1
|
Mohammadi M, Alian M, Dale B, Ubanwa B, Balan V. Multifaced application of AFEX-pretreated biomass in producing second-generation biofuels, ruminant animal feed, and value-added bioproducts. Biotechnol Adv 2024; 72:108341. [PMID: 38499256 DOI: 10.1016/j.biotechadv.2024.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lignocellulosic biomass holds a crucial position in the prospective bio-based economy, serving as a sustainable and renewable source for a variety of bio-based products. These products play a vital role in displacing fossil fuels and contributing to environmental well-being. However, the inherent recalcitrance of biomass poses a significant obstacle to the efficient access of sugar polymers. Consequently, the bioconversion of lignocellulosic biomass into fermentable sugars remains a prominent challenge in biorefinery processes to produce biofuels and biochemicals. In addressing these challenges, extensive efforts have been dedicated to mitigating biomass recalcitrance through diverse pretreatment methods. One noteworthy process is Ammonia Fiber Expansion (AFEX) pretreatment, characterized by its dry-to-dry nature and minimal water usage. The volatile ammonia, acting as a catalyst in the process, is recyclable. AFEX contributes to cleaning biomass ester linkages and facilitating the opening of cell wall structures, enhancing enzyme accessibility and leading to a fivefold increase in sugar conversion compared to untreated biomass. Over the last decade, AFEX has demonstrated substantial success in augmenting the efficiency of biomass conversion processes. This success has unlocked the potential for sustainable and economically viable biorefineries. This paper offers a comprehensive review of studies focusing on the utilization of AFEX-pretreated biomass in the production of second-generation biofuels, ruminant feed, and additional value-added bioproducts like enzymes, lipids, proteins, and mushrooms. It delves into the details of the AFEX pretreatment process at both laboratory and pilot scales, elucidates the mechanism of action, and underscores the role of AFEX in the biorefinery for developing biofuels and bioproducts, and nutritious ruminant animal feed production. While highlighting the strides made, the paper also addresses current challenges in the commercialization of AFEX pretreatment within biorefineries. Furthermore, it outlines critical considerations that must be addressed to overcome these challenges, ensuring the continued progress and widespread adoption of AFEX in advancing sustainable and economically viable bio-based industries.
Collapse
Affiliation(s)
- Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Bruce Dale
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA.
| |
Collapse
|
2
|
Singh S, Arya SK, Krishania M. Bioprocess optimization for enhanced xylitol synthesis by new isolate Meyerozyma caribbica CP02 using rice straw. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:31. [PMID: 38402217 PMCID: PMC10894501 DOI: 10.1186/s13068-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
The present work models the fermentation process parameters of the newly isolated, Meyerozyma caribbica CP02 for enhanced xylitol production and its fermentability study on rice straw hydrolysate. The study examined the impact of each of the process variables by one variable at a time optimization followed by statistical validation. Temperature of 32 °C, pH of 3.5, agitation of 200 rpm, 1.5% (v/v) inoculum, 80 gL-1 initial xylose was optimized. Subsequently, a sequential two-stage agitation approach was adopted for fermentation. At these optimized conditions, xylitol yield of 0.77 gg-1 and 0.64 gg-1 was achieved using media containing commercial and rice straw derived xylose, respectively. For scale up, in 3L batch bioreactor, the highest xylitol yield (0.63 gg-1) was attained at 72 h with rice straw hydrolysate media containing initial xylose (59.48 ± 0.82 gL-1) along with inhibitors (1.55 ± 0.10 gL-1 aliphatic acids, 0.0.048 ± 0.11 gL-1 furans, 0.64 ± 0.23 gL-1 total phenols). The results imply that even under circumstances characterized by an acidic pH and elevated initial xylose level, M. caribbica CP02, as an isolate, displays robustness and shows favorable fermentability of rice straw hydrolysate. Therefore, isolate CP02 has potential to be used in bio-refineries for high yield xylitol production with minimal hydrolysate processing requirements.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India.
| |
Collapse
|
3
|
Xu P, Shu L, Li Y, Zhou S, Zhang G, Wu Y, Yang Z. Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 2023; 9:e16311. [PMID: 37305492 PMCID: PMC10256924 DOI: 10.1016/j.heliyon.2023.e16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/16/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
With the continuous development of agriculture, Agricultural organic waste (AOW) has become the most abundant renewable energy on earth, and it is a hot spot of research in recent years to realize the recycling of AOW to achieve sustainable development of agricultural production. However, lignocellulose, which is difficult to degrade in AOW, greenhouse gas emissions, and pile pathogenic fungi and insect eggs are the biggest obstacles to its return to land use. In response to the above problems researchers promote organic waste recycling by pretreating AOW, controlling composting conditions and adding other substances to achieve green return of AOW to the field and promote the development of agricultural production. This review summarizes the ways of organic waste treatment, factors affecting composting and problems in composting by researchers in recent years, with a view to providing research ideas for future related studies.
Collapse
Affiliation(s)
- Peng Xu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Luolin Shu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yang Li
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Shun Zhou
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Guanzhi Zhang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yongjun Wu
- College of Life Sciences, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Zhenchao Yang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
4
|
Wang L, Li X, Wan C, Zhang K, Wu Z, Hu F, Zhang R, Fu X, Yu H. Enhanced production of sugars and UV-shielded lignin/PAN fiber mats from chemi-mechanical pulps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:161090. [PMID: 36586767 DOI: 10.1016/j.scitotenv.2022.161090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
This study investigated poplar pretreatments by chemi-mechanical pulping (CMP) under different beating degrees and alkali concentrations. The enzyme-mediated hydrolysis of pretreated poplar was enhanced by deacetylation and delignification. Meanwhile, the remaining lignin residues were used to produce lignin/polyacrylonitrile (PAN) fiber mats by electrospinning. These mats exhibited excellent mechanical and UV-blocking performance when the lignin was obtained from pulps under milder alkali concentrations (5 g/L). 31P nuclear magnetic resonance (31P NMR) and two-dimensional heteronuclear single-quantum correlation nuclear magnetic resonance (2D HSQC NMR) data revealed that increasing the beating degree at low alkali concentration during the CMP process led to the cleavage of β-O-4' interunit linkages and re-condensation in lignin, releasing several phenolic groups. Lignin with more linear β-O-4' interunit linkages and lesser phenolic groups, obtained from treatment of CMP with lower alkali concentration (5 g/L) and beating degree (20°SR), resulted in the corresponding lignin/PAN fiber mats exhibiting better mechanical performance. Further, lignin, along with the increased phenolic-OH and COOH, and p-hydroxybenzoate (PB) units with a more extended conjugate structure, derived from CMP under lower alkali concentration (5 g/L) and higher beating degree (45°SR), led to a stronger ultraviolet (UV) absorption in the corresponding lignin/PAN mats. To summarize, this study reports a mild and low-pollution biomass pretreatment method (CMP) that can efficiently regulate the lignin structure and exhibit efficient anti-ultraviolet properties. The corresponding UV-blocking fiber mats can be potentially used as materials for wearable fabrics.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Xiaohan Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Chenzhong Wan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Kesheng Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Zhao Wu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, Hubei, China
| | - Fen Hu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, Hubei, China
| | - Ran Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, Hubei, China.
