized controlled trials (RCTs) published prior to April 26, 2018 were systematically searched. The primary outcome was mortality. The secondary outcomes were oxygenation, barotrauma or pneumothorax, the need for rescue therapies. Data were pooled using the random effects model. And the quality of evidence was assessed by the GRADE system. RESULTS Of 3180 identified studies, 15 were eligibly included in our analysis (N = 2755 participants). In the primary outcome, RMs were not associated with reducing 28-day mortality (RR 0.90; 95% CI 0.74-1.09), ICU mortality (RR 0.92; 95% CI 0.74-1.1), and the in-hospital mortaliy (RR 1.02; 95% CI 0.93-1.12). In the secondary outcomes, RMs could improve oxygenation (MD 37.85; 95% CI 11.08-64.61), the rates of barotrauma (RR 1.42; 95% CI 0.83-2.42) and the need for rescue therapies (RR 0.69; 95% CI 0.42-1.12) did not show any difference in the ARDS patients with RMs. CONCLUSIONS Earlier meta-analyses found decreased mortality with RMs, in the contrary, our results indicate that RMs could improve oxygenation without detrimental effects, but it does not appear to reduce mortality.
Collapse
Affiliation(s)
- Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
31
|
Ju YN, Gong J, Wang XT, Zhu JL, Gao W. Endothelial Colony-forming Cells Attenuate Ventilator-induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Arch Med Res 2018; 49:172-181. [PMID: 30119979 DOI: 10.1016/j.arcmed.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). AIM OF THE STUDY This study investigated whether endothelial colony-forming cells (ECFC) could inhibit VILI in a rat model of acute respiratory distress syndrome (ARDS). METHODS Male Wistar rats received the femoral artery and venous cannulation (sham group) or were injected intravenously with 500 μg/kg lipopolysaccharide to induce ARDS. The ARDS rats were subjected to MV. Immediately after the MV, the rats were randomized and injected intravenously with vehicle (ARDS group) or ECFC (ECFC group, n = 8 per group). The oxygen index, lung wet-to-dry weight (W/D) ratios, cytokine protein levels in serum or bronchoalveolar lavage fluid (BALF), neutrophil counts, neutrophil elastase and total protein levels in BALF, histology and cell apoptosis in the lung were detected. The protein levels of endothelin-1, inducible nitric oxide synthase (iNOS), endothelial NOS, matrix metalloproteinase (MMP)-9, Bax, Bcl-2, gelsolin, cleaved caspase-3, phosphorylated NF-κBp65 and myosin light chain (MLC) in the lung were analyzed. RESULTS Compared with the ARDS group, treatment with ECFC significantly increased the oxygen index, and decreased the lung W/D ratios and injury, and the numbers of apoptotic cells in the lungs, neutrophils counts, total protein and elastase concentrations in BALF of rats. ECFC treatment significantly minimized the protein levels of pro-inflammatory cytokines in BALF and serum, but increased interleukin 10 in rats. Furthermore, ECFC treatment significantly reduced the protein levels of endothelin-1, iNOS, Bax, Gelsolin, MMP-9, cleaved caspase-3, phosphorylated NF-κBp65 and MLC, but enhanced eNOS and Bcl-2 in the lungs of rats. CONCLUSIONS Therefore, ECFC attenuated inflammation, cell apoptosis and VILI in ARDS rats.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Gong
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Li Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
32
|
Blankman P, Shono A, Hermans BJM, Wesselius T, Hasan D, Gommers D. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients. Br J Anaesth 2018; 116:862-9. [PMID: 27199318 PMCID: PMC4872863 DOI: 10.1093/bja/aew116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/26/2023] Open
Abstract
Background Homogeneous ventilation is important for prevention of ventilator-induced lung injury. Electrical impedance tomography (EIT) has been used to identify optimal PEEP by detection of homogenous ventilation in non-dependent and dependent lung regions. We aimed to compare the ability of volumetric capnography and EIT in detecting homogenous ventilation between these lung regions. Methods Fifteen mechanically-ventilated patients after cardiac surgery were studied. Ventilator settings were adjusted to volume-controlled mode with a fixed tidal volume (Vt) of 6–8 ml kg−1 predicted body weight. Different PEEP levels were applied (14 to 0 cm H2O, in steps of 2 cm H2O) and blood gases, Vcap and EIT were measured. Results Tidal impedance variation of the non-dependent region was highest at 6 cm H2O PEEP, and decreased significantly at 14 cm H2O PEEP indicating decrease in the fraction of Vt in this region. At 12 cm H2O PEEP, homogenous ventilation was seen between both lung regions. Bohr and Enghoff dead space calculations decreased from a PEEP of 10 cm H2O. Alveolar dead space divided by alveolar Vt decreased at PEEP levels ≤6 cm H2O. The normalized slope of phase III significantly changed at PEEP levels ≤4 cm H2O. Airway dead space was higher at higher PEEP levels and decreased at the lower PEEP levels. Conclusions In postoperative cardiac patients, calculated dead space agreed well with EIT to detect the optimal PEEP for an equal distribution of inspired volume, amongst non-dependent and dependent lung regions. Airway dead space reduces at decreasing PEEP levels.
