1
|
Kwon CH, Ha MW. Pharmacogenetic Approach to Tramadol Use in the Arab Population. Int J Mol Sci 2024; 25:8939. [PMID: 39201627 PMCID: PMC11354576 DOI: 10.3390/ijms25168939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tramdol is one of most popular opioids used for postoperative analgesia worldwide. Among Arabic countries, there are reports that its dosage is not appropriate due to cultural background. To provide theoretical background of the proper usage of tramadol, this study analyzed the association between several genetic polymorphisms (CYP2D6/OPRM1) and the effect of tramadol. A total of 39 patients who took tramadol for postoperative analgesia were recruited, samples were obtained, and their DNA was extracted for polymerase chain reaction products analysis followed by allelic variations of CYP2D6 and OPRM A118G determination. Numerical pain scales were measured before and 1 h after taking tramadol. The effect of tramadol was defined by the difference between these scales. We concluded that CYP2D6 and OPRM1 A118G single nucleotide polymorphisms may serve as crucial determinants in predicting tramadol efficacy and susceptibility to post-surgical pain. Further validation of personalized prescription practices based on these genetic polymorphisms could provide valuable insights for the development of clinical guidelines tailored to post-surgical tramadol use in the Arabic population.
Collapse
Affiliation(s)
- Chan-Hyuk Kwon
- Seoul Shingil Rehabilitation Medicine Clinic, 162 Shingil-ro, Yeongdeungpo-gu, Seoul 07362, Republic of Korea
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
| |
Collapse
|
2
|
Dalal RS, Lund K, Zegers FD, Friedman S, Allegretti JR, Nørgård BM. Use of Tramadol vs Traditional Opioids and Adverse Outcomes in Patients with Inflammatory Bowel Disease: A Danish Nationwide Cohort Study. Inflamm Bowel Dis 2024; 30:1121-1129. [PMID: 37523667 DOI: 10.1093/ibd/izad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Use of traditional opioids (TOs) for pain management has been associated with adverse outcomes among patients with inflammatory bowel diseases (IBDs). It is unknown if similar associations exist for tramadol, a partial opioid agonist and serotonin and norephinephrine reuptake inhibitor. We sought to compare adverse outcomes associated with tramadol vs TOs in an IBD population. METHODS This nationwide cohort study included adults with IBD diagnosed from 1995 to 2021 in Denmark with subsequent prescriptions for tramadol or TOs. For each analgesic, 2 populations were assessed: initial users (first prescription) and persistent users (first 3 consecutive prescriptions within 365 days). Outcomes included infection, bowel obstruction/ileus, IBD surgery, and mortality within 90 days after the initial use index date (date of first prescription) and within 365 days after the persistent use index date (date of third prescription). Odds ratios adjusted for demographics, comorbidities, and IBD severity were calculated using multivariable logistic regression. RESULTS We identified 37 377 initial users and 15 237 persistent users of tramadol or TOs. Initial users of tramadol had lower adjusted odds of infection (adjusted odds ratio [OR], 0.80; 95% confidence interval [CI], 0.65-0.99), bowel obstruction/ileus (aOR, 0.74; 95% CI, 0.53-1.03), and mortality (aOR, 0.43; 95% CI, 0.35-0.55), and a higher adjusted odds of IBD-related surgery (aOR, 1.27; 95% CI, 1.02-1.60) vs initial users of TOs. Similar results were found for persistent users. CONCLUSIONS Tramadol was associated with lower odds of infection, bowel obstruction/ileus, and mortality vs TOs among patients with IBD. These associations may be impacted by residual confounding.
Collapse
Affiliation(s)
- Rahul S Dalal
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Lund
- Center for Clinical Epidemiology, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Epidemiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Floor D Zegers
- Center for Clinical Epidemiology, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Epidemiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sonia Friedman
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Epidemiology, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Epidemiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bente Mertz Nørgård
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Epidemiology, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Epidemiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Darney K, Lautz LS, Béchaux C, Wiecek W, Testai E, Amzal B, Dorne JLCM. Human variability in polymorphic CYP2D6 metabolism: Implications for the risk assessment of chemicals in food and emerging designer drugs. ENVIRONMENT INTERNATIONAL 2021; 156:106760. [PMID: 34256299 DOI: 10.1016/j.envint.2021.106760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The major human cytochrome P450 CYP2D6 isoform enzyme plays important roles in the liver and in the brain with regards to xenobiotic metabolism. Xenobiotics as CYP2D6 substrates include a whole range of pharmaceuticals, pesticides and plant alkaloids to cite but a few. In addition, a number of endogenous compounds have been shown to be substrates of CYP2D6 including trace amines in the brain such as tyramine and 5-methoxytryptamine as well as anandamide and progesterone. Because of the polymorphic nature of CYP2D6, considerable inter-phenotypic and inter-ethnic differences in the pharmaco/toxicokinetics (PK/TK) and metabolism of CYP2D6 substrates exist with potential consequences on the pharmacology and toxicity of chemicals. Here, large extensive literature searches have been performed to collect PK data from published human studies for a wide range of pharmaceutical probe substrates and investigate human variability in CYP2D6 metabolism. The computed kinetic parameters resulted in the largest open source database, quantifying inter-phenotypic differences for the kinetics of CYP2D6 probe substrates in Caucasian and Asian populations, to date. The database is available in supplementary material (CYPD6 DB) and EFSA knowledge junction (DOI to added). Subsequently, meta-analyses using a hierarchical Bayesian model for markers of chronic oral exposure (oral clearance, area under the plasma concentration time curve) and acute oral exposure (maximum plasma concentration (Cmax) provided estimates of inter-phenotypic differences and CYP2D6-related uncertainty factors (UFs) for chemical risk assessment in Caucasian and Asian populations classified as ultra-rapid (UM), extensive (EMs), intermediate (IMs) and poor metabolisers (PMs). The model allowed the integration of inter-individual (i.e. inter-phenotypic and inter-ethnic), inter-compound and inter-study variability together with uncertainty in each PK parameter. Key findings include 1. Higher frequencies of PMs in Caucasian populations compared to Asian populations (>8% vs 1-2%) for which EM and IM were the most frequent phenotype. 2. Large inter-phenotypic differences in PK parameters for Caucasian EMs (coefficients of variation (CV) > 50%) compared with Caucasian PMs and Asian EMs and IMs (i.e CV < 40%). 3. Inter-phenotypic PK differences between EMs and PMs in Caucasian populations increase with the quantitative contribution of CYP2D6 for the metabolism (fm) for a range of substrates (fmCYP2D6 range: 20-95% of dose) (range: 1-54) to a much larger extent than those for Asian populations (range: 1-4). 4. Exponential meta-regressions between FmCYP2D6 in EMs and inter-phenotypic differences were also shown to differ between Caucasian and Asian populations as well as CYP2D6-related UFs. Finally, implications of these results for the risk assessment of food chemicals and emerging designer drugs of public health concern, as CYP2D6 substrates, are highlighted and include the integration of in vitro metabolism data and CYP2D6-variability distributions for the development of quantitative in vitro in vivo extrapolation models.