| | - Xiao Fu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Jaichakan P, Nakphaichit M, Rungchang S, Weerawatanakorn M, Phongthai S, Klangpetch W. Two-stage processing for xylooligosaccharide recovery from rice by-products and evaluation of products: Promotion of lactic acid-producing bacterial growth and food application in a high-pressure process. Food Res Int 2021; 147:110529. [PMID: 34399507 DOI: 10.1016/j.foodres.2021.110529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
In this study, we attempted to maximize arabinoxylan conversion into xylooligosaccharide (XOS) from rice husk and rice straw using two saccharification processes and evaluate the promotion of lactic acid-producing bacterial growth, including an investigation of the role of prebiotics in protecting probiotic bacteria in rice drink products in a high-pressure process (HPP). Hydrothermal treatment followed by enzymatic hydrolysis was designed for XOS recovery from rice husk arabinoxylan (RH-AX) and rice straw arabinoxylan (RS-AX). The hydrothermal treatment performed at 170 °C for 20 min and 180 °C for 10 min was the optimal condition to produce XOS liquor from rice husk and rice straw, respectively. Pentopan mono BG successfully recovered XOS from rice husk and rice straw residues at 50 °C, pH 5.5, an enzyme concentration of 50 U and 100 U/g substrate for 24 h. This design converted 92.17 and 88.34% (w/w) of initial RH-AX and RS-AX into saccharides, which comprised 64.01 and 59.52% of the XOS content, respectively. Rice husk xylooligosaccharide (RH-XOS) and rice straw xylooligosaccharide (RS-XOS) had degrees of polymerization ranging from 2 to 6 with some arabino-xylooligosaccharides. RH-XOS and RS-XOS were used to examine the promotion of the growth of lactic acid-producing bacteria strains in the presence of other prebiotics. RH-XOS and RS-XOS strongly promoted the growth of Lactobacillus sakei and Lactobacillus brevis, while other species showed weak to moderate growth. This study represents the first report of the powerful effect of Lactococcus lactis KA-FF1-4 on altering the utilization of XOS but not xylose. Furthermore, for the first time, we reported the capability of XOS to protect probiotics in rice drinks under high-pressure conditions. RH-XOS and RS-XOS resulted in the highest viability of approximately 11 log cfu/mL and exhibited no significant difference compared with the non-HPP treatment. Hence, rice husk and rice straw can be utilized as alternative prebiotic sources that provide biological activity and food applications in the HPP industry.
Collapse
Affiliation(s)
- Pannapapol Jaichakan
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Saowaluk Rungchang
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Suphat Phongthai
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wannaporn Klangpetch
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
6
|
Tan J, Li Y, Tan X, Wu H, Li H, Yang S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front Chem 2021; 9:696030. [PMID: 34164381 PMCID: PMC8215366 DOI: 10.3389/fchem.2021.696030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Straw biomass is an inexpensive, sustainable, and abundant renewable feedstock for the production of valuable chemicals and biofuels, which can surmount the main drawbacks such as greenhouse gas emission and environmental pollution, aroused from the consumption of fossil fuels. It is rich in organic content but is not sufficient for extensive applications because of its natural recalcitrance. Therefore, suitable pretreatment is a prerequisite for the efficient production of fermentable sugars by enzymatic hydrolysis. Here, we provide an overview of various pretreatment methods to effectively separate the major components such as hemicellulose, cellulose, and lignin and enhance the accessibility and susceptibility of every single component. This review outlines the diverse approaches (e.g., chemical, physical, biological, and combined treatments) for the excellent conversion of straw biomass to fermentable sugars, summarizes the benefits and drawbacks of each pretreatment method, and proposes some investigation prospects for the future pretreatments.
Collapse
Affiliation(s)
- Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China.,Institute of Crops Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Tajmirriahi M, Momayez F, Karimi K. The critical impact of rice straw extractives on biogas and bioethanol production. BIORESOURCE TECHNOLOGY 2021; 319:124167. [PMID: 33017776 DOI: 10.1016/j.biortech.2020.124167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Extractives are nonstructural constituents of lignocellulosic materials available in small portions; however, their influence on the bioconversion processes cannot be disregarded. This study evaluated the effect of various concentrations of rice straw water extractives (RWE) and ethanol extractives (REE) on enzymatic hydrolysis, anaerobic digestion, and simultaneous saccharification and fermentation productivity. By increasing the RWE or REE concentration, the glucose yield did not change after 72 h of enzymatic hydrolysis. The RWE increment enhanced ethanol yield to 95.6%. However, the REE increment decreased ethanol yield to 32.1%. Adding RWE caused a considerable reduction in the accumulated biogas and changed the composition of produced biogas from 74% methane to less than 1%. By increasing the REE concentration, the accumulated biogas increased from 167.9 to 524.4 ml/g VS. According to the gas chromatography-mass spectrometry (GC/MS) results, the most abundant RWE and REE components were 3-hydroxy-Spirost-8-en-11-one and guaiazulene, respectively.
Collapse
Affiliation(s)
- Mina Tajmirriahi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Forough Momayez
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
8
|
Thite VS, Nerurkar AS. Valorization of sugarcane bagasse by chemical pretreatment and enzyme mediated deconstruction. Sci Rep 2019; 9:15904. [PMID: 31685856 PMCID: PMC6828687 DOI: 10.1038/s41598-019-52347-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/05/2019] [Indexed: 11/09/2022] Open
Abstract
After chemical pretreatment, improved amenability of agrowaste biomass for enzymatic saccharification needs an understanding of the effect exerted by pretreatments on biomass for enzymatic deconstruction. In present studies, NaOH, NH4OH and H2SO4 pretreatments effectively changed visible morphology imparting distinct fibrous appearance to sugarcane bagasse (SCB). Filtrate analysis after NaOH, NH4OH and H2SO4 pretreatments yielded release of soluble reducing sugars (SRS) in range of ~0.17–0.44%, ~0.38–0.75% and ~2.9–8.4% respectively. Gravimetric analysis of pretreated SCB (PSCB) biomass also revealed dry weight loss in range of ~25.8–44.8%, ~11.1–16.0% and ~28.3–38.0% by the three pretreatments in the same order. Release of soluble components other than SRS, majorly reported to be soluble lignins, were observed highest for NaOH followed by H2SO4 and NH4OH pretreatments. Decrease or absence of peaks attributed to lignin and loosened fibrous appearance of biomass during FTIR and SEM studies respectively further corroborated with our observations of lignin removal. Application of commercial cellulase increased raw SCB saccharification from 1.93% to 38.84%, 25.56% and 9.61% after NaOH, H2SO4 and NH4OH pretreatments. Structural changes brought by cell wall degrading enzymes were first time shown visually confirming the cell wall disintegration under brightfield, darkfield and fluorescence microscopy. The microscopic evidence and saccharification results proved that the chemical treatment valorized the SCB by making it amenable for enzymatic saccharification.
