1
|
Chen X, Dou Z, Son JE, Duan M, Yang F, Zhu S, Hui CC. A novel genetic mouse model of osteoporosis with double heterozygosity of Irx3 and Irx5 characterizes sex-dependent phenotypes in bone homeostasis. Bone 2024; 190:117282. [PMID: 39401533 DOI: 10.1016/j.bone.2024.117282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Iroquois homeobox gene 3 (Irx3) and Irx5 encode transcription factors that play crucial roles in limb development and bone formation. Previous studies using knockout mice have revealed a role of Irx3 and Irx5 in osteogenesis in young adult mice. However, whether these genes are also essential for bone homeostasis in adulthood and contribute to bone diseases remain poorly understood. Osteoporosis is a disease characterized by lower bone mineral density and disrupted bone microarchitecture, typically occurs in postmenopausal women. Here, we demonstrate that Irx3/5dHet mice with a half-reduction of Irx3 and Irx5 dosage serve as a novel model of osteoporosis. By micro-computed tomography, we found that Irx3/5dHet mice exhibited sex-dependent bone loss patterns. While male Irx3/5dHet mice progressively lost trabecular microstructures with aging, female mutants exhibited lower bone mineral density (BMD) and bone volume fraction (BV/TV) at early adulthood (9-15 weeks old) but without further loss later at 1 year of age. Bone marrow adipocytes are known to be elevated at the expenses of lower osteogenesis in osteoporotic bone marrow. Surprisingly, we found sex-dependent changes in adipogenesis at the age of skeletal maturity that bone marrow adipocytes were reduced in female Irx3/5dHet mice along with deteriorated osteogenesis, while male mice exhibited elevated adipogenesis. In summary, we reported a novel genetic model for osteoporosis-like phenotypes, highlighting sex-dependent bone mineral density and bone marrow adipocyte characteristics.
Collapse
Affiliation(s)
- Xinyu Chen
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhengchao Dou
- Department of Molecular Genetics, University of Toronto, Program in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Joe Eun Son
- Department of Molecular Genetics, University of Toronto, Program in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Meng Duan
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Yang
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Chi-Chung Hui
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Program in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
2
|
Wu J, Chen T, Zhang M, Li X, Fu R, Xu J, Nüssler A, Gu C. Atorvastatin exerts a preventive effect against steroid-induced necrosis of the femoral head by modulating Wnt5a release. Arch Toxicol 2024; 98:3365-3380. [PMID: 38971901 DOI: 10.1007/s00204-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minghang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou, China
| | - Rongkun Fu
- Department of Zhengzhou University Clinical Medicine, Zhengzhou, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andreas Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Chenxi Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Wang Y, Li L, Yan Y, Zhang T, Hu L, Chen J, Zha Y. Integration of texture analysis based on DCE-MRI K trans map and metabolomics of early bone marrow microvascular changes in alloxan-induced diabetic rabbits. BMC Med Imaging 2024; 24:247. [PMID: 39285283 PMCID: PMC11406872 DOI: 10.1186/s12880-024-01416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To evaluate early bone marrow microvascular changes in alloxan-induced diabetic rabbits using IDEAL-IQ fat quantification, texture analysis based on DCE-MRI Ktrans map, and metabolomics. MATERIALS AND METHODS 24 male Japanese rabbits were randomly divided into diabetic (n = 12) and control (n = 12) groups. All rabbits underwent sagittal MRI of the lumbar vertebrae at the 0th,4th, 8th, 12th, and 16th week, respectively. The fat fraction (FF) ratio and quantitative permeability of the lumbar bone marrow was measured. Texture parameters were extracted from DCE-MRI Ktrans map. At 16th week, lumbar vertebrae 5 and 6 were used for histological analysis. Lumbar vertebra 7 was crushed to obtain bone marrow for metabolomics research. RESULTS The FF ratio and Ktrans of the lumbar bone marrow in diabetic group were increased significantly at 16th week (t = 2.226, P = 0.02; Z = -2.721, P < 0.01). Nine texture feature parameters based on DCE-MRI Ktrans map were significantly different between the groups at the 16th week (all P < 0.05). Pathway analysis showed that diabetic bone marrow microvascular changes were mainly related to linoleic acid metabolism. Differential metabolites were correlated with the number of adipocytes, FF ratio, and permeability parameters. CONCLUSION The integration of metabolomics with texture analysis based on DCE-MRI Ktrans map may be used to evaluate diabetic bone marrow microvascular changes at an early stage. It remains to be validated in clinical studies whether the integration of metabolomics with texture analysis based on the DCE-MRI Ktrans map can effectively evaluate diabetic bone marrow.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liang Li