Collapse
Affiliation(s)
- K Darney
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - L S Lautz
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - C Béchaux
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - W Wiecek
- Certara UK Ltd, Audrey House, 5th Floor, 16-20 Ely Place, London EC1N 6SN, United Kingdom
| | - E Testai
- Istituto Superior di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - B Amzal
- Quinten Health, 75017 Paris, France
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno,1A, 43126 Parma, Italy.
| |
Collapse
|
4
|
Magarbeh L, Gorbovskaya I, Le Foll B, Jhirad R, Müller DJ. Reviewing pharmacogenetics to advance precision medicine for opioids. Biomed Pharmacother 2021; 142:112060. [PMID: 34523422 DOI: 10.1016/j.biopha.2021.112060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Adequate opioid prescribing is critical for therapeutic success of pain management. Despite the widespread use of opioids, optimized opioid therapy remains unresolved with risk of accidental lethal overdosing. With the emergence of accumulating evidence linking genetic variation to opioid response, pharmacogenetic based treatment recommendations have been proposed. OBJECTIVE The aim of this review is to evaluate pharmacogenetic evidence and provide an overview on genes involved in the pharmacokinetics and pharmacodynamics of opioids. METHODS For this review, a systematic literature search of published articles was used in PubMed®, with no language restriction and between the time period of January 2000 to December 2020. We reviewed randomized clinical studies, study cohorts and case reports that investigated the influence of genetic variants on selected opioid pharmacokinetics and pharmacodynamics. In addition, we reviewed current CPIC clinical recommendations for pharmacogenetic testing. RESULTS Results of this review indicate consistent evidence supporting the association between selected genetic variants of CYP2D6 for opioid metabolism. CPIC guidelines include recommendations that indicate the avoidance of tramadol use, in addition to codeine, in CYP2D6 poor metabolizers and ultrarapid metabolizers, and to monitor intermediate metabolizers for less-than-optimal response. While there is consistent evidence for OPRM1 suggesting increased postoperative morphine dosing requirements in A118G G-allele carriers, the clinical relevance remains limited. CONCLUSION There is emerging evidence of clinical relevance of CYP2D6 and, to a lesser extent, OPRM1 polymorphism in personalized opioid drug dosing. As a result, first clinics have started to implement pharmacogenetic guidelines for CYP2D6 and codeine.
Collapse
Affiliation(s)
- Leen Magarbeh
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ilona Gorbovskaya
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada; Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Reuven Jhirad
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Office of the Chief Coroner and Ontario Forensic Pathology Service, Toronto, ON, Canada
| | - Daniel J Müller
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
5
|
Long T, Cristofoletti R, Cicali B, Michaud V, Dow P, Turgeon J, Schmidt S. Physiologically-based Pharmacokinetic Modeling to Assess the Impact of CYP2D6-Mediated Drug-Drug Interactions on Tramadol and O-Desmethyltramadol Exposures via Allosteric and Competitive Inhibition. J Clin Pharmacol 2021; 62:76-86. [PMID: 34383318 PMCID: PMC9293201 DOI: 10.1002/jcph.1951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
Tramadol is an opioid medication used to treat moderately severe pain. Cytochrome P450 (CYP) 2D6 inhibition could be important for tramadol, as it decreases the formation of its pharmacologically active metabolite, O‐desmethyltramadol, potentially resulting in increased opioid use and misuse. The objective of this study was to evaluate the impact of allosteric and competitive CYP2D6 inhibition on tramadol and O‐desmethyltramadol pharmacokinetics using quinidine and metoprolol as prototypical perpetrator drugs. A physiologically based pharmacokinetic model for tramadol and O‐desmethyltramadol was developed and verified in PK‐Sim version 8 and linked to respective models of quinidine and metoprolol to evaluate the impact of allosteric and competitive CYP2D6 inhibition on tramadol and O‐desmethyltramadol exposure. Our results show that there is a differentiated impact of CYP2D6 inhibitors on tramadol and O‐desmethyltramadol based on their mechanisms of inhibition. Following allosteric inhibition by a single dose of quinidine, the exposure of both tramadol (51% increase) and O‐desmethyltramadol (52% decrease) was predicted to be significantly altered after concomitant administration of a single dose of tramadol. Following multiple‐dose administration of tramadol and a single‐dose or multiple‐dose administration of quinidine, the inhibitory effect of quinidine was predicted to be long (≈42 hours) and to alter exposure of tramadol and O‐desmethyltramadol by up to 60%, suggesting that coadministration of quinidine and tramadol should be avoided clinically. In comparison, there is no predicted significant impact of metoprolol on tramadol and O‐desmethyltramadol exposure. In fact, tramadol is predicted to act as a CYP2D6 perpetrator and increase metoprolol exposure, which may necessitate the need for dose separation.
Collapse
Affiliation(s)
- Tao Long
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Brian Cicali
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Veronique Michaud
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL, USA.,Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada
| | - Pamela Dow
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL, USA
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL, USA.,Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Kimble B, Vogelnest L, Valtchev P, Govendir M. Pharmacokinetic profile of injectable tramadol in the koala (Phascolarctos cinereus) and prediction of its analgesic efficacy. PLoS One 2021; 16:e0247546. [PMID: 33657107 PMCID: PMC7928481 DOI: 10.1371/journal.pone.0247546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Tramadol is used as an analgesic in humans and some animal species. When tramadol is administered to most species it undergoes metabolism to its main metabolites M1 or O-desmethyltramadol, and M2 or N-desmethyltramadol, and many other metabolites. This study describes the pharmacokinetic profile of tramadol when a single subcutaneous bolus of 2 mg/kg was initially administered to two koalas. Based on the results of these two koalas, subsequently 4 mg/kg as a single subcutaneous injection, was administered to an additional four koalas. M1 is recognised as an active metabolite and has greater analgesic activity than tramadol, while M2 is considered inactive. A liquid chromatography assay to quantify tramadol, M1 and M2 in koala plasma was developed and validated. Liquid chromatography-mass spectrometry confirmed that M1 had been identified. Additionally, the metabolite didesmethyltramadol was identified in chromatograms of two of the male koalas. When 4 mg/kg tramadol was administered, the median half-life of tramadol and M1 were 2.89 h and 24.69 h, respectively. The M1 plasma concentration remained well above the minimally effective M1 plasma concentration in humans (approximately 36 ng/mL) over 12 hours. The M1 plasma concentration, when tramadol was administered at 2 mg/kg, did not exceed 36 ng/mL at any time-point. When tramadol was administered at 2 mg/kg and 4 mg/kg the area under the curve M1: tramadol ratios were 0.33 and 0.50, respectively. Tramadol and M1 binding to plasma protein were determined using thawed, frozen koala plasma and the mean binding was 20% and 75%, respectively. It is concluded that when tramadol is administered at 4 mg/kg as a subcutaneous injection to the koala, it is predicted to have some analgesic activity.
Collapse
Affiliation(s)
- Benjamin Kimble
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, New South Wales, Sydney, New South Wales, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
7
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Wen QH, Zhang Z, Cai WK, Lin XQ, He GH. The Associations Between CYP2D6*10 C188T Polymorphism and Pharmacokinetics and Clinical Outcomes of Tramadol: A Systematic Review and Meta-analysis. PAIN MEDICINE 2020; 21:3679-3690. [PMID: 32488232 DOI: 10.1093/pm/pnaa140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractBackgroundTramadol is one of the most extensively used centrally acting synthetic opioid analgesics. Recently, a number of studies have explored the associations of the CYP2D6*10 C188T polymorphism with pharmacokinetic and clinical outcomes of tramadol. However, the results of these previous reports remain controversial. Therefore, a meta-analysis was needed to reach a consensus.MethodsPubMed, EMBASE, and the Cochrane Library were searched to identify eligible studies that explored the influence of the CYP2D6*10 C188T polymorphism on clinical outcomes of tramadol through April 2019. Articles meeting the inclusion criteria were comprehensively reviewed by two independent evaluators. A meta-analysis was performed using Review Manager 5.3.ResultsA total of nine studies involving 809 related subjects were included in this meta-analysis. Significant associations were found between CYP2D6*10 C188T mutation and longer serum tramadol half-lives, larger AUC0-∞, and the slower clearance rate of tramadol. In addition, we also found that CYP2D6*10 C188T had effects on the pharmacokinetic parameters of the metabolite of tramadol, O-desmethyltramadol, by sensitive analysis. Furthermore, CYP2D6*10 C188T polymorphism was associated with higher visual analog scale score, loading dose, and total consumption of tramadol. There was no significant association between CYP2D6*10 C188T polymorphism and postoperative nausea and vomiting.ConclusionsCYP2D6*10 C188T polymorphism had a significant influence on tramadol pharmacokinetics and analgesic effect, but there was insufficient evidence to demonstrate that this polymorphism was associated with incidence of nausea and vomiting.