Collapse
Affiliation(s)
- Vihang S Thite
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| | - Anuradha S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
9
|
Champreda V, Mhuantong W, Lekakarn H, Bunterngsook B, Kanokratana P, Zhao XQ, Zhang F, Inoue H, Fujii T, Eurwilaichitr L. Designing cellulolytic enzyme systems for biorefinery: From nature to application. J Biosci Bioeng 2019; 128:637-654. [PMID: 31204199 DOI: 10.1016/j.jbiosc.2019.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
Cellulolytic enzymes play a key role on conversion of lignocellulosic plant biomass to biofuels and biochemicals in sugar platform biorefineries. In this review, we survey composite carbohydrate-active enzymes (CAZymes) among groups of cellulolytic fungi and bacteria that exist under aerobic and anaerobic conditions. Recent advances in designing effective cellulase mixtures are described, starting from the most complex microbial consortium-based enzyme preparations, to single-origin enzymes derived from intensively studied cellulase producers such as Trichoderma reesei, Talaromyces cellulolyticus, and Penicellium funiculosum, and the simplest minimal enzyme systems comprising selected sets of mono-component enzymes tailor-made for specific lignocellulosic substrates. We provide a comprehensive update on studies in developing high-performance cellulases for biorefineries.
Collapse
Affiliation(s)
- Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
10
|
Bychkov A, Podgorbunskikh E, Bychkova E, Lomovsky O. Current achievements in the mechanically pretreated conversion of plant biomass. Biotechnol Bioeng 2019; 116:1231-1244. [DOI: 10.1002/bit.26925] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/13/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Aleksey Bychkov
- Laboratory of Solid State ChemistryInstitute of Solid State Chemistry and Mechanochemistry Russian Academy of Sciences Novosibirsk Russia
- Department of Technology of Food Production, Novosibirsk State Technical UniversityNovosibirsk Russia
| | - Ekaterina Podgorbunskikh
- Laboratory of Solid State ChemistryInstitute of Solid State Chemistry and Mechanochemistry Russian Academy of Sciences Novosibirsk Russia
| | - Elena Bychkova
- Department of Technology of Food Production, Novosibirsk State Technical UniversityNovosibirsk Russia
| | - Oleg Lomovsky
- Laboratory of Solid State ChemistryInstitute of Solid State Chemistry and Mechanochemistry Russian Academy of Sciences Novosibirsk Russia
| |
Collapse
|
11
|
Zhang F, Bunterngsook B, Li JX, Zhao XQ, Champreda V, Liu CG, Bai FW. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Chen XF, Zhang LQ, Huang C, Xiong L, Li HL, Wang C, Zhao C, Huang QL, Chen XD. Adsorption Study of Acid Soluble Lignin Removal from Sugarcane Bagasse Hydrolysate by a Self-Synthesized Resin for Lipid Production. Appl Biochem Biotechnol 2018; 188:585-601. [PMID: 30552624 DOI: 10.1007/s12010-018-02939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
An adsorption resin CX-6 was synthesized and used for acid soluble lignin (ASL) removal from sugarcane bagasse hydrolysate (SCBH). The adsorption conditions of pH value, amount of adsorbent, initial ASL concentration, and temperature on ASL adsorption were discussed. The results showed the adsorption capacity of ASL was negatively affected by increasing temperature, solution pH, and adsorbent dose, and was positively affected by increasing initial concentration. The maximum adsorption capacity of ASL was 135.3 mg/g at initial ASL concentration 6.46 g/L, adsorption temperature 298 K, and pH 1. Thermodynamic study demonstrated that the adsorption process was spontaneous and exothermic. Equilibrium and kinetics experiments were proved to fit the Freundlich isotherm model and pseudo-second-order model well, respectively. Fermentation experiment showed that the SCBH after combined overliming with resin adsorption as fermentation substrate for microbial lipid production by Trichosporon cutaneum and Trichosporon coremiiforme was as better as that of SCBH by combined overliming with active charcoal adsorption, and more efficient than that of SCBH only by overliming. Moreover, the regeneration experiment indicated that the CX-6 resin is easy to regenerate and its recirculated performance is stable. In conclusion, our results provide a promising adsorbent to detoxify lignocellulose hydrolysate for further fermentation.
Collapse
Affiliation(s)
- Xue-Fang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China
| | - Li-Quan Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Chao Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China
| | - Hai-Long Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China
| | - Can Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China
| | - Cheng Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Qian-Lin Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.,University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Xin-de Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China. .,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China. .,Guangdong Key Laboratory of New and Renewable Energy Research and Development, No.2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
13
|
Takano M, Hoshino K. Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0203-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Thite VS, Nerurkar AS. Physicochemical characterization of pectinase activity from Bacillus spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharification of agrowaste biomass. J Appl Microbiol 2018; 124:1147-1163. [PMID: 29411930 DOI: 10.1111/jam.13718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
AIM The aim of this study was to evaluate the physicochemical properties of the crude pectinase activity from three Bacillus isolates of ruminant dung origin and study their synergism with crude xylanases from the same Bacillus spp. and a commercial cellulase to evaluate their accessory role in improved biomass saccharification. METHODS AND RESULTS Pectinolytic crude culture filtrate obtained from three ruminant dung isolates, Bacillus safensis M35, Bacillus altitudinis R31 and Bacillus altitudinis J208, on crude pectin containing medium possessed polygalacturonate hydrolase, pectate lyase and pectin lyase activities. Studies regarding their stability under various temperature and pH conditions revealed their mild acidic to alkaline and mesophilic nature with enzyme activity falling within the pH range 6·0-9·0 and temperature range 30-60°C. The pectinase activity was categorized as endolytic as it brought about ~50% reduction in relative viscosity of pectic polymer within initial 10 min of incubation. Synergism of pectinase activity with crude xylanase activities and/or commercial cellulase was clearly demonstrated as ~1·6 to ~1·9-fold increase in agrowaste biomass saccharification was obtained confirming the role of pectinases as accessory enzymes. CONCLUSION Synergism of the broad-spectrum endopectinase activity obtained from three Bacillus isolates with accessory crude xylanases from the same isolates and commercial cellulase enhanced the agrowaste saccharification and confirmed the accessory role of crude pectinase as they formed an efficient enzyme cocktail functioning in a contributive manner for improvement of agrowaste biomass saccharification. SIGNIFICANCE AND IMPACT OF THE STUDY Mesophilic crude endopectinases obtained from Bacillus spp. isolated from ruminant dung possessed activity in broad pH and temperature ranges as well as broad substrate specificity. Moreover, their synergism with crude xylanase and Primfast® 200 cellulase demonstrated the potential to form efficient enzyme cocktail for application in plant biomass saccharification process.
