1
|
Eshraghi R, Sadati S, Bahrami A, Mirjalili SR, Farrokhian A, Mahjoubin-Tehran M, Mirzaei H. Unveiling the role of long non-coding RNA MALAT1: a comprehensive review on myocardial infarction. Front Cardiovasc Med 2024; 11:1429858. [PMID: 39171328 PMCID: PMC11335503 DOI: 10.3389/fcvm.2024.1429858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Myocardial infarction (MI) stands at top global causes of death in developed countries, owing mostly to atherosclerotic plaque growth and endothelial injury-induced reduction in coronary blood flow. While early reperfusion techniques have improved outcomes, long-term treatment continues to be difficult. The function of lncRNAs extends to regulating gene expression in various conditions, both physiological and pathological, such as cardiovascular diseases. The objective of this research is to extensively evaluate the significance of the lncRNA called Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in the development and management of MI. According to research, MALAT1 is implicated in processes such as autophagy, apoptosis, cell proliferation, and inflammation in the cardiovascular system. This investigation examines recent research examining the effects of MALAT1 on heart function and its potential as a mean of diagnosis and treatment for post- MI complications and ischemic reperfusion injury.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Reza Mirjalili
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Farrokhian
- Department of Cardiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Galli M, Niccoli G, De Maria G, Brugaletta S, Montone RA, Vergallo R, Benenati S, Magnani G, D'Amario D, Porto I, Burzotta F, Abbate A, Angiolillo DJ, Crea F. Coronary microvascular obstruction and dysfunction in patients with acute myocardial infarction. Nat Rev Cardiol 2024; 21:283-298. [PMID: 38001231 DOI: 10.1038/s41569-023-00953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Despite prompt epicardial recanalization in patients presenting with ST-segment elevation myocardial infarction (STEMI), coronary microvascular obstruction and dysfunction (CMVO) is still fairly common and is associated with poor prognosis. Various pharmacological and mechanical strategies to treat CMVO have been proposed, but the positive results reported in preclinical and small proof-of-concept studies have not translated into benefits in large clinical trials conducted in the modern treatment setting of patients with STEMI. Therefore, the optimal management of these patients remains a topic of debate. In this Review, we appraise the pathophysiological mechanisms of CMVO, explore the evidence and provide future perspectives on strategies to be implemented to reduce the incidence of CMVO and improve prognosis in patients with STEMI.
Collapse
Affiliation(s)
- Mattia Galli
- Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | - Gianluigi De Maria
- Oxford Heart Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Salvatore Brugaletta
- Institut Clinic Cardiovascular, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Rocco A Montone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rocco Vergallo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Stefano Benenati
- Oxford Heart Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Giulia Magnani
- Department of Cardiology, University of Parma, Parma, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Division of Cardiology, Azienda Ospedaliero Universitaria 'Maggiore Della Carita', Novara, Italy
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Francesco Burzotta
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular Sciencies, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiology - Heart and Vascular Center, University of Virginia, Charlottesville, VA, USA
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA.
| | - Filippo Crea
- Department of Cardiovascular Sciencies, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Lewandowska J, Kalenik B, Wrzosek A, Szewczyk A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants (Basel) 2024; 13:434. [PMID: 38671882 PMCID: PMC11047711 DOI: 10.3390/antiox13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Redox reactions exert a profound influence on numerous cellular functions with mitochondria playing a central role in orchestrating these processes. This pivotal involvement arises from three primary factors: (1) the synthesis of reactive oxygen species (ROS) by mitochondria, (2) the presence of a substantial array of redox enzymes such as respiratory chain, and (3) the responsiveness of mitochondria to the cellular redox state. Within the inner mitochondrial membrane, a group of potassium channels, including ATP-regulated, large conductance calcium-activated, and voltage-regulated channels, is present. These channels play a crucial role in conditions such as cytoprotection, ischemia/reperfusion injury, and inflammation. Notably, the activity of mitochondrial potassium channels is intricately governed by redox reactions. Furthermore, the regulatory influence extends to other proteins, such as kinases, which undergo redox modifications. This review aims to offer a comprehensive exploration of the modulation of mitochondrial potassium channels through diverse redox reactions with a specific focus on the involvement of ROS.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (J.L.); (B.K.); (A.W.)
| |
Collapse
|
4
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
5
|
Wu C, Sun M, Qile M, Zhang Y, Liu L, Cheng X, Dai X, Gross ER, Zhang Y, He S. Lysophosphatidic acid contributes to myocardial ischemia/reperfusion injury by activating TRPV1 in spinal cord. Basic Res Cardiol 2024; 119:329-348. [PMID: 38236300 PMCID: PMC11233190 DOI: 10.1007/s00395-023-01031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that plays a crucial role in cardiovascular diseases. Here, we question whether LPA contributes to myocardial ischemia/reperfusion (I/R) injury by acting on transient receptor potential vanilloid 1 (TRPV1) in spinal cord. By ligating the left coronary artery to establish an in vivo I/R mouse model, we observed a 1.57-fold increase in LPA level in the cerebrospinal fluid (CSF). The I/R-elevated CSF LPA levels were reduced by HA130, an LPA synthesis inhibitor, compared to vehicle treatment (4.74 ± 0.34 vs. 6.46 ± 0.94 μg/mL, p = 0.0014). Myocardial infarct size was reduced by HA130 treatment compared to the vehicle group (26 ± 8% vs. 46 ± 8%, p = 0.0001). To block the interaction of LPA with TRPV1 at the K710 site, we generated a K710N knock-in mouse model. The TRPV1K710N mice were resistant to LPA-induced myocardial injury, showing a smaller infarct size relative to TRPV1WT mice (28 ± 4% vs. 60 ± 7%, p < 0.0001). Additionally, a sequence-specific TRPV1 peptide targeting the K710 region produced similar protective effects against LPA-induced myocardial injury. Blocking the K710 region through K710N mutation or TRPV1 peptide resulted in reduced neuropeptides release and decreased activity of cardiac sensory neurons, leading to a decrease in cardiac norepinephrine concentration and the restoration of intramyocardial pro-survival signaling, namely protein kinase B/extracellular regulated kinase/glycogen synthase kinase-3β pathway. These findings suggest that the elevation of CSF LPA is strongly associated with myocardial I/R injury. Moreover, inhibiting the interaction of LPA with TRPV1 by blocking the K710 region uncovers a novel strategy for preventing myocardial ischemic injury.
Collapse
Affiliation(s)
- Chao Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Meiyan Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Muge Qile
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yu Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Liu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xueying Cheng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xiaoxiao Dai
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China.
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China.
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
7
|
Buske M, Desch S, Heusch G, Rassaf T, Eitel I, Thiele H, Feistritzer HJ. Reperfusion Injury: How Can We Reduce It by Pre-, Per-, and Postconditioning. J Clin Med 2023; 13:159. [PMID: 38202166 PMCID: PMC10779793 DOI: 10.3390/jcm13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
While early coronary reperfusion via primary percutaneous coronary intervention (pPCI) is established as the most efficacious therapy for minimizing infarct size (IS) in acute ST-elevation myocardial infarction (STEMI), the restoration of blood flow also introduces myocardial ischemia-reperfusion injury (IRI), leading to cardiomyocyte death. Among diverse methods, ischemic conditioning (IC), achieved through repetitive cycles of ischemia and reperfusion, has emerged as the most promising method to mitigate IRI. IC can be performed by applying the protective stimulus directly to the affected myocardium or indirectly to non-affected tissue, which is known as remote ischemic conditioning (RIC). In clinical practice, RIC is often applied by serial inflations and deflations of a blood pressure cuff on a limb. Despite encouraging preclinical studies, as well as clinical studies demonstrating reductions in enzymatic IS and myocardial injury on imaging, the observed impact on clinical outcome has been disappointing so far. Nevertheless, previous studies indicate a potential benefit of IC in high-risk STEMI patients. Additional research is needed to evaluate the impact of IC in such high-risk cohorts. The objective of this review is to summarize the pathophysiological background and preclinical and clinical data of IRI reduction by IC.
Collapse
Affiliation(s)
- Maria Buske
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Steffen Desch
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45122 Essen, Germany;
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany;
| | - Ingo Eitel
- Medical Clinic II, Clinic for Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, 23538 Lübeck, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23538 Lübeck, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Hans-Josef Feistritzer
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| |
Collapse
|
8
|
Nikolaou PE, Lambrinidis G, Georgiou M, Karagiannis D, Efentakis P, Bessis-Lazarou P, Founta K, Kampoukos S, Konstantin V, Palmeira CM, Davidson SM, Lougiakis N, Marakos P, Pouli N, Mikros E, Andreadou I. Hydrolytic Activity of Mitochondrial F 1F O-ATP Synthase as a Target for Myocardial Ischemia-Reperfusion Injury: Discovery and In Vitro and In Vivo Evaluation of Novel Inhibitors. J Med Chem 2023; 66:15115-15140. [PMID: 37943012 DOI: 10.1021/acs.jmedchem.3c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.