Collapse
Affiliation(s)
- Qing-Hua Wen
- Department of Pharmacy, The 920th Hospital of PLA Joint Service Security Forces, Kunming, China
- Department of Pharmacy, Wanzhou Hospital of Traditional Chinese Medicine of Chongqing, Chongqing, China
| | - Zheng Zhang
- Medical Engineering Section, The 306th Hospital of PLA, Beijing, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, The 920th Hospital of PLA Joint Service Security Forces, Kunming, China
| | - Xiao-Qian Lin
- Department of Phase I Clinical Trial, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Gong-Hao He
- Department of Pharmacy, The 920th Hospital of PLA Joint Service Security Forces, Kunming, China
| |
Collapse
|
9
|
Sarkany A, Hancu G, Drăguț C, Modroiu A, Barabás-Hajdu E. Capillary Electrophoresis Methods for the Determination of Tramadol: A Review. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tramadol is a widely used opioid analgesic frequently prescribed for treatment of moderate to severe, acute and chronic pain. It has a complex mechanism of action, acting both as a central opiate agonist and as a norepinephrine and serotonin reuptake inhibitor. It is a chiral substance, having two chiral centers in its structure and it is used in therapy as a racemic mixture of two of its enantiomers, (S,S)-tramadol and (R,R)-tramadol. In the last 25 years, several analytical procedures have been published in the literature for the achiral and chiral determination of tramadol from pharmaceutical formulations and biological matrices. Among these methods, capillary electrophoresis techniques have proved to be an efficient, reliable and cost-effective solution. The purpose of the present review is to provide a systematic survey to present and discuss the electrodriven methods available in the literature for the achiral and chiral analysis of tramadol.
Collapse
Affiliation(s)
- Anita Sarkany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology from Tîrgu Mureș, 38 Gh Marinescu, Tîrgu Mureș 540139, Romania
| | - Gabriel Hancu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology from Tîrgu Mureș, 38 Gh Marinescu, Tîrgu Mureș 540139, Romania
| | - Claudiu Drăguț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology from Tîrgu Mureș, 38 Gh Marinescu, Tîrgu Mureș 540139, Romania
| | - Adriana Modroiu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology from Tîrgu Mureș, 38 Gh Marinescu, Tîrgu Mureș 540139, Romania
| | - Enikő Barabás-Hajdu
- Department of Cell Biology and Microbiology, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology from Tîrgu Mureș, 38 Gh Marinescu, Tîrgu Mureș 540139, Romania
| |
Collapse
|
10
|
Jhun EH, Apfelbaum JL, Dickerson DM, Shahul S, Knoebel R, Danahey K, Ratain MJ, O’Donnell PH. Pharmacogenomic considerations for medications in the perioperative setting. Pharmacogenomics 2019; 20:813-827. [PMID: 31411557 PMCID: PMC6949515 DOI: 10.2217/pgs-2019-0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
Several high-profile examples of adverse outcomes from medications used in the perioperative setting are well known (e.g., malignant hyperthermia, prolonged apnea, respiratory depression, inadequate analgesia), leading to an increased understanding of genetic susceptibilities underlying these risks. Pharmacogenomic information is increasingly being utilized in certain areas of medicine. Despite this, routine preoperative genetic screening to inform medication risk is not yet standard practice. In this review, we assess the current readiness of pharmacogenomic information for clinical consideration for several common perioperative medications, including description of key pharmacogenes, pharmacokinetic implications and potential clinical outcomes. The goal is to highlight medications for which emerging or considerable pharmacogenomic information exists and identify areas for future potential research.
Collapse
Affiliation(s)
- Ellie H Jhun
- Committee on Clinical Pharmacology & Pharmacogenomics, University of Chicago, Chicago, IL, 60637, USA
- Current affiliation: Department of Pharmacogenetics, Base10 Genetics, Chicago, IL 60603, USA
| | - Jeffrey L Apfelbaum
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - David M Dickerson
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
- Current affiliation: Northshore University Health System, Evanston, IL 60201, USA
| | - Sajid Shahul
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Randall Knoebel
- Department of Pharmacy, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Keith Danahey
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL 60637, USA
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Mark J Ratain
- Committee on Clinical Pharmacology & Pharmacogenomics, University of Chicago, Chicago, IL, 60637, USA
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Peter H O’Donnell
- Committee on Clinical Pharmacology & Pharmacogenomics, University of Chicago, Chicago, IL, 60637, USA
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Frost DA, Soric MM, Kaiser R, Neugebauer RE. Efficacy of Tramadol for Pain Management in Patients Receiving Strong Cytochrome P450 2D6 Inhibitors. Pharmacotherapy 2019; 39:724-729. [PMID: 31038218 DOI: 10.1002/phar.2269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
STUDY OBJECTIVE Tramadol is metabolized by cytochrome P450 (CYP) 2D6 to form an active metabolite that exhibits its analgesic effect. Medications that inhibit this enzyme are used often in practice, yet the clinical impact of this interaction on the analgesic effects of tramadol has yet to be fully described. The objective was to determine whether a clinically relevant decrease in pain control is observed in patients taking scheduled tramadol concomitantly with a strong CYP2D6 inhibitor. DESIGN Retrospective cohort study. SETTING Large health care system. PATIENTS One hundred fifty-two adult inpatients who received scheduled tramadol for at least 24 hours with (76 patients) or without (76 patients) a strong CYP2D6 inhibitor between January 1, 2012, and February 28, 2017, were included in the analysis. Patients hospitalized for opioid use disorder or those receiving substandard dosing of tramadol were excluded. MEASUREMENTS AND MAIN RESULTS The primary outcome was mean breakthrough opiate consumption in the presence and absence of CYP2D6 inhibitors. Secondary outcomes included mean pain scores, length of hospital stay, tramadol discontinuation rates, and prespecified subgroup analyses based on patient sex, race, and specific CYP2D6 inhibitor administered. Patients receiving concurrent CYP2D6 inhibitors required significantly more breakthrough morphine milligram equivalents per day compared with patients receiving scheduled tramadol without CYP2D6 inhibitors (geometric mean ± SD 18.2 ± 6.3 vs 5.7 ± 6.7 mg morphine milligram equivalents, p<0.001). No significant differences existed between cohorts for mean pain score, length of hospital stay, or tramadol discontinuation rate. CONCLUSION This study demonstrated a clinically relevant decrease in the efficacy of tramadol when used for pain control in patients receiving a strong CYP2D6 inhibitor. These results should encourage clinicians to review medication lists for this interaction and adjust regimens accordingly to ensure adequate pain control.
Collapse
Affiliation(s)
- Derek A Frost
- Department of Pharmacy, University Hospitals Portage Medical Center, Ravenna, Ohio
| | - Mate M Soric
- Department of Pharmacy Practice, Northeast Ohio Medical University College of Pharmacy, Rootstown, Ohio.,Department of Pharmacy, University Hospitals Geauga Medical Center, Chardon, Ohio
| | - Ricky Kaiser
- Northeast Ohio Medical University College of Pharmacy, Rootstown, Ohio
| | | |
Collapse
|
12
|
Supervised Classification of CYP2D6 Genotype and Metabolizer Phenotype With Postmortem Tramadol-Exposed Finns. Am J Forensic Med Pathol 2019; 40:8-18. [DOI: 10.1097/paf.0000000000000447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
T'jollyn H, Vermeulen A, Van Bocxlaer J. PBPK and its Virtual Populations: the Impact of Physiology on Pediatric Pharmacokinetic Predictions of Tramadol. AAPS JOURNAL 2018; 21:8. [PMID: 30498862 DOI: 10.1208/s12248-018-0277-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/09/2018] [Indexed: 11/30/2022]
Abstract
In pediatric PBPK models, age-related changes in the body are known to occur. Given the sparsity of and the variability associated with relevant physiological parameters, different PBPK software providers may vary in their system's data. In this work, three commercially available PBPK software packages (PK-Sim®, Simcyp®, and Gastroplus®) were investigated regarding their differences in system-related information, possibly affecting clearance prediction. Three retrograde PBPK clearance models were set up to enable prediction of pediatric tramadol clearance. These models were qualified in terms of total, CYP2D6, and renal clearance in adults. Tramadol pediatric clearance predictions from PBPK were compared with a pooled popPK model covering clearance ranging from neonates to adults. Fold prediction errors were used to evaluate the results. Marked differences in liver clearance prediction between PBPK models were observed. In general, the prediction bias of total clearance was greatest at the youngest population and decreased with age. Regarding CYP2D6 and renal clearance, important differences exist between PBPK software tools. Interestingly, the PBPK model with the shortest CYP2D6 maturation half-life (PK-Sim) agreed best with the in vivo CYP2D6 maturation model. Marked differences in physiological data explain the observed differences in hepatic clearance prediction in early life between the various PBPK software providers tested. Consensus on the most suited pediatric data to use should harmonize and optimize pediatric clearance predictions. Moreover, the combination of bottom-up and top-down approaches, using a convenient probe substrate, has the potential to update system-related parameters in order to better represent pediatric physiology.