Collapse
Affiliation(s)
- V S Thite
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
15
|
Waghmare PR, Watharkar AD, Jeon BH, Govindwar SP. Bio-ethanol production from waste biomass of Pogonatherum crinitum phytoremediator: an eco-friendly strategy for renewable energy. 3 Biotech 2018; 8:158. [PMID: 29515964 PMCID: PMC5834409 DOI: 10.1007/s13205-018-1188-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/26/2018] [Indexed: 11/28/2022] Open
Abstract
In this study, we have described three steps to produce ethanol from Pogonatherum crinitum, which was derived after the treatment of textile wastewater. (a) Production of biomass: biomass samples collected from a hydroponic P. crinitum phytoreactor treating dye textile effluents and augmented with Ca-alginate immobilized growth-promoting bacterium, Bacillus pumilus strain PgJ (consortium phytoreactor), and waste sorghum husks were collected and dried. Compositional analysis of biomass (consortium phytoreactor) showed that the concentration of cellulose, hemicelluloses and lignin was 42, 30 and 17%, respectively, whereas the biomass samples without the growth-promoting bacterium (normal phytoreactor) was slightly lower, 40, 29 and 16%, respectively. (b) Hydrolysate (sugar) production: a crude sample of the fungus, Phanerochaete chrysosporium containing hydrolytic enzymes such as endoglucanase (53.25 U/ml), exoglucanase (8.38 U/ml), glucoamylase (115.04 U/ml), xylanase (83.88 U/ml), LiP (0.972 U/ml) and MnP (0.459 U/ml) was obtained, and added to consortium, normal and control phytoreactor derived biomass supplemented with Tween-20 (0.2% v/v). The hydrolysate of biomass from consortium phytoreactor produced maximum reducing sugar (0.93 g/l) than hydrolysates of normal phytoreactor biomass (0.82 g/l) and control phytoreactor biomass (0.79 g/l). FTIR and XRD analysis confirmed structural changes in treated biomass. (c) Ethanol production: the bioethanol produced from enzymatic hydrolysates of waste biomass of consortium and normal phytoreactor using Saccharomyces cerevisiae (KCTC 7296) was 42.2 and 39.4 g/l, respectively, while control phytoreactor biomass hydrolysate showed only 25.5 g/l. Thus, the amalgamation of phytoremediation and bioethanol production can be the truly environment-friendly way to eliminate the problem of textile dye along with bioenergy generation.
Collapse
Affiliation(s)
| | | | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Sanjay P. Govindwar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 India
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
16
|
Guo H, Wu Y, Hong C, Chen H, Chen X, Zheng B, Jiang D, Qin W. Enhancing digestibility of Miscanthus using lignocellulolytic enzyme produced by Bacillus. BIORESOURCE TECHNOLOGY 2017; 245:1008-1015. [PMID: 28946202 DOI: 10.1016/j.biortech.2017.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 05/12/2023]
Abstract
In this study an effective bacterial pretreatment method was developed to improve digestibility of Miscanthus. Seven new bacterial isolates, which showed excellent xylanase production ability using Miscanthus as carbon source, were used to perform the pretreatment experiments. After pretreatment, the hemicellulose content and crystallinity index of Miscanthus were decreased, while the reducing sugars released from Miscanthus were significantly increased by 30.8-87.8% after enzymatic hydrolysis. Bacillus sp. G0 was selected to optimize the pretreatment parameters via response surface methodology due to its high reducing sugars released from Miscanthus. According to the optimal model, the pretreatment parameters were set as citrate buffer/G0 fermentation broth ratio at 0.34, pretreatment time at 100h and Tween-20 concentration at 1.73%. The reducing sugars released from Miscanthus pretreated by optimal parameters were 305mgg-1 dry biomass. The results suggested our bacterial pretreatment approaches have great potential to increase digestibility of bioenergy crops.
Collapse
Affiliation(s)
- Haipeng Guo
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanwen Wu
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Chuntao Hong
- Academy of Agricultural Sciences of Ningbo City, Ningbo 315040, China
| | - Houming Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuantong Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
17
|
Tu Y, Wang L, Xia T, Sun D, Zhou S, Wang Y, Li Y, Zhang H, Zhang T, Madadi M, Peng L. Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. BIORESOURCE TECHNOLOGY 2017; 243:319-326. [PMID: 28683384 DOI: 10.1016/j.biortech.2017.06.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 05/05/2023]
Abstract
In this study, a combined pretreatment was performed in four wheat accessions using steam explosion followed with different concentrations of H2SO4 or NaOH, leading to increased hexoses yields by 3-6 folds from enzymatic hydrolysis. Further co-supplied with 1% Tween-80, Talq90 and Talq16 accessions exhibited an almost complete enzymatic saccharification of steam-exploded (SE) residues after 0.5% H2SO4 or 1% NaOH pretreatment, with the highest bioethanol yields at 18.5%-19.4%, compared with previous reports about wheat bioethanol yields at 11%-17% obtained under relatively strong pretreatment conditions. Furthermore, chemical analysis indicated that much enhanced saccharification in Talq90 and Talq16 may be partially due to their relatively low cellulose CrI and DP values and high hemicellulose Ara and H-monomer levels in raw materials and SE residues. Hence, this study has not only demonstrated a mild pretreatment technology for a complete saccharification, but it has also obtained the high ethanol production in desirable wheat accessions.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heping Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meysam Madadi
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
19
|
Qin L, Liu L, Li WC, Zhu JQ, Li BZ, Yuan YJ. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose. BIORESOURCE TECHNOLOGY 2016; 209:172-9. [PMID: 26970919 DOI: 10.1016/j.biortech.2016.02.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 05/07/2023]
Abstract
This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis.
Collapse
Affiliation(s)
- Lei Qin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Li Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Wen-Chao Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Jia-Qing Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| |
Collapse
|
20
|
Joe MH, Kim JY, Lim S, Kim DH, Bai S, Park H, Lee SG, Han SJ, Choi JI. Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:125. [PMID: 26312065 PMCID: PMC4549949 DOI: 10.1186/s13068-015-0308-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Lignocellulosic biomass has long been recognized as a potential sustainable source of sugars for biofuels. However, many physicochemical structural and compositional factors inhibit the enzymatic digestibility of the lignocellulosic biomass. In this study, efficient pretreatment method of rice straw (RS) was developed and the RS hydrolysate was applied in the cultivation of microalgae for lipid production. RESULTS Gamma ray irradiation (GRI) and alkali solution were used for the pretreatment, and saccharification was carried out with lignocellulolytic enzymes. When RS was pretreated by combined GRI and alkali method, the glucose and xylose saccharification yield after enzymatic hydrolysis increased up to 91.65 and 98.84 %, respectively. The enzymatic hydrolysate from the RS pretreated with the combined method was used to cultivate Chlorella protothecoides for lipid production. The maximum concentrations of biomass and fatty acid methyl ester of cells were 6.51 and 2.95 g/L, respectively. The lipid content of C. protothecoides from RS hydrolysate was comparable to that from glucose, and the lipid composition was similar between different carbon sources. CONCLUSION These results demonstrate that the combined pretreatment with gamma irradiation was highly effective in preparing hydrolysate, and the rice straw hydrolysate could be used as an alternative carbon source for microalgal lipid production for biofuel.
