1
|
Asmar V, Bergman E, Lindhagen E, Sherwood K, Westman G, Gaugaz FZ. Towards streamlined product information: reporting of transporter-mediated drug interactions. Eur J Clin Pharmacol 2024:10.1007/s00228-024-03772-9. [PMID: 39545952 DOI: 10.1007/s00228-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE The purpose of this study is to investigate the reporting of risks associated with transporter-mediated drug-drug interactions (DDIs) in medicinal product information and to identify suitable wording for future standardisation of summaries of product characteristics (SmPCs). METHODS The SmPCs of medicinal products approved in the European Union from 2012 to 2023 were screened for warnings on Organic Anion Transporting Polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3), and Breast Cancer Resistance Protein (BCRP). An in-house search engine for product information was used. Warnings were categorised into different DDI scenarios based on the SmPC texts. RESULTS A total of 192 out of 859 approved medicinal products had SmPC text pertaining to OATP1B1, 1B3 and/or BCRP. The majority of products had text for all three transporters Most texts were located in SmPC Sect. 5.2, followed by Sect. 4.5. Numerous interaction-texts either concluded that the interaction lacked clinical relevance or lacked information on the clinical relevance of the finding. The highest number of SmPC texts indicating a clinically relevant interaction with outlined clinical consequences was found for BCRP. The article also presents SmPC texts for each DDI scenario, which the authors consider as examples of explicit wordings with actionable recommendations. CONCLUSION A potential for improvement of SmPC text for transporter-mediated DDI was identified: Warnings without clinical relevance could be omitted, and some warnings with clinical relevance could be updated to provide actionable recommendations to the prescribers. A selection of unambiguous texts was identified as starting point to generate standard texts.
Collapse
Affiliation(s)
| | - Erik Bergman
- Swedish Medical Products Agency, Uppsala, Sweden
| | | | - Kim Sherwood
- Swedish Medical Products Agency, Uppsala, Sweden
| | | | | |
Collapse
|
2
|
Volpe DA. Knockout Transporter Cell Lines to Assess Substrate Potential Towards Efflux Transporters. AAPS J 2024; 26:79. [PMID: 38981917 DOI: 10.1208/s12248-024-00950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance transporter 2 (MRP2) are efflux transporters involved in the absorption, excretion, and distribution of drugs. Bidirectional cell assays are recognized models for evaluating the potential of new drugs as substrates or inhibitors of efflux transporters. However, the assays are complicated by a lack of selective substrates and/or inhibitors, as well simultaneous expression of several efflux transporters in cell lines used in efflux models. This project aims to evaluate an in vitro efflux cell assay employing model substrates and inhibitors of P-gp, BCRP and MRP2 with knockout (KO) cell lines. The efflux ratios (ER) of P-gp (digoxin, paclitaxel), BCRP (prazosin, rosuvastatin), MRP2 (etoposide, olmesartan) and mixed (methotrexate, mitoxantrone) substrates were determined in wild-type C2BBe1 and KO cells. For digoxin and paclitaxel, the ER decreased to less than 2 in the cell lines lacking P-gp expression. The ER decreased to less than 3 for prazosin and less than 2 for rosuvastatin in the cell lines lacking BCRP expression. For etoposide and olmesartan, the ER decreased to less than 2 in the cell lines lacking MRP2 expression. The ER of methotrexate and mitoxantrone decreased in single- and double-KO cells without BCRP and MRP2 expression. These results show that KO cell lines have the potential to better interpret complex drug-transporter interactions without depending upon multi-targeted inhibitors or overlapping substrates. For drugs that are substrates of multiple transporters, the single- and double-KO cells may be used to assess their affinities for the different transporters.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993-0002, USA.
| |
Collapse
|
3
|
Rollison HE, Mitra P, Chanteux H, Fang Z, Liang X, Park SH, Costales C, Hanna I, Thakkar N, Vergis JM, Bow DAJ, Hillgren KM, Brumm J, Chu X, Hop CECA, Lai Y, Li CY, Mahar KM, Salphati L, Sane R, Shen H, Taskar K, Taub M, Tohyama K, Xu C, Fenner KS. Survey of Pharmaceutical Industry's Best Practices around In Vitro Transporter Assessment and Implications for Drug Development: Considerations from the International Consortium for Innovation and Quality for Pharmaceutical Development Transporter Working Group. Drug Metab Dispos 2024; 52:582-596. [PMID: 38697852 DOI: 10.1124/dmd.123.001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The International Consortium for Innovation and Quality in Pharmaceutical Development Transporter Working Group had a rare opportunity to analyze a crosspharma collation of in vitro data and assay methods for the evaluation of drug transporter substrate and inhibitor potential. Experiments were generally performed in accordance with regulatory guidelines. Discrepancies, such as not considering the impact of preincubation for inhibition and free or measured in vitro drug concentrations, may be due to the retrospective nature of the dataset and analysis. Lipophilicity was a frequent indicator of crosstransport inhibition (P-gp, BCRP, OATP1B, and OCT1), with high molecular weight (MW ≥500 Da) also common for OATP1B and BCRP inhibitors. A high level of overlap in in vitro inhibition across transporters was identified for BCRP, OATP1B1, and MATE1, suggesting that prediction of DDIs for these transporters will be common. In contrast, inhibition of OAT1 did not coincide with inhibition of any other transporter. Neutrals, bases, and compounds with intermediate-high lipophilicity tended to be P-gp and/or BCRP substrates, whereas compounds with MW <500 Da tended to be OAT3 substrates. Interestingly, the majority of in vitro inhibitors were not reported to be followed up with a clinical study by the submitting company, whereas those compounds identified as substrates generally were. Approaches to metabolite testing were generally found to be similar to parent testing, with metabolites generally being equally or less potent than parent compounds. However, examples where metabolites inhibited transporters in vitro were identified, supporting the regulatory requirement for in vitro testing of metabolites to enable integrated clinical DDI risk assessment. SIGNIFICANCE STATEMENT: A diverse dataset showed that transporter inhibition often correlated with lipophilicity and molecular weight (>500 Da). Overlapping transporter inhibition was identified, particularly that inhibition of BCRP, OATP1B1, and MATE1 was frequent if the compound inhibited other transporters. In contrast, inhibition of OAT1 did not correlate with the other drug transporters tested.
Collapse
Affiliation(s)
- Helen E Rollison
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Pallabi Mitra
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Hugues Chanteux
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Zhizhou Fang
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Xiaomin Liang
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Seong Hee Park
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Chester Costales
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Imad Hanna
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Nilay Thakkar
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - James M Vergis
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Daniel A J Bow
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Kathleen M Hillgren
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Jochen Brumm
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Xiaoyan Chu
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Cornelis E C A Hop
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Yurong Lai
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Cindy Yanfei Li
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Kelly M Mahar
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Laurent Salphati
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Rucha Sane
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Hong Shen
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Kunal Taskar
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Mitchell Taub
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Kimio Tohyama
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Christine Xu
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| | - Katherine S Fenner
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (H.E.R., K.S.F.); Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut (P.M., M.T.); Quantitative Clinical Pharmacology, Development Sciences, UCB Biopharma SRL, Braine-L'Alleud, Belgium (H.C.); NCE Drug Metabolism and Pharmacokinetics, the healthcare business of Merck KGaA, Darmstadt, Germany (Z.F.); Drug Metabolism, Gilead Sciences, Inc. Foster City, California (X.L., Y.L.); Preclinical Sciences and Translational Safety, Janssen R&D LLC, Spring House, Pennsylvania (S.H.P.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut (C.C.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey (I.H.); Clinical Pharmacology Modelling and Simulations, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.T., K.M.M.); IQ Secretariat, Faegre Drinker Biddle & Reath, LLP., Washington DC (J.M.V.); Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois (D.A.J.B.); Investigative Drug Disposition, Lilly Research Laboratories, Eli Lilly Inc, Indianapolis, Indiana (K.M.H.); Nonclinical Biostatistics, Genentech, Inc., South San Francisco, California (J.B.); ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey (X.C.); Departments of Drug Metabolism and Pharmacokinetics (C.E.C.A.H., L.S.) and Clinical Pharmacology (R.S.), Genentech, Inc., South San Francisco, California; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. South San Francisco, California (C.Y.L.); Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S.); DMPK Modeling, IVIVT, Research, GSK, Stevenage, United Kingdom (Ku.T.); Takeda Pharmaceutical Company Limited, Fujisawa, Japan (Ki.T.); and Pharmacokinetics, Dynamics, and Metabolism, Translational Medicine and Early Development, Sanofi US, Bridgewater, NJ (C.X.)
| |
Collapse
|
4
|
Al Bakri W, Donovan MD. The role of membrane transporters in the absorption of atrazine following nasal exposure. Inhal Toxicol 2024; 36:250-260. [PMID: 38738559 DOI: 10.1080/08958378.2024.2348165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE The purpose of these studies was to investigate the uptake of atrazine across the nasal mucosa to determine whether direct transport to the brain through the olfactory epithelium is likely to occur. These studies were undertaken to provide important new information about the potential for the enhanced neurotoxicity of herbicides following nasal inhalation. MATERIALS AND METHODS Transport of atrazine from aqueous solution and from commercial atrazine-containing herbicide products was assessed using excised nasal mucosal tissues. The permeation rate and the role of membrane transporters in the uptake of atrazine across the nasal mucosa were also investigated. Histological examination of the nasal tissues was conducted to assess the effects of commercial atrazine-containing products on nasal tissue morphology. RESULTS Atrazine showed high flux across both nasal respiratory and olfactory tissues, and efflux transporters were found to play an essential role in limiting its uptake at low exposure concentrations. Commercial atrazine-containing herbicide products showed remarkably high transfer across the nasal tissues, and histological evaluation showed significant changes in the morphology of the nasal epithelium following exposure to the herbicide products. DISCUSSION Lipophilic herbicides such as atrazine can freely permeate across the nasal mucosa despite the activity of efflux transporters. The adjuvant compounds in commercial herbicide products disrupt the nasal mucosa's epithelial barrier, resulting in even greater atrazine permeation across the tissues. The properties of the herbicide itself and those of the formulated products play crucial roles in the potential for the enhanced neurotoxicity of herbicides following nasal inhalation.
