1
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Fukushima CM, de Groot J. Updates for newly diagnosed and recurrent glioblastoma: a review of recent clinical trials. Curr Opin Neurol 2024; 37:666-671. [PMID: 39258745 PMCID: PMC11540275 DOI: 10.1097/wco.0000000000001320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor. We summarize recent advances in radiotherapy, immunotherapy, and targeted therapy approaches for the treatment of newly diagnosed and recurrent glioblastoma. We also introduce ongoing clinical trials. RECENT FINDINGS Recent clinical trials have explored multiple novel strategies to treat GBM including the use of oncoviruses, chimeric antigen receptor (CAR) T cell therapy, vaccines, radiotherapy, and novel drug delivery techniques to improves drug penetrance across the blood brain barrier. Approaches to improve drug delivery to brain tumors have the potential to expand treatment options of existing therapies that otherwise have poor brain tumor penetrance. Immunotherapy has been of keen interest in both newly diagnosed and recurrent glioblastoma. Vaccines SurVaxM and DCVax-L have shown initial promise in phase II and III trials, respectively. CAR T cell therapy trials are in their early phases but hold promise in both newly diagnosed and recurrent glioblastoma. SUMMARY Although progress to improve outcomes for GBM patients has been modest, multiple novel strategies utilizing combination therapies, focused ultrasound to improve drug delivery, and novel immunotherapies are underway.
Collapse
Affiliation(s)
| | - John de Groot
- Department of Neurology and Neurosurgery, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Fang XL, Cao XP, Xiao J, Hu Y, Chen M, Raza HK, Wang HY, He X, Gu JF, Zhang KJ. Overview of role of survivin in cancer: expression, regulation, functions, and its potential as a therapeutic target. J Drug Target 2024; 32:223-240. [PMID: 38252514 DOI: 10.1080/1061186x.2024.2309563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/11/2023] [Indexed: 01/24/2024]
Abstract
Survivin holds significant importance as a member of the inhibitor of apoptosis protein (IAP) family due to its predominant expression in tumours rather than normal terminally differentiated adult tissues. The high expression level of survivin in tumours is closely linked to chemotherapy resistance, heightened tumour recurrence, and increased tumour aggressiveness and serves as a negative prognostic factor for cancer patients. Consequently, survivin has emerged as a promising therapeutic target for cancer treatment. In this review, we delve into the various biological characteristics of survivin in cancers and its pivotal role in maintaining immune system homeostasis. Additionally, we explore different therapeutic strategies aimed at targeting survivin.
Collapse
Affiliation(s)
- Xian-Long Fang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Xue-Ping Cao
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yun Hu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Mian Chen
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Hafiz Khuram Raza
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Huai-Yuan Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu He
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Fa Gu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Kang-Jian Zhang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024:10.1038/s41423-024-01226-x. [PMID: 39406966 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
5
|
Wells K, Liu T, Zhu L, Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. NANOSCALE 2024; 16:17699-17722. [PMID: 39257225 DOI: 10.1039/d4nr01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cancer immunotherapy represents a promising targeted treatment by leveraging the patient's immune system or adoptive transfer of active immune cells to selectively eliminate cancer cells. Despite notable clinical successes, conventional immunotherapies face significant challenges stemming from the poor infiltration of endogenous or adoptively transferred cytotoxic T cells in tumors, immunosuppressive tumor microenvironment and the immune evasion capability of cancer cells, leading to limited efficacy in many types of solid tumors. Overcoming these hurdles is essential to broaden the applicability of immunotherapies. Recent advances in nanotherapeutics have emerged as an innovative tool to overcome these challenges and enhance the therapeutic potential of tumor immunotherapy. The unique biochemical and biophysical properties of nanomaterials offer advantages in activation of immune cells in vitro for cell therapy, targeted delivery, and controlled release of immunomodulatory agents in vivo. Nanoparticles are excellent carriers for tumor associated antigens or neoantigen peptides for tumor vaccine, empowering activation of tumor specific T cell responses. By precisely delivering immunomodulatory agents to the tumor site, immunoactivating nanoparticles can promote tumor infiltration of endogenous T cells or adoptively transferred T cells into tumors, to overcoming delivery and biological barriers in the tumor microenvironment, augmenting the immune system's ability to recognize and eliminate cancer cells. This review provides an overview of the current advances in immunotherapeutic approaches utilizing nanotechnology. With a focus on discussions concerning strategies to enhance activity and efficacy of cytotoxic T cells and explore the intersection of engineering nanoparticles and immunomodulation aimed at bolstering T cell-mediated immune responses, we introduce various nanoparticle formulations designed to deliver therapeutic payloads, tumor antigens and immunomodulatory agents for T cell activation. Diverse mechanisms through which nanoparticle-based approaches influence T cell responses by improving antigen presentation, promoting immune cell trafficking, and reprogramming immunosuppressive tumor microenvironments to potentiate anti-tumor immunity are examined. Additionally, the synergistic potential of combining nanotherapeutics with existing immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapies is explored. In conclusion, this review highlights emerging research advances on activation of cytotoxic T cells using nanoparticle agents to support the promises and potential applications of nanoparticle-based immunomodulatory agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Kory Wells
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Yao L, Hatami M, Ma W, Skutella T. Vaccine-based immunotherapy and related preclinical models for glioma. Trends Mol Med 2024; 30:965-981. [PMID: 39013724 DOI: 10.1016/j.molmed.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Glioma, the most common primary malignant tumor in the central nervous system (CNS), lacks effective treatments, and >60% of cases are glioblastoma (GBM), the most aggressive form. Despite advances in immunotherapy, GBM remains highly resistant. Approaches that target tumor antigens expedite the development of immunotherapies, including personalized tumor-specific vaccines, patient-specific target selection, dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. Recent studies show promising results in treating GBM and lower-grade glioma (LGG), fostering hope for future immunotherapy. This review discusses tumor vaccines against glioma, preclinical models in immunological research, and the role of CD4+ T cells in vaccine-induced antitumor immunity. We also summarize clinical approaches, challenges, and future research for creating more effective vaccines.
Collapse
Affiliation(s)
- Longping Yao
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
7
|
Valerius AR, Webb LM, Thomsen A, Lehrer EJ, Breen WG, Campian JL, Riviere-Cazaux C, Burns TC, Sener U. Review of Novel Surgical, Radiation, and Systemic Therapies and Clinical Trials in Glioblastoma. Int J Mol Sci 2024; 25:10570. [PMID: 39408897 PMCID: PMC11477105 DOI: 10.3390/ijms251910570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite an established standard of care including surgical resection, radiation therapy, and chemotherapy, GBM unfortunately is associated with a dismal prognosis. Therefore, researchers are extensively evaluating avenues to expand GBM therapy and improve outcomes in patients with GBM. In this review, we provide a broad overview of novel GBM therapies that have recently completed or are actively undergoing study in clinical trials. These therapies expand across medical, surgical, and radiation clinical trials. We additionally review methods for improving clinical trial design in GBM.
Collapse
Affiliation(s)
| | - Lauren M. Webb
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Terry C. Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Hawly J, Murcar MG, Schcolnik-Cabrera A, Issa ME. Glioblastoma stem cell metabolism and immunity. Cancer Metastasis Rev 2024; 43:1015-1035. [PMID: 38530545 DOI: 10.1007/s10555-024-10183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Despite enormous efforts being invested in the development of novel therapies for brain malignancies, there remains a dire need for effective treatments, particularly for pediatric glioblastomas. Their poor prognosis has been attributed to the fact that conventional therapies target tumoral cells, but not glioblastoma stem cells (GSCs). GSCs are characterized by self-renewal, tumorigenicity, poor differentiation, and resistance to therapy. These characteristics represent the fundamental tools needed to recapitulate the tumor and result in a relapse. The mechanisms by which GSCs alter metabolic cues and escape elimination by immune cells are discussed in this article, along with potential strategies to harness effector immune cells against GSCs. As cellular immunotherapy is making significant advances in a variety of cancers, leveraging this underexplored reservoir may result in significant improvements in the treatment options for brain malignancies.