Collapse
Affiliation(s)
- Min-Ho Joe
- />Department of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185 Republic of Korea
- />School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, 500-757 Republic of Korea
| | - Ji-Youn Kim
- />Department of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185 Republic of Korea
| | - Sangyong Lim
- />Department of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185 Republic of Korea
| | - Dong-Ho Kim
- />Department of Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185 Republic of Korea
| | - Suk Bai
- />Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyun Park
- />Korea Polar Research Institute, Incheon, 406-840 Republic of Korea
| | - Sung Gu Lee
- />Korea Polar Research Institute, Incheon, 406-840 Republic of Korea
| | - Se Jong Han
- />Korea Polar Research Institute, Incheon, 406-840 Republic of Korea
| | - Jong-il Choi
- />Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 500-757 Republic of Korea
| |
Collapse
|
21
|
Affiliation(s)
- Runqiang Yang
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| | - Dongyan Gu
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| | - Zhenxin Gu
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| |
Collapse
|
22
|
Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 2015; 115:6811-53. [PMID: 26121409 DOI: 10.1021/cr500719h] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angeles Farrán
- †Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 4, 28040 Madrid, Spain
| | - Chao Cai
- ‡Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Manuel Sandoval
- §Escuela de Química, Universidad Nacional of Costa Rica, Post Office Box 86, 3000 Heredia, Costa Rica
| | - Yongmei Xu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - María J Hernáiz
- ▽Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Pz/Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
23
|
Aoyama A, Kurane R, Matsuura A, Nagai K. Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency. Biosci Biotechnol Biochem 2015; 79:820-9. [DOI: 10.1080/09168451.2014.993913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.
Collapse
Affiliation(s)
- Akihisa Aoyama
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Ryuichiro Kurane
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Akira Matsuura
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Kazuo Nagai
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| |
Collapse
|
24
|
Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis. BIORESOURCE TECHNOLOGY 2015; 182:258-266. [PMID: 25704099 DOI: 10.1016/j.biortech.2015.01.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches.
Collapse
Affiliation(s)
- Jeehoon Han
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy S Luterbacher
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David Martin Alonso
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James A Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christos T Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
25
|
Zhang L, Peng H, Yu Q, Zhang Y, Wang Z, Tang X. Optimization of Liquid Ammonia Treatment for Enzymatic Hydrolysis of Miscanthus sinensis Anderss. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jpee.2015.37005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
|
27
|
Serate J, Xie D, Pohlmann E, Donald C, Shabani M, Hinchman L, Higbee A, Mcgee M, La Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, Zhang Y. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:180. [PMID: 26583044 PMCID: PMC4650398 DOI: 10.1186/s13068-015-0356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. RESULTS Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. CONCLUSIONS Our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate, and also showed negligible effects on microbial performance. Although the levels of some of the lignocellulose degradation inhibitors were elevated by autoclaving the feedstocks prior to enzymatic hydrolysis, no significant effects on cell growth, sugar utilization, or ethanol production were seen during bacterial or yeast fermentations in hydrolysates produced using the two different methods.
Collapse
Affiliation(s)
- Jose Serate
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dan Xie
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Edward Pohlmann
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Charles Donald
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Mahboubeh Shabani
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Li Hinchman
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alan Higbee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Mick Mcgee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alex La Reau
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Grace E. Klinger
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Sheena Li
- />RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan
| | - Chad L. Myers
- />Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Charles Boone
- />Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON Canada
| | - Donna M. Bates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dave Cavalier
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Dustin Eilert
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Lawrence G. Oates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Gregg Sanford
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Trey K. Sato
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Bruce Dale
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Robert Landick
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Jeff Piotrowski
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Rebecca Garlock Ong
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Yaoping Zhang
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
28
|
Qin L, Li WC, Zhu JQ, Liang JN, Li BZ, Yuan YJ. Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:174. [PMID: 26516347 PMCID: PMC4625619 DOI: 10.1186/s13068-015-0359-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/14/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Pretreatment of lignocellulosic biomass is essential to increase the cellulase accessibility for bioconversion of lignocelluloses by breaking down the biomass recalcitrance. In this work, a novel pretreatment method using ethylenediamine (EDA) was presented as a simple process to achieve high enzymatic digestibility of corn stover (CS) by heating the biomass-EDA mixture with high solid-to-liquid ratio at ambient pressure. The effect of EDA pretreatment on lignocellulose was further studied. RESULTS High enzymatic digestibility of CS was achieved at broad pretreatment temperature range (40-180 °C) during EDA pretreatment. Herein, X-ray diffractogram analysis indicated that cellulose I changed to cellulose III and amorphous cellulose after EDA pretreatment, and cellulose III content increased along with the decrease of drying temperature and the increase of EDA loading. Lignin degradation was also affected by drying temperature and EDA loading. Images from scanning electron microscope and transmission electron microscope indicated that lignin coalesced and deposited on the biomass surface during EDA pretreatment, which led to the delamination of cell wall. HSQC NMR analysis showed that ester bonds of p-coumarate and ferulate units in lignin were partially ammonolyzed and ether bonds linking the phenolic monomers were broken during pretreatment. In addition, EDA-pretreated CS exhibited good fermentability for simultaneous saccharification and co-fermentation process. CONCLUSIONS EDA pretreatment improves the enzymatic digestibility of lignocellulosic biomass significantly, and the improvement was caused by the transformation of cellulose allomorph, lignin degradation and relocalization in EDA pretreatment.
Collapse
Affiliation(s)
- Lei Qin
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072 People’s Republic of China
| | - Wen-Chao Li
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072 People’s Republic of China
| | - Jia-Qing Zhu
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072 People’s Republic of China
| | - Jing-Nan Liang
- />Institute of Microbiology Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101 People’s Republic of China
| | - Bing-Zhi Li
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072 People’s Republic of China
| | - Ying-Jin Yuan
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072 People’s Republic of China
| |
Collapse
|
29
|
Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 152:75-90. [PMID: 25757450 DOI: 10.1007/10_2015_307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The review summarized the types, the geometry, and the design principle of pretreatment reactors at high solid loading of lignocellulose material. Among the reactors used, the explosion reactors and the helical stirring reactors are to be considered as the practical form for high solids loading pretreatment operation; the comminution reactors and the extruder reactors are difficult to be used as an independent unit, but possible to be used in the combined form with other types of reactors. The principles of the pretreatment reactor design at high solid loading were discussed and several basic principles for the design were proposed. This review provided useful information for choosing the reactor types and designing the geometry of pretreatment operation at the high solids loading.