Collapse
Affiliation(s)
- Wisam Al Bakri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242USA
| | - Maureen D Donovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242USA
| |
Collapse
|
5
|
Yang GZ, Wang L, Gao K, Zhu X, Lou LG, Yue JM. Design and Synthesis of Cyclolipopeptide Mimics of Dysoxylactam A and Evaluation of the Reversing Potencies against P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2024. [PMID: 38502936 DOI: 10.1021/acs.jmedchem.3c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Inspired by the structure of dysoxylactam A (DLA) that has been demonstrated to reverse P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) effectively, 61 structurally simplified cyclolipopeptides were thus designed and synthesized via an effective method, and their reversing P-gp-mediated MDR potentials were evaluated, which provided a series of more potent analogues and allowed us to explore their structure-activity relationship (SAR). Among them, a well-simplified compound, 56, with only two chiral centers that all derived from amino acids dramatically reversed drug resistance in KBV200 cells at 10 μM in combination with vinorelbine (VNR), paclitaxel (PTX), and adriamycin (ADR), respectively, which is more promising than DLA. The mechanism study showed that 56 reversed the MDR of tumor cells by inhibiting the transport function of P-gp rather than reducing its expression. Notably, compound 56 effectively restored the sensitivity of MDR tumors to VNR in vivo at a dosage without obvious toxicity.
Collapse
Affiliation(s)
- Guan-Zhou Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xi Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Li-Guang Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
6
|
Dvořák Z, Vyhlídalová B, Pečinková P, Li H, Anzenbacher P, Špičáková A, Anzenbacherová E, Chow V, Liu J, Krause H, Wilson D, Berés T, Tarkowski P, Chen D, Mani S. In vitro safety signals for potential clinical development of the anti-inflammatory pregnane X receptor agonist FKK6. Bioorg Chem 2024; 144:107137. [PMID: 38245951 DOI: 10.1016/j.bioorg.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Based on the mimicry of microbial metabolites, functionalized indoles were demonstrated as the ligands and agonists of the pregnane X receptor (PXR). The lead indole, FKK6, displayed PXR-dependent protective effects in DSS-induced colitis in mice and in vitro cytokine-treated intestinal organoid cultures. Here, we report on the initial in vitro pharmacological profiling of FKK6. FKK6-PXR interactions were characterized by hydrogen-deuterium exchange mass spectrometry. Screening FKK6 against potential cellular off-targets (G protein-coupled receptors, steroid and nuclear receptors, ion channels, and xenobiotic membrane transporters) revealed high PXR selectivity. FKK6 has poor aqueous solubility but was highly soluble in simulated gastric and intestinal fluids. A large fraction of FKK6 was bound to plasma proteins and chemically stable in plasma. The partition coefficient of FKK6 was 2.70, and FKK6 moderately partitioned into red blood cells. In Caco2 cells, FKK6 displayed high permeability (A-B: 22.8 × 10-6 cm.s-1) and no active efflux. These data are indicative of essentially complete in vivo absorption of FKK6. The data from human liver microsomes indicated that FKK6 is rapidly metabolized by cytochromes P450 (t1/2 5 min), notably by CYP3A4. Two oxidized FKK6 derivatives, including DC73 (N6-oxide) and DC97 (C19-phenol), were detected, and these metabolites had 5-7 × lower potency as PXR agonists than FKK6. This implies that despite high intestinal absorption, FKK6 is rapidly eliminated by the liver, and its PXR effects are predicted to be predominantly in the intestines. In conclusion, the PXR ligand and agonist FKK6 has a suitable pharmacological profile supporting its potential preclinical development.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Alena Špičáková
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Eva Anzenbacherová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Vimanda Chow
- Department of Chemistry, York University, 6 Thompson Road, M3J 1L3, ON, Toronto, Canada
| | - Jiabao Liu
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, M5S 3E1, ON, Toronto, Canada
| | - Henry Krause
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, M5S 3E1, ON, Toronto, Canada
| | - Derek Wilson
- Department of Chemistry, York University, 6 Thompson Road, M3J 1L3, ON, Toronto, Canada
| | - Tibor Berés
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Dajun Chen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Kotze S, Ebert A, Goss KU. Effects of Aqueous Boundary Layers and Paracellular Transport on the Efflux Ratio as a Measure of Active Transport Across Cell Layers. Pharmaceutics 2024; 16:132. [PMID: 38276501 PMCID: PMC11154460 DOI: 10.3390/pharmaceutics16010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The efflux ratio (ER), determined by Caco-2/MDCK assays, is the standard in vitro metric to establish qualitatively whether a compound is a substrate of an efflux transporter. However, others have also enabled the utilisation of this metric quantitatively by deriving a relationship that expresses the ER as a function of the intrinsic membrane permeability of the membrane (P0) as well as the permeability of carrier-mediated efflux (Ppgp). As of yet, Ppgp cannot be measured directly from transport experiments or otherwise, but the ER relationship provides easy access to this value if P0 is known. However, previous derivations of this relationship failed to consider the influence of additional transport resistances such as the aqueous boundary layers (ABLs) and the filter on which the monolayer is grown. Since single fluxes in either direction can be heavily affected by these experimental artefacts, it is crucial to consider the potential impact on the ER. We present a model that includes these factors and show both mathematically and experimentally that this simple ER relationship also holds for the more realistic scenario that does not neglect the ABLs/filter. Furthermore, we also show mathematically how paracellular transport affects the ER, and we experimentally confirm that paracellular dominance reduces the ER to unity and can mask potential efflux.
Collapse
Affiliation(s)
- Soné Kotze
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany; (S.K.); (A.E.)
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany; (S.K.); (A.E.)
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany; (S.K.); (A.E.)
- Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany
| |
Collapse
|
8
|
Chu J, Panfen E, Wang L, Marino A, Chen XQ, Fancher RM, Landage R, Patil O, Desai SD, Shah D, Xue Y, Sinz M, Shen H. Evaluation of Encequidar as An Intestinal P-gp and BCRP Specific Inhibitor to Assess the Role of Intestinal P-gp and BCRP in Drug-Drug Interactions. Pharm Res 2023; 40:2567-2584. [PMID: 37523014 DOI: 10.1007/s11095-023-03563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition. METHODS We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP. RESULTS ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold). CONCLUSIONS ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.
Collapse
Affiliation(s)
- Jessica Chu
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Erika Panfen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Linna Wang
- Nonclinical Disposition & Bioanalysis, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Anthony Marino
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Xue-Qing Chen
- Discovery Pharmaceutics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - R Marcus Fancher
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Raviraj Landage
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Omprakash Patil
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Salil Dileep Desai
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Devang Shah
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Yongjun Xue
- Nonclinical Disposition & Bioanalysis, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA.
| |
Collapse
|
9
|
Vignaux P, Lane TR, Puhl AC, Hau RK, Wright SH, Cherrington NJ, Ekins S. Transporter Inhibition Profile for the Antivirals Tilorone, Quinacrine and Pyronaridine. ACS OMEGA 2023; 8:12532-12537. [PMID: 37033868 PMCID: PMC10077433 DOI: 10.1021/acsomega.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 05/28/2023]
Abstract
Pyronaridine, tilorone and quinacrine are cationic molecules that have in vitro activity against Ebola, SARS-CoV-2 and other viruses. All three molecules have also demonstrated in vivo activity against Ebola in mice, while pyronaridine showed in vivo efficacy against SARS-CoV-2 in mice. We have recently tested these molecules and other antivirals against human organic cation transporters (OCTs) and apical multidrug and toxin extruders (MATEs). Quinacrine was found to be an inhibitor of OCT2, while tilorone and pyronaridine were less potent, and these displayed variability depending on the substrate used. To assess whether any of these three molecules have other potential interactions with additional transporters, we have now screened them at 10 μM against various human efflux and uptake transporters including P-gp, OATP1B3, OAT1, OAT3, MRP1, MRP2, MRP3, BCRP, as well as confirmational testing against OCT1, OCT2, MATE1 and MATE2K. Interestingly, in this study tilorone appears to be a more potent inhibitor of OCT1 and OCT2 than pyronaridine or quinacrine. However, both pyronaridine and quinacrine appear to be more potent inhibitors of MATE1 and MATE2K. None of the three compounds inhibited MRP1, MRP2, MRP3, OAT1, OAT3, P-gp or OATP1B3. Similarly, we previously showed that tilorone and pyronaridine do not inhibit OATP1B1 and have confirmed that quinacrine behaves similarly. In total, these observations suggest that the three compounds only appear to interact with OCTs and MATEs to differing extents, suggesting they may be involved in fewer clinically relevant drug-transporter interactions involving pharmaceutical substrates of the other major transporters tested.
Collapse
Affiliation(s)
- Patricia
A. Vignaux
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Raymond K. Hau
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Stephen H. Wright
- Department
of Physiology, College of Medicine, University
of Arizona, Tucson, Arizona 85721, United
States
| | - Nathan J. Cherrington
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Justesen S, Bilde K, Olesen RH, Pedersen LH, Ernst E, Larsen A. ABCB1 expression is increased in human first trimester placenta from pregnant women classified as overweight or obese. Sci Rep 2023; 13:5175. [PMID: 36997557 PMCID: PMC10063677 DOI: 10.1038/s41598-023-31598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Obesity has become a global health challenge also affecting reproductive health. In pregnant women, obesity increases the risk of complications such as preterm birth, macrosomia, gestational diabetes, and preeclampsia. Moreover, obesity is associated with long-term adverse effects for the offspring, including increased risk of cardiovascular and metabolic diseases and neurodevelopmental difficulties. The underlying mechanisms are far from understood, but placental function is essential for pregnancy outcome. Transporter proteins P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are important for trans-placental transport of endogenous substances like lipids and cortisol, a key hormone in tissue maturation. They also hold a protective function protecting the fetus from xenobiotics (e.g. pharmaceuticals). Animal studies suggest that maternal nutritional status can affect expression of placental transporters, but little is known about the effect on the human placenta, especially in early pregnancy. Here, we investigated if overweight and obesity in pregnant women altered mRNA expression of ABCB1 encoding P-gp or ABCG2 encoding BCRP in first trimester human placenta. With informed consent, 75 first trimester placental samples were obtained from women voluntarily seeking surgical abortion (< gestational week 12) (approval no.: 20060063). Villous samples (average gestational age 9.35 weeks) were used for qPCR analysis. For a subset (n = 38), additional villi were snap-frozen for protein analysis. Maternal BMI was defined at the time of termination of pregnancy. Compared to women with BMI 18.5-24.9 kg/m2 (n = 34), ABCB1 mRNA expression was significantly increased in placenta samples from women classified as overweight (BMI 25-29.9 kg/m2, n = 18) (p = 0.040) and women classified as obese (BMI ≥ 30 kg/m2, n = 23) (p = 0.003). Albeit P-gp expression did not show statistically significant difference between groups, the effect of increasing BMI was the same in male and female pregnancies. To investigate if the P-gp increase was compensated, we determined the expression of ABCG2 which was unaffected by maternal obesity (p = 0.291). Maternal BMI affects ABCB1 but not ABCG2 mRNA expression in first trimester human placenta. Further studies of early placental function are needed to understand how the expression of placental transport proteins is regulated by maternal factors such as nutritional status and determine the potential consequences for placental-fetal interaction.