Collapse
Affiliation(s)
- Panagiota-Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Lambrinidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Georgiou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Dimitrios Karagiannis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Pavlos Bessis-Lazarou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantina Founta
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stavros Kampoukos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Vasilis Konstantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, United Kingdom
| | - Nikolaos Lougiakis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Marakos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nicole Pouli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Athena Research and Innovation Center in Information Communication & Knowledge Technologies, 15125 Marousi, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
9
|
Li J, Yan Z, Wang Q, Wei S, Liu Q, Liu T, Hu Z. Pretreatment with remote ischemic conditioning attenuates testicular damage after testicular ischemia and reperfusion injury in rats. PLoS One 2023; 18:e0287987. [PMID: 37883446 PMCID: PMC10602300 DOI: 10.1371/journal.pone.0287987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/17/2023] [Indexed: 10/28/2023] Open
Abstract
Testicular torsion is a urological emergency. However, surgical detorsion of the torsed spermatic cord can cause testicular reperfusion injury. Although remote ischemic preconditioning (RIPC) has been convincingly shown to protect organs against ischemia/reperfusion (I/R) injury, little is known regarding the effect of RIPC on testicular torsion/detorsion-induced reperfusion injury. Therefore, we aimed to evaluate the effect of RIPC on testes after testicular I/R injury in a rat model in vivo. Male Sprague-Dawley rats were randomly classified into 4 groups: sham-operated (sham), testicular I/R (TI/R), or remote liver (RIPC liver) and limb (RIPC limb) ischemic preconditioning groups. Testis I/R was induced by 3 h of right spermatic cord torsion (720° clockwise), and reperfusion was allowed for 3 hours. In the RIPC group, four cycles of 5 min of ischemia and 5 min of reperfusion were completed 30 min prior to testicular torsion. The ERK1/2 inhibitor U0126 was administered intravenously at the beginning of reperfusion (1 mg/kg). The testes were taken for the oxidative stress evaluations, histology, apoptosis, immunohistochemical and western blotting analysis. Remote liver and limb ischemic preconditioning attenuated ipsilateral and contralateral testicular damage after testicular I/R injury. For example. RIPC reduced testicular swelling and oxidative stress, lessened structural damage, and inhibited the testicular inflammatory response and apoptosis. Furthermore, RIPC treatment enhanced testicular ERK1/2 phosphorylation postI/R. Inhibition of ERK1/2 activity using U0126 eliminated the protection offered by RIPC. Our data demonstrate for the first time that RIPC protects testes against testicular I/R injury via activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Jiaxue Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibing Yan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qifeng Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quanhua Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Umbarkar P, Ruiz Ramirez SY, Toro Cora A, Tousif S, Lal H. GSK-3 at the heart of cardiometabolic diseases: Isoform-specific targeting is critical to therapeutic benefit. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166724. [PMID: 37094727 PMCID: PMC10247467 DOI: 10.1016/j.bbadis.2023.166724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a family of serine/threonine kinases. The GSK-3 family has 2 isoforms, GSK-3α and GSK-3β. The GSK-3 isoforms have been shown to play overlapping as well as isoform-specific-unique roles in both, organ homeostasis and the pathogenesis of multiple diseases. In the present review, we will particularly focus on expanding the isoform-specific role of GSK-3 in the pathophysiology of cardiometabolic disorders. We will highlight recent data from our lab that demonstrated the critical role of cardiac fibroblast (CF) GSK-3α in promoting injury-induced myofibroblast transformation, adverse fibrotic remodeling, and deterioration of cardiac function. We will also discuss studies that found the exact opposite role of CF-GSK-3β in cardiac fibrosis. We will review emerging studies with inducible cardiomyocyte (CM)-specific as well as global isoform-specific GSK-3 KOs that demonstrated inhibition of both GSK-3 isoforms provides benefits against obesity-associated cardiometabolic pathologies. The underlying molecular interactions and crosstalk among GSK-3 and other signaling pathways will be discussed. We will briefly review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to treat metabolic disorders. Finally, we will summarize these findings and offer our perspective on envisioning GSK-3 as a therapeutic target for the management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sulivette Y Ruiz Ramirez
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Angelica Toro Cora
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Nguyen ATN, Tran QL, Baltos JA, McNeill SM, Nguyen DTN, May LT. Small molecule allosteric modulation of the adenosine A 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1184360. [PMID: 37435481 PMCID: PMC10331460 DOI: 10.3389/fendo.2023.1184360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the target for approximately a third of FDA-approved small molecule drugs. The adenosine A1 receptor (A1R), one of four adenosine GPCR subtypes, has important (patho)physiological roles in humans. A1R has well-established roles in the regulation of the cardiovascular and nervous systems, where it has been identified as a potential therapeutic target for a number of conditions, including cardiac ischemia-reperfusion injury, cognition, epilepsy, and neuropathic pain. A1R small molecule drugs, typically orthosteric ligands, have undergone clinical trials. To date, none have progressed into the clinic, predominantly due to dose-limiting unwanted effects. The development of A1R allosteric modulators that target a topographically distinct binding site represent a promising approach to overcome current limitations. Pharmacological parameters of allosteric ligands, including affinity, efficacy and cooperativity, can be optimized to regulate A1R activity with high subtype, spatial and temporal selectivity. This review aims to offer insights into the A1R as a potential therapeutic target and highlight recent advances in the structural understanding of A1R allosteric modulation.
Collapse
Affiliation(s)
- Anh T. N. Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Quan L. Tran
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Samantha M. McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Diep T. N. Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
12
|
Kindernay L, Ferenczyová K, Farkašova V, Barteková M, Bernátová I, Ravingerová T. Effects of Iron Nanoparticles Administration on Ischemia/Reperfusion Injury in Isolated Hearts of Male Wistar Rats. Physiol Res 2023; 72:S61-S72. [PMID: 37294119 DOI: 10.33549/physiolres.935112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Iron is an essential mineral participating in numerous biological processes in the organism under physiological conditions. However, it may be also involved in the pathological mechanisms activated in various cardiovascular diseases including myocardial ischemia/reperfusion (I/R) injury, due to its involvement in reactive oxygen species (ROS) production. Furthermore, iron has been reported to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". On the other hand, iron may be also involved in the adaptive processes of ischemic preconditioning (IPC). This study aimed to elucidate whether small amounts of iron may modify the cardiac response to I/R in isolated perfused rat hearts and their protection by IPC. Pretreatment of the hearts with iron nanoparticles 15 min prior to sustained ischemia (iron preconditioning, Fe-PC) did not attenuate post-I/R contractile dysfunction. Recovery of left ventricular developed pressure (LVDP) was significantly improved only in the group with combined pretreatment with iron and IPC. Similarly, the rates of contraction and relaxation [+/-(dP/dt)max] were almost completely restored in the group preconditioned with a combination of iron and IPC but not with iron alone. In addition, the severity of reperfusion arrhythmias was reduced only in the iron+IPC group. No changes in protein levels of "survival" kinases of the RISK pathway (Reperfusion Injury Salvage Kinase) were found except for reduced caspase 3 levels in both preconditioned groups. The results indicate that a failure to precondition rat hearts with iron may be associated with the absent upregulation of RISK proteins and the pro-ferroptotic effect manifested by reduced glutathione peroxidase 4 (GPX4) levels. However, combination with IPC suppressed the negative effects of iron resulting in cardioprotection.
Collapse
Affiliation(s)
- L Kindernay
- Institute for Heart Research, Centre of Experimental Medicine Slovak Academy of Sciences, Bratislava, Slovak republic.
| | | | | | | | | | | |
Collapse
|
13
|
Brennan S, Alnaimi AIM, McGuinness LR, Abdelaziz MIM, McKenzie RA, Draycott S, Whitmore J, Sharma P, Rainbow RD. Slowly activating voltage-gated potassium current potentiation by ML277 is a novel cardioprotective intervention. PNAS NEXUS 2023; 2:pgad156. [PMID: 37234204 PMCID: PMC10208113 DOI: 10.1093/pnasnexus/pgad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Cardiovascular disease is thought to account for nearly a third of deaths worldwide, with ischemic heart disease, including acute coronary syndromes such as myocardial infarction, accounting for 1.7 million deaths per year. There is a clear need for interventions to impart cardioprotection against ischemia. Here, we show that the slowly activating voltage-gated potassium current (IKs) potentiator ML277 imparts cardioprotection against ischemia in cellular and whole-heart models by modulating the action potential duration. In three different metabolic inhibition and reperfusion models, an increased contractile recovery and cell survival was observed with ML277, indicative of protection. Finally, ML277 reduced infarct size in an ex vivo Langendorff coronary ligation model, including if only applied on reperfusion. In conclusion, potentiation of the IKs with ML277 imparted a cardioprotection that was equivalent to the protection reported previously by ischemic preconditioning. These data suggest that IKs potentiation may be therapeutically useful in acute coronary syndromes.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Abrar I M Alnaimi
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Lauren R McGuinness
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Muhammad I M Abdelaziz
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Robert A McKenzie
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, LE1 7RH, L7 8TX, UK
| | - Sophie Draycott
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, LE1 7RH, L7 8TX, UK
| | - Jacob Whitmore
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| | - Richard D Rainbow
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, L69 3GE, L7 8TX, UK
| |
Collapse
|
14
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Troncoso MF, Díaz-Vesga MC, Sanhueza-Olivares F, Riquelme JA, Müller M, Garrido L, Gabrielli L, Chiong M, Corbalan R, Castro PF, Lavandero S. Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opin Ther Targets 2023; 27:207-223. [PMID: 36880349 DOI: 10.1080/14728222.2023.2187778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.