Collapse
Affiliation(s)
- P Blankman
- Department of Adult Intensive Care, Erasmus MC, Room H623, 's Gravendijkwal 230, Rotterdam 3015 CE, The Netherlands
| | - A Shono
- Department of Adult Intensive Care, Erasmus MC, Room H623, 's Gravendijkwal 230, Rotterdam 3015 CE, The Netherlands
| | - B J M Hermans
- Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, The Netherlands
| | - T Wesselius
- Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, The Netherlands
| | - D Hasan
- Department of Adult Intensive Care, Erasmus MC, Room H623, 's Gravendijkwal 230, Rotterdam 3015 CE, The Netherlands Institute for Immunotherapy, Duderstadt, Germany
| | - D Gommers
- Department of Adult Intensive Care, Erasmus MC, Room H623, 's Gravendijkwal 230, Rotterdam 3015 CE, The Netherlands
| |
Collapse
|
33
|
Bialka S, Copik M, Rybczyk K, Owczarek A, Jedrusik E, Czyzewski D, Filipowski M, Rivas E, Ruetzler K, Szarpak L, Misiolek H. Assessment of changes of regional ventilation distribution in the lung tissue depending on the driving pressure applied during high frequency jet ventilation. BMC Anesthesiol 2018; 18:101. [PMID: 30064377 PMCID: PMC6069840 DOI: 10.1186/s12871-018-0552-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
Background Electrical impedance tomography (EIT) is a tool to monitor regional ventilation distribution in patient’s lungs under general anesthesia. The objective of this study was to assess the regional ventilation distribution using different driving pressures (DP) during high frequency jet ventilation (HFJV). Methods Prospective, observational, cross-over study. Patients undergoing rigid bronchoscopy were ventilated HFJV with DP 1.5 and 2.5 atm. Hemodynamic and ventilation parameters, as well as ventilation in different regions of the lungs in percentage of total ventilation, assessed by EIT, were recorded. Results Thirty-six patients scheduled for elective rigid bronchoscopy. The final analysis included thirty patients. There was no significant difference in systolic, diastolic and mean arterial blood pressure, heart rate, and peripheral saturation between the two groups. Peak inspiratory pressure, mean inspiratory pressure, tidal volume, and minute volume significantly increased in the second, compared to the first intervention group. Furthermore, there were no statistically significant differences between each time profiles in all ROI regions in EIT. Conclusions In our study intraoperative EIT was an effective method of functional monitoring of the lungs during HFJV for rigid bronchoscopy procedure. Lower driving pressure was as effective in providing sufficient ventilation distribution through the lungs as the higher driving pressure but characterized by lower airway pressure. Trial registration The study was registered on ClinicalTrials.gov under no. NCT02997072.
Collapse
Affiliation(s)
- Szymon Bialka
- Chair and Department of Anesthesiology, Intensive Therapy and Emergency Medicine, Medical University of Silesia, Katowice, Poland
| | - Maja Copik
- Chair and Department of Anesthesiology, Intensive Therapy and Emergency Medicine, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Rybczyk
- Chair and Department of Anesthesiology, Intensive Therapy and Emergency Medicine, Medical University of Silesia, Katowice, Poland
| | - Aleksander Owczarek
- Department of Statistics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Jedrusik
- Department of Statistics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Damian Czyzewski
- Chair and Department of Chest Surgery, Medical University of Silesia, Katowice, Poland
| | - Marek Filipowski
- Chair and Department of Chest Surgery, Medical University of Silesia, Katowice, Poland
| | - Eva Rivas
- Department of Outcomes Research, Cleveland Clinic, Cleveland, OH, USA.,Hospital Clinic of Barcelona, IDIBPAS, University of Barcelona, Barcelona, Spain
| | - Kurt Ruetzler
- Department of Outcomes Research, Cleveland Clinic, Cleveland, OH, USA
| | - Lukasz Szarpak
- Lazarski University, 43 Swieradowska Str, 02-662, Warsaw, Poland.