Collapse
|
30
|
Scoma A, Rebecchi S, Bertin L, Fava F. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit Rev Biotechnol 2014; 36:175-89. [PMID: 25373788 DOI: 10.3109/07388551.2014.947238] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Availability of bio-based chemicals, materials and energy at reasonable cost will be one of the forthcoming issues for the EU economy. In particular, the development of technologies making use of alternative resources to fossil fuels is encouraged by the current European research and innovation strategy to face the societal challenge of natural resource scarcity, fossil resource dependence and sustainable economic growth. In this respect, second- generation biorefineries, i.e. biorefineries fed with biowastes, appear to be good candidates to substitute and replace the present downstream processing scheme. Contrary to first-generation biorefineries, which make use of dedicated crops or primary cultivations to achieve such a goal, the former employ agricultural, industrial, zootechnical, fishery and forestry biowastes as the main feedstock. This leaves aside any ethical and social issue generated by first-generation approaches, and concomitantly prevents environmental and economical issues associated with the disposal of the aforementioned leftovers. Unfortunately, to date, a comprehensive and updated mapping of the availability and potential use of bioresources for second-generation biorefineries in Europe is missing. This is a lack that severely limits R&D and industrial applications in the sector. On the other hand, attempts at valorizing the most diverse biowastes dates back to the nineteenth century and plenty of information in the literature on their sustainable exploitation is available. However, the large majority of these investigations have been focused on single fractions of biowastes or single steps of biowaste processing, preventing considerations on an integrated and modular (cascade) approach for the whole valorization of organic leftovers. This review aims at addressing these issues by gathering recent data on (a) some of the main high-impact biowastes located in Europe and in particular in its Southern part, and (b) the bio-based chemicals, materials and fuels that can be produced from such residues. In particular, we focused on those key compounds referred to as "chemical platforms", which have been indicated as fundamental to generate the large majority of the industrially relevant goods to date.
Collapse
Affiliation(s)
- Alberto Scoma
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Stefano Rebecchi
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Lorenzo Bertin
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Fabio Fava
- a Department of Civil , Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum, University of Bologna , Bologna , Italy
| |
Collapse
|
31
|
van der Pol EC, Bakker RR, Baets P, Eggink G. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl Microbiol Biotechnol 2014; 98:9579-93. [PMID: 25370992 DOI: 10.1007/s00253-014-6158-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 11/30/2022]
Abstract
Lignocellulose might become an important feedstock for the future development of the biobased economy. Although up to 75 % of the lignocellulose dry weight consists of sugar, it is present in a polymerized state and cannot be used directly in most fermentation processes for the production of chemicals and fuels. Several methods have been developed to depolymerize the sugars present in lignocellulose, making the sugars available for fermentation. In this review, we describe five different pretreatment methods and their effect on the sugar and non-sugar fraction of lignocellulose. For several pretreatment methods and different types of lignocellulosic biomass, an overview is given of by-products formed. Most unwanted by-products present after pretreatment are dehydrated sugar monomers (furans), degraded lignin polymers (phenols) and small organic acids. Qualitative and quantitative effects of these by-products on fermentation processes have been studied. We conclude this review by giving an overview of techniques and methods to decrease inhibitory effects of unwanted by-products.
Collapse
Affiliation(s)
- Edwin C van der Pol
- Food and Biobased Research, Wageningen University and Research Center, PO Box 17, 6700 AA, Wageningen, Netherlands,
| | | | | | | |
Collapse
|
32
|
Waghmare PR, Kadam AA, Saratale GD, Govindwar SP. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. BIORESOURCE TECHNOLOGY 2014; 168:136-41. [PMID: 24656486 DOI: 10.1016/j.biortech.2014.02.099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 05/09/2023]
Abstract
Sugarcane bagasse (SCB) adsorbes 60% Reactive Blue172 (RB172). Providensia staurti EbtSPG able to decolorize SCB adsorbed RB172 up to 99% under solid state fermentation (SSF). The enzymatic saccharification efficiency of waste biomass after bioremediation of RB172 process (ddSCB) has been evaluated. The cellulolyitc crude enzyme produced by Phanerochaete chrysosporium used for enzymatic hydrolysis of native SCB and ddSCB which produces 0.08 and 0.3 g/L of reducing sugars respectively after 48 h of incubation. The production of hexose and pentose sugars during hydrolysis was confirmed by HPTLC. The effect of enzymatic hydrolysis on SCB and ddSCB has been evaluated by FTIR, XRD and SEM analysis. Thus, during dye biodegradation under SSF causes biological pretreatment of SCB which significantly enhanced its enzymatic saccharification. Adsorption of dye on SCB, its bioremediation under SSF produces wastes biomass and which further utilized for enzymatic saccharification for biofuel production.
Collapse
Affiliation(s)
| | - Avinash A Kadam
- Department of Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Ganesh D Saratale
- Department of Biochemistry, Shivaji University, Kolhapur 416004, India
| | | |
Collapse
|
33
|
Revealing differences in metabolic flux distributions between a mutant strain and its parent strain Gluconacetobacter xylinus CGMCC 2955. PLoS One 2014; 9:e98772. [PMID: 24901455 PMCID: PMC4047042 DOI: 10.1371/journal.pone.0098772] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain.
Collapse
|
34
|
Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN BIOTECHNOLOGY 2014; 2014:463074. [PMID: 25937989 PMCID: PMC4393053 DOI: 10.1155/2014/463074] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.
Collapse
|
35
|
Investigation of a novel acid-catalyzed ionic liquid pretreatment method to improve biomass enzymatic hydrolysis conversion. Appl Microbiol Biotechnol 2014; 98:5275-86. [DOI: 10.1007/s00253-014-5664-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
36
|
Li J, Zhou P, Liu H, Xiong C, Lin J, Xiao W, Gong Y, Liu Z. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. BIORESOURCE TECHNOLOGY 2014; 155:258-65. [PMID: 24457310 DOI: 10.1016/j.biortech.2013.12.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/18/2013] [Accepted: 12/26/2013] [Indexed: 05/17/2023]
Abstract
Sugarcane bagasse (SCB) resulting from different pretreatments was hydrolyzed by enzyme cocktails based on replacement of cellulase (Celluclast 1.5 L:Novozym 188=1FPU:4pNPGU) by xylanase or pectinase at different proportions. Lignin content of NaOH pretreated SCB and hemicellulose content of H2SO4 pretreated SCB were the lowest. NaOH pretreatment showed the best for monosaccharide production among the four pretreatments. Synergism was apparently observed between cellulase and xylanase for monosaccharide production from steam exploded SCB (SESB), NaOH, and H2O2 pretreated SCB. No synergism was observed between cellulase and pectinase for producing glucose. Additionally, no synergism was present when H2SO4 pretreated SCB was used. Replacement of 20% of the cellulase by xylanase enhanced the glucose yield by 6.6%, 8.8%, and 9.5% from SESB, NaOH, and H2O2 pretreated SCB, respectively. Degree of synergism between cellulase and xylanase had positive relationship with xylan content and was affected by hydrolysis time.