Collapse
Affiliation(s)
- Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magda C Díaz-Vesga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Garrido
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramon Corbalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Chavda VP, Raval N, Sheta S, Vora LK, Elrashdy F, Redwan EM, Uversky VN, Ertas YN. Blood filtering system for COVID-19 management: novel modality of the cytokine storm therapeutics. Front Immunol 2023; 14:1064459. [PMID: 37153613 PMCID: PMC10160615 DOI: 10.3389/fimmu.2023.1064459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
The newly emerged coronavirus (SARS-CoV-2) is virulent, contagious, and has rapidly gained many mutations, which makes it highly infectious and swiftly transmissible around the world. SARS-CoV-2 infects people of all ages and targets all body organs and their cellular compartments, starting from the respiratory system, where it shows many deleterious effects, to other tissues and organs. Systemic infection can lead to severe cases that require intensive intervention. Multiple approaches were elaborated, approved, and successfully used in the intervention of the SARS-CoV-2 infection. These approaches range from the utilization of single and/or mixed medications to specialized supportive devices. For critically ill COVID-19 patients with acute respiratory distress syndrome, both extracorporeal membrane oxygenation (ECMO) and hemadsorption are utilized in combination or individually to support and release the etiological factors responsible for the "cytokine storm" underlying this condition. The current report discusses hemadsorption devices that can be used as part of supportive treatment for the COVID-19-associated cytokine storm.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutic and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) – Ahmedabad, Gandhinagar, Gujarat, India
| | - Soham Sheta
- Formulation and Development, Zydus Lifesciences Ltd., Ahmedabad, Gujrat, India
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Lalitkumar K. Vora, ; Vladimir N. Uversky, ; Yavuz Nuri Ertas,
| | - Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Cairo University, Cairo, Egypt
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Lalitkumar K. Vora, ; Vladimir N. Uversky, ; Yavuz Nuri Ertas,
| | - Yavuz Nuri Ertas
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye
- *Correspondence: Lalitkumar K. Vora, ; Vladimir N. Uversky, ; Yavuz Nuri Ertas,
| |
Collapse
|
17
|
Romeo FJ, Mazurek R, Sakata T, Mavropoulos SA, Ishikawa K. Device-Based Approaches Targeting Cardioprotection in Myocardial Infarction: The Expanding Armamentarium of Innovative Strategies. J Am Heart Assoc 2022; 11:e026474. [PMID: 36382949 PMCID: PMC9851452 DOI: 10.1161/jaha.122.026474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coronary reperfusion therapy has played a pivotal role for reducing mortality and heart failure after acute myocardial infarction. Although several adjunctive approaches have been studied for reducing infarct size further, both ischemia-reperfusion injury and microvascular obstruction are still major contributors to both early and late clinical events after acute myocardial infarction. The progress in the field of cardioprotection has found several promising proof-of-concept preclinical studies. However, translation from bench to bedside has not been very successful. This comprehensive review discusses the importance of infarct size as a driver of clinical outcomes post-acute myocardial infarction and summarizes recent novel device-based approaches for infarct size reduction. Device-based interventions including mechanical cardiac unloading, myocardial cooling, coronary sinus interventions, supersaturated oxygen therapy, and vagal stimulation are discussed. Many of these approaches can modify ischemic myocardial biology before reperfusion and offer unique opportunities to target ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Francisco José Romeo
- Cardiovascular Research InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Renata Mazurek
- Cardiovascular Research InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Tomoki Sakata
- Cardiovascular Research InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| | | | - Kiyotake Ishikawa
- Cardiovascular Research InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
| |
Collapse
|
18
|
Wang Q, Ju F, Li J, Liu T, Zuo Y, Abbott GW, Hu Z. Empagliflozin protects against renal ischemia/reperfusion injury in mice. Sci Rep 2022; 12:19323. [PMID: 36369319 PMCID: PMC9652474 DOI: 10.1038/s41598-022-24103-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) can induce acute kidney injury. Empagliflozin is a newly developed inhibitor of sodium-glucose cotransporter-2 (SGLT2) approved as an antidiabetic medication for patients with type 2 diabetes mellitus. Despite the established cardioprotective functions of empagliflozin, its protective role in renal I/R is unclear. Here, the present study evaluated the renoprotective effects of empagliflozin in a mouse model of renal I/R injury. Male C57/BL6 mice were allocated to sham-operated, I/R, and empagliflozin groups. Kidney pedicles on both sides were clamped for 45 min and were reperfused for 24 h. Empagliflozin (1 mg/kg) was administered to the mice for 2 days preischemia. The GSK-3β inhibitor SB216763 was administered intravenously at the beginning of reperfusion (0.1 mg/kg). Renal function and histological scores were evaluated. The kidneys were taken for immunohistochemical analysis, western blotting and apoptosis measurements. We found that empagliflozin decreased serum levels of creatinine and urea, reduced the average kidney weight-to-tibia length ratio, attenuated tubular damage, reduced renal proinflammatory cytokine expression and inhibited apoptosis in injured kidneys. Furthermore, empagliflozin increased renal glycogen synthase kinase 3β (GSK-3β) phosphorylation post I/R. Pharmacological inhibition of GSK-3β activity mimicked the renal protective effects offered by empagliflozin. In summary, these results support a protective role of empagliflozin against renal I/R injury.
Collapse
Affiliation(s)
- Qifeng Wang
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Feng Ju
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jiaxue Li
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ting Liu
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yunxia Zuo
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Geoffrey W. Abbott
- grid.266093.80000 0001 0668 7243Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA USA
| | - Zhaoyang Hu
- grid.13291.380000 0001 0807 1581Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
19
|
Wu J, Cai H, Lei Z, Li C, Hu Y, Zhang T, Zhu H, Lu Y, Cao J, Hu X. Expression pattern and diagnostic value of ferroptosis-related genes in acute myocardial infarction. Front Cardiovasc Med 2022; 9:993592. [PMID: 36407421 PMCID: PMC9669064 DOI: 10.3389/fcvm.2022.993592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Ferroptosis is a form of regulatory cell death (RCD) caused by iron-dependent lipid peroxidation. The role of ferroptosis in the process of acute myocardial infarction (AMI) is still unclear and requires further study. Therefore, it is helpful to identify ferroptosis related genes (FRGs) involved in AMI and explore their expression patterns and molecular mechanisms. METHODS The AMI-related microarray datasets GSE66360 and GSE61144 were obtained using the Gene Expression Omnibus (GEO) online database. GO annotation, KEGG pathway enrichment analysis and Protein-protein interaction (PPI) analysis were performed for the common significant differential expression genes (CoDEGs) in these two datasets. The FRGs were obtained from the FerrDb V2 and the differentially expressed FRGs were used to identify potential biomarkers by receiver operating characteristic (ROC) analysis. The expression of these FRGs was verified using external dataset GSE60993 and GSE775. Finally, the expression of these FRGs was further verified in myocardial hypoxia model. RESULTS A total of 131 CoDEGs were identified and these genes were mainly enriched in the pathways of "inflammatory response," "immune response," "plasma membrane," "receptor activity," "protein homodimerization activity," "calcium ion binding," "Phagosome," "Cytokine-cytokine receptor interaction," and "Toll-like receptor signaling pathway." The top 7 hub genes ITGAM, S100A12, S100A9, TLR2, TLR4, TLR8, and TREM1 were identified from the PPI network. 45 and 14 FRGs were identified in GSE66360 and GSE61144, respectively. FRGs ACSL1, ATG7, CAMKK2, GABARAPL1, KDM6B, LAMP2, PANX2, PGD, PTEN, SAT1, STAT3, TLR4, and ZFP36 were significantly differentially expressed in external dataset GSE60993 with AUC ≥ 0.7. Finally, ALOX5, CAMKK2, KDM6B, LAMP2, PTEN, PTGS2, and ULK1 were identified as biomarkers of AMI based on the time-gradient transcriptome dataset of AMI mice and the cellular hypoxia model. CONCLUSION In this study, based on the existing datasets, we identified differentially expressed FRGs in blood samples from patients with AMI and further validated these FRGs in the mouse time-gradient transcriptome dataset of AMI and the cellular hypoxia model. This study explored the expression pattern and molecular mechanism of FRGs in AMI, providing a basis for the accurate diagnosis of AMI and the selection of new therapeutic targets.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Zhe Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yushuang Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Tong Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yi Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Dysbiotic microbiota contributes to the extent of acute myocardial infarction in rats. Sci Rep 2022; 12:16517. [PMID: 36192578 PMCID: PMC9530207 DOI: 10.1038/s41598-022-20826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence suggests that the intestinal microbiota composition could play a role in specific pathologies such as hypertension, obesity and diabetes. This study aims to demonstrate that the intestinal microbiota modulated by a diet creating dysbiosis increased the size of the myocardial infarction and that probiotics could attenuate this effect. To do this, microbiota transplants from rats fed a dysbiotic or non-dysbiotic diet in the presence or absence of probiotics were performed for 10 days on rats whose microbiota had been previously suppressed by antibiotic therapy. Then, the anterior coronary artery of the transplanted rats was occluded for 30 min. Infarct size was measured after 24 h of reperfusion, while signaling pathways were evaluated after 15 min of reperfusion. Intestinal resistance, plasma concentration of LPS (lipopolysaccharides), activation of NF-κB and Akt and composition of the microbiota were also measured. Our results demonstrate a larger infarct size in animals transplanted with the dysbiotic microbiota without probiotics compared to the other groups, including those that received the dysbiotic microbiota with probiotics. This increase in infarct size correlates with a higher firmicutes/bacteroidetes ratio, NF-kB phosphorylation and plasma LPS concentration, and a decrease in intestinal barrier resistance and Akt. These results indicate that dysbiotic microbiota promotes an increase in infarct size, an effect that probiotics can attenuate.
Collapse
|
21
|
Cardioprotective Signaling Pathways in Obese Mice Submitted to Regular Exercise: Effect on Oxysterols. Int J Mol Sci 2022; 23:ijms231810840. [PMID: 36142751 PMCID: PMC9501447 DOI: 10.3390/ijms231810840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022] Open
Abstract
Exercise induces cardioprotection against myocardial infarction, despite obesity, by restoring pro-survival pathways and increasing resistance of mitochondrial permeability transition pore (mPTP) opening at reperfusion. Among the mechanisms involved in the inactivation of these pathways, oxysterols appear interesting. Thus, we investigated the influence of regular exercise on the reperfusion injury salvage kinase (RISK) pathway, oxysterols, and mitochondria, in the absence of ischemia-reperfusion. We also studied 7β-hydroxycholesterol (7βOH) concentration (mass spectrometry) in human lean and obese subjects. Wild-type (WT) and obese (ob/ob) mice were assigned to sedentary conditions or regular treadmill exercise. Exercise significantly increased Akt phosphorylation, whereas 7βOH concentration was reduced. Moreover, exercise induced the translocation of PKCε from the cytosol to mitochondria. However, exercise did not affect the calcium concentration required to open mPTP in the mitochondria, neither in WT nor in ob/ob animals. Finally, human plasma 7βOH concentration was consistent with observations made in mice. In conclusion, regular exercise enhanced the RISK pathway by increasing kinase phosphorylation and PKCε translocation and decreasing 7βOH concentration. This activation needs the combination with stress conditions, i.e., ischemia-reperfusion, in order to inhibit mPTP opening at the onset of reperfusion. The human findings suggest 7βOH as a candidate marker for evaluating cardiovascular risk factors in obesity.
Collapse
|
22
|
de Paula LJC, Uchida AH, Rezende PC, Soares P, Scudeler TL. Protective or Inhibitory Effect of Pharmacological Therapy on Cardiac Ischemic Preconditioning: A Literature Review. Curr Vasc Pharmacol 2022; 20:409-428. [PMID: 35986546 DOI: 10.2174/1570161120666220819163025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023]
Abstract
Ischemic preconditioning (IP) is an innate phenomenon, triggered by brief, non-lethal cycles of ischemia/reperfusion applied to a tissue or organ that confers tolerance to a subsequent more prolonged ischemic event. Once started, it can reduce the severity of myocardial ischemia associated with some clinical situations, such as percutaneous coronary intervention (PCI) and intermittent aortic clamping during coronary artery bypass graft surgery (CABG). Although the mechanisms underlying IP have not been completely elucidated, several studies have shown that this phenomenon involves the participation of cell triggers, intracellular signaling pathways, and end-effectors. Understanding this mechanism enables the development of preconditioning mimetic agents. It is known that a range of medications that activate the signaling cascades at different cellular levels can interfere with both the stimulation and the blockade of IP. Investigations of signaling pathways underlying ischemic conditioning have identified a number of therapeutic targets for pharmacological manipulation. This review aims to present and discuss the effects of several medications on myocardial IP.