Collapse
Affiliation(s)
- Huybrecht T'jollyn
- A Division of Janssen Pharmaceutica NV, Quantitative Sciences, Janssen Research and Development, Beerse, Belgium.
| | - An Vermeulen
- A Division of Janssen Pharmaceutica NV, Quantitative Sciences, Janssen Research and Development, Beerse, Belgium.,Faculty of Pharmaceutical Sciences, Laboratory of Medical Biochemistry and Clinical Analysis, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Jan Van Bocxlaer
- Faculty of Pharmaceutical Sciences, Laboratory of Medical Biochemistry and Clinical Analysis, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
14
|
Godoy ALPC, de Moraes NV, Benzi JRDL, Lanchote VL. Changes in tramadol enantioselective pharmacokinetics and metabolism in rats with experimental diabetes treated or not with insulin. Eur J Pharm Sci 2018; 128:97-102. [PMID: 30502451 DOI: 10.1016/j.ejps.2018.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/29/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
This study aimed to investigate the impact of diabetes treated or not with insulin in the enantioselective pharmacokinetics of tramadol (trans-T) and its phase 1 metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2). The CYP2D inhibitor quinidine was used to simulate the poor metabolizer phenotype. Male Wistar rats were divided into groups: control, quinidine (80-mg/kg quinidine intraperitoneally 4 h before trans-T), diabetic (45-mg/kg STZ i.v.), diabetes + insulin (2 IU/day insulin for 12 days), diabetes + quinidine and diabetes + insulin + quinidine. All animals (n = 6, per sampling time) received 20-mg/kg trans-T orally. The kinetic disposition of trans-T is enantioselective in control with higher AUC of (+)-trans-T than for its antipode. Quinidine reduced AUC ratios (+)-M1/(+)-trans-T and (-)-M1/(-)-trans-T compared to Control. Diabetes increased plasma concentrations of (+)-trans-T, (-)-trans-T, (+)-M1, (-)-M1 and (+)-M2 compared to control, but without changing AUC ratios M1/trans-T or M2/trans-T. Insulin reverted the effect of diabetes only for (-)-trans-T. The simulated diabetes in CYP2D poor metabolizers showed reduced metabolic ratios for M1 enantiomers. In conclusion, diabetes resulted in higher plasma concentrations of the active (+)-trans-T, (-)-trans-T and (+)-M1, suggesting down-regulation of CYP3A and OCT1. The glycemic control of diabetes by insulin reduces partially the impact of diabetes on trans-T pharmacokinetics.
Collapse
Affiliation(s)
| | | | | | - Vera Lucia Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP - Univ. de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Haage P, Kronstrand R, Josefsson M, Calistri S, van Schaik RHN, Green H, Kugelberg FC. Enantioselective pharmacokinetics of tramadol and its three main metabolites; impact of CYP2D6, CYP2B6, and CYP3A4 genotype. Pharmacol Res Perspect 2018; 6:e00419. [PMID: 29992026 PMCID: PMC6034060 DOI: 10.1002/prp2.419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 01/11/2023] Open
Abstract
Tramadol is a complex drug, being metabolized by polymorphic enzymes and administered as a racemate with the (+)- and (-)-enantiomers of the parent compound and metabolites showing different pharmacological effects. The study aimed to simultaneously determine the enantiomer concentrations of tramadol, O-desmethyltramadol, N-desmethyltramadol, and N,O-didesmethyltramadol following a single dose, and elucidate if enantioselective pharmacokinetics is associated with the time following drug intake and if interindividual differences may be genetically explained. Nineteen healthy volunteers were orally administered either 50 or 100 mg tramadol, whereupon blood samples were drawn at 17 occasions. Enantiomer concentrations in whole blood were measured by LC-MS/MS and the CYP2D6,CYP2B6 and CYP3A4 genotype were determined, using the xTAG CYP2D6 Kit, pyrosequencing and real-time PCR, respectively. A positive correlation between the (+)/(-)-enantiomer ratio and time following drug administration was shown for all four enantiomer pairs. The largest increase in enantiomer ratio was observed for N-desmethyltramadol in CYP2D6 extensive and intermediate metabolizers, rising from about two to almost seven during 24 hours following drug intake. CYP2D6 poor metabolizers showed metabolic profiles markedly different from the ones of intermediate and extensive metabolizers, with large area under the concentration curves (AUCs) of the N-desmethyltramadol enantiomers and low corresponding values of the O-desmethyltramadol and N,O-didesmethyltramadol enantiomers, especially of the (+)-enantiomers. Homozygosity of CYP2B6 *5 and *6 indicated a reduced enzyme function, although further studies are required to confirm it. In conclusion, the increase in enantiomer ratios over time might possibly be used to distinguish a recent tramadol intake from a past one. It also implies that, even though (+)-O-desmethyltramadol is regarded the enantiomer most potent in causing adverse effects, one should not investigate the (+)/(-)-enantiomer ratio of O-desmethyltramadol in relation to side effects without consideration for the time that has passed since drug intake.
Collapse
Affiliation(s)
- Pernilla Haage
- Department of Forensic Genetics and Forensic ToxicologyNational Board of Forensic MedicineLinköpingSweden
- Department of Medical and Health SciencesDivision of Drug ResearchLinköping UniversityLinköpingSweden
| | - Robert Kronstrand
- Department of Forensic Genetics and Forensic ToxicologyNational Board of Forensic MedicineLinköpingSweden
- Department of Medical and Health SciencesDivision of Drug ResearchLinköping UniversityLinköpingSweden
| | - Martin Josefsson
- Department of Forensic Genetics and Forensic ToxicologyNational Board of Forensic MedicineLinköpingSweden
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Simona Calistri
- Department of Clinical ChemistryErasmus University Medical CenterRotterdamThe Netherlands
- Scuola di Scienze della Salute UmanaUniversità degli studi di FirenzeFlorenceItaly
| | - Ron H. N. van Schaik
- Department of Clinical ChemistryErasmus University Medical CenterRotterdamThe Netherlands
| | - Henrik Green
- Department of Forensic Genetics and Forensic ToxicologyNational Board of Forensic MedicineLinköpingSweden
- Department of Medical and Health SciencesDivision of Drug ResearchLinköping UniversityLinköpingSweden
| | - Fredrik C. Kugelberg
- Department of Forensic Genetics and Forensic ToxicologyNational Board of Forensic MedicineLinköpingSweden
- Department of Medical and Health SciencesDivision of Drug ResearchLinköping UniversityLinköpingSweden
| |
Collapse
|
16
|
Rodieux F, Vutskits L, Posfay-Barbe KM, Habre W, Piguet V, Desmeules JA, Samer CF. When the Safe Alternative Is Not That Safe: Tramadol Prescribing in Children. Front Pharmacol 2018; 9:148. [PMID: 29556194 PMCID: PMC5844975 DOI: 10.3389/fphar.2018.00148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
Children represent a vulnerable population in which management of nociceptive pain is complex. Drug responses in children differ from adults due to age-related differences. Moreover, therapeutic choices are limited by the lack of indication for a number of analgesic drugs due to the challenge of conducting clinical trials in children. Furthermore the assessment of efficacy as well as tolerance may be complicated by children's inability to communicate properly. According to the World Health Organization, weak opioids such as tramadol and codeine, may be used in addition to paracetamol and ibuprofen for moderate nociceptive pain in both children and adults. However, codeine prescription has been restricted for the last 5 years in children because of the risk of fatal overdoses linked to the variable activity of cytochrome P450 (CYP) 2D6 which bioactivates codeine. Even though tramadol has been considered a safe alternative to codeine, it is well established that tramadol pharmacodynamic opioid effects, efficacy and safety, are also largely influenced by CYP2D6 activity. For this reason, the US Food and Drug Administration recently released a boxed warning regarding the use of tramadol in children. To provide safe and effective tramadol prescription in children, a personalized approach, with dose adaptation according to CYP2D6 activity, would certainly be the safest method. We therefore recommend this approach in children requiring chronic or recurrent nociceptive pain treatment with tramadol. In case of acute inpatients nociceptive pain management, prescribing tramadol at the minimal effective dose, in a child appropriate dosage form and after clear instructions are given to the parents, remains reasonable based on current data. In all other situations, morphine should be preferred for moderate to severe nociceptive pain conditions.