Collapse
Affiliation(s)
- Jingbo Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Pengfei Zhou
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongmei Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Chunjiang Xiong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
37
|
Bhutto AW, Qureshi K, Harijan K, Zahedi G, Bahadori A. Strategies for the consolidation of biologically mediated events in the conversion of pre-treated lignocellulose into ethanol. RSC Adv 2014. [DOI: 10.1039/c3ra44020f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Qin L, Liu ZH, Jin M, Li BZ, Yuan YJ. High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. BIORESOURCE TECHNOLOGY 2013; 146:504-511. [PMID: 23968841 DOI: 10.1016/j.biortech.2013.07.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 05/09/2023]
Abstract
Aqueous ammonia pretreatment was optimized and the limiting factors in high solids enzymatic hydrolysis were assessed. The recommended pretreatment condition to achieve high enzymatic yield was: 180 °C, 20% (w/w) ammonia, 30 min, and 20% solids content. FT-IR and GC-MS results indicated that most of the lignin was degraded to soluble fragments after pretreatment. The pretreated solids after post-washing showed higher enzymatic digestibility at high solids loading than that without washing. The washed solids required lower cellulase and xylanase dosage than unwashed solids to achieve high sugar yield. Enzymatic conversions were declined with the increased solids loading of pretreated solids, pretreated-washed solids, and filter papers. The results indicated that solids loading in enzymatic hydrolysis was an important factor affecting sugar yield. The increasing concentration of glucose and ligno-phenolics mainly inhibited the enzymatic hydrolysis of aqueous ammonia pretreated corn stover.
Collapse
Affiliation(s)
- Lei Qin
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mingjie Jin
- Biomass Conversion Research Lab, Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910, USA
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
39
|
Njoku SI, Iversen JA, Uellendahl H, Ahring BK. Production of ethanol from hemicellulose fraction of cocksfoot grass using pichia stipitis. ACTA ACUST UNITED AC 2013. [DOI: 10.1186/2043-7129-1-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
In this study, cocksfoot grass (Dactylis glomerata), an abundant lignocellulosic biomass was pretreated using different operational parameters using wet explosion (WEx) pretreatment for accessing the bioethanol potential of the hemicellulose fraction. Utilization of the hemicellulose liquid hydrolysate to ethanol is essential for economically feasible cellulosic ethanol processes. Fermentation of the separated hemicellulose liquid hydrolysates obtained after the WEx pretreatment was done by Pichia stipitis CBS 6054 (Scheffersomyces stipitis).
Results
The fermentation of the WEx liquid hydrolysate from the pretreatment at higher severity (180°C, 15 min, 87 psi oxygen and 190°C, 15 min, 0.2% sulfuric acid) was fully inhibited probable by the presence of higher concentrations of inhibitory compounds such as furfural, HMF and acetic acid. The ethanol yield among other WEx conditions was in the range of 89 to 158 mL/kg DM, with the highest yield (92% of theoretical maximum value) found for the lower pretreatment severity at 160°C, 15 min, 87 psi oxygen.
Conclusions
Our findings from this present study demonstrated that the release of hemicellulose sugars in the liquid hydrolysate is maximal when a lower pretreatment severity is applied. This is evident as the highest ethanol yields were found under the pretreatment conditions at lower severity.
Collapse
|
40
|
Shao Q, Cheng C, Ong RG, Zhu L, Zhao C. Hydrogen peroxide presoaking of bamboo prior to AFEX pretreatment and impact on enzymatic conversion to fermentable sugars. BIORESOURCE TECHNOLOGY 2013; 142:26-31. [PMID: 23732919 DOI: 10.1016/j.biortech.2013.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
Bamboo is a fast growing plant found worldwide that has high potential as an energy crop. This project evaluated the effectiveness of AFEX pretreatment for converting moso bamboo (Phyllostachys heterocycla var. pubescens) to fermentable sugars, both with and without pre-soaking in hydrogen peroxide. Pretreatment conditions including temperature, water loading, residence time, ammonia loading, and hydrogen peroxide loadings were varied to maximize hydrolysis yields. The optimal conditions for AFEX were 150°C, 0.8 or 2.0 (w/w) water loading, 10-30 min residence time, and 2.0-5.0 (w/w) ammonia loading. The optimal conditions for H-AFEX were same AFEX conditions with 0.7-1.9 (w/w) 30% (wt) hydrogen peroxide solutions loading. Using 15 FPU/g glucan cellulase and under optimal conditions, AFEX pretreatment achieved a theoretical sugars yield of 64.8-72.7% and addition of hydrogen peroxide presoaking increased the yield to 83.4-92.1%. It is about 5-fold and 7-fold increase in sugars yield for AFEX-treated and H-AFEX-treated bamboo respectively.
Collapse
Affiliation(s)
- Qianjun Shao
- School of Engineering, Zhejiang A&F University, Linan, Zhejiang 311300, China.
| | | | | | | | | |
Collapse
|
41
|
Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One 2013; 8:e68317. [PMID: 23844185 PMCID: PMC3699558 DOI: 10.1371/journal.pone.0068317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).
Collapse
Affiliation(s)
- Jian Zha
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
42
|
Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 2013; 97:6129-47. [DOI: 10.1007/s00253-013-5014-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022]
|
43
|
Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 2013; 97:6189-99. [PMID: 23640364 DOI: 10.1007/s00253-013-4908-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/21/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology-Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus. ENERGIES 2013. [DOI: 10.3390/en6031794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Liu ZH, Qin L, Jin MJ, Pang F, Li BZ, Kang Y, Dale BE, Yuan YJ. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. BIORESOURCE TECHNOLOGY 2013; 132:5-15. [PMID: 23395737 DOI: 10.1016/j.biortech.2013.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/29/2012] [Accepted: 01/04/2013] [Indexed: 05/15/2023]
Abstract
Effects of dry and wet storage methods without or with shredding on the conversion of corn stover biomass were investigated using steam explosion pretreatment and enzymatic hydrolysis. Sugar conversions and yields for wet stored biomass were obviously higher than those for dry stored biomass. Shredding reduced sugar conversions compared with non-shredding, but increased sugar yields. Glucan conversion and glucose yield for non-shredded wet stored biomass reached 91.5% and 87.6% after 3-month storage, respectively. Data of micro-structure and crystallinity of biomass indicated that corn stover biomass maintained the flexible and porous structure after wet storage, and hence led to the high permeability of corn stover biomass and the high efficiency of pretreatment and hydrolysis. Therefore, the wet storage methods would be desirable for the conversion of corn stover biomass to fermentable sugars based on steam explosion pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang J, Pakarinen A, Viikari L. Synergy between cellulases and pectinases in the hydrolysis of hemp. BIORESOURCE TECHNOLOGY 2013; 129:302-7. [PMID: 23262004 DOI: 10.1016/j.biortech.2012.11.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/12/2012] [Accepted: 11/16/2012] [Indexed: 05/15/2023]
Abstract
The impact of pectinases in the hydrolysis of fresh, steam-exploded and ensiled hemp was investigated and the synergy between cellulases, pectinases and xylanase in the hydrolysis was evaluated. About half; 59.3% and 46.1% of pectin in the steam-exploded and ensiled hemp, respectively, could be removed by a low dosage of pectinases used. Pectinases were more efficient than xylanase in the hydrolysis of fresh and ensiled hemp whereas xylanase showed higher hydrolytic efficiency than the pectinase preparation used in the hydrolysis of steam-exploded hemp. Clear synergistic action between cellulases and xylanase could be observed in the hydrolysis of steam-exploded hemp. Supplementation of pectinase resulted in clear synergism with cellulases in the hydrolysis of all hemp substrates. Highest hydrolysis yield of steam-exploded hemp was obtained in the hydrolysis with cellulases and xylanase. In the hydrolysis of ensiled hemp, the synergistic action between cellulases and pectinases was more obvious for efficient hydrolysis.