Collapse
Affiliation(s)
- Signe Justesen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Katrine Bilde
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Rasmus H Olesen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930, Randers, Denmark
| | - Lars H Pedersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Erik Ernst
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
- Department of Obstetrics and Gynecology, Horsens Regional Hospital, 8700, Horsens, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
11
|
Deng F, Sjöstedt N, Santo M, Neuvonen M, Niemi M, Kidron H. Novel inhibitors of breast cancer resistance protein (BCRP, ABCG2) among marketed drugs. Eur J Pharm Sci 2023; 181:106362. [PMID: 36529162 DOI: 10.1016/j.ejps.2022.106362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Drug-drug interactions (DDIs) are a major concern for the safe use of medications. Breast cancer resistance protein (BCRP) is a clinically relevant ATP-binding cassette (ABC) transporter for drug disposition. Inhibition of BCRP increases the plasma concentrations of BCRP substrate drugs, which potentially could lead to adverse drug reactions. The aim of the present study was to identify BCRP inhibitors amongst a library of 232 commonly used drugs and anticancer drugs approved by the United States Food and Drug Administration (FDA). BCRP inhibition studies were carried out using the vesicular transport assay. We found 75 drugs that reduced the relative transport activity of BCRP to less than 25% of the vehicle control and were categorized as strong inhibitors. The concentration required for 50% inhibition (IC50) was determined for 13 strong inhibitors that were previously poorly characterized for BCRP inhibition. The IC50 ranged from 1.1 to 11 µM, with vemurafenib, dabigatran etexilate and everolimus being the strongest inhibitors. According to the drug interaction guidance documents from the FDA and the European Medicines Agency (EMA), in vivo DDI studies are warranted if the theoretical intestinal luminal concentration of a drug exceeds its IC50 by tenfold. Here, the IC50 values for eight of the drugs were 100-fold lower than their theoretical intestinal luminal concentration. Moreover, a mechanistic static model suggested that vemurafenib, bexarotene, dabigatran etexilate, rifapentine, aprepitant, and ivacaftor could almost fully inhibit intestinal BCRP, increasing the exposure of concomitantly administered rosuvastatin over 90%. Therefore, clinical studies are warranted to investigate whether these drugs cause BCRP-mediated DDIs in humans.
Collapse
Affiliation(s)
- Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland
| | - Noora Sjöstedt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland
| | - Mariangela Santo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland.
| |
Collapse
|
12
|
Lane TR, Urbina F, Zhang X, Fye M, Gerlach J, Wright SH, Ekins S. Machine Learning Models Identify New Inhibitors for Human OATP1B1. Mol Pharm 2022; 19:4320-4332. [PMID: 36269563 PMCID: PMC9873312 DOI: 10.1021/acs.molpharmaceut.2c00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The uptake transporter OATP1B1 (SLC01B1) is largely localized to the sinusoidal membrane of hepatocytes and is a known victim of unwanted drug-drug interactions. Computational models are useful for identifying potential substrates and/or inhibitors of clinically relevant transporters. Our goal was to generate OATP1B1 in vitro inhibition data for [3H] estrone-3-sulfate (E3S) transport in CHO cells and use it to build machine learning models to facilitate a comparison of seven different classification models (Deep learning, Adaboosted decision trees, Bernoulli naïve bayes, k-nearest neighbors (knn), random forest, support vector classifier (SVC), logistic regression (lreg), and XGBoost (xgb)] using ECFP6 fingerprints to perform 5-fold, nested cross validation. In addition, we compared models using 3D pharmacophores, simple chemical descriptors alone or plus ECFP6, as well as ECFP4 and ECFP8 fingerprints. Several machine learning algorithms (SVC, lreg, xgb, and knn) had excellent nested cross validation statistics, particularly for accuracy, AUC, and specificity. An external test set containing 207 unique compounds not in the training set demonstrated that at every threshold SVC outperformed the other algorithms based on a rank normalized score. A prospective validation test set was chosen using prediction scores from the SVC models with ECFP fingerprints and were tested in vitro with 15 of 19 compounds (84% accuracy) predicted as active (≥20% inhibition) showed inhibition. Of these compounds, six (abamectin, asiaticoside, berbamine, doramectin, mobocertinib, and umbralisib) appear to be novel inhibitors of OATP1B1 not previously reported. These validated machine learning models can now be used to make predictions for drug-drug interactions for human OATP1B1 alongside other machine learning models for important drug transporters in our MegaTrans software.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Xiaohong Zhang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Margret Fye
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Stephen H. Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| |
Collapse
|
13
|
Feng D, Zhong G, Zuo Q, Wan Y, Xu W, He C, Lin C, Huang D, Chen F, Huang L. Knockout of ABC transporters by CRISPR/Cas9 contributes to reliable and accurate transporter substrate identification for drug discovery. Front Pharmacol 2022; 13:1015940. [PMID: 36386127 PMCID: PMC9649518 DOI: 10.3389/fphar.2022.1015940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 04/21/2024] Open
Abstract
It is essential to explore the relationship between drugs and transporters in the process of drug development. Strong background signals in nonhuman MDCK or LLC-PK1 cells and overlapping interference of inhibitors or RNAi in human Caco-2 cells mean that an ideal alternative could be to knock out specific transporter genes in Caco-2 cells. However, the application of gene knockout (KO) to Caco-2 cells is challenging because it is still inefficient to obtain rapidly growing Caco-2 subclones with double-allele KO through long-term monoclonal cultivation. Herein, CRISPR/Cas9, a low cost but more efficient and precise gene editing technology, was utilized to singly or doubly knockout the P-gp, BCRP, and MRP2 genes in Caco-2 cells. By combining this with single cell expansion, rapidly growing transporter-deficient subclones were successfully screened and established. Bidirectional transport assays with probe substrates and three protease inhibitors indicated that more reliable and detailed data could be drawn easily with these KO Caco-2 models. The six robust KO Caco-2 subclones could contribute to efficient in vitro drug transport research.
Collapse
Affiliation(s)
- Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guorui Zhong
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Hau RK, Tash JS, Georg GI, Wright SH, Cherrington NJ. Physiological Characterization of the Transporter-Mediated Uptake of the Reversible Male Contraceptive H2-Gamendazole Across the Blood-Testis Barrier. J Pharmacol Exp Ther 2022; 382:299-312. [PMID: 35779861 PMCID: PMC9426764 DOI: 10.1124/jpet.122.001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Joseph S Tash
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Gunda I Georg
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| |
Collapse
|
15
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
16
|
A curated binary pattern multitarget dataset of focused ATP-binding cassette transporter inhibitors. Sci Data 2022; 9:446. [PMID: 35882865 PMCID: PMC9325750 DOI: 10.1038/s41597-022-01506-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related or unrelated pharmacological targets are crucial for novel drug design and discovery. ATP-binding cassette (ABC) transporters are critical membrane-bound transport proteins that impact drug and metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural patterns are of the highest importance for the drug discovery process as demonstrated by the novel drug discovery tool ‘computer-aided pattern analysis’ (‘C@PA’). Here, we report a multitarget dataset of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the focused ABC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design in general in terms of pharmacokinetics and pharmacodynamics. Measurement(s) | Influx • Efflux • Tracer • Transport velocity | Technology Type(s) | Fluorometry • Radioactivity • Plate reader • Flow cytometer • Tracer distribution | Factor Type(s) | half-maximal inhibition concentration | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Environment | cell culture | Sample Characteristic - Location | Kingdom of Norway • Germany • Australia • Latvia |
Collapse
|
17
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
18
|
Huang S, Gao Y, Zhang X, Lu J, Wei J, Mei H, Xing J, Pan X. Development of Simple and Accurate in Silico Ligand-Based Models for Predicting ABCG2 Inhibition. Front Chem 2022; 10:863146. [PMID: 35665065 PMCID: PMC9159808 DOI: 10.3389/fchem.2022.863146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The ATP binding cassette transporter ABCG2 is a physiologically important drug transporter that has a central role in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) profile of therapeutics, and contributes to multidrug resistance. Thus, development of predictive in silico models for the identification of ABCG2 inhibitors is of great interest in the early stage of drug discovery. In this work, by exploiting a large public dataset, a number of ligand-based classification models were developed using partial least squares-discriminant analysis (PLS-DA) with molecular interaction field- and fingerprint-based structural description methods, regarding physicochemical and fragmental properties related to ABCG2 inhibition. An in-house dataset compiled from recently experimental studies was used to rigorously validated the model performance. The key molecular properties and fragments favored to inhibitor binding were discussed in detail, which was further explored by docking simulations. A highly informative chemical property was identified as the principal determinant of ABCG2 inhibition, which was utilized to derive a simple rule that had a strong capability for differentiating inhibitors from non-inhibitors. Furthermore, the incorporation of the rule into the best PLS-DA model significantly improved the classification performance, particularly achieving a high prediction accuracy on the independent in-house set. The integrative model is simple and accurate, which could be applied to the evaluation of drug-transporter interactions in drug development. Also, the dominant molecular features derived from the models may help medicinal chemists in the molecular design of novel inhibitors to circumvent ABCG2-mediated drug resistance.
Collapse
Affiliation(s)
- Shuheng Huang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, China
| | - Yingjie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuelian Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Xianchao Pan, ; Juan Xing,
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Xianchao Pan, ; Juan Xing,
| |
Collapse
|
19
|
Marie S, Hernández-Lozano I, Le Vée M, Breuil L, Saba W, Goislard M, Goutal S, Truillet C, Langer O, Fardel O, Tournier N. Pharmacokinetic Imaging Using 99mTc-Mebrofenin to Untangle the Pattern of Hepatocyte Transporter Disruptions Induced by Endotoxemia in Rats. Pharmaceuticals (Basel) 2022; 15:ph15040392. [PMID: 35455390 PMCID: PMC9028474 DOI: 10.3390/ph15040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endotoxemia-induced inflammation may impact the activity of hepatocyte transporters, which control the hepatobiliary elimination of drugs and bile acids. 99mTc-mebrofenin is a non-metabolized substrate of transporters expressed at the different poles of hepatocytes. 99mTc-mebrofenin imaging was performed in rats after the injection of lipopolysaccharide (LPS). Changes in transporter expression were assessed using quantitative polymerase chain reaction of resected liver samples. Moreover, the particular impact of pharmacokinetic drug–drug interactions in the context of endotoxemia was investigated using rifampicin (40 mg/kg), a potent inhibitor of hepatocyte transporters. LPS increased 99mTc-mebrofenin exposure in the liver (1.7 ± 0.4-fold). Kinetic modeling revealed that endotoxemia did not impact the blood-to-liver uptake of 99mTc-mebrofenin, which is mediated by organic anion-transporting polypeptide (Oatp) transporters. However, liver-to-bile and liver-to-blood efflux rates were dramatically decreased, leading to liver accumulation. The transcriptomic profile of hepatocyte transporters consistently showed a downregulation of multidrug resistance-associated proteins 2 and 3 (Mrp2 and Mrp3), which mediate the canalicular and sinusoidal efflux of 99mTc-mebrofenin in hepatocytes, respectively. Rifampicin effectively blocked both the Oatp-mediated influx and the Mrp2/3-related efflux of 99mTc-mebrofenin. The additive impact of endotoxemia and rifampicin led to a 3.0 ± 1.3-fold increase in blood exposure compared with healthy non-treated animals. 99mTc-mebrofenin imaging is useful to investigate disease-associated change in hepatocyte transporter function.