Collapse
Affiliation(s)
- Frédérique Rodieux
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of GenevaGeneva, Switzerland
| | - Laszlo Vutskits
- Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of GenevaGeneva, Switzerland.,Department of Basic Neuroscience, Faculty of Medicine, University of GenevaGeneva, Switzerland.,Division of Anesthesiology, Unit for Pediatric Anesthesia, Children's Hospitals of Geneva, Geneva University Hospitals, University of GenevaGeneva, Switzerland
| | - Klara M Posfay-Barbe
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Children's Hospital of Geneva, Geneva University Hospitals, University of GenevaGeneva, Switzerland
| | - Walid Habre
- Division of Anesthesiology, Unit for Pediatric Anesthesia, Children's Hospitals of Geneva, Geneva University Hospitals, University of GenevaGeneva, Switzerland.,Anesthesiological Investigations Unit, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of GenevaGeneva, Switzerland
| | - Valérie Piguet
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of GenevaGeneva, Switzerland
| | - Jules A Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of GenevaGeneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of LausanneGeneva, Switzerland
| | - Caroline F Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of GenevaGeneva, Switzerland
| |
Collapse
|
17
|
Strategies for Determining Correct Cytochrome P450 Contributions in Hepatic Clearance Predictions: In Vitro-In Vivo Extrapolation as Modelling Approach and Tramadol as Proof-of Concept Compound. Eur J Drug Metab Pharmacokinet 2018; 42:537-543. [PMID: 27317395 DOI: 10.1007/s13318-016-0355-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Although the measurement of cytochrome P450 (CYP) contributions in metabolism assays is straightforward, determination of actual in vivo contributions might be challenging. How representative are in vitro for in vivo CYP contributions? This article proposes an improved strategy for the determination of in vivo CYP enzyme-specific metabolic contributions, based on in vitro data, using an in vitro-in vivo extrapolation (IVIVE) approach. Approaches are exemplified using tramadol as model compound, and CYP2D6 and CYP3A4 as involved enzymes. METHODS Metabolism data for tramadol and for the probe substrates midazolam (CYP3A4) and dextromethorphan (CYP2D6) were gathered in human liver microsomes (HLM) and recombinant human enzyme systems (rhCYP). From these probe substrates, an activity-adjustment factor (AAF) was calculated per CYP enzyme, for the determination of correct hepatic clearance contributions. As a reference, tramadol CYP contributions were scaled-back from in vivo data (retrograde approach) and were compared with the ones derived in vitro. In this view, the AAF is an enzyme-specific factor, calculated from reference probe activity measurements in vitro and in vivo, that allows appropriate scaling of a test drug's in vitro activity to the 'healthy volunteer' population level. Calculation of an AAF, thus accounts for any 'experimental' or 'batch-specific' activity difference between in vitro HLM and in vivo derived activity. RESULTS In this specific HLM batch, for CYP3A4 and CYP2D6, an AAF of 0.91 and 1.97 was calculated, respectively. This implies that, in this batch, the in vitro CYP3A4 activity is 1.10-fold higher and the CYP2D6 activity 1.97-fold lower, compared to in vivo derived CYP activities. CONCLUSION This study shows that, in cases where the HLM pool does not represent the typical mean population CYP activities, AAF correction of in vitro metabolism data, optimizes CYP contributions in the prediction of hepatic clearance. Therefore, in vitro parameters for any test compound, obtained in a particular batch, should be corrected with the AAF for the respective enzymes. In the current study, especially the CYP2D6 contribution was found, to better reflect the average in vivo situation. It is recommended that this novel approach is further evaluated using a broader range of compounds.
Collapse
|
18
|
Loss-of-function polymorphisms in the organic cation transporter OCT1 are associated with reduced postoperative tramadol consumption. Pain 2017; 157:2467-2475. [PMID: 27541716 DOI: 10.1097/j.pain.0000000000000662] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The organic cation transporter OCT1 (SLC22A1) mediates uptake and metabolism of the active tramadol metabolite (+)O-desmethyltramadol in the liver. In this study, the influence of OCT1 genetic polymorphisms on pharmacokinetics and analgesic efficacy of tramadol in patients recovering from surgery was analyzed in addition to the CYP2D6 genotype. Postoperative patients who received tramadol through patient-controlled analgesia were enrolled. Genotypes resulting in 0, 1, or 2 active OCT1 alleles were determined as well as CYP2D6 genotypes. The primary endpoint was the 24-hour postoperative tramadol consumption in patients with 0 vs at least 1 active OCT1 allele. Secondary endpoint was the OCT1-dependent plasma concentration (areas under the concentration-time curves) of the active tramadol metabolite (+)O-desmethyltramadol. Of 205 patients, 19, 82, and 104 carried 0, 1, and 2 active OCT1 alleles, respectively. Cumulative tramadol consumption through patient-controlled analgesia was lowest in patients with 0 active OCT1 allele compared with the group of patients with 1 or 2 active alleles (343 ± 235 vs 484 ± 276 mg; P = 0.03). Multiple regression revealed that the number of active OCT1 alleles (P = 0.014), CYP2D6 (P = 0.001), pain scores (P < 0.001), and the extent of surgery (0.034) had a significant influence on tramadol consumption. Plasma areas under the concentration-time curves of (+)O-desmethyltramadol were 111.8 (95% confidence interval: 63.4-160.1), 80.2 (65.1-95.3), and 64.5 (51.9-77.2) h·ng·mL in carriers of 0, 1, or 2 active OCT1 alleles (P = 0.03). Loss of OCT1 function resulted in reduced tramadol consumption and increased plasma concentrations of (+)O-desmethyltramadol in patients recovering from surgery. Therefore, analyzing OCT1 next to CYP2D6 genotype might further improve future genotype-dependent dose recommendations for tramadol.