Collapse
Affiliation(s)
- Joseph Hawly
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouaneh, Lebanon
| | - Micaela G Murcar
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Mark E Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
9
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
10
|
Mundhara N, Sadhukhan P. Cracking the Codes behind Cancer Cells' Immune Evasion. Int J Mol Sci 2024; 25:8899. [PMID: 39201585 PMCID: PMC11354234 DOI: 10.3390/ijms25168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Immune evasion is a key phenomenon in understanding tumor recurrence, metastasis, and other critical steps in tumor progression. The tumor microenvironment (TME) is in constant flux due to the tumor's ability to release signals that affect it, while immune cells within it can impact cancer cell behavior. Cancer cells undergo several changes, which can change the enrichment of different immune cells and modulate the activity of existing immune cells in the tumor microenvironment. Cancer cells can evade immune surveillance by downregulating antigen presentation or expressing immune checkpoint molecules. High levels of tumor-infiltrating lymphocytes (TILs) correlate with better outcomes, and robust immune responses can control tumor growth. On the contrary, increased enrichment of Tregs, myeloid-derived suppressor cells, and M2-like anti-inflammatory macrophages can hinder effective immune surveillance and predict poor prognosis. Overall, understanding these immune evasion mechanisms guides therapeutic strategies. Researchers aim to modulate the TME to enhance immune surveillance and improve patient outcomes. In this review article, we strive to summarize the composition of the tumor immune microenvironment, factors affecting the tumor immune microenvironment (TIME), and different therapeutic modalities targeting the immune cells. This review is a first-hand reference to understand the basics of immune surveillance and immune evasion.
Collapse
Affiliation(s)
| | - Pritam Sadhukhan
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Cen L, Zhang Z, Sun Y, Wu N, Shao J, Qian Z, Tian M, Ke Y, Liu B. Efficacy of MAGE-A4 long peptide as a universal immunoprevention cancer vaccine. Cancer Cell Int 2024; 24:232. [PMID: 38961429 PMCID: PMC11223347 DOI: 10.1186/s12935-024-03421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The clinical application of peptide vaccines in tumor immunotherapy holds significant promise. Peptide-based tumor vaccines are currently subject to certain limitations in clinical trials, including the challenge of inducing a sustained response from CD4+ T helper cells and cytotoxic T lymphocytes (CTL), as well as human leukocyte antigen (HLA) restrictions. METHODS Through the utilization of biological information methodology, a screening process was conducted to identify three potential long peptides that are specifically targeted by the MAGE-A4 antigen. The candidate long peptides were subjected to in vitro testing using human peripheral blood lymphocytes as samples to evaluate their immunogenicity and immune function. The antitumor properties and preliminary mechanism of the long peptide vaccine were investigated through the use of a mouse model designed for the prevention of triple negative breast cancer (TNBC). RESULTS Three predicted multi-epitope long peptides targeting MAGE-A4 have shown to have a strong immunogenicity, with a total positive rate of 72% across different HLA subtypes in Chinese populations. they can also increase the levels of the costimulatory factor CD137 and tumor necrosis factor-alpha (TNF-α), activate T cells, and boost the cytotoxic activity. Results from an animal study have revealed that the long-peptide vaccine, both on its own and in combination with R848, has displayed impressive anti-tumor and target-specific capabilities. Moreover, it has the ability to increase the expression of effector memory T cells and central memory T cells. CONCLUSIONS This study was the first to screen three multi-epitope long peptides targeting MAGE-A4 and assess their immunogenicity, immune function, and potential as adjuvant peptides. The results showed that the MAGE-A4 long peptide vaccine can be used as a novel immunoprophylaxis method to prevent TNBC. Moreover, the proposed development model is capable of screening multiple target antigens, which lead to its clinical application.
Collapse
Affiliation(s)
- Lanqi Cen
- Department of Oncology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210000, China
| | - Zhe Zhang
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yi Sun
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Nandie Wu
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Jie Shao
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Zhaoye Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Manman Tian
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Yaohua Ke
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Baorui Liu
- Department of Oncology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210000, China.
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210000, China.
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
12
|
Squalli Houssaini A, Lamrabet S, Nshizirungu JP, Senhaji N, Sekal M, Karkouri M, Bennis S. Glioblastoma Vaccines as Promising Immune-Therapeutics: Challenges and Current Status. Vaccines (Basel) 2024; 12:655. [PMID: 38932383 PMCID: PMC11209492 DOI: 10.3390/vaccines12060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard treatments including surgical resection, radiotherapy, and chemotherapy, have failed to significantly improve the prognosis of glioblastoma patients. Currently, immunotherapeutic approaches based on vaccines, chimeric antigen-receptor T-cells, checkpoint inhibitors, and oncolytic virotherapy are showing promising results in clinical trials. The combination of different immunotherapeutic approaches is proving satisfactory and promising. In view of the challenges of immunotherapy and the resistance of glioblastomas, the treatment of these tumors requires further efforts. In this review, we explore the obstacles that potentially influence the efficacy of the response to immunotherapy and that should be taken into account in clinical trials. This article provides a comprehensive review of vaccine therapy for glioblastoma. In addition, we identify the main biomarkers, including isocitrate dehydrogenase, epidermal growth factor receptor, and telomerase reverse transcriptase, known as potential immunotherapeutic targets in glioblastoma, as well as the current status of clinical trials. This paper also lists proposed solutions to overcome the obstacles facing immunotherapy in glioblastomas.