| | - Hanna Misiolek
- Chair and Department of Anesthesiology, Intensive Therapy and Emergency Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
34
|
Sundaram PK, Arora P, Ramalingam J, D'Costa J. Is Mechanical Ventilation Mandatory for the Management of Severe Head Injury? Outcome in 53 Medically Managed Severe Head Injury Patients, Without Ventilatory Support: A Prospective Study. Asian J Neurosurg 2018; 13:18-22. [PMID: 29492115 PMCID: PMC5820882 DOI: 10.4103/ajns.ajns_221_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Severe head injury (SHI) is a major cause of mortality and morbidity across the world. The current paradigm of management of SHI involves admission in Intensive Care Unit (ICU), mechanical ventilation (MV), and intracranial pressure (ICP) monitoring. Such resources are expensive and often unavailable in the developing world. Objective: MV or ICP monitoring was unavailable for our patients due to the scarcity of resources. Hence, other alternatives were considered to prevent secondary brain injury due to hypoxia. This study assessed the outcome after SHI when managed with an early tracheostomy (ET). Methods: This prospective observational study over 13 months included all medically managed SHI patients without MV or ICP monitoring. The Glasgow outcome scale (GOS) was assessed at discharge and compared with published historical data reported after treatment in an ICU environment. Results: Our study included 53 unoperated patients with SHI among 1862 patients with traumatic brain injury. Overall mortality was 24.5% (13/53) and compared favorably with reported mortality of 25%–40% reported from centers using intensive management. At discharge, the favorable outcome with a GOS of 4 or 5 was seen in 39.6% (21/53). Conclusion: With ET, the results of management of SHI in our patients were comparable to results reported after MV in an ICU environment. Hence, ET is a cost-effective alternative when resources are scarce. MV should be used if hypoxia persists after tracheostomy. Although MV effectively prevents hypoxia, it has complications. We conclude that although MV was unavailable for our patients, they did not have the complications associated with it.
Collapse
Affiliation(s)
| | - Pankaj Arora
- Department of Neurosurgery, Goa Medical College, Bambolim, Goa, India
| | | | - Jorson D'Costa
- Department of Neurosurgery, Goa Medical College, Bambolim, Goa, India
| |
Collapse
|
35
|
Desflurane Attenuates Ventilator-Induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7507314. [PMID: 29670906 PMCID: PMC5833253 DOI: 10.1155/2018/7507314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/25/2017] [Indexed: 11/18/2022]
Abstract
Ventilator-induced lung injury aggravates the existing lung injury. This study investigated the effect of desflurane on VILI in a rat model of acute respiratory distress syndrome. Forty-eight rats were randomized into a sham (S) group, control (C) group, lipopolysaccharide/ventilation (LV) group, lipopolysaccharide/ventilation/desflurane (LVD) group, or lipopolysaccharide/low ventilation with and without desflurane (LLV and LLVD) groups. Rats in the S group received anesthesia only. Rats in the LV and LVD groups received lipopolysaccharide and were ventilated with a high tidal volume. Rats in LLV and LLVD groups were treated as the LV and LVD groups and ventilated with a low tidal volume. PaO2/FiO2, lung wet-to-dry weight ratios, concentrations of inflammatory factors in serum and BALF, histopathologic analysis of lung tissue, and levels of nuclear factor- (NF-) κB protein in lung tissue were investigated. PaO2/FiO2 was significantly increased by desflurane. Total cell count, macrophages, and neutrophils in BALF and proinflammatory factors in BALF and serum were significantly decreased by desflurane, while IL-10 was increased. The histopathological changes and levels of NF-κB protein in lung tissue were decreased by desflurane. The results indicated that desflurane ameliorated VILI in a rat model of acute respiratory distress syndrome.