Collapse
|
19
|
Owusu Obeng A, Hamadeh I, Smith M. Review of Opioid Pharmacogenetics and Considerations for Pain Management. Pharmacotherapy 2017; 37:1105-1121. [DOI: 10.1002/phar.1986] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aniwaa Owusu Obeng
- The Charles Bronfman Institute for Personalized Medicine; Icahn School of Medicine at Mount Sinai; New York NY
- Pharmacy Department; The Mount Sinai Hospital; New York New York
- Division of General Internal Medicine; Department of Medicine; Icahn School of Medicine at Mount Sinai; New York New York
| | | | - Michael Smith
- University of Michigan College of Pharmacy; Ann Arbor Michigan
| |
Collapse
|
20
|
Barbosa J, Faria J, Queirós O, Moreira R, Carvalho F, Dinis-Oliveira RJ. Comparative metabolism of tramadol and tapentadol: a toxicological perspective. Drug Metab Rev 2016; 48:577-592. [PMID: 27580162 DOI: 10.1080/03602532.2016.1229788] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
|
22
|
Affiliation(s)
- Eric E. Prommer
- Division of Hematology/Oncology, Veterans Integrated Palliative Care Program, Veterans Integrated Palliative Care, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
23
|
PHARMACOKINETICS OF TRAMADOL HYDROCHLORIDE AND ITS METABOLITE O-DESMETHYLTRAMADOL FOLLOWING A SINGLE, ORALLY ADMINISTERED DOSE IN CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS). J Zoo Wildl Med 2015; 46:476-81. [DOI: 10.1638/2014-0183.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Brosen K. Pharmacogenetics of drug oxidation via cytochrome P450 (CYP) in the populations of Denmark, Faroe Islands and Greenland. Drug Metab Pers Ther 2015; 30:147-63. [PMID: 25719307 DOI: 10.1515/dmdi-2014-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/09/2014] [Indexed: 11/15/2022]
Abstract
Denmark, the Faroe Islands and Greenland are three population-wise small countries on the northern part of the Northern Hemisphere, and studies carried out here on the genetic control over drug metabolism via cytochrome P450 have led to several important discoveries. Thus, CYP2D6 catalyzes the 2-hydroxylation, and CYP2C19 in part catalyzes the N-demethylation of imipramine. The phenomenon of phenocopy with regard to CYP2D6 was first described when Danish patients changed phenotype from extensive to poor metabolizers during treatment with quinidine. It was a Danish extensive metabolizer patient that became a poor metabolizer during paroxetine treatment, and this was due to the potent inhibition of CYP2D6 by paroxetine, which is also is metabolized by this enzyme. Fluoxetine and norfluoxetine are also potent inhibitors of CYP2D6, and fluvoxamine is a potent inhibitor of both CYP1A2 and CYP2C19. The bioactivation of proguanil to cycloguanil is impaired in CYP2C19 poor metabolizers. The O-demethylation of codeine and tramadol to their respective my-opioid active metabolites, morphine and (+)-O-desmethyltramadol was markedly impaired in CYP2D6 poor metabolizers compared to extensive metabolizers, and this impairs the hypoalgesic effect of the two drugs in the poor metabolizers. The frequency of CYP2D6 poor metabolizers is 2%-3% in Greenlanders and nearly 15% in the Faroese population. The frequency of CYP2C19 poor metabolizers in East Greenlanders is approximately 10%. A study in Danish mono and dizygotic twins showed that the non-polymorphic 3-N-demethylation of caffeine catalyzed by CYP1A2 is subject to approximately 70% genetic control.
Collapse
|
25
|
Allegaert K, Holford N, Anderson BJ, Holford S, Stuber F, Rochette A, Trocóniz IF, Beier H, de Hoon JN, Pedersen RS, Stamer U. Tramadol and o-desmethyl tramadol clearance maturation and disposition in humans: a pooled pharmacokinetic study. Clin Pharmacokinet 2015; 54:167-78. [PMID: 25258277 DOI: 10.1007/s40262-014-0191-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES We aimed to study the impact of size, maturation and cytochrome P450 2D6 (CYP2D6) genotype activity score as predictors of intravenous tramadol disposition. METHODS Tramadol and O-desmethyl tramadol (M1) observations in 295 human subjects (postmenstrual age 25 weeks to 84.8 years, weight 0.5-186 kg) were pooled. A population pharmacokinetic analysis was performed using a two-compartment model for tramadol and two additional M1 compartments. Covariate analysis included weight, age, sex, disease characteristics (healthy subject or patient) and CYP2D6 genotype activity. A sigmoid maturation model was used to describe age-related changes in tramadol clearance (CLPO), M1 formation clearance (CLPM) and M1 elimination clearance (CLMO). A phenotype-based mixture model was used to identify CLPM polymorphism. RESULTS Differences in clearances were largely accounted for by maturation and size. The time to reach 50 % of adult clearance (TM50) values was used to describe maturation. CLPM (TM50 39.8 weeks) and CLPO (TM50 39.1 weeks) displayed fast maturation, while CLMO matured slower, similar to glomerular filtration rate (TM50 47 weeks). The phenotype-based mixture model identified a slow and a faster metabolizer group. Slow metabolizers comprised 9.8 % of subjects with 19.4 % of faster metabolizer CLPM. Low CYP2D6 genotype activity was associated with lower (25 %) than faster metabolizer CLPM, but only 32 % of those with low genotype activity were in the slow metabolizer group. CONCLUSIONS Maturation and size are key predictors of variability. A two-group polymorphism was identified based on phenotypic M1 formation clearance. Maturation of tramadol elimination occurs early (50 % of adult value at term gestation).
Collapse
Affiliation(s)
- Karel Allegaert
- Neonatal Intensive Care Unit and Center for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
T'jollyn H, Snoeys J, Vermeulen A, Michelet R, Cuyckens F, Mannens G, Van Peer A, Annaert P, Allegaert K, Van Bocxlaer J, Boussery K. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation. AAPS JOURNAL 2015. [PMID: 26209290 DOI: 10.1208/s12248-015-9803-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.
Collapse
Affiliation(s)
- Huybrecht T'jollyn
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| | - Jan Snoeys
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Robin Michelet
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Filip Cuyckens
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Geert Mannens
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Achiel Van Peer
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Pieter Annaert
- Drug Delivery & Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Herestraat, 49-box 921, B-3000, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven and Neonatal Intensive Care Unit, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Jan Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Koen Boussery
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| |
Collapse
|
27
|
|
28
|
Pharmacokinetics and antinociceptive effects of tramadol and its metabolite O-desmethyltramadol following intravenous administration in sheep. Vet J 2015; 205:404-9. [PMID: 26166406 DOI: 10.1016/j.tvjl.2015.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 11/23/2022]
Abstract
Although sheep are widely used as an experimental model for various surgical procedures there is a paucity of data on the pharmacokinetics and efficacy of analgesic drugs in this species. The aims of this study were to investigate the pharmacokinetics of intravenously (IV) administered tramadol and its active metabolite O-desmethyltramadol (M1) and to assess the mechanical antinociceptive effects in sheep. In a prospective, randomized, blinded study, six healthy adult sheep were given 4 and 6 mg/kg tramadol and saline IV in a cross-over design with a 2-week wash-out period. At predetermined time points blood samples were collected and physiological parameters and mechanical nociceptive threshold (MNT) values were recorded. The analytical determination of tramadol and M1 was performed using high performance liquid chromatography. Pharmacokinetic parameters fitted a two- and a non-compartmental model for tramadol and M1, respectively. Normally distributed data were analysed by a repeated mixed linear model. Plasma concentration vs. time profiles of tramadol and M1 were similar after the two doses. Tramadol and M1 plasma levels decreased rapidly in the systemic circulation, with both undetectable after 6 h following drug administration. Physiological parameters did not differ between groups; MNT values were not statistically significant between groups at any time point. It was concluded that although tramadol and M1 concentrations in plasma were above the human minimum analgesic concentration after both treatments, no mechanical antinociceptive effects of tramadol were reported. Further studies are warranted to assess the analgesic efficacy of tramadol in sheep.
Collapse
|
29
|
|
30
|
Population pharmacokinetic modelling of tramadol using inverse Gaussian function for the assessment of drug absorption from prolonged and immediate release formulations. Int J Pharm 2014; 473:170-8. [DOI: 10.1016/j.ijpharm.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 11/18/2022]
|
31
|
|
32
|
T'jollyn H, Snoeys J, Colin P, Van Bocxlaer J, Annaert P, Cuyckens F, Vermeulen A, Van Peer A, Allegaert K, Mannens G, Boussery K. Physiology-based IVIVE predictions of tramadol from in vitro metabolism data. Pharm Res 2014; 32:260-74. [PMID: 25048637 DOI: 10.1007/s11095-014-1460-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE To predict the tramadol in vivo pharmacokinetics in adults by using in vitro metabolism data and an in vitro-in vivo extrapolation (IVIVE)-linked physiologically-based pharmacokinetic (PBPK) modeling and simulation approach (Simcyp®). METHODS Tramadol metabolism data was gathered using metabolite formation in human liver microsomes (HLM) and recombinant enzyme systems (rCYP). Hepatic intrinsic clearance (CLintH) was (i) estimated from HLM corrected for specific CYP450 contributions from a chemical inhibition assay (model 1); (ii) obtained in rCYP and corrected for specific CYP450 contributions by study-specific intersystem extrapolation factor (ISEF) values (model 2); and (iii) scaled back from in vivo observed clearance values (model 3). The model-predicted clearances of these three models were evaluated against observed clearance values in terms of relative difference of their geometric means, the fold difference of their coefficients of variation, and relative CYP2D6 contribution. RESULTS Model 1 underpredicted, while model 2 overpredicted the total tramadol clearance by -27 and +22%, respectively. The CYP2D6 contribution was underestimated in both models 1 and 2. Also, the variability on the clearance of those models was slightly underpredicted. Additionally, blood-to-plasma ratio and hepatic uptake factor were identified as most influential factors in the prediction of the hepatic clearance using a sensitivity analysis. CONCLUSION IVIVE-PBPK proved to be a useful tool in combining tramadol's low turnover in vitro metabolism data with system-specific physiological information to come up with reliable PK predictions in adults.