Collapse
Affiliation(s)
| | | | - Paulo Cury Rezende
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Soares
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Rev-erbs agonist SR9009 alleviates ischemia-reperfusion injury by heightening endogenous cardioprotection at onset of type-2 diabetes in rats: Down-regulating ferritinophagy/ferroptosis signaling. Biomed Pharmacother 2022; 154:113595. [PMID: 36029539 DOI: 10.1016/j.biopha.2022.113595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
The complex progression of type-2 diabetes (T2DM) results in inconsistent findings on myocardial susceptibility to ischemia-reperfusion (IR). IR injuries in multiple organs interconnect with ferroptosis. Targeting Rev-erbs might limit ferroptosis, with increasing attention turning to the application of circadian medicine against IR injuries. However, whether the Rev-erbs agonist SR9009 could mitigate diabetic IR injury remains unknown. Here, we investigated the susceptibility to IR at onset of T2DM in rats and its potential association between SR9009 and ferritinophagy/ferroptosis signaling. Onset of T2DM model was induced with a high-fat diet and the intraperitoneal injection of a low dose of streptozotocin. Myocardial IR model was established as well. Rats' general characteristics, cardiac function, glycolipid profiles, serum biochemistry, apoptosis index (AI) and morphological histology were observed and analyzed. Western blot and immunofluorescence (IF) were employed to evaluate the expression of ferritinophagy/ferroptosis signaling and its co-localization. Glycolipid profiles and cardiac diastolic function were significantly impaired in diabetic rats. CK-MB, AI levels and ferritinophagy/ferroptosis-related proteins expression decreased towards myocardial IR in diabetic rats compared to non-diabetic rats'. The ferroptosis inducer Erastin up-regulated SOD, MDA, and AI levels, as well as the expression of ferritinophagy/ferroptosis-related proteins in diabetic rats towards IR. Treatment with SR9009 down-regulated the degree of myocardial injury and ferritinophagy/ferroptosis-related proteins expression compared to diabetic rats treated with or without Erastin. Onset of T2DM activated endogenous cardioprotection against the susceptibility to myocardial IR injury, and SR9009 exogenously enhanced this endogenous mechanism and alleviated myocardial IR injury at onset of T2DM by down-regulating ferritinophagy/ferroptosis signaling.
Collapse
|
24
|
Li Z, Zhang J, Duan X, Zhao G, Zhang M. Celastrol: A Promising Agent Fighting against Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11081597. [PMID: 36009315 PMCID: PMC9405053 DOI: 10.3390/antiox11081597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are leading causes of morbidity and mortality worldwide; therefore, seeking effective therapeutics to reduce the global burden of CVD has become increasingly urgent. Celastrol, a bioactive compound isolated from the roots of the plant Tripterygium wilfordii (TW), has been attracting increasing research attention in recent years, as it exerts cardiovascular treatment benefits targeting both CVD and their associated risk factors. Substantial evidence has revealed a protective role of celastrol against a broad spectrum of CVD including obesity, diabetes, atherosclerosis, cerebrovascular injury, calcific aortic valve disease and heart failure through complicated and interlinked mechanisms such as direct protection against cardiomyocyte hypertrophy and death, and indirect action on oxidation and inflammation. This review will mainly summarize the beneficial effects of celastrol against CVD, largely based on in vitro and in vivo preclinical studies, and the potential underlying mechanisms. We will also briefly discuss celastrol’s pharmacokinetic limitations, which hamper its further clinical applications, and prospective future directions.
Collapse
Affiliation(s)
- Zhexi Li
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Jingyi Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Xulei Duan
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Guoan Zhao
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Min Zhang
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
- Correspondence: ; Tel.: +44-207848-5319; Fax: +44-207848-5193
| |
Collapse
|
25
|
Kim ST, Helmers MR, Iyengar A, Han JJ, Patrick WL, Weingarten N, Herbst DA, Atluri P. Interaction between donor obesity and prolonged donor ischemic time in heart transplantation. J Cardiol 2022; 80:351-357. [PMID: 35835640 DOI: 10.1016/j.jjcc.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The purpose of the study was to determine the impact of donor obesity on outcomes following heart transplantation in the setting of routine (<4 h) and prolonged (≥4 h) organ ischemic times. METHODS Retrospective review of the 2000-2020 United Network for Organ Sharing Database was performed to identify adult heart transplant recipients and donors. Nearest-neighbor propensity score matching by donor obesity was performed separately among routine and prolonged cohorts, with Kaplan-Meier survival estimates used to assess survival at 5 years following transplantation. RESULTS A total of 43,304 heart transplant recipients were included in analysis, with 15,925 (36.8 %) receiving obese donor hearts. After propensity-score matching, 30-day mortality and 5-year survival following transplantation were not statistically different between recipients of obese and non-obese donor hearts when organ ischemic times were routine. In the setting of prolonged organ ischemic times, those receiving obese donor hearts experienced lower 30-day mortality (5.1 % vs 6.7 %, p = 0.04) and improved 5-year survival (74.9 % vs 71.2 %, p < 0.01) compared to non-obese donor hearts. CONCLUSIONS Recipients of obese donor hearts experienced improved outcomes compared to those receiving non-obese donor hearts when organ ischemic times exceeded 4 h. These findings suggest that the detrimental impact of prolonged organ ischemic time may be attenuated by donor obesity.
Collapse
Affiliation(s)
- Samuel T Kim
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Mark R Helmers
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Iyengar
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason J Han
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - William L Patrick
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Weingarten
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - D Alan Herbst
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavan Atluri
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Aguilera KY, Le T, Riahi R, Lay AR, Hinz S, Saadat EA, Vashisht AA, Wohlschlegel J, Donahue TR, Radu CG, Dawson DW. Porcupine Inhibition Disrupts Mitochondrial Function and Homeostasis in WNT Ligand-Addicted Pancreatic Cancer. Mol Cancer Ther 2022; 21:936-947. [PMID: 35313331 PMCID: PMC9167706 DOI: 10.1158/1535-7163.mct-21-0623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
WNT signaling promotes pancreatic ductal adenocarcinoma (PDAC) through diverse effects on proliferation, differentiation, survival, and stemness. A subset of PDAC with inactivating mutations in ring finger protein 43 (RNF43) show growth dependency on autocrine WNT ligand signaling and are susceptible to agents that block WNT ligand acylation by Porcupine O-acyltransferase, which is required for proper WNT ligand processing and secretion. For this study, global transcriptomic, proteomic, and metabolomic analyses were performed to explore the therapeutic response of RNF43-mutant PDAC to the Porcupine inhibitor (PORCNi) LGK974. LGK974 disrupted cellular bioenergetics and mitochondrial function through actions that included rapid mitochondrial depolarization, reduced mitochondrial content, and inhibition of oxidative phosphorylation and tricarboxylic acid cycle. LGK974 also broadly altered transcriptional activity, downregulating genes involved in cell cycle, nucleotide metabolism, and ribosomal biogenesis and upregulating genes involved in epithelial-mesenchymal transition, hypoxia, endocytosis, and lysosomes. Autophagy and lysosomal activity were augmented in response to LGK974, which synergistically inhibited tumor cell viability in combination with chloroquine. Autocrine WNT ligand signaling dictates metabolic dependencies in RNF43-mutant PDAC through a combination of transcription dependent and independent effects linked to mitochondrial health and function. Metabolic adaptations to mitochondrial damage and bioenergetic stress represent potential targetable liabilities in combination with PORCNi for the treatment of WNT ligand-addicted PDAC.
Collapse
Affiliation(s)
- Kristina Y. Aguilera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Thuc Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA, 90095
| | - Rana Riahi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Anna R. Lay
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Stefan Hinz
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Edris A. Saadat
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Timothy R. Donahue
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA, 90095
- Department of Surgery, University of California, Los Angeles, CA, 90095
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA, 90095
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| |
Collapse
|
27
|
Piccoli M, Coviello S, Canali ME, Rota P, La Rocca P, Cirillo F, Lavota I, Tarantino A, Ciconte G, Pappone C, Ghiroldi A, Anastasia L. Neu3 Sialidase Activates the RISK Cardioprotective Signaling Pathway during Ischemia and Reperfusion Injury (IRI). Int J Mol Sci 2022; 23:ijms23116090. [PMID: 35682772 PMCID: PMC9181429 DOI: 10.3390/ijms23116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Coronary reperfusion strategies are life-saving approaches to restore blood flow to cardiac tissue after acute myocardial infarction (AMI). However, the sudden restoration of normal blood flow leads to ischemia and reperfusion injury (IRI), which results in cardiomyoblast death, irreversible tissue degeneration, and heart failure. The molecular mechanism of IRI is not fully understood, and there are no effective cardioprotective strategies to prevent it. In this study, we show that activation of sialidase-3, a glycohydrolytic enzyme that cleaves sialic acid residues from glycoconjugates, is cardioprotective by triggering RISK pro-survival signaling pathways. We found that overexpression of Neu3 significantly increased cardiomyoblast resistance to IRI through activation of HIF-1α and Akt/Erk signaling pathways. This raises the possibility of using Sialidase-3 activation as a cardioprotective reperfusion strategy after myocardial infarction.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Maria Elena Canali
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Mangiagalli 31, 20097 Milan, Italy
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20097 Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Ivana Lavota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
| | - Giuseppe Ciconte
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Correspondence: (A.G.); (L.A.); Tel.: +39-02-2643-7746 (A.G.); +39-02-2643-7756 (L.A.)