Collapse
|
36
|
Turon M, Fernández-Gonzalo S, de Haro C, Magrans R, López-Aguilar J, Blanch L. Mechanisms involved in brain dysfunction in mechanically ventilated critically ill patients: implications and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:30. [PMID: 29430447 DOI: 10.21037/atm.2017.12.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Critical illness may lead to significant long-term neurological morbidity and patients frequently develop neuropsychological disturbances including acute delirium or memory impairment after intensive care unit (ICU) discharge. Mechanical ventilation (MV) is a risk factor to the development of adverse neurocognitive outcomes. Patients undergoing MV for long periods present neurologic impairment with memory and cognitive alteration. Delirium is considered an acute form of brain dysfunction and its prevalence rises in mechanically ventilated patients. Delirium duration is an independent predictor of mortality, ventilation time, ICU length of stay and short- and long-term cognitive impairment in the ICU survivors. Although, neurocognitive sequelae tend to improve after hospital discharge, residual deficits persist even 6 years after ICU stay. ICU-related neurocognitive impairments occurred in many cognitive domains and are particularly pronounced with regard to memory, executive functions, attentional functions, and processing speed. These sequelae have an important impact on patients' lives and ICU survivors often require institutionalization and hospitalization. Experimental studies have served to explore the possible mechanisms or pathways involved in this lung to brain interaction. This communication can be mediated via a complex web of signaling events involving neural, inflammatory, immunologic and neuroendocrine pathways. MV can affect respiratory networks and the application of protective ventilation strategies is mandatory in order to prevent adverse effects. Therefore, strategies focused to minimize lung stretch may improve outcomes, avoiding failure of distal organ, including the brain. Long-term neurocognitive impairments experienced by critically ill survivors may be mitigated by early interventions, combining cognitive and physical therapies. Inpatient rehabilitation interventions in ICU promise to improve outcomes in critically ill patients. The cross-talk between lung and brain, involving specific pathways during critical illness deserves further efforts to evaluate, prevent and improve cognitive alterations after ICU admission, and highlights the crucial importance of tailoring MV to prevent adverse outcomes.
Collapse
Affiliation(s)
- Marc Turon
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Sol Fernández-Gonzalo
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria de Haro
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Rudys Magrans
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina López-Aguilar
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Blanch
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation. Med Sci (Basel) 2017; 5:medsci5040021. [PMID: 29099037 PMCID: PMC5753650 DOI: 10.3390/medsci5040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/30/2023] Open
Abstract
Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.
Collapse
|
38
|
Prescott HC, Sjoding MW, Langa KM, Iwashyna TJ, McAuley DF. Late mortality after acute hypoxic respiratory failure. Thorax 2017; 73:thoraxjnl-2017-210109. [PMID: 28780503 PMCID: PMC5799038 DOI: 10.1136/thoraxjnl-2017-210109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acute hypoxic respiratory failure (AHRF) is associated with significant acute mortality. It is unclear whether later mortality is predominantly driven by pre-existing comorbid disease, the acute inciting event or is the result of AHRF itself. METHODS Observational cohort study of elderly US Health and Retirement Study (HRS) participants in fee-for-service Medicare (1998-2012). Patients hospitalised with AHRF were matched 1:1 to otherwise similar adults who were not currently hospitalised and separately to patients hospitalised with acute inciting events (pneumonia, non-pulmonary infection, aspiration, trauma, pancreatitis) that may result in AHRF, here termed at-risk hospitalisations. The primary outcome was late mortality-death in the 31 days to 2 years following hospital admission. RESULTS Among 15 075 HRS participants, we identified 1268 AHRF and 13 117 at-risk hospitalisations. AHRF hospitalisations were matched to 1157 non-hospitalised adults and 1017 at-risk hospitalisations. Among patients who survived at least 30 days, AHRF was associated with a 24.4% (95%CI 19.9% to 28.9%, p<0.001) absolute increase in late mortality relative to adults not currently hospitalised and a 6.7% (95%CI 1.7% to 11.7%, p=0.01) increase relative to adults hospitalised with acute inciting event(s) alone. At-risk hospitalisation explained 71.2% of the increased odds of late mortality, whereas the development of AHRF itself explained 28.8%. Risk for death was equivalent to at-risk hospitalisation beyond 90 days, but remained elevated for more than 1 year compared with non-hospitalised controls. CONCLUSIONS In this national sample of older Americans, approximately one in four survivors with AHRF had a late death not explained by pre-AHRF health status. More than 70% of this increased risk was associated with hospitalisation for acute inciting events, while 30% was associated with hypoxemic respiratory failure.