Collapse
Affiliation(s)
- Huybrecht T'jollyn
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tramadol Extended-Release for the Management of Pain due to Osteoarthritis. ISRN PAIN 2013; 2013:245346. [PMID: 27335872 PMCID: PMC4893407 DOI: 10.1155/2013/245346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
Current knowledge on pathogenesis of osteoarticular pain, as well as the consequent several, especially on the gastrointestinal, renal, and cardiovascular systems, side effects of NSAIDs, makes it difficult to perform an optimal management of this mixed typology of pain. This is especially observable in elderly patients, the most frequently affected by osteoarthritis (OA). Tramadol is an analgesic drug, the action of which has a twofold action. It has a weak affinity to mu opioid receptors and, at the same time, can result in inhibition of the reuptake of noradrenaline and serotonin in nociceptorial descending inhibitory control system. These two mechanisms, "opioidergic" and "nonopioidergic," are the grounds for contrasting certain types of pain that are generally less responsive to opioids, such as neuropathic pain or mixed OA pain. The extended-release formulation of tramadol has good efficacy and tolerability and acts through a dosing schedule that allows a high level of patients compliance to therapies with a good recovery outcome for the patients' functional status.
Collapse
|
34
|
Barbera N, Fisichella M, Bosco A, Indorato F, Spadaro G, Romano G. A suicidal poisoning due to tramadol. A metabolic approach to death investigation. J Forensic Leg Med 2013; 20:555-8. [PMID: 23756535 DOI: 10.1016/j.jflm.2013.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/30/2012] [Accepted: 03/02/2013] [Indexed: 11/24/2022]
Abstract
Tramadol is a synthetic opioid, widely used for post-surgical and chronic pain. Lethal overdose due only to tramadol is not common; more often the poisoning is due to tramadol in combination with other substances. Reported is a suicidal case of lethal tramadol poisoning in a 48-year-old woman. Tramadol and its metabolites O-desmethyltramadol (M1), N-desmethyltramadol (M2), N,N-didesmethyltramadol (M3), N,O-didesmethyltramadol (M5) were detected by GC/MS in biological fluids (femoral blood, bile, urine, gastric content) and viscera (brain, lung, liver and kidney). The tramadol concentration in femoral blood was 61.83 mcg/ml which is approximately 30 times higher than that believed to be lethal. According with other Authors, a preferential formation of M1 over M2 (M1/M2 ratio >1) is indicative of acute death, while M1/M2 ratio <1 suggests that death occurred after a longer time lapse from ingestion.
Collapse
Affiliation(s)
- Nunziata Barbera
- Department G.F. Ingrassia, Laboratory of Forensic Toxicology, University of Catania, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Saarikoski T, Saari TI, Hagelberg NM, Neuvonen M, Neuvonen PJ, Scheinin M, Olkkola KT, Laine K. Rifampicin markedly decreases the exposure to oral and intravenous tramadol. Eur J Clin Pharmacol 2012; 69:1293-301. [DOI: 10.1007/s00228-012-1460-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/26/2012] [Indexed: 12/23/2022]
|
36
|
Nelson EM, Philbrick AM. Avoiding Serotonin Syndrome: The Nature of the Interaction Between Tramadol and Selective Serotonin Reuptake Inhibitors. Ann Pharmacother 2012; 46:1712-6. [DOI: 10.1345/aph.1q748] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To investigate the nature of the interaction between selective serotonin reuptake inhibitors (SSRIs) and tramadol to mitigate or avoid serotonin syndrome. Data Sources: PubMed, Ovid MEDLINE, and International Pharmaceutical Abstracts from January 1990 to August 2012 were searched. Key words used were tramadol, antidepressive agents, antidepressants, drug interactions, selective serotonin uptake inhibitors, and serotonin syndrome. Study Selection and Data Extraction: Only English-language studies were included. No randomized controlled trials were identified. Review articles, case reports, and 1 case series that identified the scope of interaction between tramadol and SSRIs were evaluated. Review articles evaluating the role of pharmacogenetics in the use of tramadol, SSRIs, and serotonin syndrome were also reviewed. Data Synthesis: Published documentation describing the interaction between tramadol and SSRIs and its relevance to serotonin syndrome is limited to a few case reports and 1 case series. While both tramadol and SSRIs increase the amount of serotonin in the brain, the interaction is much more complicated. Tramadol is metabolized through CYP2D6 enzymes and all SSRIs are inhibitors of these enzymes. Inhibitors of CYP2D6 can increase the concentration of tramadol in the blood and thus increase its effects on serotonin in the brain, contributing to the development of serotonin syndrome. CYP2D6 poor metabolizers are at a greater risk of serotonin syndrome and an inadequate analgesic effect. Conclusions: Coadministration of tramadol and SSRIs has caused serotonin syndrome. An attempt should be made to identify individuals who are poor metabolizers of CYP2D6 and avoid this combination in those patients. When SSRIs and tramadol must be used in combination, it is critical that patients be aware of the signs and symptoms of serotonin syndrome, should they occur.
Collapse
Affiliation(s)
- Elana M Nelson
- College of Pharmacy, University of Minnesota, Minneapolis, MN, Truman Medical Center-Hospital Hill, Kansas City, MO
| | | |
Collapse
|
37
|
Schwaninger AE, Meyer MR, Maurer HH. Chiral drug analysis using mass spectrometric detection relevant to research and practice in clinical and forensic toxicology. J Chromatogr A 2012; 1269:122-35. [DOI: 10.1016/j.chroma.2012.07.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 12/01/2022]
|
38
|
Vuilleumier PH, Stamer UM, Landau R. Pharmacogenomic considerations in opioid analgesia. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2012; 5:73-87. [PMID: 23226064 PMCID: PMC3513230 DOI: 10.2147/pgpm.s23422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Translating pharmacogenetics to clinical practice has been particularly challenging in the context of pain, due to the complexity of this multifaceted phenotype and the overall subjective nature of pain perception and response to analgesia. Overall, numerous genes involved with the pharmacokinetics and dynamics of opioids response are candidate genes in the context of opioid analgesia. The clinical relevance of CYP2D6 genotyping to predict analgesic outcomes is still relatively unknown; the two extremes in CYP2D6 genotype (ultrarapid and poor metabolism) seem to predict pain response and/or adverse effects. Overall, the level of evidence linking genetic variability (CYP2D6 and CYP3A4) to oxycodone response and phenotype (altered biotransformation of oxycodone into oxymorphone and overall clearance of oxycodone and oxymorphone) is strong; however, there has been no randomized clinical trial on the benefits of genetic testing prior to oxycodone therapy. On the other hand, predicting the analgesic response to morphine based on pharmacogenetic testing is more complex; though there was hope that simple genetic testing would allow tailoring morphine doses to provide optimal analgesia, this is unlikely to occur. A variety of polymorphisms clearly influence pain perception and behavior in response to pain. However, the response to analgesics also differs depending on the pain modality and the potential for repeated noxious stimuli, the opioid prescribed, and even its route of administration.