Collapse
Affiliation(s)
- Solène Marie
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
- Faculté de Pharmacie, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- AP-HP, Université Paris-Saclay, Hôpital Bicêtre, Pharmacie Clinique, 94270 Le Kremlin Bicêtre, France
| | | | - Marc Le Vée
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35043 Rennes, France
| | - Louise Breuil
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Maud Goislard
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Sébastien Goutal
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Olivier Fardel
- Univ. Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35043 Rennes, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| |
Collapse
|
20
|
Song YK, Kim MJ, Kim MS, Lee JH, Chung SJ, Song JS, Chae YJ, Lee KR. Role of the Efflux Transporters Abcb1 and Abcg2 in the Brain Distribution of Olaparib in Mice. Eur J Pharm Sci 2022; 173:106177. [PMID: 35341895 DOI: 10.1016/j.ejps.2022.106177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
Olaparib is a first-in-class poly (ADP-ribose) polymerase oral inhibitor used to treat various tumors. In this study, we clarified the roles of ABCB1/Abcb1 and ABCG2/Abcg2 transporters in restricting olaparib distribution to the brain. Olaparib was efficiently transported by human ABCG2, human ABCB1, and mouse Abcg2 in vitro. In the in vivo disposition study of olaparib using single or combination knockout mice, the systemic exposure of olaparib did not differ significantly between the strains over an 8-h period. However, the brain-to-plasma unbound concentration ratio of olaparib increased 5.6- and 8.1-fold in Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice, respectively, compared with wild-type mice. The Abcg2 single knockout mice exhibited a similar brain-to-plasma unbound concentration ratio to wild-type mice. Moreover, the brain distribution of olaparib could be modulated by the ABCB1/ABCG2 dual inhibitor elacridar to reach a similar degree of inhibition to Abcb1a/1b-/-. These findings suggest that olaparib is actively transported by both human and mouse ABCB1/Abcb1 and ABCG2/Abcg2; while Abcb1a/1b is a major determinant of olaparib brain penetration in mice, Abcg2 is likely to be a minor contributor. Concomitant treatment with temozolomide slightly increased the brain distribution of olaparib in mouse, but the clinical impact of the interaction was expected to be limited.
Collapse
Affiliation(s)
- Yoo-Kyung Song
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Republic of Korea
| | - Min-Ju Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hun Lee
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Sook Song
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju-Gun 55338, Republic of Korea.
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
21
|
Storelli F, Li CY, Sachar M, Kumar V, Heyward S, Sáfár Z, Kis E, Unadkat JD. Prediction of Hepatobiliary Clearances and Hepatic Concentrations of Transported Drugs in Humans Using Rosuvastatin as a Model Drug. Clin Pharmacol Ther 2022; 112:593-604. [DOI: 10.1002/cpt.2556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Flavia Storelli
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Cindy Yanfei Li
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Madhav Sachar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Vineet Kumar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | | | | | | | | |
Collapse
|
22
|
Research advances in the role and pharmaceuticals of ATP-binding cassette transporters in autoimmune diseases. Mol Cell Biochem 2022; 477:1075-1091. [PMID: 35034257 DOI: 10.1007/s11010-022-04354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Autoimmune diseases are caused by the immune response of the body to its antigens, resulting in tissue damage. The pathogenesis of these diseases has not yet been elucidated. Most autoimmune diseases cannot be cured by effective drugs. The treatment strategy is to relieve the symptoms of the disease and balance the body's autoimmune function. The abnormal expression of ATP-binding cassette (ABC) transporters is directly related to the pathogenesis of autoimmune diseases and drug therapy resistance, which poses a great challenge for the drug therapy of autoimmune diseases. Therefore, this paper reviews the interplay between ABC transporters and the pathogenesis of autoimmune diseases to provide research progress and new ideas for the development of drugs in autoimmune diseases.
Collapse
|
23
|
Breuil L, Marie S, Goutal S, Auvity S, Truillet C, Saba W, Langer O, Caillé F, Tournier N. Comparative vulnerability of PET radioligands to partial inhibition of P-glycoprotein at the blood-brain barrier: A criterion of choice? J Cereb Blood Flow Metab 2022; 42:175-185. [PMID: 34496661 PMCID: PMC8721783 DOI: 10.1177/0271678x211045444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Only partial deficiency/inhibition of P-glycoprotein (P-gp, ABCB1) function at the blood-brain barrier (BBB) is likely to occur in pathophysiological situations or drug-drug interactions. This raises questions regarding the sensitivity of available PET imaging probes to detect moderate changes in P-gp function at the living BBB. In vitro, the half-maximum inhibitory concentration (IC50) of the potent P-gp inhibitor tariquidar in P-gp-overexpressing cells was significantly different using either [11C]verapamil (44 nM), [11C]N-desmethyl-loperamide (19 nM) or [11C]metoclopramide (4 nM) as substrate probes. In vivo PET imaging in rats showed that the half-maximum inhibition of P-gp-mediated efflux of [11C]metoclopramide, achieved using 1 mg/kg tariquidar (in vivo IC50 = 82 nM in plasma), increased brain exposure by 2.1-fold for [11C]metoclopramide (p < 0.05, n = 4) and 2.4-fold for [11C]verapamil (p < 0.05, n = 4), whereby cerebral uptake of the "avid" substrate [11C]N-desmethyl-loperamide was unaffected (p > 0.05, n = 4). This comparative study points to differences in the "vulnerability" to P-gp inhibition among radiolabeled substrates, which were apparently unrelated to their "avidity" (maximal response to P-gp inhibition). Herein, we advocate that partial inhibition of transporter function, in addition to complete inhibition, should be a primary criterion of evaluation regarding the sensitivity of radiolabeled substrates to detect moderate but physiologically-relevant changes in transporter function in vivo.
Collapse
Affiliation(s)
- Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France.,Pharmacy Department, Robert-Debré Hospital, AP-HP, Université de Paris, Paris, France
| | - Solène Marie
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France.,Pharmacy Department, Bicêtre Hospital, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Sylvain Auvity
- Pharmacy Department, Necker Hospital, AP-HP, UMR-S 1144, Université de Paris, Paris, France
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Wadad Saba
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| |
Collapse
|
24
|
Teng H, Deng H, He Y, Lv Q, Chen L. The role of dietary flavonoids for modulation of ATP binding cassette transporter mediated multidrug resistance. EFOOD 2021. [DOI: 10.53365/efood.k/144604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Flavonoids are widely existing compounds with enormous pharmacological effects from food and medicine. However, the low bioavailability in intestinal absorption and metabolism limits their clinical application. Intestinal efflux ABC (ATP binding cassette) transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), act as "pumping doors" to regulate the efflux of flavonoids from intestinal epithelial cells into the intestinal cavity or the systemic circulation. The present review describes the critical effect of ABC transporters involved in the efflux of flavonoids which depend on its efflux direction. And the role of flavonoids for modulation of intestinal ABC transporters was emphasized and several examples were given. We summarized that the resistance effect of flavonoid-mediated multidrug on ABC transporters may influence the bioavailability of drugs, bioactive ingredients and/or toxic compounds upon dietary uptake. Meanwhile, flavonoids functionalized as reversing agents of the ABC transporter may be an important mechanism for unexpected food-drug, food-toxin or food-food interactions. The overview also indicates that elucidation of the action and mechanism of the intestinal metabolic enzymes-efflux transporters coupling will lay a foundation for improving the bioavailability of flavonoids <i>in vivo</i> and increasing their clinical efficacy.
Collapse
|
25
|
Pulukuri AJ, Burt AJ, Opp LK, McDowell CM, Davaritouchaee M, Nielsen AE, Mancini RJ. Acquired Drug Resistance Enhances Imidazoquinoline Efflux by P-Glycoprotein. Pharmaceuticals (Basel) 2021; 14:ph14121292. [PMID: 34959691 PMCID: PMC8705394 DOI: 10.3390/ph14121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown. We begin to address this by investigating P-gp mediated efflux of TLR 7/8 agonists. First, we used functionalized liposomes to determine that imidazoquinoline TLR agonists Imiquimod, Resiquimod, and Gardiquimod are substrates for P-gp. Interestingly, the least potent imidazoquinoline (Imiquimod) was the best P-gp substrate. Next, we compared imidazoquinoline efflux in MDR cancer cell lines with enhanced P-gp expression relative to parent cancer cell lines. Using P-gp competitive substrates and inhibitors, we observed that imidazoquinoline efflux occurs through P-gp and, for Imiquimod, is enhanced as a consequence of acquired drug resistance. This suggests that enhancing efflux susceptibility could be an important consideration in the rational design of next generation immunotherapies that modulate activity of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Anunay J. Pulukuri
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Anthony J. Burt
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- Department of Chemistry & Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Larissa K. Opp
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Colin M. McDowell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Maryam Davaritouchaee
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Amy E. Nielsen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Rock J. Mancini
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
26
|
Chen G, Svirskis D, Lu W, Ying M, Li H, Liu M, Wen J. N-trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr Polym 2021; 273:118592. [PMID: 34560993 DOI: 10.1016/j.carbpol.2021.118592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
N-trimethyl chitosan (TMC) is a multifunctional polymer that can be used in various nanoparticle forms in the pharmaceutical, nutraceutical and biomedical fields. In this study, TMC was used as a mucoadhesive adjuvant to enhance the oral bioavailability and hence antitumour effects of gemcitabine formulated into nanocomplexes composed of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) conjugated with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). A central composite design was applied to achieve the optimal formulation. Cellular uptake and drug transportation studies revealed the nanocomplexes permeate over the intestinal cells via adsorptive-mediated and caveolae-mediated endocytosis. Pharmacokinetic studies demonstrated the oral drug bioavailability of the nanocomplexes was increased 5.1-fold compared with drug solution. In pharmacodynamic studies, the formulation reduced tumour size 3.1-fold compared with the drug solution. The data demonstrates that TMC modified nanocomplexes can enhance gemcitabine oral bioavailability and promote the anticancer efficacy.