Collapse
Affiliation(s)
- Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Institute for Healthcare Policy & Innovation, University of Michigan, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, HSR&D Center of Innovation, Ann Arbor, Michigan, USA
| | - Michael W Sjoding
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Institute for Healthcare Policy & Innovation, University of Michigan, Ann Arbor, Michigan, USA
| | - Kenneth M Langa
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Institute for Healthcare Policy & Innovation, University of Michigan, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, HSR&D Center of Innovation, Ann Arbor, Michigan, USA
- Institute for Social Research, Ann Arbor, Michigan, USA
| | - Theodore J Iwashyna
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Institute for Healthcare Policy & Innovation, University of Michigan, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, HSR&D Center of Innovation, Ann Arbor, Michigan, USA
- Institute for Social Research, Ann Arbor, Michigan, USA
| | - Daniel F McAuley
- Department of Dentistry, and Biomedical Sciences, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
39
|
Gao W, Ju YN. Budesonide Attenuates Ventilator-induced Lung Injury in a Rat Model of Inflammatory Acute Respiratory Distress Syndrome. Arch Med Res 2017; 47:275-84. [PMID: 27664487 DOI: 10.1016/j.arcmed.2016.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Patients with acute respiratory distress syndrome (ARDS) are particularly susceptible to ventilator-induced lung injury (VILI). This study investigated the effect of budesonide on VILI in a rat model of inflammatory ARDS. METHODS Forty eight rats were randomized into three groups (n = 16 each): sham group (S), endotoxin/ventilation group (LV), endotoxin/ventilation/budesonide group (LVB). Rats in the S group received anesthesia only. Rats in the LV and LVB groups received endotoxin to simulate ARDS and were mechanically ventilated for 4 h (tidal volume 30 mL/kg). Rats in the LVB group received budesonide 1 mg, and rats in the LV group received saline in airway. PaO2/FiO2, lung wet-to-dry weight ratios, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF), histopathologic analysis of lung tissue, and survival were examined. RESULTS PaO2/FiO2 was significantly increased in rats in the LVB group compared to the LV group. Total cell count, macrophages, and neutrophils in BALF, and levels of intercellular adhesion molecule (ICAM)-1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-8 in BALF and serum were significantly decreased in rats in the LVB group compared to the LV group, whereas levels of IL-10 in BALF and serum were significantly increased. Histopathological changes of lung injury and apoptosis were reduced, and survival was increased in rats in the LVB group compared to the LV group. CONCLUSIONS Budesonide ameliorated VILI in a rat model of inflammatory ARDS.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ying-Nan Ju
- Department of Intensive Care Unit, The Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
40
|
Lung-Protective Ventilation Strategies for Relief from Ventilator-Associated Lung Injury in Patients Undergoing Craniotomy: A Bicenter Randomized, Parallel, and Controlled Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6501248. [PMID: 28757912 PMCID: PMC5516714 DOI: 10.1155/2017/6501248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022]
Abstract
Current evidence indicates that conventional mechanical ventilation often leads to lung inflammatory response and oxidative stress, while lung-protective ventilation (LPV) minimizes the risk of ventilator-associated lung injury (VALI). This study evaluated the effects of LPV on relief of pulmonary injury, inflammatory response, and oxidative stress among patients undergoing craniotomy. Sixty patients undergoing craniotomy received either conventional mechanical (12 mL/kg tidal volume [VT] and 0 cm H2O positive end-expiratory pressure [PEEP]; CV group) or protective lung (6 mL/kg VT and 10 cm H2O PEEP; PV group) ventilation. Hemodynamic variables, lung function indexes, and inflammatory and oxidative stress markers were assessed. The PV group exhibited greater dynamic lung compliance and lower respiratory index than the CV group during surgery (P < 0.05). The PV group exhibited higher plasma interleukin- (IL-) 10 levels and lower plasma malondialdehyde and nitric oxide and bronchoalveolar lavage fluid, IL-6, IL-8, tumor necrosis factor-α, IL-10, malondialdehyde, nitric oxide, and superoxide dismutase levels (P < 0.05) than the CV group. There were no significant differences in hemodynamic variables, blood loss, liquid input, urine output, or duration of mechanical ventilation between the two groups (P > 0.05). Patients receiving LPV during craniotomy exhibited low perioperative inflammatory response, oxidative stress, and VALI.