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuchen Yan
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Zhang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lei Hu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jun Chen
- Pharmaceutical Diagnostics, GE healthcare (China), Beijing, 100176, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Liu L, Le PT, Stohn JP, Liu H, Ying W, Baron R, Rosen CJ. Calorie restriction in mice impairs cortical but not trabecular peak bone mass by suppressing bone remodeling. J Bone Miner Res 2024; 39:1188-1199. [PMID: 38995944 PMCID: PMC11337945 DOI: 10.1093/jbmr/zjae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Calorie restriction (CR) can lead to weight loss and decreased substrate availability for bone cells. Ultimately, this can lead to impaired peak bone acquisition in children and adolescence and bone loss in adults. But the mechanisms that drive diet-induced bone loss in humans are not well characterized. To explore those in greater detail, we examined the impact of 30% CR for 4 and 8 wk in both male and female 8-wk-old C57BL/6 J mice. Body composition, areal bone mineral density (aBMD), skeletal microarchitecture by micro-CT, histomorphometric parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. After 8 wk, CR mice lost weight and exhibited lower femoral and whole-body aBMD vs ad libitum (AL) mice. By micro-CT, CR mice had lower cortical bone area fraction vs AL mice, but males had preserved trabecular bone parameters and females showed increased bone volume fraction compared to AL mice. Histomorphometric analysis revealed that CR mice had a profound suppression in trabecular as well as endocortical and periosteal bone formation in addition to reduced bone resorption compared to AL mice. Bone marrow adipose tissue was significantly increased in CR mice. In vitro, the pace of adipogenesis in bone marrow stem cells was greatly accelerated with higher markers of adipocyte differentiation and more oil red O staining, whereas osteogenic differentiation was reduced. qRT-PCR and western blotting suggested that the expression of Wnt16 and the canonical β-catenin pathway was compromised during CR. In sum, CR causes impaired peak cortical bone mass due to a profound suppression in bone remodeling. The increase in marrow adipocytes in vitro and in vivo is related to both progenitor recruitment and adipogenesis in the face of nutrient insufficiency. Long-term CR may lead to lower bone mass principally in the cortical envelope, possibly due to impaired Wnt signaling.
Collapse
Affiliation(s)
- Linyi Liu
- MaineHealth Institute for Research, Scarborough, ME 04074, United States
| | - Phuong T Le
- MaineHealth Institute for Research, Scarborough, ME 04074, United States
| | - J Patrizia Stohn
- MaineHealth Institute for Research, Scarborough, ME 04074, United States
| | - Hanghang Liu
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wangyang Ying
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, United States
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Clifford J Rosen
- MaineHealth Institute for Research, Scarborough, ME 04074, United States
| |
Collapse
|
5
|
Tariq S, Jabbar S, Ahmad A, Tariq S. Bridging the Gap: A narrative review of osteoporosis disability, adipokines, and the role of AI in postmenopausal women. Pak J Med Sci 2024; 40:1572-1577. [PMID: 39092029 PMCID: PMC11255809 DOI: 10.12669/pjms.40.7.9072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 08/04/2024] Open
Abstract
Osteoporosis is a global health concern characterized by reduced bone density and compromised bone quality, resulting in an increased risk of fractures, particularly in postmenopausal women. The assessment of bone mineral density (BMD) plays a pivotal role in diagnosing osteoporosis, as it accounts for approximately 70% of overall bone strength. The World Health Organization (WHO) has endorsed BMD measurement as a reliable method for diagnosing this condition. In Pakistan, the incidence of bone fractures is on the rise, largely attributable to an aging population and a range of contributing factors. Understanding the global and local prevalence of osteoporosis, its impact on morbidity and mortality, and the contributing factors is vital for developing effective preventive and therapeutic strategies. The role of adipokines, including chemerin, vaspin, and omentin-1, in bone metabolism is an emerging area of investigation. These adipokines play diverse roles in physiology, ranging from inflammation and metabolic regulation to cardiovascular health. Understanding their potential impact on bone health is a topic of ongoing research. The intricate relationship between bone density, bone quality, and overall bone strength is central to understanding the diagnosis and management of osteoporosis. Current innovation in machine learning and predictive model can bring revolution in the field of bone health and osteoporosis. Early identification of people with osteoporosis or risk of fracture through machine learning can prevent disability and improve the quality of life.