Collapse
Affiliation(s)
- Pascal H Vuilleumier
- Klinik für Anästhesiologie und Schmerztherapie, Inselspital Universität Bern, Switzerland
| | | | | |
Collapse
|
39
|
|
40
|
Enantioselective analysis of unbound tramadol, O-desmethyltramadol and N-desmethyltramadol in plasma by ultrafiltration and LC–MS/MS: Application to clinical pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 880:140-7. [DOI: 10.1016/j.jchromb.2011.11.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 11/17/2022]
|
41
|
Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative Prediction of Cytochrome P450 (CYP) 2D6-Mediated Drug Interactions. Clin Pharmacokinet 2011; 50:519-30. [DOI: 10.2165/11592620-000000000-00000] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Stamer UM, Lee EH, Rauers NI, Zhang L, Kleine-Brueggeney M, Fimmers R, Stuber F, Musshoff F. CYP2D6- and CYP3A-Dependent Enantioselective Plasma Concentrations of Ondansetron in Postanesthesia Care. Anesth Analg 2011; 113:48-54. [DOI: 10.1213/ane.0b013e31821d01bc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Elkalioubie A, Allorge D, Robriquet L, Wiart JF, Garat A, Broly F, Fourrier F. Near-fatal tramadol cardiotoxicity in a CYP2D6 ultrarapid metabolizer. Eur J Clin Pharmacol 2011; 67:855-8. [PMID: 21691803 DOI: 10.1007/s00228-011-1080-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/31/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tramadol is a synthetic, centrally acting analgesic for the treatment of moderate to severe pain. The marketed tramadol is a racemic mixture containing 50% (+)tramadol and 50% (-)tramadol and is mainly metabolized to O-desmethyltramadol (M1) by the cytochrome P450 CYP2D6. Tramadol is generally considered to be devoid of any serious adverse effects of traditional opioid receptor agonists, such as respiratory depression and drug dependence. CASE REPORT A 22-year-old Caucasian female patient was admitted to our ICU in refractory cardiac arrest requiring extracorporeal membrane oxygenation. This aggressive support allowed resolution of multi-organ dysfunction syndrome. Repeated blood analyses using liquid chromatography-tandem mass spectrometry confirmed high concentrations of both tramadol and its main metabolite O-desmethyltramadol. Genotyping of CYP2D6 revealed the patient to be heterozygous for a duplicated wild-type allele, predictive of a CYP2D6 ultrarapid metabolizer (UM) phenotype, confirmed by calculation of the tramadol/M1 (MR1) metabolic ratio at all time points. DISCUSSION We here report a case of near-fatal isolated tramadol cardiotoxicity. Because of the inhibition of norepinephrine reuptake, excessive blood epinephrine levels in this CYP2D6R UM patient following excessive tramadol ingestion could explain the observed strong myocardial stunning. This patient admitted intermittent tramadol consumption to gain a "high" sensation. In patients with excessive morphinomimetic effects, levels of tramadol and its main metabolite M1could be measured, ideally combined with CYP2D6 genotyping, to identify individuals at risk of tramadol-related cardiotoxicity. Tramadol treatment could be optimized in these at-risk individuals, consequently improving patient outcome and safety.
Collapse
Affiliation(s)
- Ahmed Elkalioubie
- Service de Réanimation Polyvalente, Hôpital Roger Salengro, CHRU Lille, Rue Emile Laine, 59037, Lille Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Genetically polymorphic OCT1: another piece in the puzzle of the variable pharmacokinetics and pharmacodynamics of the opioidergic drug tramadol. Clin Pharmacol Ther 2011; 90:143-50. [PMID: 21562485 DOI: 10.1038/clpt.2011.56] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We investigated whether tramadol or its active metabolite, O-desmethyltramadol, are substrates of the organic cation transporter OCT1 and whether polymorphisms in OCT1 affect tramadol and O-desmethyltramadol pharmacokinetics. Tramadol showed high permeability through parallel artificial membrane permeability assays (PAMPAs). Tramadol uptake in HEK293 cells did not change after OCT1 overexpression, and the concentrations of tramadol in the plasma of healthy volunteers were independent of their OCT1 genotypes. In contrast, O-desmethyltramadol showed low membrane permeability, and OCT1 overexpression increased O-desmethyltramadol uptake 2.4-fold. This increase in uptake was reversed by OCT1 inhibitors and absent when loss-of-function OCT1 variants were overexpressed. Volunteers carrying loss-of-function OCT1 polymorphisms had significantly higher plasma concentrations of O-desmethyltramadol (P = 0.002, n = 41) and significantly prolonged miosis, a surrogate marker of opioidergic effects (P = 0.005, n = 24). In conclusion, polymorphisms in OCT1 influence the pharmacokinetics of O-desmethyltramadol, presumably by affecting its uptake into liver cells, and thus may modulate the efficacy of tramadol treatment.
Collapse
|
45
|
COX S, MARTIN-JIMENEZ T, Van AMSTEL S, DOHERTY T. Pharmacokinetics of intravenous and intramuscular tramadol in llamas. J Vet Pharmacol Ther 2011; 34:259-64. [DOI: 10.1111/j.1365-2885.2010.01219.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Population pharmacokinetic modeling of tramadol and its O-desmethyl metabolite in plasma and breast milk. Eur J Clin Pharmacol 2011; 67:899-908. [DOI: 10.1007/s00228-011-1023-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
47
|
Meyer MR, Maurer HH. Absorption, distribution, metabolism and excretion pharmacogenomics of drugs of abuse. Pharmacogenomics 2011; 12:215-33. [DOI: 10.2217/pgs.10.171] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pharmacologic and toxic effects of xenobiotics, such as drugs of abuse, depend on the genotype and phenotype of an individual, and conversely on the isoenzymes involved in their metabolism and transport. The current knowledge of such isoenzymes of frequently abused therapeutics such as opioids (oxycodone, hydrocodone, methadone, fentanyl, buprenorphine, tramadol, heroin, morphine and codeine), anesthetics (γ-hydroxybutyric acid, propofol, ketamine and phencyclidine) and cognitive enhancers (methylphenidate and modafinil), and some important plant-derived hallucinogens (lysergide, salvinorin A, psilocybin and psilocin), as well as of nicotine in humans are summarized in this article. The isoenzymes (e.g., cytochrome P450, glucuronyltransferases, esterases and reductases) involved in the metabolism of drugs and some pharmacokinetic data are discussed. The relevance of such data is discussed for predicting possible interactions with other xenobiotics, understanding pharmacokinetic behavior and pharmacogenomic variations, assessing toxic risks, developing suitable toxicological analysis procedures, and finally for interpretating drug testing results.
Collapse
Affiliation(s)
- Markus R Meyer
- Department of Experimental & Clinical Toxicology, Institute of Experimental & Clinical Pharmacology & Toxicology, Saarland University, D 66421 Homburg (Saar), Germany
| | | |
Collapse
|
48
|
Abstract
Numerous analgesics are available for use in animals, but only a few have been used or studied in zoologic species. Tramadol is a relatively new analgesic that is available in an inexpensive, oral form, and is not controlled. Studies examining the effect of tramadol in zoologic species suggest that significant differences exist in pharmacokinetics parameters as well as analgesic dynamics. This article reviews the current literature on the use of tramadol in humans, domestic animals, and zoologic species.
Collapse
Affiliation(s)
- Marcy J Souza
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA.
| | | |
Collapse
|
49
|
Kleine-Brueggeney M, Musshoff F, Stuber F, Stamer UM. Pharmacogenetics in palliative care. Forensic Sci Int 2010; 203:63-70. [DOI: 10.1016/j.forsciint.2010.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Rauers NI, Stüber F, Lee EH, Musshoff F, Fimmers R, Barann M, Stamer UM. Antagonistic Effects of Ondansetron and Tramadol? A Randomized Placebo and Active Drug Controlled Study. THE JOURNAL OF PAIN 2010; 11:1274-81. [DOI: 10.1016/j.jpain.2010.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 02/10/2010] [Accepted: 03/04/2010] [Indexed: 11/24/2022]
|