Collapse
|
41
|
Qamar A, Bull JL. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application. Comput Methods Biomech Biomed Engin 2017; 20:1195-1211. [DOI: 10.1080/10255842.2017.1340467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Adnan Qamar
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph L. Bull
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Takaki M, Ichikado K, Kawamura K, Gushima Y, Suga M. The negative effect of initial high-dose methylprednisolone and tapering regimen for acute respiratory distress syndrome: a retrospective propensity matched cohort study. Crit Care 2017; 21:135. [PMID: 28592332 PMCID: PMC5463340 DOI: 10.1186/s13054-017-1723-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 05/22/2017] [Indexed: 11/20/2022] Open
Abstract
Background The efficacy of corticosteroid use in acute respiratory distress syndrome (ARDS) remains controversial. Generally, short-term high-dose corticosteroid therapy is considered to be ineffective in ARDS. On the other hand, low-dose, long-term use of corticosteroids has been reported to be effective since they provide continued inhibition of the systemic inflammatory response syndrome (SIRS) that accompanies ARDS. Thus far, no reports have been published on the efficacy of initiating treatment with a high-dose corticosteroid regimen with tapering. Methods We conducted a retrospective observational study involving 186 patients treated at a teaching hospital (68% had sepsis, pneumonia, or aspiration pneumonia). ARDS was diagnosed according to the Berlin definition. Patients were divided into a high-dose (n = 21) or low-dose corticosteroid group (n = 165) to compare the effectiveness of a down-titration regimen. The primary medical team chose which treatment a patient would receive. We were careful to conduct a differential diagnosis of interstitial pneumonia (e.g., acute eosinophilic pneumonia) since corticosteroid treatment has been proven effective in that patient population. The primary outcome was the 60-day mortality rate. The secondary outcome was the number of ventilator-free days (VFD). Results Those started on a high-dose regimen had a significantly higher 60-day mortality rate (P = 0.031) with significantly fewer VFD (P = 0.021). Propensity scores were used to adjust patient backgrounds in a variable analysis that also showed the high-dose regimen was a factor in decreasing VFD (OR, 95.63; 95% CI, 1.74–5271.07; P = 0.026) and worsening the 60-day mortality rate (OR, 2.54; 95% CI, 0.92–7.02; P = 0.072). Conclusions A tapering regimen after high-dose corticosteroids is likely to increase ventilator dependency and might aggravate the prognosis of patients with ARDS diagnosed according to the Berlin definition.
Collapse
Affiliation(s)
- Makoto Takaki
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, 5-3-1 Chikami Minami-ku, Kumamoto city, Kumamoto, 861-4193, Japan.
| | - Kazuya Ichikado
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, 5-3-1 Chikami Minami-ku, Kumamoto city, Kumamoto, 861-4193, Japan
| | - Kodai Kawamura
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, 5-3-1 Chikami Minami-ku, Kumamoto city, Kumamoto, 861-4193, Japan
| | - Yasuhiro Gushima
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, 5-3-1 Chikami Minami-ku, Kumamoto city, Kumamoto, 861-4193, Japan
| | - Moritaka Suga
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, 5-3-1 Chikami Minami-ku, Kumamoto city, Kumamoto, 861-4193, Japan
| |
Collapse
|
43
|
Morini F, Capolupo I, van Weteringen W, Reiss I. Ventilation modalities in infants with congenital diaphragmatic hernia. Semin Pediatr Surg 2017. [PMID: 28641754 DOI: 10.1053/j.sempedsurg.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neonates with congenital diaphragmatic hernia are among the more complex patients to support with mechanical ventilation. They have particular features that add to the difficulties already present in the neonatal patient. A ventilation strategy tailored to the patient's underlying physiology rather than mode of ventilation is a crucial issue for clinicians treating these delicate patients.
Collapse
Affiliation(s)
- Francesco Morini
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Irma Capolupo
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Willem van Weteringen
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Irwin Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Ueno T. The Roles of Continuous Renal Replacement Therapy in Septic Acute Kidney Injury. Artif Organs 2017; 41:667-672. [PMID: 28548696 DOI: 10.1111/aor.12941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 12/16/2022]
Abstract
Despite hundreds of clinical and basic studies that have led to a better mechanistic understanding of sepsis, the number of cases with sepsis in the United States is still rising. Sepsis is a common cause of acute kidney injury (AKI) and may explain long-term complications and mortality. In the current article, a new therapeutic concept using continuous renal replacement therapy to prevent and manage long-term sequelae in septic AKI is described.