Collapse
Affiliation(s)
- Saba Tariq
- Saba Tariq, Department of Pharmacology & Therapeutics, University Medical and Dental College, The University of Faisalabad, Post-doctoral Fellow, University of Birmingham, England, UK
| | - Sohail Jabbar
- Sohail Jabbar, Department of Computer Science, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Awais Ahmad
- Awais Ahmad, Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sundus Tariq
- Sundus Tariq, Department of Physiology, International School of Medicine, Istanbul Medipol University, Research Institute for Health, Sciences and Technologies (SABITA), Turkey
| |
Collapse
|
6
|
Balcaen T, Benova A, de Jong F, de Oliveira Silva R, Cajka T, Sakellariou D, Tencerova M, Kerckhofs G, De Borggraeve WM. Exploring contrast-enhancing staining agents for studying adipose tissue through contrast-enhanced computed tomography. J Lipid Res 2024; 65:100572. [PMID: 38823780 PMCID: PMC11259937 DOI: 10.1016/j.jlr.2024.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Contrast-enhanced computed tomography offers a nondestructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using contrast-enhanced computed tomography but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae and bovine muscle tissue strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte gray values post-IL staining were associated with chemical distinctions between bovine muscle tissue and murine caudal vertebrae. More specific, a difference in the degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of gray value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.
Collapse
Affiliation(s)
- Tim Balcaen
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium; Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Flip de Jong
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Rodrigo de Oliveira Silva
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dimitrios Sakellariou
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Greet Kerckhofs
- Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| | - Wim M De Borggraeve
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Zhu Y, Hu Y, Pan Y, Li M, Niu Y, Zhang T, Sun H, Zhou S, Liu M, Zhang Y, Wu C, Ma Y, Guo Y, Wang L. Fatty infiltration in the musculoskeletal system: pathological mechanisms and clinical implications. Front Endocrinol (Lausanne) 2024; 15:1406046. [PMID: 39006365 PMCID: PMC11241459 DOI: 10.3389/fendo.2024.1406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Fatty infiltration denotes the anomalous accrual of adipocytes in non-adipose tissue, thereby generating toxic substances with the capacity to impede the ordinary physiological functions of various organs. With aging, the musculoskeletal system undergoes pronounced degenerative alterations, prompting heightened scrutiny regarding the contributory role of fatty infiltration in its pathophysiology. Several studies have demonstrated that fatty infiltration affects the normal metabolism of the musculoskeletal system, leading to substantial tissue damage. Nevertheless, a definitive and universally accepted generalization concerning the comprehensive effects of fatty infiltration on the musculoskeletal system remains elusive. As a result, this review summarizes the characteristics of different types of adipose tissue, the pathological mechanisms associated with fatty infiltration in bone, muscle, and the entirety of the musculoskeletal system, examines relevant clinical diseases, and explores potential therapeutic modalities. This review is intended to give researchers a better understanding of fatty infiltration and to contribute new ideas to the prevention and treatment of clinical musculoskeletal diseases.