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Correspondence: (A.G.); (L.A.); Tel.: +39-02-2643-7746 (A.G.); +39-02-2643-7756 (L.A.)
| |
Collapse
|
28
|
Huang D, Chen C, Zuo Y, Du L, Liu T, Abbott GW, Hu Z. Protective effect of remote liver ischemic postconditioning on pulmonary ischemia and reperfusion injury in diabetic and non-diabetic rats. PLoS One 2022; 17:e0268571. [PMID: 35617238 PMCID: PMC9135201 DOI: 10.1371/journal.pone.0268571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Pulmonary ischemia and reperfusion (I/R) injury occurs in many clinical conditions and causes severe damage to the lungs. Diabetes mellitus (DM) predisposes to pulmonary I/R injury. We previously found that remote liver ischemia preconditioning protected lungs against pulmonary I/R injury. The aim of the present study was to investigate whether remote liver ischemic postconditioning (RLIPost) attenuates pulmonary damage induced by I/R injury in non-diabetic or diabetic rats. Male Sprague-Dawley rats were assigned into non-diabetic and diabetic groups. All rats except for the sham were exposed to 45 min of left hilum occlusion followed by 2 h of reperfusion. RLIPost was conducted at the onset of pulmonary reperfusion by four cycles of 5 min of liver ischemia and reperfusion. Lung injury was assessed by the wet/dry weight ratio, pulmonary oxygenation, histopathological changes, apoptosis and the expression of inflammatory cytokines. Reperfusion-associated protein phosphorylation states were determined. RLIPost offered strong pulmonary-protection in both non-diabetic and diabetic rats, as reflected in reduced water content and pulmonary structural damage, recovery of lung function, inhibition of apoptosis and inflammation after ischemia-reperfusion. RLIPost induced the activation of pulmonary STAT-3, a key component in the SAFE pathway, but not activation of the proteins in the RISK pathway, in non-diabetic rats. In contrast, RLIPost-induced pulmonary protection in diabetic lungs was independent of SAFE or RISK pathway activation. These results demonstrate that RLIPost exerts pulmonary protection against I/R-induced lung injury in non-diabetic and diabetic rats. The underlying mechanism for protection may be different in non-diabetic (STAT-3 dependent) versus diabetic (STAT-3 independent) rats.
Collapse
Affiliation(s)
- Dou Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changwei Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States of America
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
29
|
Wang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, Ren G, Ma X. Mechanisms of Cardiorenal Protection With SGLT2 Inhibitors in Patients With T2DM Based on Network Pharmacology. Front Cardiovasc Med 2022; 9:857952. [PMID: 35677689 PMCID: PMC9169967 DOI: 10.3389/fcvm.2022.857952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardiorenal protective effects regardless of whether they are combined with type 2 diabetes mellitus, but their specific pharmacological mechanisms remain undetermined. Materials and Methods We used databases to obtain information on the disease targets of “Chronic Kidney Disease,” “Heart Failure,” and “Type 2 Diabetes Mellitus” as well as the targets of SGLT2 inhibitors. After screening the common targets, we used Cytoscape 3.8.2 software to construct SGLT2 inhibitors' regulatory network and protein-protein interaction network. The clusterProfiler R package was used to perform gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analyses on the target genes. Molecular docking was utilized to verify the relationship between SGLT2 inhibitors and core targets. Results Seven different SGLT2 inhibitors were found to have cardiorenal protective effects on 146 targets. The main mechanisms of action may be associated with lipid and atherosclerosis, MAPK signaling pathway, Rap1 signaling pathway, endocrine resistance, fluid shear stress, atherosclerosis, TNF signaling pathway, relaxin signaling pathway, neurotrophin signaling pathway, and AGEs-RAGE signaling pathway in diabetic complications were related. Docking of SGLT2 inhibitors with key targets such as GAPDH, MAPK3, MMP9, MAPK1, and NRAS revealed that these compounds bind to proteins spontaneously. Conclusion Based on pharmacological networks, this study elucidates the potential mechanisms of action of SGLT2 inhibitors from a systemic and holistic perspective. These key targets and pathways will provide new ideas for future studies on the pharmacological mechanisms of cardiorenal protection by SGLT2 inhibitors.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Sun Zhuo
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Gaocan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma
| |
Collapse
|
30
|
Hu Z, Liu Q, Yan Z, Wang Q, Liu J. Protective effect of remote ischemic postconditioning in rat testes after testicular torsion/detorsion. Andrology 2022; 10:973-983. [PMID: 35398995 DOI: 10.1111/andr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Quanhua Liu
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhibing Yan
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Qifeng Wang
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Jin Liu
- Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
31
|
Wen C, Xue FS, Wang YH, Jin JH, Liao X. Hypercholesterolemia attenuates cardioprotection of ischemic preconditioning and postconditioning with α7 nicotinic acetylcholine receptor agonist by enhancing inflammation and inhibiting the PI3K/Akt/eNOS pathway. Exp Ther Med 2022; 23:342. [PMID: 35401808 PMCID: PMC8988135 DOI: 10.3892/etm.2022.11272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to evaluate the effects of hypercholesterolemia on cardioprotection of ischemic preconditioning and α7 nicotinic acetylcholine receptor (α7nAChR) agonist postconditioning and explore the potential mechanisms that hypercholesterolemia affected their cardioprotection. Hypercholesterolemic and normal rats were divided into the four groups that received the following treatments: i) Hypercholesterolemic control and normal control groups; ii) hypercholesterolemic ischemia/reperfusion (HI) and normal ischemia/reperfusion (NI) groups; iii) hypercholesterolemic ischemic preconditioning (HIPC) and normal ischemic preconditioning (NIPC) groups; and iv) hypercholesterolemic PNU282987 postconditioning (HPNU) and normal PNU282987 postconditioning (NPNU) groups. Serum lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) levels after ischemia/reperfusion were assayed. Furthermore, infarct size and expression levels of Akt, phosphorylated (p)-Akt and endothelial nitric oxide synthase (eNOS) in ischemic myocardium were assessed. Compared with the NI group, serum LDH, CK-MB, cTnI, TNF-α and IL-6 levels and infarct size were significantly decreased, and myocardial p-Akt/Akt and eNOS/GAPDH ratios were significantly increased in the NIPC and NPNU groups. Compared with the HI group, serum CK-MB, cTnI, TNF-α and IL-6 levels and infarct size were significantly decreased in the HIPC group; however, myocardial p-Akt/Akt and eNOS/GAPDH ratios did not significantly change in the HIPC group. Furthermore, there were no significant difference between the HI and HPNU groups in serum LDH, CK-MB, cTnI, TNF-α and IL-6 levels, infarct size, myocardial p-Akt/Akt and eNOS/GAPDH ratios. In conclusion, hypercholesterolemia could aggravate myocardial ischemia/reperfusion injury, attenuate cardioprotection of ischemic preconditioning and eliminate cardioprotection from α7nAChR agonist postconditioning by enhancing inflammation and inhibiting PI3K/Akt/eNOS pathway.
Collapse
Affiliation(s)
- Chao Wen
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Fu-Shan Xue
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Yu-Hui Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Jin-Hua Jin
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Xu Liao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| |
Collapse
|
32
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
33
|
Wen X, Peng Y, Gao M, Zhu Y, Zhu Y, Yu F, Zhou T, Shao J, Feng L, Ma X. Endothelial Transient Receptor Potential Canonical Channel Regulates Angiogenesis and Promotes Recovery After Myocardial Infarction. J Am Heart Assoc 2022; 11:e023678. [PMID: 35253458 PMCID: PMC9075314 DOI: 10.1161/jaha.121.023678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background
Transient receptor potential canonical (TRPC) channels play a role in angiogenesis. However, the involvement of TRPC1 in myocardial infarction (MI) remains unclear. The present study was aimed at investigating whether TRPC1 can improve the recovery of cardiac function via prompting angiogenesis following MI.
Methods and Results
In vitro, coronary artery endothelial cells from floxed TRPC1 mice and endothelial cell‐specific TRPC1 channel knockout mice were cultured to access EC angiogenesis. Both EC tube formation and migration were significantly suppressed in mouse coronary artery endothelial cells from endothelial cell‐specific TRPC1 channel knockout mice. In vivo, coronary artery endothelial cells from floxed TRPC1 and endothelial cell‐specific TRPC1 channel knockout mice were subjected to MI, then echocardiography, triphenyltetrazolium chloride staining and immunofluorescence were performed to assess cardiac repair on day 28. Endothelial cell‐specific TRPC1 channel knockout mice had higher ejection fraction change, larger myocardial infarct size, and reduced capillary density in the infarct area compared with coronary artery endothelial cells from floxed TRPC1 mice. Furthermore, we found underlying regulation by HIF‐1α (hypoxic inducible factor‐1α) and MEK‐ERK (mitogen‐activated protein kinase/extracellular signal‐regulated kinase) that could be the mechanism for the angiogenetic action of TRPC1. Significantly, treatment with dimethyloxaloylglycine, an activator of HIF‐1α, induced cardiac improvement via the HIF‐1α‐TRPC1‐MEK/ERK pathway in MI mice.
Conclusions
Our study demonstrated TRPC1 improves cardiac function after MI by increasing angiogenesis via the upstream regulator HIF‐1α and downstream MEK/ERK, and dimethyloxaloylglycine treatment has protective effect on MI through the HIF‐1α‐TRPC1‐MEK/ERK pathway.
Collapse
Affiliation(s)
- Xin Wen
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yidi Peng
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Mengru Gao
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| | - Yuzhong Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Yifei Zhu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Fan Yu
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Tingting Zhou
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Jing Shao
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Lei Feng
- Wuxi School of Medicine Jiangnan University Wuxi China
| | - Xin Ma
- Wuxi School of Medicine Jiangnan University Wuxi China
- School of Pharmaceutical Sciences Jiangnan University Wuxi China
| |
Collapse
|
34
|
Ma H, Hao J, Liu H, Yin J, Qiang M, Liu M, He S, Zeng D, Liu X, Lian C, Gao Y. Peoniflorin Preconditioning Protects Against Myocardial Ischemia/Reperfusion Injury Through Inhibiting Myocardial Apoptosis: RISK Pathway Involved. Appl Biochem Biotechnol 2022; 194:1149-1165. [PMID: 34596828 DOI: 10.1007/s12010-021-03680-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Preconditioning with Peoniflorin, a component of traditional Chinese prescriptions, was proposed to be a potential strategy for cardioprotection against ischemia/reperfusion (I/R) injury. However, the cardioprotective effect of Peoniflorin preconditioning has not been thoroughly confirmed, and the underlying mechanism remains unclear. Here, we examined the cardioprotective effect and its mechanism of Peoniflorin preconditioning against myocardial I/R injury. Rats were subjected to 30 min of transient ischemia followed by 2 h of reperfusion with or without Peoniflorin (100 mg/kg) prior to reperfusion. Peoniflorin preconditioning significantly limited myocardial infarct size and reperfusion arrhythmias, as well as obviously attenuated the histomorphological and micromorphological damages induced by I/R injury. The reduced myocardial injury was also associated with the anti-apoptotic effect of Peoniflorin, as evidence by decreased TUNEL-positive cells, upregulation of BCL-2 expression, and downregulation of Bax and caspase-3 expression. In an effort to evaluate the mechanism responsible for the observed cardioprotective and anti-apoptotic effect, Western blot of phosphorylated protein was performed after 20 min of reperfusion. Results showed that Peoniflorin preconditioning activated both the Akt and ERK1/2 arm of the reperfusion injury salvage kinase (RISK) pathway. To further confirm this mechanism, the PI3K signaling inhibitor LY294002 and ERK1/2 signaling inhibitor PD98059 were administered in vivo. The cardioprotective and anti-apoptotic effects of Peoniflorin preconditioning were diminished but not abolished by pretreatment with LY294002 or PD98059. Taken together, these results indicate that Peoniflorin preconditioning protects the myocardial against I/R injury and inhibits myocardial apoptosis via the activation of the RISK pathway, highlighting the potential therapeutic effects of Peoniflorin on reducing myocardial I/R injury.