Collapse
Affiliation(s)
- Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China; School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongyu Li
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, AR, USA
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Namasivayam V, Stefan K, Pahnke J, Stefan SM. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics. Comput Struct Biotechnol J 2021; 19:6490-6504. [PMID: 34976306 PMCID: PMC8666613 DOI: 10.1016/j.csbj.2021.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine-triphosphate-(ATP)-binding cassette (ABC) transporter ABCA7 is a genetic risk factor for Alzheimer's disease (AD). Defective ABCA7 promotes AD development and/or progression. Unfortunately, ABCA7 belongs to the group of 'under-studied' ABC transporters that cannot be addressed by small-molecules. However, such small-molecules would allow for the exploration of ABCA7 as pharmacological target for the development of new AD diagnostics and therapeutics. Pan-ABC transporter modulators inherit the potential to explore under-studied ABC transporters as novel pharmacological targets by potentially binding to the proposed 'multitarget binding site'. Using the recently reported cryogenic-electron microscopy (cryo-EM) structures of ABCA1 and ABCA4, a homology model of ABCA7 has been generated. A set of novel, diverse, and potent pan-ABC transporter inhibitors has been docked to this ABCA7 homology model for the discovery of the multitarget binding site. Subsequently, application of pharmacophore modelling identified the essential pharmacophore features of these compounds that may support the rational drug design of innovative diagnostics and therapeutics against AD.
Collapse
Key Words
- ABC transporter (ABCA1, ABCA4, ABCA7)
- ABC, ATP-binding cassette
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- ATP, Adenosine-triphosphate
- Alzheimer’s disease (AD)
- BBB, blood-brain barrier
- BODIPY-cholesterol, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-cholesterol
- ECD, extracellular domain
- EH, extracellular helix
- GSH, reduced glutathione
- HTS, high-throughput screening
- IC, intracellular helix
- MOE, Molecular Operating Environment
- MSD, membrane spanning domain
- Multitarget modulation (PANABC)
- NBD, nucleotide binding domain
- NBD-cholesterol, 7-nitro-2-1,3-benzoxadiazol-4-yl-cholesterol
- PDB, protein data bank
- PET tracer (PETABC)
- PET, positron emission tomography
- PLIF, protein ligand interaction
- PSO, particle swarm optimization
- Polypharmacology
- R-domain/region, regulatory domain/region
- RMSD, root mean square distance
- Rational drug design and development
- SNP, single-nucleotide polymorphism
- TM, transmembrane helix
- cryo-EM, cryogenic-electron microscopy
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
28
|
Ozgür B, Saaby L, Janfelt C, Langthaler K, Eneberg E, Jacobsen AM, Badolo L, Montanari D, Brodin B. Screening novel CNS drug candidates for P-glycoprotein interactions using the cell line iP-gp: In vitro efflux ratios from iP-gp and MDCK-MDR1 monolayers compared to brain distribution data from mice. Eur J Pharm Biopharm 2021; 169:211-219. [PMID: 34756975 DOI: 10.1016/j.ejpb.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/16/2023]
Abstract
Drug efflux by P-glycoprotein (P-gp, ABCB1) is considered as a major obstacle for brain drug delivery for small molecules. P-gp-expressing cell monolayers are used for screening of new drug candidates during early states of drug development. It is, however, uncertain how well the in vitro studies can predict the in vivo P-gp mediated efflux at the blood-brain barrier (BBB). We previously developed a novel cell line of porcine origin, the iP-gp cell line, with high transepithelial resistance and functional expression of human P-gp. The aim of the present study was to evaluate the applicability of the cell line for screening of P-gp interactions of novel drug candidates. For this purpose, bidirectional fluxes of 14 drug candidates were measured in iP-gp cells and in MDCK-MDR1 cells, and compared with pharmacokinetic data obtained in male C57BL/6 mice. The iP-gp cells formed extremely tight monolayers (>15 000 Ω∙cm2) as compared to the MDCK- MDR1 cells (>250 Ω∙cm2) and displayed lower Papp,a-b values. The efflux ratios obtained with iP-gp and MDCK-MDR1 monolayers correlated with Kp,uu,brain values from the in vivo studies, where compounds with the lowest Kp,uu,brain generally displayed the highest efflux ratios. 12 of the tested compounds displayed a poor BBB penetration in mice as judged by Kp,uu less than 1. Of these compounds, nine compounds were categorized as P-gp substrates in the iP-gp screening, whereas analysis of data estimated in MDCK-MDR1 cells indicated four compounds as potential substrates. The results suggest that the iP-gp cell model may be a sensitive and useful screening tool for drug screening purposes to identify possible substrates of human P-glycoprotein.
Collapse
Affiliation(s)
- Burak Ozgür
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer-FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - Elin Eneberg
- H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | | | | | | | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Cao G, Lam H, Jude JA, Karmacharya N, Kan M, Jester W, Koziol-White C, Himes BE, Chupp GL, An SS, Panettieri RA. Inhibition of ABCC1 Decreases cAMP Egress and Promotes Human Airway Smooth Muscle Cell Relaxation. Am J Respir Cell Mol Biol 2021; 66:96-106. [PMID: 34648729 DOI: 10.1165/rcmb.2021-0345oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In most living cells, the second messenger roles for 3',5'-cyclic adenosine monophosphate (cAMP) are short-lived, confined to the intracellular space, and tightly controlled by the binary switch-like actions of the stimulatory G protein (Gαs)-activated adenylyl cyclase (cAMP production) and cAMP-specific phosphodiesterase (cAMP breakdown). Using human airway smooth muscle (HASM) cells in culture as a model, here we report that activation of the cell surface β2-adrenoceptor (β2AR), a Gs-coupled G protein-coupled receptor (GPCR), evokes cAMP egress to the extracellular space. Increased extracellular cAMP levels ([cAMP]e) are long-lived in culture and induced by receptor-dependent and receptor-independent mechanisms in such a way as to define a universal response class of increased intracellular cAMP levels ([cAMP]i). We find that HASM cells express multiple ATP-binding cassette (ABC) membrane transporters, with ABCC1 being the most highly enriched transcript mapped to multidrug resistance associated proteins (MRPs). We show that pharmacological inhibition or downregulation of ABCC1 with small interfering RNA markedly reduces β2AR-evoked cAMP release from HASM cells. Further, inhibition of ABCC1 activity or expression decreases basal tone and increases β-agonist-induced HASM cellular relaxation. These findings identify a previously unrecognized role for ABCC1 in the homeostatic regulation of [cAMP]i in HASM that may be conserved traits of the Gs-coupled family of GPCRs. Hence, the general features of this activation mechanism may uncover new disease-modifying targets in the treatment of airflow obstruction in asthma. Surprisingly, we find that serum cAMP levels are elevated in a small cohort of patients with asthma as compared with controls that warrants further investigation.
Collapse
Affiliation(s)
- Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, New Brunswick, New Jersey, United States
| | - Hong Lam
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey, United States
| | - Joseph A Jude
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey, United States
| | - Nikhil Karmacharya
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey, United States
| | - Mengyuan Kan
- University of Pennsylvania, 6572, Department of Biostatistics Epidemiology and Informatics, Philadelphia, Pennsylvania, United States
| | - William Jester
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, United States
| | - Blanca E Himes
- University of Pennsylvania Perelman School of Medicine, 14640, Philadelphia, Pennsylvania, United States
| | - Geoffrey L Chupp
- Yale School of Medicine, Pulmonary and Critical Care, New Haven, Connecticut, United States
| | - Steven S An
- Rutgers University, 242612, Pharmacology, New Brunswick, New Jersey, United States
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, United States;
| |
Collapse
|
30
|
Oorts M, Van Brantegem P, Deferm N, Chatterjee S, Dreesen E, Cooreman A, Vinken M, Richert L, Annaert P. Bosentan Alters Endo- and Exogenous Bile Salt Disposition in Sandwich-Cultured Human Hepatocytes. J Pharmacol Exp Ther 2021; 379:20-32. [PMID: 34349015 DOI: 10.1124/jpet.121.000695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Bosentan, a well-known cholestatic agent, was not identified as cholestatic at concentrations up to 200 µM based on the drug-induced cholestasis (DIC) index value, determined in a sandwich-cultured human hepatocyte (SCHH)-based DIC assay. To obtain further quantitative insights into the effects of bosentan on cellular bile salt handling by human hepatocytes, the present study determined the effect of 2.5-25 µM bosentan on endogenous bile salt levels and on the disposition of 10 µM chenodeoxycholic acid (CDCA) added to the medium in SCHHs. Bosentan reduced intracellular as well as extracellular concentrations of both endogenous glycochenodeoxycholic acid (GCDCA) and glycocholic acid in a concentration-dependent manner. When exposed to 10 µM CDCA, bosentan caused a shift from canalicular efflux to sinusoidal efflux of GCDCA. CDCA levels were not affected. Our mechanistic model confirmed the inhibitory effect of bosentan on canalicular GCDCA clearance. Moreover, our results in SCHHs also indicated reduced GCDCA formation. We confirmed the direct inhibitory effect of bosentan on CDCA conjugation with glycine in incubations with liver S9 fraction. SIGNIFICANCE STATEMENT: Bosentan was evaluated at therapeutically relevant concentrations (2.5-25 µM) in sandwich-cultured human hepatocytes. It altered bile salt disposition and inhibited canalicular secretion of glycochenodeoxycholic acid (GCDCA). Within 24 hours, bosentan caused a shift from canalicular to sinusoidal efflux of GCDCA. These results also indicated reduced GCDCA formation. This study confirmed a direct effect of bosentan on chenodeoxycholic acid conjugation with glycine in liver S9 fraction.
Collapse
Affiliation(s)
- Marlies Oorts
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Pieter Van Brantegem
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Neel Deferm
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Sagnik Chatterjee
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Erwin Dreesen
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Axelle Cooreman
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Mathieu Vinken
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Lysiane Richert
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Pieter Annaert
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| |
Collapse
|
31
|
Marie S, Hernández-Lozano I, Langer O, Tournier N. Repurposing 99mTc-Mebrofenin as a Probe for Molecular Imaging of Hepatocyte Transporters. J Nucl Med 2021; 62:1043-1047. [PMID: 33674399 DOI: 10.2967/jnumed.120.261321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocyte transporters control the hepatobiliary elimination of many drugs, metabolites, and endogenous substances. Hepatocyte transporter function is altered in several pathophysiologic situations and can be modulated by certain drugs, with a potential impact for pharmacokinetics and drug-induced liver injury. The development of substrate probes with optimal properties for selective and quantitative imaging of hepatic transporters remains a challenge. 99mTc-mebrofenin has been used for decades for hepatobiliary scintigraphy, but the specific transporters controlling its liver kinetics have not been characterized until recently. These include sinusoidal influx transporters (organic anion-transporting polypeptides) responsible for hepatic uptake of 99mTc-mebrofenin, and efflux transporters (multidrug resistance-associated proteins) mediating its canalicular (liver-to-bile) and sinusoidal (liver-to-blood) excretion. Pharmacokinetic modeling enables molecular interpretation of 99mTc-mebrofenin scintigraphy data, thus offering a widely available translational method to investigate transporter-mediated drug-drug interactions in vivo. 99mTc-mebrofenin allows for phenotyping transporter function at the different poles of hepatocytes as a biomarker of liver function.