Collapse
Affiliation(s)
- Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Jean Paul Nshizirungu
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda;
| | - Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco;
| | - Mohammed Sekal
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital of Casablanca, Casablanca 20250, Morocco;
- Laboratory of Cellular and molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20360, Morocco
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| |
Collapse
|
13
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Wang Q, Greene MI. Survivin as a Therapeutic Target for the Treatment of Human Cancer. Cancers (Basel) 2024; 16:1705. [PMID: 38730657 PMCID: PMC11083197 DOI: 10.3390/cancers16091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Survivin was initially identified as a member of the inhibitor apoptosis (IAP) protein family and has been shown to play a critical role in the regulation of apoptosis. More recent studies showed that survivin is a component of the chromosome passenger complex and acts as an essential mediator of mitotic progression. Other potential functions of survivin, such as mitochondrial function and autophagy, have also been proposed. Survivin has emerged as an attractive target for cancer therapy because its overexpression has been found in most human cancers and is frequently associated with chemotherapy resistance, recurrence, and poor survival rates in cancer patients. In this review, we discuss our current understanding of how survivin mediates various aspects of malignant transformation and drug resistance, as well as the efforts that have been made to develop therapeutics targeting survivin for the treatment of cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Amanzadeh Jajin E, Oraee Yazdani S, Zali A, Esmaeili A. Efficacy and Safety of Vaccines After Conventional Treatments for Survival of Gliomas: A Systematic Review and Meta-Analysis. Oncol Rev 2024; 18:1374513. [PMID: 38707486 PMCID: PMC11066223 DOI: 10.3389/or.2024.1374513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Background Malignant gliomas are known with poor prognosis and low rate of survival among brain tumors. Resection surgery is followed by chemotherapy and radiotherapy in treatment of gliomas which is known as the conventional treatment. However, this treatment method results in low survival rate. Vaccination has been suggested as a type of immunotherapy to increase survival rate of glioma patients. Different types of vaccines have been developed that are mainly classified in two groups including peptide vaccines and cell-based vaccines. However, there are still conflicts about which type of vaccines is more efficient for malignant glioma treatment. Methods Phase Ⅰ/Ⅱ clinical trials which compared the efficacy and safety of various vaccines with conventional treatments were searched in databases through November 2022. Overall survival (OS) rate, progression free survival (PFS), and OS duration were used for calculation of pooled risk ratio (RR). In addition, fatigue, headache, nausea, diarrhea, and flu-like syndrome were used for evaluating the safety of vaccines therapy in glioma patients. Results A total of twelve articles were included in the present meta-analysis. Comparison of OS rate between vaccinated groups and control groups who underwent only conventional treatments showed a significant increase in OS rate in vaccinated patients (I2 = 0%, RR = 11.17, 95% CI: 2.460-50.225). PFS rate was better in vaccinated glioma patients (I2 = 83%, RR = 2.87, 95% CI: 1.63-5.03). Assessment of safety demonstrated that skin reaction (I2 = 0.0%, RR = 3.654; 95% CI: 1.711-7.801, p-value = 0.0058) and flu-like syndrome were significantly more frequent adverse effects win vaccinated groups compared to the control group. Subgroup analysis also showed that vaccination leads to better OS duration in recurrent gliomas than primary gliomas, and in LGG than HGG (p-value = 0). On the other hand, personalized vaccines showed better OS duration than non-personalized vaccines (p-value = 0). Conclusion Vaccination is a type of immunotherapy which shows promising efficacy in treatment of malignant glioma patients in terms of OS, PFS and duration of survival. In addition, AFTV, peptide, and dendritic cell-based vaccines are among the most efficient vaccines for gliomas. Personalized vaccines also showed considerable efficacy for glioma treatments.
Collapse
Affiliation(s)
| | - Saeed Oraee Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
17
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Hamilton AM, Walens A, Van Alsten SC, Olsson LT, Nsonwu-Farley J, Gao X, Kirk EL, Perou CM, Carey LA, Troester MA, Abdou Y. BIRC5 expression by race, age and clinical factors in breast cancer patients. Breast Cancer Res 2024; 26:50. [PMID: 38515208 PMCID: PMC10956264 DOI: 10.1186/s13058-024-01792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE Survivin/BIRC5 is a proliferation marker that is associated with poor prognosis in breast cancer and an attractive therapeutic target. However, BIRC5 has not been well studied among racially diverse populations where aggressive breast cancers are prevalent. EXPERIMENTAL DESIGN We studied BIRC5 expression in association with clinical and demographic variables and as a predictor of recurrence in 2174 participants in the Carolina Breast Cancer Study (CBCS), a population-based study that oversampled Black (n = 1113) and younger (< 50 years; n = 1137) participants with breast cancer. For comparison, similar analyses were conducted in The Cancer Genome Atlas [TCGA N = 1094, Black (n = 183), younger (n = 295)]. BIRC5 was evaluated as a continuous and categorical variable (highest quartile vs. lower three quartiles). RESULTS Univariate, continuous BIRC5 expression was higher in breast tumors from Black women relative to non-Black women in both estrogen receptor (ER)-positive and ER-negative tumors and in analyses stratified by stage (i.e., within Stage I, Stage II, and Stage III/IV tumors). Within CBCS and TCGA, BIRC5-high was associated with young age (< 50 years) and Black race, as well as hormone receptor-negative tumors, non-Luminal A PAM50 subtypes, advanced stage, and larger tumors (> 2 cm). Relative to BIRC5-low, BIRC5-high tumors were associated with poor 5-year recurrence-free survival (RFS) among ER-positive tumors, both in unadjusted models [HR (95% CI): 2.7 (1.6, 4.6)] and after adjustment for age and stage [Adjusted HR (95% CI): 1.87 (1.07, 3.25)]. However, this relationship was not observed among ER-negative tumors [Crude HR (95% CI): 0.7 (0.39, 1.2); Adjusted HR (95% CI): 0.67 (0.37, 1.2)]. CONCLUSION Black and younger women with breast cancer have a higher burden of BIRC5-high tumors than older and non-Black women. Emerging anti-survivin treatment strategies may be an important future direction for equitable breast cancer outcomes.
Collapse
Affiliation(s)
- Alina M Hamilton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sarah C Van Alsten
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Nsonwu-Farley
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaohua Gao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erin L Kirk
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yara Abdou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7305, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
19
|
Pachimatla AG, Fenstermaker R, Ciesielski M, Yendamuri S. Survivin in lung cancer: a potential target for therapy and prevention-a narrative review. Transl Lung Cancer Res 2024; 13:362-374. [PMID: 38496694 PMCID: PMC10938099 DOI: 10.21037/tlcr-23-621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Background and Objective A versatile biomarker, survivin, is highly expressed in proliferating cells of multiple cancers in humans and animals. It is an apoptosis-regulating protein, engaging in a cascade of reactions that involve several other genes and protein interactions. Currently, researchers are investigating its therapeutic potential due to the evidence linking its overexpression to advanced-stage lung cancer. This review is centered around examining survivin-related molecular mechanisms and its therapeutic role specifically in lung cancer. Our objective is to discuss the role of survivin in prognosis and treatment response, shedding light on immune-targeted therapies, as well as outlining future directions for survivin-based vaccines in lung cancer. Methods The PubMed database and the United States National Library of Medicine search engine at the National Institutes of Health were searched on 24 August 2023 to identify published research studies. Searching "((((((airway [Title/Abstract]) OR (lung [Title/Abstract])) OR (pulm[Title/Abstract])) OR (bronch[Title/Abstract])) OR (nslc[Title/Abstract])) AND (((cancer[Title/Abstract]) OR (carcino[Title/Abstract])) OR (oncol[Title/Abstract]))) AND (survivin[Title/Abstract])" gave 728 results. After screening the title and abstracts and excluding the review articles 168 titles were shortlisted and full text studied. The discussions are added to relevant sections. Key Content and Findings Survivin is a cell cycle-dependent, inhibitor of apoptosis protein that contributes to carcinogenesis, tumor vascularization, metastasis, and treatment resistance. Several treatments that impact survivin either directly or indirectly have been reported as effective in treating lung cancer. Immunity-based therapy, a novel approach known for its targeted nature and minimal side effects, is currently under investigation for lung cancer treatment. Emerging survivin-centered vaccines exhibit promising attributes in terms of safety, effectiveness, and ability to stimulate an immune response. These factors point towards a significant potential for advancing the future of lung cancer prevention and enhancing overall survival rates. Conclusions Nuclear survivin is a potential biomarker for advanced non-small cell lung cancer. It plays a role in determining drug responsiveness and is found to be significantly elevated in cases of resistance to chemotherapy. Multiple compounds and immunization strategies have been identified to impact lung cancer cells; however, they are currently in the early stages of phase I or phase II clinical trials. The substantial promise of survivin-based immunogenicity-focused treatments warrants in-depth investigation and exploration.