Collapse
Affiliation(s)
- Hongen Ma
- Department of Cardiology, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, No. 151 East Section of South Second Ring RoadBeilin District, Xi'an, 710054, Shaanxi, China
| | - Jiping Hao
- Department of Cardiology, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, No. 151 East Section of South Second Ring RoadBeilin District, Xi'an, 710054, Shaanxi, China
| | - Huihui Liu
- Medical College of Yan'an University, No. 38 Guanghua RoadBaota District, Yan'an, 716000, Shaanxi, China
| | - Jia Yin
- Medical College of Yan'an University, No. 38 Guanghua RoadBaota District, Yan'an, 716000, Shaanxi, China
| | - Mingmin Qiang
- Medical College of Yan'an University, No. 38 Guanghua RoadBaota District, Yan'an, 716000, Shaanxi, China
| | - Meilin Liu
- Department of Cardiology, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, No. 151 East Section of South Second Ring RoadBeilin District, Xi'an, 710054, Shaanxi, China
| | - Shaohui He
- Department of Cardiology, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, No. 151 East Section of South Second Ring RoadBeilin District, Xi'an, 710054, Shaanxi, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi RoadBaqiao District, Xi'an, 710000, Shaanxi, China
| | - Xiongtao Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi RoadBaqiao District, Xi'an, 710000, Shaanxi, China
| | - Cheng Lian
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi RoadBaqiao District, Xi'an, 710000, Shaanxi, China
| | - Yuqin Gao
- Department of Cardiology, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, No. 151 East Section of South Second Ring RoadBeilin District, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
35
|
Heart Failure after Cardiac Surgery: The Role of Halogenated Agents, Myocardial Conditioning and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23031360. [PMID: 35163284 PMCID: PMC8836224 DOI: 10.3390/ijms23031360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/07/2022] Open
Abstract
Heart disease requires a surgical approach sometimes. Cardiac-surgery patients develop heart failure associated with ischemia induced during extracorporeal circulation. This complication could be decreased with anesthetic drugs. The cardioprotective effects of halogenated agents are based on pre- and postconditioning (sevoflurane, desflurane, or isoflurane) compared to intravenous hypnotics (propofol). We tried to put light on the shadows walking through the line of the halogenated anesthetic drugs’ effects in several enzymatic routes and oxidative stress, waiting for the final results of the ACDHUVV-16 clinical trial regarding the genetic modulation of this kind of drugs.
Collapse
|
36
|
Wu JW, Hu H, Hua JS, Ma LK. ATPase inhibitory factor 1 protects the heart from acute myocardial ischemia/reperfusion injury through activating AMPK signaling pathway. Int J Biol Sci 2022; 18:731-741. [PMID: 35002521 PMCID: PMC8741848 DOI: 10.7150/ijbs.64956] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Rationale: Myocardial ischemia/reperfusion (I/R) injury is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction (AMI). The mitochondrial F1Fo-ATPase inhibitory factor 1 (IF1) blocks the reversal of the F1Fo-ATP synthase to prevent detrimental consumption of cellular ATP and associated demise. In the present study, we study the role and mechanism of IF1 in myocardial I/R injury. Methods: Mice were ligated the left anterior descending coronary artery to build the I/R model in vivo. Rat hearts were isolated and perfused with constant pressure according to Langendorff. Also, neonatal cardiomyocytes hypoxia-reoxygenation (H/R) model was also used. Myocardial infarction area, cardiac function, cellular function, and cell viability was conducted and compared. Results: Our data revealed that IF1 is upregulated in hearts after I/R and cardiomyocytes with hypoxia/re-oxygenation (H/R). IF1 delivered with adenovirus and adeno-associated virus serotype 9 (AAV9) ameliorated cardiac dysfunction and pathological development induced by I/R ex vivo and in vivo. Mechanistically, IF1 stimulates glucose uptake and glycolysis activity and stimulates AMPK activation during in vivo basal and I/R and in vitro OGD/R conditions, and activation of AMPK by IF1 is responsible for its cardioprotective effects against H/R-induced injury. Conclusions: These results suggest that increased IF1 in the I/R heart confer cardioprotective effects via activating AMPK signaling. Therefore, IF1 can be used as a potential therapeutic target for the treatment of pathological ischemic injury and heart failure.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jin-Sheng Hua
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li-Kun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
37
|
Li D, Zhao Y, Zhang C, Wang F, Zhou Y, Jin S. Plasma Exosomes at the Late Phase of Remote Ischemic Pre-conditioning Attenuate Myocardial Ischemia-Reperfusion Injury Through Transferring miR-126a-3p. Front Cardiovasc Med 2021; 8:736226. [PMID: 34917657 PMCID: PMC8669347 DOI: 10.3389/fcvm.2021.736226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Remote ischemic pre-conditioning (RIPC) alleviated the myocardial ischemia-reperfusion injury, yet the underlying mechanisms remain to be fully elucidated, especially at the late phase. Searching a key component as a transfer carrier may provide a novel insight into RIPC-mediated cardioprotection in the condition of myocardial ischemia-reperfusion. Objective: To investigate the cardioprotective effect of plasma exosomes at the late phase of RIPC and its potential signaling pathways involved. Methods and Results: Exosomes were isolated from the plasma of rats 48 h after the RIPC or control protocol. Although the total plasma exosomes level had no significant change at the late phase of RIPC (RIPC-exosome) compared with the control exosomes (Control-exosome), the RIPC-exosome afforded remarkable protection against myocardial ischemia-reperfusion (MI/R) injury in rats and hypoxia-reoxygenation (H/R) injury in cells. The miRNA array revealed significant enrichment of miR-126a-3p in RIPC-exosome. Importantly, both miR-126a-3p inhibitor and antagonist significantly blunted the cardioprotection of RIPC-exosome in H/R cells and MI/R rats, respectively, while miR-126a-3p mimic and agomir showed significant cardioprotection against H/R injury in cells and MI/R injury in rats. Mechanistically, RIPC-exosome, especially exosomal miR-126a-3p, activated the reperfusion injury salvage kinase (RISK) pathway by enhancing the phosphorylation of Akt and Erk1/2, and simultaneously inhibited Caspase-3 mediated apoptotic signaling. Conclusions: Our findings reveal a novel myocardial protective mechanism that plasma exosomes at the late phase of RIPC attenuate myocardial ischemia-reperfusion injury via exosomal miR-126a-3p.
Collapse
Affiliation(s)
- Danni Li
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Zhao
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyi Zhang
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Wang
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhou
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sanqing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Huang D, Ju F, Du L, Liu T, Zuo Y, Abbott GW, Hu Z. Empagliflozin Protects against Pulmonary Ischemia/Reperfusion Injury via an ERK1/2-Dependent Mechanism. J Pharmacol Exp Ther 2021; 380:230-241. [PMID: 34893552 DOI: 10.1124/jpet.121.000956] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury of the lung can lead to extensive pulmonary damage. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are insulin-independent, oral anti-hyperglycemic agents used for treating type 2 diabetes mellitus (T2DM). Their cardioprotective properties have been reported, however, their potential roles in pulmonary protection in vivo are poorly characterized. Here, we tested an hypothesis that empagliflozin, an SGLT2 inhibitor, can protect lungs in a mouse model of lung I/R injury induced by pulmonary hilum ligation in vivo We assigned C57/BL6 mice to sham-operated, non-empagliflozin-treated control, or empagliflozin-treated groups. Pulmonary I/R injury was induced by 1-hour left hilum ligation followed by 2-hour reperfusion. Using q-PCR and western blot analysis, we demonstrate that SGLT2 is highly expressed in mouse kidney but is weakly expressed in mouse lung (n=5-6 per group, P<0.01 or P<0.001). Empagliflozin improved respiratory function, attenuated I/R-induced lung edema, lessened structural damage, inhibited apoptosis, and reduced inflammatory cytokine production and protein concentration in bronchoalveolar lavage (BAL) fluid (P<0.05 or P<0.001 vs. CON). In addition, empagliflozin enhanced phosphorylation of pulmonary ERK1/2 post-I/R injury in vivo (P<0.001, vs. CON, n=5 per group). We further showed that pharmacological inhibition of ERK1/2 activity reversed these beneficial effects of empagliflozin. In conclusion, we showed that empagliflozin exerts strong lung protective effects against pulmonary I/R injury in vivo, at least in part via the ERK1/2-mediated signaling pathway. Significance Statement Pulmonary ischemia-reperfusion (I/R) can exacerbate lung injury. Empagliflozin is a new anti-diabetic agent for type 2 diabetes mellitus. This study shows that empagliflozin attenuates lung damage after pulmonary I/R injury in vivo This protective phenomenon was mediated at least in part via the ERK1/2-mediated signaling pathway. This opens a new avenue of research for SGLT2 inhibitors in the treatment of reperfusion-induced acute pulmonary injury.