Collapse
Affiliation(s)
- Takuya Ueno
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Critical Care and Emergency Medicine, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| |
Collapse
|
45
|
de Wijs-Meijler DP, Duncker DJ, Tibboel D, Schermuly RT, Weissmann N, Merkus D, Reiss IK. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. Pulm Circ 2017; 7:55-66. [PMID: 28680565 PMCID: PMC5448552 DOI: 10.1086/689748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called "fetal or perinatal programming." Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future.
Collapse
Affiliation(s)
- Daphne P. de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care Unit, Department of Pediatric Surgery, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph T. Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Julio-Pieper M, Bravo JA. Intestinal Barrier and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:127-141. [PMID: 27793215 DOI: 10.1016/bs.irn.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses.
Collapse
Affiliation(s)
- M Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| | - J A Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| |
Collapse
|
47
|
Guo L, Wang W, Zhao N, Guo L, Chi C, Hou W, Wu A, Tong H, Wang Y, Wang C, Li E. Mechanical ventilation strategies for intensive care unit patients without acute lung injury or acute respiratory distress syndrome: a systematic review and network meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:226. [PMID: 27448995 PMCID: PMC4957383 DOI: 10.1186/s13054-016-1396-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/29/2016] [Indexed: 01/25/2023]
Abstract
Background It has been shown that the application of a lung-protective mechanical ventilation strategy can improve the prognosis of patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). However, the optimal mechanical ventilation strategy for intensive care unit (ICU) patients without ALI or ARDS is uncertain. Therefore, we performed a network meta-analysis to identify the optimal mechanical ventilation strategy for these patients. Methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, EMBASE, MEDLINE, CINAHL, and Web of Science for studies published up to July 2015 in which pulmonary compliance or the partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FIO2) ratio was assessed in ICU patients without ALI or ARDS, who received mechanical ventilation via different strategies. The data for study characteristics, methods, and outcomes were extracted. We assessed the studies for eligibility, extracted the data, pooled the data, and used a Bayesian fixed-effects model to combine direct comparisons with indirect evidence. Results Seventeen randomized controlled trials including a total of 575 patients who received one of six ventilation strategies were included for network meta-analysis. Among ICU patients without ALI or ARDS, strategy C (lower tidal volume (VT) + higher positive end-expiratory pressure (PEEP)) resulted in the highest PaO2/FIO2 ratio; strategy B (higher VT + lower PEEP) was associated with the highest pulmonary compliance; strategy A (lower VT + lower PEEP) was associated with a shorter length of ICU stay; and strategy D (lower VT + zero end-expiratory pressure (ZEEP)) was associated with the lowest PaO2/FiO2 ratio and pulmonary compliance. Conclusions For ICU patients without ALI or ARDS, strategy C (lower VT + higher PEEP) was associated with the highest PaO2/FiO2 ratio. Strategy B (higher VT + lower PEEP) was superior to the other strategies in improving pulmonary compliance. Strategy A (lower VT + lower PEEP) was associated with a shorter length of ICU stay, whereas strategy D (lower VT + ZEEP) was associated with the lowest PaO2/FiO2 ratio and pulmonary compliance. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1396-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Guo
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Weiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Nana Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Libo Guo
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Chunjie Chi
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Wei Hou
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Anqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Hongshuang Tong
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yue Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China
| | - Changsong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Enyou Li
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No 23 Youzheng St., Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
48
|
Herbert JA, Valentine MS, Saravanan N, Schneck MB, Pidaparti R, Fowler AA, Reynolds AM, Heise RL. Conservative fluid management prevents age-associated ventilator induced mortality. Exp Gerontol 2016; 81:101-9. [PMID: 27188767 DOI: 10.1016/j.exger.2016.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. METHODS 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. RESULTS At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. CONCLUSION Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality.