Collapse
Affiliation(s)
| | | | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale, BioMaps, Université Paris-Saclay, CEA, CNRS, INSERM, Service Hospitalier Frédéric Joliot, Orsay, France
| |
Collapse
|
32
|
Ganguly S, Finkelstein D, Shaw TI, Michalek RD, Zorn KM, Ekins S, Yasuda K, Fukuda Y, Schuetz JD, Mukherjee K, Schuetz EG. Metabolomic and transcriptomic analysis reveals endogenous substrates and metabolic adaptation in rats lacking Abcg2 and Abcb1a transporters. PLoS One 2021; 16:e0253852. [PMID: 34255797 PMCID: PMC8277073 DOI: 10.1371/journal.pone.0253852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.
Collapse
Affiliation(s)
- Samit Ganguly
- Cancer & Developmental Biology Track, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Timothy I. Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | - Kimberly M. Zorn
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kamalika Mukherjee
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zhang D, Wei C, Hop CECA, Wright MR, Hu M, Lai Y, Khojasteh SC, Humphreys WG. Intestinal Excretion, Intestinal Recirculation, and Renal Tubule Reabsorption Are Underappreciated Mechanisms That Drive the Distribution and Pharmacokinetic Behavior of Small Molecule Drugs. J Med Chem 2021; 64:7045-7059. [PMID: 34010555 DOI: 10.1021/acs.jmedchem.0c01720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug reabsorption following biliary excretion is well-known as enterohepatic recirculation (EHR). Renal tubular reabsorption (RTR) following renal excretion is also common but not easily assessed. Intestinal excretion (IE) and enteroenteric recirculation (EER) have not been recognized as common disposition mechanisms for metabolically stable and permeable drugs. IE and intestinal reabsorption (IR:EHR/EER), as well as RTR, are governed by dug concentration gradients, passive diffusion, active transport, and metabolism, and together they markedly impact disposition and pharmacokinetics (PK) of small molecule drugs. Disruption of IE, IR, or RTR through applications of active charcoal (AC), transporter knockout (KO), and transporter inhibitors can lead to changes in PK parameters. The impacts of intestinal and renal reabsorption on PK are under-appreciated. Although IE and EER/RTR can be an intrinsic drug property, there is no apparent strategy to optimize compounds based on this property. This review seeks to improve understanding and applications of IE, IR, and RTR mechanisms.
Collapse
Affiliation(s)
- Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew R Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ming Hu
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, Texas 77204, United States
| | - Yurong Lai
- Drug Metabolism and Pharmacokinetics, Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - W Griff Humphreys
- Aranmore Pharma Consulting, 11 Andrew Drive, Lawrenceville, New Jersey 08648, United States
| |
Collapse
|
34
|
Namasivayam V, Silbermann K, Pahnke J, Wiese M, Stefan SM. Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA). Comput Struct Biotechnol J 2021; 19:3269-3283. [PMID: 34141145 PMCID: PMC8193046 DOI: 10.1016/j.csbj.2021.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Computer-aided pattern analysis (C@PA) was recently presented as a powerful tool to predict multitarget ABC transporter inhibitors. The backbone of this computational methodology was the statistical analysis of frequently occurring molecular features amongst a fixed set of reported small-molecules that had been evaluated toward ABCB1, ABCC1, and ABCG2. As a result, negative and positive patterns were elucidated, and secondary positive substructures could be suggested that complemented the multitarget fingerprints. Elevating C@PA to a non-statistical and exploratory level, the concluded secondary positive patterns were extended with potential positive substructures to improve C@PA's prediction capabilities and to explore its robustness. A small-set compound library of known ABCC1 inhibitors with a known hit rate for triple ABCB1, ABCC1, and ABCG2 inhibition was taken to virtually screen for the extended positive patterns. In total, 846 potential broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors resulted, from which 10 have been purchased and biologically evaluated. Our approach revealed 4 novel multitarget ABCB1, ABCC1, and ABCG2 inhibitors with a biological hit rate of 40%, but with a slightly lower inhibitory power than derived from the original C@PA. This is the very first report about discovering novel broad-spectrum inhibitors against the most prominent ABC transporters by improving C@PA.
Collapse
Key Words
- ABC transporter, ATP-binding cassette transporter
- ABCB1 (P-gp)
- ABCC1 (MRP1)
- ABCG2 (BCRP)
- ATP, adenosine-triphosphate
- Alzheimer's disease (AD)
- BCRP, breast cancer resistance protein (ABCG2)
- C@PA, computer-aided pattern analysis
- F1–5, pharmacophore features 1–5
- IC50, half-maximal inhibition concentration
- MDR, multidrug resistance
- MOE, molecular operating environment
- MRP1, multidrug resistance-associated protein 1 (ABCC1)
- Multidrug resistance (MDR)
- Multitarget fingerprints
- P-gp, P-glycoprotein (ABCB1)
- Pan-ABC inhibition / antagonism / blockage (PANABC)
- Pattern analysis (C@PA)
- SEM, standard error of the mean
- SMILES, simplified molecular input line entry specification
- Tc, Tanimotto coefficient
- Triple / multitarget / broad-spectrum / promiscuous inhibitor / antagonist
- Under-studied ABC transporters (e.g., ABCA7)
- Well-studied ABC transporters
- calcein AM, calcein acetoxymethyl
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Builging, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
35
|
Yin X, Wang M, Xia Z. In vitro evaluation of intestinal absorption of tiliroside from Edgeworthia gardneri (Wall.) Meisn. Xenobiotica 2021; 51:728-736. [PMID: 33874851 DOI: 10.1080/00498254.2021.1904304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although Edgeworthia gardneri (Wall.) Meisn and its main component tiliroside (TIL) show good bioactivity, its intestinal absorption data supporting its low bioavailability have not been reported.The evaluation results of three absorption models in vitro and in vivo indicated that the results of the Ussing chamber model were basically consistent with the results of in vivo experiments. It was thus applied to investigate the characteristics of TIL across various intestinal regions and the interaction between TIL and adenosine triphosphate (ATP)-binding cassette family proteins (ABC) including, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP).The data of the bi-directional transport showed that the ileum had the higher apparent permeability coefficient (Papp) of TIL than duodenum and jejunum, suggesting the best absorption of TIL in the ileum.In the presence of the MRP2 inhibitor, the absorption of TIL from water extracts of E. gardneri (Wall.) Meisn (WAE) was improved, indicating that MRP2 other than P-gp and BCRP affected the absorption of TIL and might be responsible for its low bioavailability. This study laid the foundation for enhancing the bioavailability of TIL and highlighted the influences of efflux transporters on bioavailability.
Collapse
Affiliation(s)
- Xiongwei Yin
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
36
|
Hernández-Lozano I, Wanek T, Sauberer M, Filip T, Mairinger S, Stanek J, Traxl A, Karch R, Schuetz JD, Langer O. Influence of ABC transporters on the excretion of ciprofloxacin assessed with PET imaging in mice. Eur J Pharm Sci 2021; 163:105854. [PMID: 33865975 DOI: 10.1016/j.ejps.2021.105854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022]
Abstract
Ciprofloxacin is a commonly prescribed fluoroquinolone antibiotic which is cleared by active tubular secretion and intestinal excretion. Ciprofloxacin is a known substrate of the ATP-binding cassette (ABC) transporters breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 4 (MRP4). In this work, we used positron emission tomography (PET) imaging to investigate the influence of BCRP, MRP4, MRP2 and P-glycoprotein (P-gp) on the excretion of [18F]ciprofloxacin in mice. Dynamic 90-min PET scans were performed after intravenous injection of [18F]ciprofloxacin in wild-type mice without and with pre-treatment with the broad-spectrum MRP inhibitor MK571. Moreover, [18F]ciprofloxacin PET scans were performed in Abcc4(-/-), Abcc2(-/-), Abcc4(-/-)Abcg2(-/-) and Abcb1a/b(-/-)Abcg2(-/-) mice. In addition to non-compartmental pharmacokinetic (PK) analysis, a novel three-compartment PK model was developed for a detailed assessment of the renal disposition of [18F]ciprofloxacin. In MK571 pre-treated mice, a significant increase in the blood exposure to [18F]ciprofloxacin was observed along with a significant reduction in the renal and intestinal clearances. PK modelling revealed a significant reduction in renal radioactivity uptake (CL1) and in the rate constants for transfer of radioactivity from the corticomedullary renal region into blood (k2) and urine (k3), respectively, after MK571 administration. No changes in the renal clearance or in the estimated kidney PK model parameters were observed in any of the studied knockout models, while a significant reduction in the intestinal clearance was observed in Abcc2(-/-) and Abcc4(-/-)Abcg2(-/-) mice. Our data failed to reveal a role of any of the studied ABC transporters in the tubular secretion of ciprofloxacin. This may indicate that ciprofloxacin is handled in the kidneys by more than one transporter family, most likely with a great degree of mutual functional redundancy. Our study highlights the potential of PET imaging for an assessment of transporter-mediated renal excretion of radiolabelled drugs.
Collapse
Affiliation(s)
- Irene Hernández-Lozano
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Alexander Traxl
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
| | - Rudolf Karch
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria.
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 38105 Memphis, TN, USA.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
37
|
ABCG2 Is Overexpressed on Red Blood Cells in Ph-Negative Myeloproliferative Neoplasms and Potentiates Ruxolitinib-Induced Apoptosis. Int J Mol Sci 2021; 22:ijms22073530. [PMID: 33805426 PMCID: PMC8036917 DOI: 10.3390/ijms22073530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of disorders characterized by clonal expansion of abnormal hematopoietic stem cells leading to hyperproliferation of one or more myeloid lineages. The main complications in MPNs are high risk of thrombosis and progression to myelofibrosis and leukemia. MPN patients with high risk scores are treated by hydroxyurea (HU), interferon-α, or ruxolitinib, a tyrosine kinase inhibitor. Polycythemia vera (PV) is an MPN characterized by overproduction of red blood cells (RBCs). ABCG2 is a member of the ATP-binding cassette superfamily transporters known to play a crucial role in multidrug resistance development. Proteome analysis showed higher ABCG2 levels in PV RBCs compared to RBCs from healthy controls and an additional increase of these levels in PV patients treated with HU, suggesting that ABCG2 might play a role in multidrug resistance in MPNs. In this work, we explored the role of ABCG2 in the transport of ruxolitinib and HU using human cell lines, RBCs, and in vitro differentiated erythroid progenitors. Using stopped-flow analysis, we showed that HU is not a substrate for ABCG2. Using transfected K562 cells expressing three different levels of recombinant ABCG2, MPN RBCs, and cultured erythroblasts, we showed that ABCG2 potentiates ruxolitinib-induced cytotoxicity that was blocked by the ABCG2-specific inhibitor KO143 suggesting ruxolitinib intracellular import by ABCG2. In silico modeling analysis identified possible ruxolitinib-binding site locations within the cavities of ABCG2. Our study opens new perspectives in ruxolitinib efficacy research targeting cell types depending on ABCG2 expression and polymorphisms among patients.