Collapse
Affiliation(s)
- Dou Huang
- West China Hospital Sichuan University, China
| | - Feng Ju
- West China Hospital Sichuan University, China
| | - Lei Du
- West China Hospital Sichuan University, China
| | - Ting Liu
- West China Hospital Sichuan University, China
| | - Yunxia Zuo
- West China Hospital Sichuan University, China
| | - Geoffrey W Abbott
- Department of Pharmacology, University of California, Irvine, United States
| | - Zhaoyang Hu
- West China Hospital, Sichuan University, China
| |
Collapse
|
39
|
Wu D, Gu Y, Zhu D. Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 24:875. [PMID: 34726247 DOI: 10.3892/mmr.2021.12515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic heart disease is one of the major causes of cardiovascular‑related mortality worldwide. Myocardial ischemia can be attenuated by reperfusion that restores the blood supply. However, injuries occur during blood flow restoration that induce cardiac dysfunction, which is known as myocardial ischemia‑reperfusion injury (MIRI). Hydrogen sulfide (H2S), the third discovered endogenous gasotransmitter in mammals (after NO and CO), participates in various pathophysiological processes. Previous in vitro and in vivo research have revealed the protective role of H2S in the cardiovascular system that render it useful in the protection of the myocardium against MIRI. The cardioprotective effects of H2S in attenuating MIRI are summarized in the present review.
Collapse
Affiliation(s)
- Dan Wu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yijing Gu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Deqiu Zhu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
40
|
Impact of Maturation on Myocardial Response to Ischemia and the Effectiveness of Remote Preconditioning in Male Rats. Int J Mol Sci 2021; 22:ijms222011009. [PMID: 34681669 PMCID: PMC8540346 DOI: 10.3390/ijms222011009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Aging attenuates cardiac tolerance to ischemia/reperfusion (I/R) associated with defects in protective cell signaling, however, the onset of this phenotype has not been completely investigated. This study aimed to compare changes in response to I/R and the effects of remote ischemic preconditioning (RIPC) in the hearts of younger adult (3 months) and mature adult (6 months) male Wistar rats, with changes in selected proteins of protective signaling. Langendorff-perfused hearts were exposed to 30 min I/120 min R without or with prior three cycles of RIPC (pressure cuff inflation/deflation on the hind limb). Infarct size (IS), incidence of ventricular arrhythmias and recovery of contractile function (LVDP) served as the end points. In both age groups, left ventricular tissue samples were collected prior to ischemia (baseline) and after I/R, in non-RIPC controls and in RIPC groups to detect selected pro-survival proteins (Western blot). Maturation did not affect post-ischemic recovery of heart function (Left Ventricular Developed Pressure, LVDP), however, it increased IS and arrhythmogenesis accompanied by decreased levels and activity of several pro-survival proteins and by higher levels of pro-apoptotic proteins in the hearts of elder animals. RIPC reduced the occurrence of reperfusion-induced ventricular arrhythmias, IS and contractile dysfunction in younger animals, and this was preserved in the mature adults. RIPC did not increase phosphorylated protein kinase B (p-Akt)/total Akt ratio, endothelial nitric oxide synthase (eNOS) and protein kinase Cε (PKCε) prior to ischemia but only after I/R, while phosphorylated glycogen synthase kinase-3β (GSK3β) was increased (inactivated) before and after ischemia in both age groups coupled with decreased levels of pro-apoptotic markers. We assume that resistance of rat heart to I/R injury starts to already decline during maturation, and that RIPC may represent a clinically relevant cardioprotective intervention in the elder population.
Collapse
|
41
|
Hu Z, Ju F, Du L, Abbott GW. Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol 2021; 20:199. [PMID: 34607570 PMCID: PMC8491391 DOI: 10.1186/s12933-021-01392-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Empagliflozin is a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor used to lower blood sugar in adults with type 2 diabetes. Empagliflozin also exerts cardioprotective effects independent from glucose control, but its benefits on arrhythmogenesis and sudden cardiac death are not known. The purpose of this study was to examine the effect of empagliflozin on myocardial ischemia/reperfusion-provoked cardiac arrhythmia and sudden cardiac death in vivo. METHODS Male Sprague Dawley rats were randomly assigned to sham-operated, control or empagliflozin groups. All except for the sham-operated rats were subjected to 5-min left main coronary artery ligation followed by 20-min reperfusion. A standard limb lead II electrocardiogram was continuously measured throughout the experiment. Coronary artery reperfusion-induced ventricular arrhythmogenesis and empagliflozin therapy were evaluated. The hearts were used for protein phosphorylation analysis and immunohistological assessment. RESULTS Empagliflozin did not alter baseline cardiac normal conduction activity. However, empagliflozin eliminated myocardial vulnerability to sudden cardiac death (from 69.2% mortality rate in the control group to 0% in the empagliflozin group) and reduced the susceptibility to reperfusion-induced arrhythmias post I/R injury. Empagliflozin increased phosphorylation of cardiac ERK1/2 after reperfusion injury. Furthermore, inhibition of ERK1/2 using U0126 abolished the anti-arrhythmic action of empagliflozin and ERK1/2 phosphorylation. CONCLUSIONS Pretreatment with empagliflozin protects the heart from subsequent severe lethal ventricular arrhythmia induced by myocardial ischemia and reperfusion injury. These protective benefits may occur as a consequence of activation of the ERK1/2-dependent cell-survival signaling pathway in a glucose-independent manner.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Benzhydryl Compounds/pharmacology
- Death, Sudden, Cardiac/prevention & control
- Disease Models, Animal
- Glucosides/pharmacology
- Heart Rate/drug effects
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Rats
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Feng Ju
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
42
|
Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021; 10:cells10092388. [PMID: 34572037 PMCID: PMC8469016 DOI: 10.3390/cells10092388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.
Collapse
|
43
|
Shen YJ, Shen YC, Lee WS, Yang KT. Methyl palmitate protects heart against ischemia/reperfusion-induced injury through G-protein coupled receptor 40-mediated activation of the PI3K/AKT pathway. Eur J Pharmacol 2021; 905:174183. [PMID: 34015318 DOI: 10.1016/j.ejphar.2021.174183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to investigate whether methyl palmitate (MP) exerts cardioprotective effect against the ischemia/reperfusion (I/R) injury and its mechanisms underlying. The cultured adult cardiomyocytes were treated with vehicle or lactic acid ischemic buffer (pH 6.8) during hypoxia/reoxygenation. In addition, the cardioprotective effect of MP was evaluated using the ex vivo heart model of I/R injury. Here, we found that MP significantly reduced the I/R-induced cardiomyocyte death. Treatment with GW1100 (a GPR40-antagonist) or wortmannin (a phosphatidylinositol 3-kinase, PI3K, specific inhibitor) significantly attenuated the level of phospho-AKT (p-AKT) and abolished the MP-induced cardioprotection against the I/R-induced injury. Using the ex vivo I/R model, we also demonstrated that pretreatment with MP significantly reduced the size of myocardial infarction and the levels of cleaved-caspase 3 and MDA, and increased the protein levels of GPR40 and p-AKT induced by I/R. The cardioprotective effect of MP was evaluated also using the in vivo heart model of I/R injury. We demonstrated that post-ischemic treatment with MP significantly attenuated the size of myocardial infarction and the serum level of CK-MB induced by in vivo I/R model. Taken together, our data suggest that MP could provide significant cardioprotection against the I/R injury, and the underlying mechanisms by which MP prevented the cardiomyocyte death might be mediated through the GPR40-activated PI3K/AKT signaling pathways. These findings suggest the potential applications of MP in the treatment of I/R-induced heart injury.
Collapse
Affiliation(s)
- Yan-Jhih Shen
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yan-Cheng Shen
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Ta Yang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
44
|
Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J Nanobiotechnology 2021; 19:61. [PMID: 33639970 PMCID: PMC7916292 DOI: 10.1186/s12951-021-00808-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Exosome transplantation is a promising cell-free therapeutic approach for the treatment of ischemic heart disease. The purpose of this study was to explore whether exosomes derived from Macrophage migration inhibitory factor (MIF) engineered umbilical cord MSCs (ucMSCs) exhibit superior cardioprotective effects in a rat model of AMI and reveal the mechanisms underlying it. Results Exosomes isolated from ucMSCs (MSC-Exo), MIF engineered ucMSCs (MIF-Exo) and MIF downregulated ucMSCs (siMIF-Exo) were used to investigate cellular protective function in human umbilical vein endothelial cells (HUVECs) and H9C2 cardiomyocytes under hypoxia and serum deprivation (H/SD) and infarcted hearts in rats. Compared with MSC-Exo and siMIF-Exo, MIF-Exo significantly enhanced proliferation, migration, and angiogenesis of HUVECs and inhibited H9C2 cardiomyocyte apoptosis under H/SD in vitro. MIF-Exo also significantly inhibited cardiomyocyte apoptosis, reduced fibrotic area, and improved cardiac function as measured by echocardiography in infarcted rats in vivo. Exosomal miRNAs sequencing and qRT-PCR confirmed miRNA-133a-3p significantly increased in MIF-Exo. The biological effects of HUVECs and H9C2 cardiomyocytes were attenuated with incubation of MIF-Exo and miR-133a-3p inhibitors. These effects were accentuated with incubation of siMIF-Exo and miR-133a-3p mimics that increased the phosphorylation of AKT protein in these cells. Conclusion MIF-Exo can provide cardioprotective effects by promoting angiogenesis, inhibiting apoptosis, reducing fibrosis, and preserving heart function in vitro and in vivo. The mechanism in the biological activities of MIF-Exo involves miR-133a-3p and the downstream AKT signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00808-5.