Collapse
Affiliation(s)
- Akhil Goud Pachimatla
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael Ciesielski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
20
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
21
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Kondapuram SK, Ramachandran HK, Arya H, Coumar MS. Targeting survivin for cancer therapy: Strategies, small molecule inhibitors and vaccine based therapeutics in development. Life Sci 2023; 335:122260. [PMID: 37963509 DOI: 10.1016/j.lfs.2023.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hema Kasthuri Ramachandran
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hemant Arya
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| |
Collapse
|
23
|
Kang W, Mo Z, Li W, Ma H, Zhang Q. Heterogeneity and individualized treatment of microenvironment in glioblastoma (Review). Oncol Rep 2023; 50:217. [PMID: 37888767 PMCID: PMC10636722 DOI: 10.3892/or.2023.8654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of glioblastoma can suppress immune cell function and lead to immune evasion, which presents a challenge in developing effective molecular therapies for tumor cells. However, the study of tumor immune heterogeneity holds great potential for clinical immunotherapy. Liquid biopsy is a useful tool for accurately monitoring dynamic changes in tumor immune heterogeneity and the tumor microenvironment. This paper explores the heterogeneity of glioblastoma and the immune microenvironment, providing a therapeutic basis for individualized treatment. Using liquid biopsy technology as a new diagnostic method, innovative treatment strategies may be implemented for patients with glioblastoma to improve their outcomes.
Collapse
Affiliation(s)
- Wei Kang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Zhixiao Mo
- Department of Neurosurgery, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai 810099, P.R. China
| | - Wenshan Li
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
- Key Laboratory of Neurology of Gansu Province, Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Haifeng Ma
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| |
Collapse
|
24
|
Freeman CL, Atkins R, Varadarajan I, Menges M, Edelman J, Baz R, Brayer J, Castaneda Puglianini O, Ochoa-Bayona JL, Nishihori T, Shain KH, Shah B, Chen DT, Kelley L, Coppola D, Alsina M, Antonia S, Anasetti C, Locke FL. Survivin Dendritic Cell Vaccine Safely Induces Immune Responses and Is Associated with Durable Disease Control after Autologous Transplant in Patients with Myeloma. Clin Cancer Res 2023; 29:4575-4585. [PMID: 37735756 DOI: 10.1158/1078-0432.ccr-22-3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 07/20/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE We investigated whether a dendritic cell (DC) vaccine transduced with an adenoviral vector encoded with full-length survivin (Ad-S), with mutations neutralizing its antiapoptotic function, could safely generate an immune response and deepen clinical responses when administered before and after autologous stem cell transplant (ASCT) for multiple myeloma. PATIENTS AND METHODS This phase I first-in-human trial (NCT02851056) evaluated the safety of DC:Ad-S in newly diagnosed multiple myeloma not having achieved complete response with induction, given 7 to 30 days prior to stem cell collection and 20 to 34 days after ASCT. Anti-survivin antibodies and CD4+ and CD8+ specific T cells were quantified. RESULTS A total of 14 patients were treated and 13 included in the primary efficacy analysis. No serious adverse events were attributed to DC:Ad-S vaccine. Detectable anti-survivin antibodies increased from baseline in 9 of 13 (69%) patients, and 11 of 13 (85%) mounted either a cellular or humoral immune response to survivin. Seven patients had an improved clinical response at day +90, all of whom had mounted an immune response, and 6 of 7 patients remain event-free at a median follow-up of 4.2 years. Estimated progression-free survival at 4 years is 71% (95% confidence interval, 41-88). CONCLUSIONS Two doses of DC:Ad-S, one given immediately before and another after ASCT, were feasible and safe. A high frequency of vaccine-specific immune responses was seen in combination with durable clinical outcomes, supporting ongoing investigation into the potential of this approach. See related commentary by Dhodapkar, p. 4524.
Collapse
Affiliation(s)
- Ciara L Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Reginald Atkins
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Indumathy Varadarajan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, University of Virginia, Charlottesville, Virginia
| | - Meghan Menges
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Jeffrey Edelman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Rachid Baz
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Jason Brayer
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Omar Castaneda Puglianini
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Jose Leonel Ochoa-Bayona
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Kenneth H Shain
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Bijal Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Dung Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Linda Kelley
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Melissa Alsina
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Scott Antonia
- Department of Medicine, Duke University, Durham, North Carolina
| | - Claudio Anasetti
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
25
|
Agosti E, Zeppieri M, De Maria L, Tedeschi C, Fontanella MM, Panciani PP, Ius T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int J Mol Sci 2023; 24:15037. [PMID: 37894718 PMCID: PMC10606063 DOI: 10.3390/ijms242015037] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth and high rates of recurrence. Despite the advancements in conventional therapies, the prognosis for GBM patients remains poor. Immunotherapy has recently emerged as a potential treatment option. The aim of this systematic review is to assess the current strategies and future perspectives of the GBM immunotherapy strategies. A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 3 September 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "glioblastomas," "immunotherapies," and "treatment." The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of immunotherapies for the treatment of gliomas in human subjects. A total of 1588 papers are initially identified. Eligibility is confirmed for 752 articles, while 655 are excluded for various reasons, including irrelevance to the research topic (627), insufficient method and results details (12), and being case-series or cohort studies (22), systematic literature reviews, or meta-analyses (3). All the studies within the systematic review were clinical trials spanning from 1995 to 2023, involving 6383 patients. Neuro-oncology published the most glioma immunotherapy-related clinical trials (15/97, 16%). Most studies were released between 2018 and 2022, averaging nine publications annually during this period. Adoptive cellular transfer chimeric antigen receptor (CAR) T cells were the primary focus in 11% of the studies, with immune checkpoint inhibitors (ICIs), oncolytic viruses (OVs), and cancer vaccines (CVs) comprising 26%, 12%, and 51%, respectively. Phase-I trials constituted the majority at 51%, while phase-III trials were only 7% of the total. Among these trials, 60% were single arm, 39% double arm, and one multi-arm. Immunotherapies were predominantly employed for recurrent GBM (55%). The review also revealed ongoing clinical trials, including 9 on ICIs, 7 on CVs, 10 on OVs, and 8 on CAR T cells, totaling 34 trials, with phase-I trials representing the majority at 53%, and only one in phase III. Overcoming immunotolerance, stimulating robust tumor antigen responses, and countering immunosuppressive microenvironment mechanisms are critical for curative GBM immunotherapy. Immune checkpoint inhibitors, such as PD-1 and CTLA-4 inhibitors, show promise, with the ongoing research aiming to enhance their effectiveness. Personalized cancer vaccines, especially targeting neoantigens, offer substantial potential. Oncolytic viruses exhibited dual mechanisms and a breakthrough status in the clinical trials. CAR T-cell therapy, engineered for specific antigen targeting, yields encouraging results, particularly against IL13 Rα2 and EGFRvIII. The development of second-generation CAR T cells with improved specificity exemplifies their adaptability.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Lucio De Maria
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Camilla Tedeschi
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
26
|
Olivet MM, Brown MC, Reitman ZJ, Ashley DM, Grant GA, Yang Y, Markert JM. Clinical Applications of Immunotherapy for Recurrent Glioblastoma in Adults. Cancers (Basel) 2023; 15:3901. [PMID: 37568717 PMCID: PMC10416859 DOI: 10.3390/cancers15153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite standard therapies, including resection and chemoradiation, recurrence is virtually inevitable. Current treatment for recurrent glioblastoma (rGBM) is rapidly evolving, and emerging therapies aimed at targeting primary GBM are often first tested in rGBM to demonstrate safety and feasibility, which, in recent years, has primarily been in the form of immunotherapy. The purpose of this review is to highlight progress in clinical trials of immunotherapy for rGBM, including immune checkpoint blockade, oncolytic virotherapy, chimeric antigen receptor (CAR) T-cell therapy, cancer vaccine and immunotoxins. Three independent reviewers covered literature, published between the years 2000 and 2022, in various online databases. In general, the efficacy of immunotherapy in rGBM remains uncertain, and is limited to subsets/small cohorts of patients, despite demonstrating feasibility in early-stage clinical trials. However, considerable progress has been made in understanding the mechanisms that may preclude rGBM patients from responding to immunotherapy, as well as in developing new approaches/combination strategies that may inspire optimism for the utility of immunotherapy in this devastating disease. Continued trials are necessary to further assess the best therapeutic avenues and ascertain which treatments might benefit each patient individually.