Collapse
|
38
|
Mehendale-Munj S, Sawant S. Breast Cancer Resistance Protein: A Potential Therapeutic Target for Cancer. Curr Drug Targets 2021; 22:420-428. [PMID: 33243119 DOI: 10.2174/1389450121999201125200132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
Breast Cancer Resistance Protein (BCRP) is an efflux transporter responsible for causing multidrug resistance (MDR). It is known to expel many potent antineoplastic drugs, owing to its efflux function. Efflux of chemotherapeutics because of BCRP develops resistance to many drugs, leading to failure in cancer treatment. BCRP plays an important role in physiology by protecting the organism from xenobiotics and other toxins. It is a half-transporter affiliated to the ATP- binding cassette (ABC) superfamily of transporters, encoded by the gene ABCG2 and functions in response to adenosine triphosphate (ATP). Regulation of BCRP expression is critically controlled at molecular levels, which help in maintaining the balance of xenobiotics and nutrients inside the body. Expression of BCRP can be found in brain, liver, lung cancers and acute myeloid leukemia (AML). Moreover, it is also expressed at high levels in stem cells and many cell lines. This frequent expression of BCRP has an impact on the treatment procedures and, if not scrutinized, may lead to the failure of many cancer therapies.
Collapse
Affiliation(s)
- Sonali Mehendale-Munj
- Department of Pharmaceutical Chemistry, Vivekanand Education Society's College of Pharmacy, Hashu Advani Memorial Complex, Behind Collector's Colony, Chembur (E), Mumbai 400074, Affiliated to University of Mumbai, Maharashtra, India
| | - Shivangi Sawant
- Department of Pharmaceutical Chemistry, Vivekanand Education Society's College of Pharmacy, Hashu Advani Memorial Complex, Behind Collector's Colony, Chembur (E), Mumbai 400074, Affiliated to University of Mumbai, Maharashtra, India
| |
Collapse
|
39
|
S-(+)-Pentedrone and R-(+)-methylone as the most oxidative and cytotoxic enantiomers to dopaminergic SH-SY5Y cells: Role of MRP1 and P-gp in cathinones enantioselectivity. Toxicol Appl Pharmacol 2021; 416:115442. [PMID: 33609514 DOI: 10.1016/j.taap.2021.115442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/23/2022]
Abstract
Cathinone derivatives are the most representative group within new drugs market, which have been described as neurotoxic. Since cathinones, as pentedrone and methylone, are available as racemates, it is our aim to study the neuronal cytotoxicity induced by each enantiomer. Therefore, a dopaminergic SH-SY5Y cell line was used to evaluate the hypothesis of enantioselectivity of pentedrone and methylone enantiomers on cytotoxicity, oxidative stress, and membrane efflux transport (confirmed by in silico studies). Our study demonstrated enantioselectivity of these cathinones, being the S-(+)-pentedrone and R-(+)-methylone the most oxidative enantiomers and also the most cytotoxic, suggesting the oxidative stress as main cytotoxic mechanism, as previously described in in vitro studies. Additionally, the efflux transporter multidrug resistance associated protein 1 (MRP1) seems to play, together with GSH, a selective protective role against the cytotoxicity induced by R-(-)-pentedrone enantiomer. It was also observed an enantioselectivity in the binding to P-glycoprotein (P-gp), another efflux protein, being the R-(-)-pentedrone and S-(-)-methylone the most transported enantiomeric compounds. These results were confirmed, in silico, by docking studies, revealing that R-(-)-pentedrone is the enantiomer with highest affinity to MRP1 and S-(-)-methylone and R-(-)-pentedrone are the enantiomers with highest affinity to P-gp. In conclusion, our data demonstrated that pentedrone and methylone present enantioselectivity in their cytotoxicity, which seems to involve different oxidative reactivity as well as different affinity to the P-gp and MRP1 that together with GSH play a protective role.
Collapse
|
40
|
Jomura R, Akanuma SI, Bauer B, Yoshida Y, Kubo Y, Hosoya KI. Participation of Monocarboxylate Transporter 8, But Not P-Glycoprotein, in Carrier-Mediated Cerebral Elimination of Phenytoin across the Blood-Brain Barrier. Pharm Res 2021; 38:113-125. [PMID: 33527223 DOI: 10.1007/s11095-021-03003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE In this study, we investigated in detail the transport of phenytoin across the blood-brain barrier (BBB) to identify the transporter(s) involved in BBB-mediated phenytoin efflux from the brain. METHODS We evaluated the brain-to-blood efflux transport of phenytoin in vivo by determining the brain efflux index (BEI) and uptake in brain slices. We additionally conducted brain perfusion experiments and BEI studies in P-glycoprotein (P-gp)-deficient mice. In addition, we determined the mRNA expression of monocarboxylate transporter (MCT) in isolated brain capillaries and performed phenytoin uptake studies in MCT-expressing Xenopus oocytes. RESULTS [14C]Phenytoin brain efflux was time-dependent with a half-life of 17 min in rats and 31 min in mice. Intracerebral pre-administration of unlabeled phenytoin attenuated BBB-mediated phenytoin efflux transport, suggesting carrier-mediated phenytoin efflux transport across the BBB. Pre-administration of P-gp substrates in rats and genetic P-gp deficiency in mice did not affect BBB-mediated phenytoin efflux transport. In contrast, pre-administration of MCT8 inhibitors attenuated phenytoin efflux. Moreover, rat MCT8-expressing Xenopus oocytes exhibited [14C]phenytoin uptake, which was inhibited by unlabeled phenytoin. CONCLUSION Our data suggest that MCT8 at the BBB participates in phenytoin efflux transport from the brain to the blood.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 800 S Limestone, Lexington, Kentucky, 40536-0230, USA.
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 800 S Limestone, Lexington, Kentucky, 40536-0230, USA
| | - Yukiko Yoshida
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
41
|
Babu G, Priya VV, Krishnaa PK, Gayathri R, Priyadharsini JV. Identification of aspirin and diclofenac binding proteins in the red complex pathogens. Bioinformation 2021; 17:192-199. [PMID: 34393436 PMCID: PMC8340698 DOI: 10.6026/97320630017192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/02/2022] Open
Abstract
Red complex organisms are a group of organisms (Porphyromonas gingivalis ATCC 33277, Treponema denticola ATCC 35405, Tannerella forsythia ATCC 43037) that have been identified for the causation of periodontal diseases. Aspirin and diclofenac have been used as
regular analgesics. Therefore, it is of interest to document the identification of aspirin and diclofenac binding proteins in the red complex pathogens using the STITCH v.5 pipeline. The virulence properties of these proteins were analyzed using VICMPred and VirulentPred
software. Thus, we document 000 number of proteins having optimal binding features with the known analgesics.
Collapse
Affiliation(s)
- Geethika Babu
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Pothapur Keshaav Krishnaa
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Rengasamy Gayathri
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Jayaseelan Vijayashree Priyadharsini
- Biomedical Research Unit and Laboratory Animal Centre-Dental Research Cell, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| |
Collapse
|
42
|
Matsson P, Baranczewski P, Giacomini KM, Andersson TB, Palm J, Palm K, Charman WN, Bergström CAS. A Tribute to Professor Per Artursson - Scientist, Explorer, Mentor, Innovator, and Giant in Pharmaceutical Research. J Pharm Sci 2020; 110:2-11. [PMID: 33096136 DOI: 10.1016/j.xphs.2020.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022]
Abstract
This issue of the Journal of Pharmaceutical Sciences is dedicated to Professor Per Artursson and the groundbreaking contributions he has made and continues to make in the Pharmaceutical Sciences. Per is one of the most cited researchers in his field, with more than 30,000 citations and an h-index of 95 as of September 2020. Importantly, these citations are distributed over the numerous fields he has explored, clearly showing the high impact the research has had on the discipline. We provide a short portrait of Per, with emphasis on his personality, driving forces and the inspirational sources that shaped his career as a world-leading scientist in the field. He is a curious scientist who deftly moves between disciplines and has continued to innovate, expand boundaries, and profoundly impact the pharmaceutical sciences throughout his career. He has developed new tools and provided insights that have significantly contributed to today's molecular and mechanistic approaches to research in the fields of intestinal absorption, cellular disposition, and exposure-efficacy relationships of pharmaceutical drugs. We want to celebrate these important contributions in this special issue of the Journal of Pharmaceutical Sciences in Per's honor.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pawel Baranczewski
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Retired)
| | - Johan Palm
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Katrin Palm
- Early Product Development and Manufacture, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - William N Charman
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | | |
Collapse
|
43
|
Zhang Y, Han Z, Li C. Molecular insight into human P-glycoprotein allosteric transition from outward- to inward-facing state. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Wegler C, Gazit M, Issa K, Subramaniam S, Artursson P, Karlgren M. Expanding the Efflux In Vitro Assay Toolbox: A CRISPR-Cas9 Edited MDCK Cell Line with Human BCRP and Completely Lacking Canine MDR1. J Pharm Sci 2020; 110:388-396. [PMID: 33007277 DOI: 10.1016/j.xphs.2020.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
Abstract
The Breast Cancer Resistance Protein (BCRP) is a key transporter in drug efflux and drug-drug interactions. However, endogenous expression of Multidrug Resistance Protein 1 (MDR1) confounds the interpretation of BCRP-mediated transport in in vitro models. Here we used a CRISPR-Cas9 edited Madin-Darby canine kidney (MDCK) II cell line (MDCKcMDR1-KO) for stable expression of human BCRP (hBCRP) with no endogenous canine MDR1 (cMDR1) expression (MDCK-hBCRPcMDR1-KO). Targeted quantitative proteomics verified expression of hBCRP, and global analysis of the entire proteome corroborated no or very low background expression of other drug transport proteins or metabolizing enzymes. This new cell line, had similar proteome like MDCKcMDR1-KO and a previously established, corresponding cell line overexpressing human MDR1 (hMDR1), MDCK-hMDR1cMDR1-KO. Functional studies with MDCK-hBCRPcMDR1-KO confirmed high hBCRP activity. The MDCK-hBCRPcMDR1-KO cell line together with the MDCK-hMDR1cMDR1-KO easily and accurately identified shared or specific substrates of the hBCRP and the hMDR1 transporters. These cell lines offer new, improved in vitro tools for the assessment of drug efflux and drug-drug interactions in drug development.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala, Sweden
| | - Meryem Gazit
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden
| | - Karolina Issa
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden
| | - Sujay Subramaniam
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Drug Delivery Research Group, Uppsala University, Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala, Sweden.