Collapse
Affiliation(s)
- Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| | | | | |
Collapse
|
47
|
Harun S, Balan V, Takriff MS, Hassan O, Jahim J, Dale BE. Performance of AFEX™ pretreated rice straw as source of fermentable sugars: the influence of particle size. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:40. [PMID: 23514037 PMCID: PMC3648367 DOI: 10.1186/1754-6834-6-40] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/12/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND It is widely believed that reducing the lignocellulosic biomass particle size would improve the biomass digestibility by increasing the total surface area and eliminating mass and heat transfer limitation during hydrolysis reactions. However, past studies demonstrate that particle size influences biomass digestibility to a limited extent. Thus, this paper studies the effect of particle size (milled: 2 mm, 5 mm, cut: 2 cm and 5 cm) on rice straw conversion. Two different Ammonia Fiber Expansion (AFEX) pretreament conditions, AFEX C1 (low severity) and AFEX C2 (high severity) are used to pretreat the rice straw (named as AC1RS and AC2RS substrates respectively) at different particle size. RESULTS Hydrolysis of AC1RS substrates showed declining sugar conversion trends as the size of milled and cut substrates increased. Hydrolysis of AC2RS substrates demonstrated opposite conversion trends between milled and cut substrates. Increasing the glucan loading to 6% during hydrolysis reduced the sugar conversions significantly in most of AC1RS and AC2RS except for AC1RS-2 mm and AC2RS-5 cm. Both AC1RS-2 mm and AC2RS-5 cm indicated gradual decreasing trends in sugar conversion at high glucan loading. Analysis of SEM imaging for URS and AFEX pretreated rice straw also indicated qualitative agreement with the experimental data of hydrolysis. The largest particle size, AC2RS-5 cm produced the highest sugar yield of 486.12 g/kg of rice straw during hydrolysis at 6% glucan loading equivalent to 76.0% of total theoretical maximum sugar yield, with an average conversion of 85.9% from total glucan and xylan. In contrast, AC1RS-5 cm gave the lowest sugar yield with only 107.6 g/kg of rice straw, about 16.8% of total theoretical maximum sugar yield, and equivalent to one-quarter of AC2RS-5 cm sugar yield. CONCLUSIONS The larger cut rice straw particles (5 cm) significantly demonstrated higher sugar conversion when compared to small particles during enzymatic hydrolysis when treated using high severity AFEX conditions. Analysis of SEM imaging positively supported the interpretation of the experimental hydrolysis trend and kinetic data.
Collapse
Affiliation(s)
- Shuhaida Harun
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
| | - Venkatesh Balan
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI, 48823, USA
| | - Mohd Sobri Takriff
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
| | - Osman Hassan
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
| | - Jamaliah Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
| | - Bruce E Dale
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI, 48823, USA
| |
Collapse
|
48
|
Jin M, Gunawan C, Balan V, Yu X, Dale BE. Continuous SSCF of AFEX™ pretreated corn stover for enhanced ethanol productivity using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Biotechnol Bioeng 2012. [PMID: 23192401 DOI: 10.1002/bit.24797] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High productivity processes are critical for commercial production of cellulosic ethanol. One high productivity process-continuous hydrolysis and fermentation-has been applied in corn ethanol industry. However, little research related to this process has been conducted on cellulosic ethanol production. Here, we report and compare the kinetics of both batch SHF (separate hydrolysis and co-fermentation) and SSCF (simultaneous saccharification and co-fermentation) of AFEX™ (Ammonia Fiber Expansion) pretreated corn stover (AFEX™-CS). Subsequently, we designed a SSCF process to evaluate continuous hydrolysis and fermentation performance on AFEX™-CS in a series of continuous stirred tank reactors (CSTRs). Based on similar sugar to ethanol conversions (around 80% glucose-to-ethanol conversion and 47% xylose-to-ethanol conversion), the overall process ethanol productivity for continuous SSCF was 2.3- and 1.8-fold higher than batch SHF and SSCF, respectively. Slow xylose fermentation and high concentrations of xylose oligomers were the major factors limiting further enhancement of productivity.
Collapse
Affiliation(s)
- Mingjie Jin
- DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI 48910, USA.
| | | | | | | | | |
Collapse
|
49
|
Deutschmann R, Dekker RF. From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnol Adv 2012; 30:1627-40. [DOI: 10.1016/j.biotechadv.2012.07.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/12/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022]
|
50
|
Yang L, Cao J, Jin Y, Chang HM, Jameel H, Phillips R, Li Z. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. BIORESOURCE TECHNOLOGY 2012; 124:283-291. [PMID: 22989656 DOI: 10.1016/j.biortech.2012.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
The effects of sodium carbonate (Na(2)CO(3)) pretreatment on the chemical compositions and enzymatic saccharification of rice straw were investigated. The enzymatic digestibility of rice straw is enhanced after pretreatment since pretreated solids show significant delignification with high sugar availability. During pretreatment, an increasing temperature and Na(2)CO(3) charge leads to enhanced delignification, whereas an increased degradation of polysaccharides as well, of which xylan acts more susceptible than glucan. The sugar recovery of enzymatic hydrolysis goes up rapidly with the total titratable alkali (TTA) increasing from 0% to 8%, and then it reaches a plateau. The highest sugar recovery of rice straw after pretreatment, 71.7%, 73.2%, and 76.1% for total sugar, glucan, and xylan, respectively, is obtained at 140°C, TTA 8% and cellulase loading of 20 FPU/g-cellulose. In this condition, the corresponding delignification ratio of pretreated solid is 41.8%, while 95% of glucan and 76% of xylan are conserved.
Collapse
Affiliation(s)
- Linfeng Yang
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | | | | | |
Collapse
|