Collapse
Affiliation(s)
- Meagan Mandabach Olivet
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Michael C. Brown
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA;
| | - David M. Ashley
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Yuanfan Yang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
27
|
Puig-Saenz C, Pearson JRD, Thomas JE, McArdle SEB. A Holistic Approach to Hard-to-Treat Cancers: The Future of Immunotherapy for Glioblastoma, Triple Negative Breast Cancer, and Advanced Prostate Cancer. Biomedicines 2023; 11:2100. [PMID: 37626597 PMCID: PMC10452459 DOI: 10.3390/biomedicines11082100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy represents an attractive avenue for cancer therapy due to its tumour specificity and relatively low frequency of adverse effects compared to other treatment modalities. Despite many advances being made in the field of cancer immunotherapy, very few immunotherapeutic treatments have been approved for difficult-to-treat solid tumours such as triple negative breast cancer (TNBC), glioblastoma multiforme (GBM), and advanced prostate cancer (PCa). The anatomical location of some of these cancers may also make them more difficult to treat. Many trials focus solely on immunotherapy and have failed to consider or manipulate, prior to the immunotherapeutic intervention, important factors such as the microbiota, which itself is directly linked to lifestyle factors, diet, stress, social support, exercise, sleep, and oral hygiene. This review summarises the most recent treatments for hard-to-treat cancers whilst factoring in the less conventional interventions which could tilt the balance of treatment in favour of success for these malignancies.
Collapse
Affiliation(s)
- Carles Puig-Saenz
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Joshua R. D. Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Jubini E. Thomas
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Stéphanie E. B. McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| |
Collapse
|
28
|
Wright S, Burkholz SR, Zelinsky C, Wittman C, Carback RT, Harris PE, Blankenberg T, Herst CV, Rubsamen RM. Survivin Expression in Luminal Breast Cancer and Adjacent Normal Tissue for Immuno-Oncology Applications. Int J Mol Sci 2023; 24:11827. [PMID: 37511584 PMCID: PMC10380623 DOI: 10.3390/ijms241411827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Survivin (BIRC5) is a tumor-associated antigen (TAA) overexpressed in various tumors but present at low to undetectable levels in normal tissue. Survivin is known to have a high expression in breast cancer (e.g., Ductal Carcinoma in situ (DCIS) and triple negative breast cancer). Previous studies have not compared survivin expression levels in DCIS tumor samples to levels in adjacent, normal breast tissue from the same patient. To ensure the effective use of survivin as a target for T cell immunotherapy of breast cancer, it is essential to ascertain the varying levels of survivin expression between DCIS tumor tissue samples and the adjacent normal breast tissue taken from the same patient simultaneously. Next-generation sequencing of RNA (RNA-seq) in normal breast tissue and tumor breast tissue from five women presenting with DCIS for lumpectomy was used to identify sequence variation and expression levels of survivin. The identity of both tumor and adjacent normal tissue samples were corroborated by histopathology. Survivin was overexpressed in human breast tissue tumor samples relative to the corresponding adjacent human normal breast tissue. Wild-type survivin transcripts were the predominant species identified in all tumor tissue sequenced. This study demonstrates upregulated expression of wild type survivin in DCIS tumor tissue versus normal breast tissue taken from the same patient at the same time, and provides evidence that developing selective cytotoxic T lymphocyte (CTL) immunotherapy for DCIS targeting survivin warrants further study.
Collapse
Affiliation(s)
- Sharon Wright
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Western Surgical Group, Reno, NV 89502, USA
| | - Scott R. Burkholz
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Cathy Zelinsky
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Connor Wittman
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Richard T. Carback
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Paul E. Harris
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Tikoes Blankenberg
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Shasta Pathology Associates, Redding, CA 96001, USA
| | - Charles V. Herst
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Reid M. Rubsamen
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
- Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Zaidi SE, Moelker E, Singh K, Mohan A, Salgado MA, Essibayi MA, Hotchkiss K, Shen S, Lee W, Sampson J, Khasraw M. Novel Immunotherapeutic Approaches for the Treatment of Glioblastoma. BioDrugs 2023; 37:489-503. [PMID: 37256535 DOI: 10.1007/s40259-023-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 06/01/2023]
Abstract
Glioblastoma is highly aggressive and remains difficult to treat despite being the most common malignant primary brain tumor in adults. Current standard-of-care treatment calls for maximum resection of the tumor mass followed by concurrent chemotherapy and radiotherapy and further adjuvant chemotherapy if necessary. Despite this regimen, prognosis remains grim. Immunotherapy has shown promising success in a variety of solid tumor types, but efficacy in glioblastoma is yet to be demonstrated. Barriers to the success of immunotherapy in glioblastoma include: a heterogeneous tumor cell population, a highly immunosuppressive microenvironment, and the blood-brain barrier, to name a few. Several immunotherapeutic approaches are actively being investigated and developed to overcome these limitations. In this review, we present different classes of immunotherapy targeting glioblastoma, their most recent results, and potential future directions.
Collapse
Affiliation(s)
- Saïf Eddine Zaidi
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
- School of Medicine, University of Paris Cité, Paris, France
| | - Eliese Moelker
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
| | - Kirit Singh
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
| | - Aditya Mohan
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
| | - Miguel A Salgado
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
| | - Muhammed Amir Essibayi
- Department of Neurosurgery, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Kelly Hotchkiss
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
| | - Steven Shen
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
| | - William Lee
- University of North Carolina, Chapel Hill, NC, USA
| | - John Sampson
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA
| | - Mustafa Khasraw
- Department of Neurosurgery, Duke University Medical Center, Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, USA.
| |
Collapse
|
30
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Gillette JS, Wang EJ, Dowd RS, Toms SA. Barriers to overcoming immunotherapy resistance in glioblastoma. Front Med (Lausanne) 2023; 10:1175507. [PMID: 37275361 PMCID: PMC10232794 DOI: 10.3389/fmed.2023.1175507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, known for its poor prognosis and high recurrence rate. Current standard of care includes surgical resection followed by combined radiotherapy and chemotherapy. Although immunotherapies have yielded promising results in hematological malignancies, their successful application in GBM remains limited due to a host of immunosuppressive factors unique to GBM. As a result of these roadblocks, research efforts have focused on utilizing combinatorial immunotherapies that target networks of immune processes in GBM with promising results in both preclinical and clinical trials, although limitations in overcoming the immunosuppressive factors within GBM remain. In this review, we aim to discuss the intrinsic and adaptive immune resistance unique to GBM and to summarize the current evidence and outcomes of engineered and non-engineered treatments targeted at overcoming GBM resistance to immunotherapy. Additionally, we aim to highlight the most promising strategies of targeted GBM immunotherapy combinatorial treatments and the insights that may directly improve the current patient prognosis and clinical care.