Collapse
|
45
|
Budiono BP, See Hoe LE, Peart JN, Vider J, Ashton KJ, Jacques A, Haseler LJ, Headrick JP. Effects of voluntary exercise duration on myocardial ischaemic tolerance, kinase signaling and gene expression. Life Sci 2021; 274:119253. [PMID: 33647270 DOI: 10.1016/j.lfs.2021.119253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
AIM Exercise is cardioprotective, though optimal interventions are unclear. We assessed duration dependent effects of exercise on myocardial ischemia-reperfusion (I-R) injury, kinase signaling and gene expression. METHODS Responses to brief (2 day; 2EX), intermediate (7 and 14 day; 7EX and 14EX) and extended (28 day; 28EX) voluntary wheel running (VWR) were studied in male C57Bl/6 mice. Cardiac function, I-R tolerance and survival kinase signaling were assessed in perfused hearts. KEY FINDINGS Mice progressively increased running distances and intensity, from 2.4 ± 0.2 km/day (0.55 ± 0.04 m/s) at 2-days to 10.6 ± 0.4 km/day (0.72 ± 0.06 m/s) after 28-days. Myocardial mass and contractility were modified at 14-28 days VWR. Cardioprotection was not 'dose-dependent', with I-R tolerance enhanced within 7 days and not further improved with greater VWR duration, volume or intensity. Protection was associated with AKT, ERK1/2 and GSK3β phosphorylation, with phospho-AMPK selectively enhanced with brief VWR. Gene expression was duration-dependent: 7 day VWR up-regulated glycolytic (Pfkm) and down-regulated maladaptive remodeling (Mmp2) genes; 28 day VWR up-regulated caveolar (Cav3), mitochondrial biogenesis (Ppargc1a, Sirt3) and titin (Ttn) genes. Interestingly, I-R tolerance in 2EX/2SED groups improved vs. groups subjected to longer sedentariness, suggesting transient protection on transition to housing with running wheels. SIGNIFICANCE Cardioprotection is induced with as little as 7 days VWR, yet not enhanced with further or faster running. This protection is linked to survival kinase phospho-regulation (particularly AKT and ERK1/2), with glycolytic, mitochondrial, caveolar and myofibrillar gene changes potentially contributing. Intriguingly, environmental enrichment may also protect via similar kinase regulation.
Collapse
Affiliation(s)
- Boris P Budiono
- Charles Sturt University, School of Community Health, Port Macquarie, NSW, Australia
| | - Louise E See Hoe
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jason N Peart
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jelena Vider
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Kevin J Ashton
- Bond University, Faculty of Health and Medicine, Robina, QLD, Australia
| | - Angela Jacques
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - Luke J Haseler
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - John P Headrick
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia.
| |
Collapse
|
46
|
Pearce L, Davidson SM, Yellon DM. Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Res Cardiol 2021; 116:12. [PMID: 33629195 PMCID: PMC7904035 DOI: 10.1007/s00395-021-00852-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
47
|
Bi W, Wang J, Jiang Y, Li Q, Wang S, Liu M, Liu Q, Li F, Paul C, Wang Y, Yang HT. Neurotrophin-3 contributes to benefits of human embryonic stem cell-derived cardiovascular progenitor cells against reperfused myocardial infarction. Stem Cells Transl Med 2021; 10:756-772. [PMID: 33529481 PMCID: PMC8046156 DOI: 10.1002/sctm.20-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) resulting from coronary ischemia is a major cause of disability and death worldwide. Transplantation of human embryonic stem cell (hESC)‐derived cardiovascular progenitor cells (hCVPCs) promotes the healing of infarcted hearts by secreted factors. However, the hCVPC‐secreted proteins contributing to cardiac repair remain largely unidentified. In this study, we investigated protective effects of neurotrophin (NT)‐3 secreted from hCVPCs in hearts against myocardial ischemia/reperfusion (I/R) injury and explored the underlying mechanisms to determine the potential of using hCVPC products as a new therapeutic strategy. The implantation of hCVPCs into infarcted myocardium at the beginning of reperfusion following 1 hour of ischemia improved cardiac function and scar formation of mouse hearts. These beneficial effects were concomitant with reduced cardiomyocyte death and increased angiogenesis. Moreover, hCVPCs secreted a rich abundance of NT‐3. The cardioreparative effect of hCVPCs in the I/R hearts was mimicked by human recombinant NT‐3 (hNT‐3) but canceled by NT‐3 neutralizing antibody (NT‐3‐Ab). Furthermore, endogenous NT‐3 was detected in mouse adult cardiomyocytes and its level was enhanced in I/R hearts. Adenovirus‐mediated NT‐3 knockdown exacerbated myocardial I/R injury. Mechanistically, hNT‐3 and endogenous NT‐3 inhibited I/R‐induced cardiomyocyte apoptosis through activating the extracellular signal‐regulated kinase (ERK) and reducing the Bim level, resulting in the cardioreparative effects of infarcted hearts together with their effects in the improvement of angiogenesis. These results demonstrate for the first time that NT‐3 is a cardioprotective factor secreted by hCVPCs and exists in adult cardiomyocytes that reduces I/R‐induced cardiomyocyte apoptosis via the ERK‐Bim signaling pathway and promotes angiogenesis. As a cell product, NT‐3 may represent as a noncell approach for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Jinxi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Shihui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Meilan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Fang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China.,Institute for Stem Cell and Regeneration, CAS, Beijing, People's Republic of China
| |
Collapse
|
48
|
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163:325-343. [PMID: 33359685 DOI: 10.1016/j.freeradbiomed.2020.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Global epidemiological studies reported a shift from maternal/infectious communicable diseases to chronic non-communicable diseases and a major part is attributable to atherosclerosis and metabolic disorders. Accordingly, ischemic heart disease was identified as a leading risk factor for global mortality and morbidity with a prevalence of 128 million people. Almost 9 million premature deaths can be attributed to ischemic heart disease and subsequent acute myocardial infarction and heart failure, also representing a substantial socioeconomic burden. As evidenced by typical oxidative stress markers such as lipid peroxidation products or oxidized DNA/RNA bases, the formation of reactive oxygen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial resperatory chain) plays a central role for the severity of ischemia/reperfusion damage. The underlying mechanisms comprise direct oxidative damage but also adverse redox-regulation of kinase and calcium signaling, inflammation and cardiac remodeling among others. These processes and the role of reactive oxygen species are discussed in the present review. We also present and discuss potential targets for redox-based therapies that are either already established in the clinics (e.g. guanylyl cyclase activators and stimulators) or at least successfully tested in preclinical models of myocardial infarction and heart failure (mitochondria-targeted antioxidants). However, reactive oxygen species have not only detrimental effects but are also involved in essential cellular signaling and may even act protective as seen by ischemic pre- and post-conditioning or eustress - which makes redox therapy quite challenging.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Matthias Oelze
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
49
|
Durak A, Bitirim CV, Turan B. Titin and CK2α are New Intracellular Targets in Acute Insulin Application-Associated Benefits on Electrophysiological Parameters of Left Ventricular Cardiomyocytes From Insulin-Resistant Metabolic Syndrome Rats. Cardiovasc Drugs Ther 2020; 34:487-501. [PMID: 32377826 DOI: 10.1007/s10557-020-06974-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that a high-carbohydrate intake could induce metabolic syndrome (MetS) in male rats with marked cardiac functional abnormalities. In addition, studies mentioned some benefits of insulin application on these complications, but there are considerable disagreements among their findings. Therefore, we aimed to extend our knowledge on the in-vitro influence of insulin on left ventricular dysfunction and also in the isolated cardiomyocytes from MetS rats. RESULTS At the organ function level, an acute insulin application (100-nM) provided an important beneficial effect on the left ventricular developed pressure in MetS rats. Furthermore, to treat the freshly isolated cardiomyocytes from MetS rats with insulin provided marked recoveries in elevated resting intracellular Ca2+-level, as well as significant prevention of prolonged action potential through an augmentation in depressed K+-channel currents. Insulin also normalized the cellular levels of increased ROS and phosphorylation of PKCα, together with normalizations of apoptotic markers in MetS cardiomyocytes through the insulin-mediated regulation of phospho-Akt. Since not only elevated PKCα-activity but also reductions in phospho-Akt are key modulators of titin-based cardiomyocyte stiffening in hyperglycemia, insulin treatment of the cardiomyocytes prevented the activation of titin via the above pathways. Furthermore, CK2α-activation and NOS-phosphorylation could be prevented with insulin treatment. Mechanistically, we found that impaired insulin signaling and elevated PKCα and CK2α activities, as well as depressed Akt phosphorylation, are key modulators of titin-based cardiomyocyte stiffening in MetS rats. CONCLUSION We propose that restoring normal kinase activities and also increases in phospho-Akt by insulin can contribute marked recoveries in MetS heart function, indicating a promising approach to modulate titin-associated factors in heart dysfunction associated with type-2 diabetes mellitus. Graphical Abstract.
Collapse
Affiliation(s)
- Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
50
|
Boisguérin P, Covinhes A, Gallot L, Barrère C, Vincent A, Busson M, Piot C, Nargeot J, Lebleu B, Barrère-Lemaire S. A novel therapeutic peptide targeting myocardial reperfusion injury. Cardiovasc Res 2020; 116:633-644. [PMID: 31147690 DOI: 10.1093/cvr/cvz145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS Regulated cell death is a main contributor of myocardial ischaemia-reperfusion (IR) injury during acute myocardial infarction. In this context, targeting apoptosis could be a potent therapeutical strategy. In a previous study, we showed that DAXX (death-associated protein) was essential for transducing the FAS-dependent apoptotic signal during IR injury. The present study aims at evaluating the cardioprotective effects of a synthetic peptide inhibiting FAS:DAXX interaction. METHODS AND RESULTS An interfering peptide was engineered and then coupled to the Tat cell penetrating peptide (Tat-DAXXp). Its internalization and anti-apoptotic properties were demonstrated in primary cardiomyocytes. Importantly, an intravenous bolus injection of Tat-DAXXp (1 mg/kg) 5 min before reperfusion in a murine myocardial IR model decreased infarct size by 48% after 24 h of reperfusion. In addition, Tat-DAXXp was still efficient after a 30-min delayed administration, and was completely degraded and eliminated within 24 h thereby reducing risks of potential side effects. Importantly, Tat-DAXXp reduced mouse early post-infarction mortality by 67%. Mechanistically, cardioprotection was supported by both anti-apoptotic and pro-survival effects, and an improvement of myocardial functional recovery as evidenced in ex vivo experiments. CONCLUSIONS Our study demonstrates that a single dose of Tat-DAXXp injected intravenously at the onset of reperfusion leads to a strong cardioprotection in vivo by inhibiting IR injury validating Tat-DAXXp as a promising candidate for therapeutic application.
Collapse
Affiliation(s)
- Prisca Boisguérin
- CRBM, Univ. Montpellier, CNRS, F-34293 Montpellier, France.,DIMNP, Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | - Aurélie Covinhes
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Laura Gallot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Christian Barrère
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Anne Vincent
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Muriel Busson
- IRCM, Univ. Montpellier, INSERM, F-34298 Montpellier, France
| | - Christophe Piot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France.,Département de Cardiologie Interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Joël Nargeot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Bernard Lebleu
- DIMNP, Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | - Stéphanie Barrère-Lemaire
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| |
Collapse
|