| |
Collapse
|
45
|
Beaudoin JJ, Brock WJ, Watkins PB, Brouwer KLR. Quantitative Systems Toxicology Modeling Predicts that Reduced Biliary Efflux Contributes to Tolvaptan Hepatotoxicity. Clin Pharmacol Ther 2020; 109:433-442. [PMID: 32748396 DOI: 10.1002/cpt.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Patients with autosomal dominant polycystic kidney disease (ADPKD) exhibit enhanced susceptibility to tolvaptan hepatotoxicity relative to other patient populations. In a rodent model of ADPKD, the expression and function of the biliary efflux transporter Mrp2 was reduced, and biliary excretion of a major tolvaptan metabolite (DM-4103) was decreased. The current study investigated whether reduced biliary efflux could contribute to increased susceptibility to tolvaptan-associated hepatotoxicity using a quantitative systems toxicology (QST) model (DILIsym). QST simulations revealed that decreased biliary excretion of DM-4103, but not tolvaptan, resulted in substantial hepatic accumulation of bile acids, decreased electron transport chain activity, reduced hepatic adenosine triphosphate concentrations, and an increased incidence of hepatotoxicity. In vitro experiments (C-DILI) with sandwich-cultured human hepatocytes and HepaRG cells were performed to assess tolvaptan-associated hepatotoxic effects when MRP2 was impaired by chemical inhibition (MK571, 50 µM) or genetic knockout, respectively. Tolvaptan (64 µM, 24-hour) treatment of these cells increased cytotoxicity markers up to 27.9-fold and 1.6-fold, respectively, when MRP2 was impaired, indicating that MRP2 dysfunction may be involved in tolvaptan-associated cytotoxicity. In conclusion, QST modeling supported the hypothesis that reduced biliary efflux of tolvaptan and/or DM-4103 could account for increased susceptibility to tolvaptan-associated hepatotoxicity; in vitro experiments implicated MRP2 dysfunction as a key factor in susceptibility. QST simulations revealed that DM-4103 may contribute to hepatotoxicity more than the parent compound. ADPKD progression and gradual reduction in MRP2 activity may explain why acute liver events can occur well after one year of tolvaptan treatment.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William J Brock
- Brock Scientific Consulting, LLC, Montgomery Village, Maryland, USA
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Diurnal expression of MRP4 in bone marrow cells underlies the dosing-time dependent changes in the oxaliplatin-induced myelotoxicity. Sci Rep 2020; 10:13484. [PMID: 32778717 PMCID: PMC7417537 DOI: 10.1038/s41598-020-70321-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
The expression and function of some xenobiotic transporters varies according to the time of day, causing the dosing time-dependent changes in drug disposition and toxicity. Multidrug resistance-associated protein-4 (MRP4), an ATPbinding cassette (ABC) efflux transporter encoded by the Abcc4 gene, is highly expressed in bone marrow cells (BMCs) and protects them against xenobiotics, including chemotherapeutic drugs. In this study, we demonstrated that MRP4 was responsible for the extrusion of oxaliplatin (L-OHP), a platinum (Pt)-based chemotherapeutic drug, from BMCs of mice, and that the efflux transporter expression exhibited significant diurnal variation. Therefore, we investigated the relevance of the diurnal expression of MRP4 in BMCs for L-OHP-induced myelotoxicity in mice maintained under standardized light/dark cycle conditions. After intravenous injection of L-OHP, the Pt content in BMCs varied according to the injection time. Lower Pt accumulation in BMCs was detected in mice after injection of L-OHP at the mid-dark phase, during which the expression levels of MRP4 increased. Consistent with these observations, the myelotoxic effects of L-OHP were attenuated when mice were injected with L-OHP during the dark phase. This dosing schedule also alleviated the L-OHP-induced reduction of the peripheral white blood cell count. The present results suggest that the myelotoxicity of L-OHP is attenuated by optimizing the dosing schedule. Diurnal expression of MRP4 in BMCs is associated with the dosing time-dependent changes in L-OHP-induced myelotoxicity.
Collapse
|
47
|
IPEC-J2 rMdr1a, a New Cell Line with Functional Expression of Rat P-glycoprotein Encoded by Rat Mdr1a for Drug Screening Purposes. Pharmaceutics 2020; 12:pharmaceutics12070673. [PMID: 32708885 PMCID: PMC7408396 DOI: 10.3390/pharmaceutics12070673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/16/2023] Open
Abstract
The efflux pump P-glycoprotein (P-gp) affects drug distribution after absorption in humans and animals. P-gp is encoded by the multidrug resistance gene (MDR1) gene in humans, while rodents (the most common preclinical animal model) express the two isoforms Mdr1a and Mdr1b. Differences in substrate selectivity has also been reported. Our aim was to generate an in vitro cell model with tight barrier properties, expressing functional rat Mdr1a P-gp, as an in vitro tool for investigating species differences. The IPEC-J2 cell line forms extremely tight monolayers and was transfected with a plasmid carrying the rat Mdr1a gene sequence. Expression and P-gp localization at the apical membrane was demonstrated with Western blots and immunocytochemistry. Function of P-gp was shown through digoxin transport experiments in the presence and absence of the P-gp inhibitor zosuquidar. Bidirectional transport experiments across monolayers of the IPEC-J2 rMDR1a cell line and the IPEC-J2 MDR1 cell line, expressing human P-gp, showed comparable magnitude of transport in both the absorptive and efflux direction. We conclude that the newly established IPEC-J2 rMdr1a cell line, in combination with our previously established cell line IPEC-J2 MDR1, has the potential to be a strong in vitro tool to compare P-gp substrate profiles of rat and human P-gp.
Collapse
|
48
|
Lofthouse EM, Cleal JK, Hudson G, Lewis RM, Sengers BG. Glibenclamide transfer across the perfused human placenta is determined by albumin binding not transporter activity. Eur J Pharm Sci 2020; 152:105436. [PMID: 32592753 DOI: 10.1016/j.ejps.2020.105436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
The placenta mediates the transfer of maternal nutrients into the fetal circulation while removing fetal waste products, drugs and environmental toxins that may otherwise be detrimental to fetal development. This study investigated the role of drug transporters and protein binding in the transfer of the antidiabetic drug glibenclamide across the human placental syncytiotrophoblast using placental perfusion experiments and computational modeling. In the absence of albumin, placental glibenclamide uptake from the fetal circulation was not affected by competitive inhibition with bromosulphothalein (BSP), indicating that OATP2B1 does not mediate placental glibenclamide uptake from the fetus. In the presence of maternal and fetal albumin, BSP increased placental glibenclamide uptake from the fetal circulation by displacing glibenclamide from BSA, increasing the free fraction of glibenclamide driving diffusive transport. The P-gp and BCRP inhibitor GF120918 did not affect placental glibenclamide uptake from the maternal circulation and as such this study did not find any evidence for the apical efflux transporters in placental glibenclamide transfer. Computational modeling confirmed that albumin binding and not transporter activity, is the dominant factor in the transfer of glibenclamide across the human placenta. The effect of BSP binding to albumin on promoting the diffusive transfer of glibenclamide highlights the importance of drug-protein binding interactions and their interpretation using computational modeling.
Collapse
Affiliation(s)
- Emma M Lofthouse
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Jane K Cleal
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | | | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Bram G Sengers
- Faculty of Engineering and Physical Sciences, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK.
| |
Collapse
|
49
|
Deng F, Ghemtio L, Grazhdankin E, Wipf P, Xhaard H, Kidron H. Binding Site Interactions of Modulators of Breast Cancer Resistance Protein, Multidrug Resistance-Associated Protein 2, and P-Glycoprotein Activity. Mol Pharm 2020; 17:2398-2410. [PMID: 32496785 PMCID: PMC7497665 DOI: 10.1021/acs.molpharmaceut.0c00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
ATP-binding cassette (ABC)-transporters
protect tissues by pumping
their substrates out of the cells in many physiological barriers,
such as the blood–brain barrier, intestine, liver, and kidney.
These substrates include various endogenous metabolites, but, in addition,
ABC transporters recognize a wide range of compounds, therefore affecting
the disposition and elimination of clinically used drugs and their
metabolites. Although numerous ABC-transporter inhibitors are known,
the underlying mechanism of inhibition is not well characterized.
The aim of this study is to deepen our understanding of transporter
inhibition by studying the molecular basis of ligand recognition.
In the current work, we compared the effect of 44 compounds on the
active transport mediated by three ABC transporters: breast cancer
resistance protein (BCRP and ABCG2), multidrug-resistance associated
protein (MRP2 and ABCC2), and P-glycoprotein (P-gp and ABCB1). Eight
compounds were strong inhibitors of all three transporters, while
the activity of 36 compounds was transporter-specific. Of the tested
compounds, 39, 25, and 11 were considered as strong inhibitors, while
1, 4, and 11 compounds were inactive against BCRP, MRP2, and P-gp,
respectively. In addition, six transport-enhancing stimulators were
observed for P-gp. In order to understand the observed selectivity,
we compared the surface properties of binding cavities in the transporters
and performed structure–activity analysis and computational
docking of the compounds to known binding sites in the transmembrane
domains and nucleotide-binding domains. Based on the results, the
studied compounds are more likely to interact with the transmembrane
domain than the nucleotide-binding domain. Additionally, the surface
properties of the substrate binding site in the transmembrane domains
of the three transporters were in line with the observed selectivity.
Because of the high activity toward BCRP, we lacked the dynamic range
needed to draw conclusions on favorable interactions; however, we
identified amino acids in both P-gp and MRP2 that appear to be important
for ligand recognition.
Collapse
Affiliation(s)
- Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Leo Ghemtio
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Evgeni Grazhdankin
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Peter Wipf
- Department of Chemistry, The Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| |
Collapse
|
50
|
Chen T, Gu T, Cheng L, Li X, Han G, Liu Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials 2020; 255:120202. [PMID: 32562941 DOI: 10.1016/j.biomaterials.2020.120202] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), which is responsible for pumping chemotherapeutic drugs out of tumor cells, has been recognized as an important cause of drug resistance in conventional chemotherapy. Herein, porous platinum nanoparticles (pPt NPs) are developed to enable the combined electrodynamic therapy (EDT) with chemotherapy. With polyethylene glycol (PEG) coating, the obtained pPt-PEG NPs could be loaded with anticancer drug doxorubicin (DOX) by utilizing the porous structure of pPt NPs. Those pPt-PEG NPs are able to produce reactive oxygen species (ROS) by triggering water decomposition under electric field, independent of O2 and H2O2 contents in the tumor. Furthermore, the ROS generated during EDT could induce the inhibition of P-glycoprotein (P-gp), in turn enhancing the efficacy of chemotherapeutic agents by facilitating intracellular accumulation of drugs. As the results, excellent synergetic therapeutic effects were observed by combining chemotherapy with EDT using DOX-loaded pPt (DOX@pPt-PEG) NPs, as demonstrated by both in vitro and in vivo experiments. This study demonstrates a new concept of combinational cancer therapy with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|