Collapse
Affiliation(s)
- Joseph A Herbert
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W Main St, PO Box 843067, Richmond, VA 23284, United States
| | - Michael S Valentine
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W Main St, PO Box 843067, Richmond, VA 23284, United States
| | - Nivi Saravanan
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W Main St, PO Box 843067, Richmond, VA 23284, United States
| | - Matthew B Schneck
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W Main St, PO Box 843067, Richmond, VA 23284, United States
| | | | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, United States
| | - Angela M Reynolds
- Department of Mathematics and Applies Mathematics 1015 Floyd Avenue P.O. Box 842014 Richmond, VA 23284-2014, United States
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W Main St, PO Box 843067, Richmond, VA 23284, United States; Department of Physiology and Biophysics VCU School of Medicine 1101 East Marshall Street P.O. Box 980551 Richmond, VA 23298-0551, United States.
| |
Collapse
|
49
|
Donoso A, Arriagada D, Contreras D, Ulloa D, Neumann M. [Respiratory monitoring of pediatric patients in the Intensive Care Unit]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:149-165. [PMID: 29421202 DOI: 10.1016/j.bmhimx.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 06/08/2023] Open
Abstract
Respiratory monitoring plays an important role in the care of children with acute respiratory failure. Therefore, its proper use and correct interpretation (recognizing which signals and variables should be prioritized) should help to a better understanding of the pathophysiology of the disease and the effects of therapeutic interventions. In addition, ventilated patient monitoring, among other determinations, allows to evaluate various parameters of respiratory mechanics, know the status of the different components of the respiratory system and guide the adjustments of ventilatory therapy. In this update, the usefulness of several techniques of respiratory monitoring including conventional respiratory monitoring and more recent methods are described. Moreover, basic concepts of mechanical ventilation, their interpretation and how the appropriate analysis of the information obtained can cause an impact on the clinical management of the patient are defined.
Collapse
Affiliation(s)
| | | | - Dina Contreras
- Hospital Clínico Metropolitano La Florida, Santiago, Chile
| | - Daniela Ulloa
- Hospital Clínico Metropolitano La Florida, Santiago, Chile
| | - Megan Neumann
- Hospital Clínico Metropolitano La Florida, Santiago, Chile
| |
Collapse
|
50
|
Raredon MSB, Rocco KA, Gheorghe CP, Sivarapatna A, Ghaedi M, Balestrini JL, Raredon TL, Calle EA, Niklason LE. Biomimetic Culture Reactor for Whole-Lung Engineering. Biores Open Access 2016; 5:72-83. [PMID: 27088061 PMCID: PMC4827315 DOI: 10.1089/biores.2016.0006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decellularized organs are now established as promising scaffolds for whole-organ regeneration. For this work to reach therapeutic practice, techniques and apparatus are necessary for doing human-scale clinically applicable organ cultures. We have designed and constructed a bioreactor system capable of accommodating whole human or porcine lungs, and we describe in this study relevant technical details, means of assembly and operation, and validation. The reactor has an artificial diaphragm that mimics the conditions found in the chest cavity in vivo, driving hydraulically regulated negative pressure ventilation and custom-built pulsatile perfusion apparatus capable of driving pressure-regulated or volume-regulated vascular flow. Both forms of mechanical actuation can be tuned to match specific physiologic profiles. The organ is sealed in an elastic artificial pleura that mounts to a support architecture. This pleura reduces the fluid volume required for organ culture, maintains the organ's position during mechanical conditioning, and creates a sterile barrier allowing disassembly and maintenance outside of a biosafety cabinet. The combination of fluid suspension, negative-pressure ventilation, and physiologic perfusion allows the described system to provide a biomimetic mechanical environment not found in existing technologies and especially suited to whole-organ regeneration. In this study, we explain the design and operation of this apparatus and present data validating intended functions.
Collapse
Affiliation(s)
- Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kevin A. Rocco
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Ciprian P. Gheorghe
- Department of Obstetrics, Gynecology, and Reproductive Services, Yale University, New Haven, Connecticut
| | - Amogh Sivarapatna
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Mahboobe Ghaedi
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Jenna L. Balestrini
- Department of Anesthesia, Yale University, New Haven, Connecticut
- Department of Pathology, Yale University, New Haven, Connecticut
| | | | - Elizabeth A. Calle
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesia, Yale University, New Haven, Connecticut
- Address correspondence to: Laura E. Niklason, MD, PhD, Department Biomedical Engineering, Yale University, 10 Amistad Street, Room 301D, New Haven, CT 06511, E-mail:
| |
Collapse
|