Collapse
|
32
|
Zhao B, Wu J, Li H, Wang Y, Wang Y, Xing H, Wang Y, Ma W. Recent advances and future challenges of tumor vaccination therapy for recurrent glioblastoma. Cell Commun Signal 2023; 21:74. [PMID: 37046332 PMCID: PMC10091563 DOI: 10.1186/s12964-023-01098-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant CNS tumor with a highest incidence rate, and most patients would undergo a recurrence. Recurrent GBM (rGBM) shows an increasing resistance to chemotherapy and radiotherapy, leading to a significantly poorer prognosis and the urgent need for novel treatments. Immunotherapy, a rapidly developing anti-tumor therapy in recent years, has shown its potential value in rGBM. Recent studies on PD-1 immunotherapy and CAR-T therapy have shown some efficacy, but the outcome was not as expected. Tumor vaccination is the oldest approach of immunotherapies, which has returned to the research focus because of the failure of other strategies and subversive understanding of CNS. The isolation effect of blood brain barrier and the immunosuppressive cell infiltration could lead to resistance existing in all phases of the anti-tumor immune response, where novel tumor vaccines have been designed to overcome these problems through new tumor antigenic targets and regulatory of the systematic immune response. In this review, the immunological characteristics of CNS and GBM would be discussed and summarized, as well as the mechanism of each novel tumor vaccine for rGBM. And through the review of completed early-phase studies and ongoing large-scale phase III clinical trials, evaluation could be conducted for potential immune response, biosecurity and initial clinical outcome, which further draw a panorama of this vital research field and provide some deep thoughts for the prospective tendency of vaccination strategy. Video Abstract.
Collapse
Affiliation(s)
- Binghao Zhao
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Huanzhang Li
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuekun Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Hao Xing
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
33
|
Hosseinalizadeh H, Rahmati M, Ebrahimi A, O’Connor RS. Current Status and Challenges of Vaccination Therapy for Glioblastoma. Mol Cancer Ther 2023; 22:435-446. [PMID: 36779991 PMCID: PMC10155120 DOI: 10.1158/1535-7163.mct-22-0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023]
Abstract
Glioblastoma (GBM), also known as grade IV astrocytoma, is the most common and deadly type of central nervous system malignancy in adults. Despite significant breakthroughs in current GBM treatments such as surgery, radiotherapy, and chemotherapy, the prognosis for late-stage glioblastoma remains bleak due to tumor recurrence following surgical resection. The poor prognosis highlights the evident and pressing need for more efficient and targeted treatment. Vaccination has successfully treated patients with advanced colorectal and lung cancer. Therefore, the potential value of using tumor vaccines in treating glioblastoma is increasingly discussed as a monotherapy or in combination with other cellular immunotherapies. Cancer vaccination includes both passive administration of monoclonal antibodies and active vaccination procedures to activate, boost, or bias antitumor immunity against cancer cells. This article focuses on active immunotherapy with peptide, genetic (DNA, mRNA), and cell-based vaccines in treating GBM and reviews the various treatment approaches currently being tested. Although the ease of synthesis, relative safety, and ability to elicit tumor-specific immune responses have made these vaccines an invaluable tool for cancer treatment, more extensive cohort studies and better guidelines are needed to improve the efficacy of these vaccines in anti-GBM therapy.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne, Rue Du Bugnon 7, 1005, Lausanne, Switzerland
| | - Roddy S O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Neth BJ, Webb MJ, Parney IF, Sener UT. The Current Status, Challenges, and Future Potential of Therapeutic Vaccination in Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15041134. [PMID: 37111620 PMCID: PMC10141140 DOI: 10.3390/pharmaceutics15041134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor and confers a dismal prognosis. With only two FDA-approved therapeutics showing modest survival gains since 2005, there is a great need for the development of other disease-targeted therapies. Due, in part, to the profound immunosuppressive microenvironment seen in GBMs, there has been a broad interest in immunotherapy. In both GBMs and other cancers, therapeutic vaccines have generally yielded limited efficacy, despite their theoretical basis. However, recent results from the DCVax-L trial provide some promise for vaccine therapy in GBMs. There is also the potential that future combination therapies with vaccines and adjuvant immunomodulating agents may greatly enhance antitumor immune responses. Clinicians must remain open to novel therapeutic strategies, such as vaccinations, and carefully await the results of ongoing and future trials. In this review of GBM management, the promise and challenges of immunotherapy with a focus on therapeutic vaccinations are discussed. Additionally, adjuvant therapies, logistical considerations, and future directions are discussed.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mason J Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur T Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Survivin (BIRC5) Peptide Vaccine in the 4T1 Murine Mammary Tumor Model: A Potential Neoadjuvant T Cell Immunotherapy for Triple Negative Breast Cancer: A Preliminary Study. Vaccines (Basel) 2023; 11:vaccines11030644. [PMID: 36992227 DOI: 10.3390/vaccines11030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A triple negative breast cancer model using the murine 4T1 tumor cell line was used to explore the efficacy of an adjuvanted survivin peptide microparticle vaccine using tumor growth as the outcome metric. We first performed tumor cell dose titration studies to determine a tumor cell dose that resulted in sufficient tumor takes but allowed multiple serial measurements of tumor volumes, yet with minimal morbidity/mortality within the study period. Later, in a second cohort of mice, the survivin peptide microparticle vaccine was administered via intraperitoneal injection at the study start with a second dose given 14 days later. An orthotopic injection of 4T1 cells into the mammary tissue was performed on the same day as the administration of the second vaccine dose. The mice were followed for up to 41 days with subcutaneous measurements of tumor volume made every 3–4 days. Vaccination with survivin peptides was associated with a peptide antigen-specific gamma interferon enzyme-linked immunosorbent spot response in the murine splenocyte population but was absent from the control microparticle group. At the end of the study, we found that vaccination with adjuvanted survivin peptide microparticles resulted in statistically significant slower primary tumor growth rates in BALB/c mice challenged with 4T1 cells relative to the control peptideless vaccination group. These studies suggest that T cell immunotherapy specifically targeting survivin might be an applicable neoadjuvant immunotherapy therapy for triple negative breast cancer. More preclinical studies and clinical trials are needed to explore this concept further.
Collapse
|
36
|
Ahluwalia MS, Reardon DA, Abad AP, Curry WT, Wong ET, Figel SA, Mechtler LL, Peereboom DM, Hutson AD, Withers HG, Liu S, Belal AN, Qiu J, Mogensen KM, Dharma SS, Dhawan A, Birkemeier MT, Casucci DM, Ciesielski MJ, Fenstermaker RA. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J Clin Oncol 2023; 41:1453-1465. [PMID: 36521103 PMCID: PMC9995096 DOI: 10.1200/jco.22.00996] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Despite intensive treatment with surgery, radiation therapy, temozolomide (TMZ) chemotherapy, and tumor-treating fields, mortality of newly diagnosed glioblastoma (nGBM) remains very high. SurVaxM is a peptide vaccine conjugate that has been shown to activate the immune system against its target molecule survivin, which is highly expressed by glioblastoma cells. We conducted a phase IIa, open-label, multicenter trial evaluating the safety, immunologic effects, and survival of patients with nGBM receiving SurVaxM plus adjuvant TMZ following surgery and chemoradiation (ClinicalTrials.gov identifier: NCT02455557). METHODS Sixty-four patients with resected nGBM were enrolled including 38 men and 26 women, in the age range of 20-82 years. Following craniotomy and fractionated radiation therapy with concurrent TMZ, patients received four doses of SurVaxM (500 μg once every 2 weeks) in Montanide ISA-51 plus sargramostim (granulocyte macrophage colony-stimulating factor) subcutaneously. Patients subsequently received adjuvant TMZ and maintenance SurVaxM concurrently until progression. Progression-free survival (PFS) and overall survival (OS) were reported. Immunologic responses to SurVaxM were assessed. RESULTS SurVaxM plus TMZ was well tolerated with no serious adverse events attributable to SurVaxM. Of the 63 patients who were evaluable for outcome, 60 (95.2%) remained progression-free 6 months after diagnosis (prespecified primary end point). Median PFS was 11.4 months and median OS was 25.9 months measured from first dose of SurVaxM. SurVaxM produced survivin-specific CD8+ T cells and antibody/immunoglobulin G titers. Apparent clinical benefit of SurVaxM was observed in both methylated and unmethylated patients. CONCLUSION SurVaxM appeared to be safe and well tolerated. The combination represents a promising therapy for nGBM. For patients with nGBM treated in this manner, PFS may be an acceptable surrogate for OS. A large randomized clinical trial of SurVaxM for nGBM is in progress.
Collapse
Affiliation(s)
| | - David A. Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ajay P. Abad
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - William T. Curry
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Eric T. Wong
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sheila A. Figel
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Laszlo L. Mechtler
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | - Alan D. Hutson
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Henry G. Withers
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Song Liu
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ahmed N. Belal
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kathleen M. Mogensen
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Sanam S. Dharma
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | - Danielle M. Casucci
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Michael J. Ciesielski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| | - Robert A. Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- MimiVax LLC, Buffalo, NY
| |
Collapse
|
37
|
Mantica M, Drappatz J. Immunotherapy associated central nervous system complications in primary brain tumors. Front Oncol 2023; 13:1124198. [PMID: 36874119 PMCID: PMC9981156 DOI: 10.3389/fonc.2023.1124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Advances clarifying the genetics and function of the immune system within the central nervous system (CNS) and brain tumor microenvironment have led to increasing momentum and number of clinical trials using immunotherapy for primary brain tumors. While neurological complications of immunotherapy in extra-cranial malignancies is well described, the CNS toxicities of immunotherapy in patients with primary brain tumors with their own unique physiology and challenges are burgeoning. This review highlights the emerging and unique CNS complications associated with immunotherapy including checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen receptor (CAR) T cell and vaccines for primary brain tumors, as well as reviews modalities that have been currently employed or are undergoing investigation for treatment of such toxicities.
Collapse
Affiliation(s)
- Megan Mantica
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
38
|
Cao TQ, Wainwright DA, Lee-Chang C, Miska J, Sonabend AM, Heimberger AB, Lukas RV. Next Steps for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:4023. [PMID: 36011015 PMCID: PMC9406905 DOI: 10.3390/cancers14164023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Outcomes for glioblastoma (GBM) patients undergoing standard of care treatment remain poor. Here we discuss the portfolio of previously investigated immunotherapies for glioblastoma, including vaccine therapy and checkpoint inhibitors, as well as novel emerging therapeutic approaches. In addition, we explore the factors that potentially influence response to immunotherapy, which should be considered in future research aimed at improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Toni Q. Cao
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Sener U, Ruff MW, Campian JL. Immunotherapy in Glioblastoma: Current Approaches and Future Perspectives. Int J Mol Sci 2022; 23:7046. [PMID: 35806051 PMCID: PMC9266573 DOI: 10.3390/ijms23137046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Despite multimodality treatment with surgical resection, radiation therapy, chemotherapy, and tumor treating fields, recurrence is universal, median observed survival is low at 8 months and 5-year overall survival is poor at 7%. Immunotherapy aims to generate a tumor-specific immune response to selectively eliminate tumor cells. In treatment of GBM, immunotherapy approaches including use of checkpoint inhibitors, chimeric antigen receptor (CAR) T-Cell therapy, vaccine-based approaches, viral vector therapies, and cytokine-based treatment has been studied. While there have been no major breakthroughs to date and broad implementation of immunotherapy for GBM remains elusive, multiple studies are underway. In this review, we discuss immunotherapy approaches to GBM with an emphasis on molecularly informed approaches.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Michael W. Ruff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
40
|
Mao P, Shen Y, Xu X, Zhong J. Comprehensive Analysis of the Immune Cell Infiltration Landscape and Immune-Related Methylation in Retinoblastoma. Front Genet 2022; 13:864473. [PMID: 35664300 PMCID: PMC9157546 DOI: 10.3389/fgene.2022.864473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Retinoblastoma is a common pediatric intraocular cancer, originating from cone precursors. The development of immunotherapies can help eradicate the tumor without vision loss, which would largely improve the quality of life of patients with retinoblastoma. Investigation of the tumor immune microenvironment provides knowledge for developing novel immunotherapies in cancer. However, the immune cell infiltrative landscape of retinoblastoma is unknown. Here, we compared the relative expression of immune gene signatures among 59 patients with retinoblastoma. The patients were divided into two subgroups according to the 28 types of immune cell infiltration (ICI) scores. We found that a subgroup with high ICI scores had increased expression levels of late cone markers, while the other subgroup exhibited larger tumor size and metastasis propensity. Furthermore, hypermethylated genes in the high-ICI subgroup were associated with immune regulation in the tumor microenvironment, suggesting that DNA methylation may play a vital regulatory role in retinoblastoma immunity. Our study provides a comprehensive framework for the systemic analysis of the influences of epigenetic events on the tumor immune microenvironment. We anticipate that our assay can not only provide insights into tumor immune regulation but also open up the perspectives for the identification of novel immunotherapy targets for retinoblastoma.
Collapse
Affiliation(s)
- Peiyao Mao
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yinchen Shen
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jiawei Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
41
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
42
|
Tang L, Zhang M, Liu C. Advances in Nanotechnology-Based Immunotherapy for Glioblastoma. Front Immunol 2022; 13:882257. [PMID: 35651605 PMCID: PMC9149074 DOI: 10.3389/fimmu.2022.882257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor. Despite the multimodal therapies, the effectiveness of traditional treatments is not much satisfying. In recent years, immunotherapy has become the focus of tumor treatment. Unlike traditional treatments that directly target tumor cells, immunotherapy uses the body’s immune system to kill tumors. However, due to the severe immunosuppressive microenvironment of GBM, it generally has a poor response to immunotherapy. In addition, the existence of the blood-brain barrier (BBB) also compromises the immunotherapeutic efficacy. Therefore, effective immunotherapy of GBM requires the therapeutic agents to not only efficiently cross the BBB but also relieve the strong immunosuppression of the tumor microenvironment of GBM. In this review, we will first introduce the CNS immune system, immunosuppressive mechanism of GBM, and current GBM immunotherapy strategies. Then, we will discuss the development of nanomaterials for GBM immunotherapy based on different strategies, roughly divided into four parts: immune checkpoint therapy, targeting tumor-associated immune cells, activating immune cells through immunogenic cell death, and combination therapy, to provide new insights for future GBM immunotherapy.
Collapse
Affiliation(s)
- Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
43
|
Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, Yu L, Zhang L, Tao Y, Xu R, Wei J, Liu B, Liu Q. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnology 2022; 20:190. [PMID: 35418151 PMCID: PMC9006542 DOI: 10.1186/s12951-022-01397-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
Background Neoantigens are considered ideal targets for immunotherapy, especially tumor vaccine, because of their strong specificity and immunogenicity. Here, we developed a neoantigen nanovaccine used liposomes with lymph-node targeting characteristic. Methods Our nanovaccine was composed of neoantigens, an amphiphilic liposome and an adjuvant Montanide™ ISA 51. Small animal imaging system and immunofluorescence staining were used to identify the distribution of nanovaccines. A subcutaneous-tumor-resection mouse model of melanoma was established to evaluate the anti-tumor efficacy. Flow cytometry was performed to assay the immune responses initiated by nanovaccines. Results Nanovaccines could traffic to lymph nodes, be uptaken by CD11c+ DCs and promote DCs maturity. After the treatment of our neoantigen nanovaccines, the average recurrence time was extended from 11 to 16 days and the median survival time was even prolonged 7.5 days relative to the control group (NS group). Nanovaccines increased neoantigen-specific T cells to 10-fold of free vaccines, and upregulated Th1 cytokines, such as IFN-γ and TNF-α. The anti-tumor activity of spleen lymphocytes in the nanovaccine group was significantly stronger than that of other groups. However, some immune-inhibitory cells or molecules in tumor microenvironment have been detected upregulated under the immune pressure of neoantigen nanovaccines, such as Tregs and PD-L1. The efficacy of the neoantigen nanovaccine combined with anti-PD1 antibody or Treg inhibiting peptide P60 was better than that of the single treatment. Conclusions We developed a general vaccine strategy, triggering specific T cell responses, and provided feasible combination strategies for better anti-tumor efficacy. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01397-7.
Collapse
Affiliation(s)
- Yanhong Chu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Lingyu Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.,Department of Oncology, Rudong Peoples' Hospital of Jiangsu Province, Nantong, China
| | - Yaohua Ke
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoyu Feng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xinjie Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Fangcen Liu
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Lianru Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yaping Tao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Rui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
44
|
Hamid FA, Marker CL, Raleigh MD, Khaimraj A, Winston S, Pentel PR, Pravetoni M. Pre-clinical safety and toxicology profile of a candidate vaccine to treat oxycodone use disorder. Vaccine 2022; 40:3244-3252. [DOI: 10.1016/j.vaccine.2022.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
45
|
Yuan B, Wang G, Tang X, Tong A, Zhou L. Immunotherapy of glioblastoma: recent advances and future prospects. Hum Vaccin Immunother 2022; 18:2055417. [PMID: 35344682 PMCID: PMC9248956 DOI: 10.1080/21645515.2022.2055417] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) stands out as the most common, aggressive form of primary malignant brain tumor conferring a devastatingly poor prognosis. Despite aggressive standard-of-care in surgical resection and chemoradiation with temozolomide, the median overall survival of patients still remains no longer than 15 months, due to significant tumor heterogeneity, immunosuppression induced by the tumor immune microenvironment and low mutational burden. Advances in immunotherapeutic approaches have revolutionized the treatment of various cancer types and become conceptually attractive for glioblastoma. In this review, we provide an overview of the basic knowledge underlying immune targeting and promising immunotherapeutic strategies including CAR T cells, oncolytic viruses, cancer vaccines, and checkpoint blockade inhibitors that have been recently investigated in glioblastoma. Current clinical trials and previous clinical trial findings are discussed, shedding light on novel strategies to overcome various limitations and challenges.
Collapse
Affiliation(s)
- Boyang Yuan
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
46
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
47
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Apoptosis is a major mechanism of cancer cell death. Thus, evasion of apoptosis results in therapy resistance. Here, we review apoptosis modulators in cancer and their recent developments, including MDM2 inhibitors and kinase inhibitors that can induce effective apoptosis. RECENT FINDINGS Both extrinsic pathways (external stimuli through cell surface death receptor) and intrinsic pathways (mitochondrial-mediated regulation upon genotoxic stress) regulate the complex process of apoptosis through orchestration of various proteins such as members of the BCL-2 family. Dysregulation within these complex steps can result in evasion of apoptosis. However, via the combined evolution of medicinal chemistry and molecular biology, omics assays have led to innovative inducers of apoptosis and inhibitors of anti-apoptotic regulators. Many of these agents are now being tested in cancer patients in early-phase trials. We believe that despite a sluggish speed of development, apoptosis targeting holds promise as a relevant strategy in cancer therapeutics.
Collapse
|
49
|
Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R, Hoang-Minh LB, Kieran MW, Salcido J, Prins RM, Figg JW, Platten M, Candelario KM, Hale PG, Blatt JE, Governale LS, Okada H, Mitchell DA, Pollack IF. The current landscape of immunotherapy for pediatric brain tumors. NATURE CANCER 2022; 3:11-24. [PMID: 35121998 DOI: 10.1038/s43018-021-00319-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.
Collapse
Affiliation(s)
- Eugene I Hwang
- Division of Oncology, Brain Tumor Institute, Children's National Hospital, Washington, DC, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Catherine T Flores
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lan B Hoang-Minh
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | | | | | - Robert M Prins
- Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Figg
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University and CCU Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Kate M Candelario
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Paul G Hale
- Children's Brain Trust, Coral Springs, FL, USA
| | - Jason E Blatt
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Lance S Governale
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Mould RC, van Vloten JP, AuYeung AWK, Walsh SR, de Jong J, Susta L, Mutsaers AJ, Petrik JJ, Wood GA, Wootton SK, Karimi K, Bridle BW. Using a Prime-Boost Vaccination Strategy That Proved Effective for High Resolution Epitope Mapping to Characterize the Elusive Immunogenicity of Survivin. Cancers (Basel) 2021; 13:cancers13246270. [PMID: 34944889 PMCID: PMC8699342 DOI: 10.3390/cancers13246270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The generation of tumor-specific T cells remains a pillar of modern cancer immunotherapy. Exogenous vaccines often rely on targeting tumor-associated antigens. The anti-apoptotic protein survivin has been deemed a high priority target due to its overexpression in a wide variety of tumor types. To support the analysis of tumor-associated T cell responses, optimization of epitope mapping would be valuable. A heterologous prime-boost vaccination strategy was designed to target survivin to induce anti-tumor immune responses. However, survivin-specific T cell responses could not be detected in mice. Potential mechanisms to explain this failure were explored. To confirm the robustness of the vaccination platform, enhanced green fluorescent protein (eGFP) was targeted since it has been defined as a protein with relatively low immunogenicity. In this context the vaccination strategy uncovered novel T cell epitopes from eGFP in two strains of mice. This research highlighted the utility of the vaccine platform to triage potential target antigens based on their immunogenicity. Abstract Survivin is a member of the inhibitor of apoptosis family of proteins and has been reported to be highly expressed in a variety of cancer types, making it a high priority target for cancer vaccination. We previously described a heterologous prime-boost strategy using a replication-deficient adenovirus, followed by an oncolytic rhabdovirus that generates unprecedented antigen-specific T cell responses. We engineered each vector to express a mutated version of full-length murine survivin. We first sought to uncover the complete epitope map for survivin-specific T cell responses in C57BL/6 and BALB/c mice by flow cytometry. However, no T cell responses were detected by intracellular cytokine staining after re-stimulation of T cells. Survivin has been found to be expressed by activated T cells, which could theoretically cause T cell-mediated killing of activated T cells, known as fratricide. We were unable to recapitulate this phenomenon in experiments. Interestingly, the inactivated survivin construct has been previously shown to directly kill tumor cells in vitro. However, there was no evidence in our models of induction of death in antigen-presenting cells due to treatment with a survivin-expressing vector. Using the same recombinant virus-vectored prime-boost strategy targeting the poorly immunogenic enhanced green fluorescent protein proved to be a highly sensitive method for mapping T cell epitopes, particularly in the context of identifying novel epitopes recognized by CD4+ T cells. Overall, these results suggested there may be unusually robust tolerance to survivin in commonly used mouse strains that cannot be broken, even when using a particularly potent vaccination platform. However, the vaccination method shows great promise as a strategy for identifying novel and subdominant T cell epitopes.
Collapse
Affiliation(s)
- Robert C. Mould
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Amanda W. K. AuYeung
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Scott R. Walsh
- McMaster Immunology Research Centre, McMaster University Hamilton, Hamilton, ON L8S 3L8, Canada;
| | - Jondavid de Jong
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Anthony J. Mutsaers
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.J.M.); (J.J.P.)
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.J.M.); (J.J.P.)
| | - Geoffrey A. Wood
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
- Correspondence: ; Tel.: +51-9824-4120 (ext. 54657)
| |
Collapse
|