Collapse
Affiliation(s)
- Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Traditional Chinese Medicine (TCM) Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College of Nantong University, Wuxi, Jiangsu, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University and Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| |
Collapse
|
8
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
9
|
Marinelli Busilacchi E, Morsia E, Poloni A. Bone Marrow Adipose Tissue. Cells 2024; 13:724. [PMID: 38727260 PMCID: PMC11083575 DOI: 10.3390/cells13090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Marinelli Busilacchi
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
| | - Erika Morsia
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| |
Collapse
|
10
|
Myeong JY, Jung HY, Chae HS, Cho HH, Kim DK, Jang YJ, Park JI. Protective Effects of the Postbiotic Lactobacillus plantarum MD35 on Bone Loss in an Ovariectomized Mice Model. Probiotics Antimicrob Proteins 2024; 16:541-551. [PMID: 37002419 PMCID: PMC10987357 DOI: 10.1007/s12602-023-10065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Postmenopausal osteoporosis is caused by estrogen deficiency, which impairs bone homeostasis, resulting in increased osteoclastic resorption without a corresponding increase in osteoblastic activity. Postbiotics have several therapeutic properties, including anti-obesity, anti-diabetic, anti-inflammatory, and anti-osteoporotic effects. However, the beneficial effects of the postbiotic MD35 of Lactobacillus plantarum on bone have not been studied. In this study, we demonstrated that the postbiotic L. plantarum MD35, isolated from young radish water kimchi, influences osteoclast differentiation in mouse bone marrow-derived macrophage (BMM) culture. In addition, it was effective protecting against estrogen deficiency-induced bone loss in ovariectomized (OVX) mice, an animal model of postmenopausal osteoporosis. In BMM cells, postbiotic MD35 inhibited the receptor activator of nuclear factor-kappa B of NF-κB ligand (RANKL)-induced osteoclast differentiation by attenuating the phosphorylation of extracellular signal-related kinase, significantly suppressing the resorption activity and down-regulating the expression of RANKL-mediated osteoclast-related genes. In the animal model, the oral administration of postbiotic MD35 remarkably improved OVX-induced trabecular bone loss and alleviated the destruction of femoral plate growth. Therefore, postbiotic MD35 could be a potential therapeutic candidate for postmenopausal osteoporosis by suppressing osteoclastogenesis through the regulation of osteoclast-related molecular mechanisms.
Collapse
Affiliation(s)
- Ju-Yeong Myeong
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, 61751, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hye-Yeon Jung
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, 61751, Republic of Korea
| | - Hyo-Seok Chae
- MEDINUTROL Co., Ltd., Yeonggwang, 57024, Republic of Korea
| | - Hyang Hyun Cho
- MEDINUTROL Co., Ltd., Yeonggwang, 57024, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, 62399, Republic of Korea.
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, 61751, Republic of Korea.
| |
Collapse
|
11
|
Liu N, Dong J, Li L, Zhou D, Liu F. The Function and Mechanism of Anti-Inflammatory Factor Metrnl Prevents the Progression of Inflammatory-Mediated Pathological Bone Osteolytic Diseases. J Inflamm Res 2024; 17:1607-1619. [PMID: 38495340 PMCID: PMC10942011 DOI: 10.2147/jir.s455790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Metrnl, recently identified as an adipokine, is a secreted protein notably expressed in white adipose tissue, barrier tissues, and activated macrophages. This adipokine plays a pivotal role in counteracting obesity-induced insulin resistance. It enhances adipose tissue functionality by promoting adipocyte differentiation, activating metabolic pathways, and exerting anti-inflammatory effects. Extensive research has identified Metrnl as a key player in modulating inflammatory responses and as an integral regulator of muscle regeneration. These findings position Metrnl as a promising biomarker and potential therapeutic target in treating inflammation-associated pathologies. Despite this, the specific anti-inflammatory mechanisms of Metrnl in immune-mediated osteolysis and arthritis remain elusive, warranting further investigation. In this review, we will briefly elaborate on the role of Metrnl in anti-inflammation function in inflammation-related osteolysis, arthritis, and pathological bone resorption, which could facilitate Metrnl's clinical application as a novel therapeutic strategy to prevent bone loss. While the pathogenesis of elbow stiffness remains elusive, current literature suggests that Metrnl likely exerts a pivotal role in its development.
Collapse
Affiliation(s)
- Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
12
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
13
|
Han Y, Gao H, Gan X, Liu J, Bao C, He C. Roles of IL-11 in the regulation of bone metabolism. Front Endocrinol (Lausanne) 2024; 14:1290130. [PMID: 38352248 PMCID: PMC10862480 DOI: 10.3389/fendo.2023.1290130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Bone metabolism is the basis for maintaining the normal physiological state of bone, and imbalance of bone metabolism can lead to a series of metabolic bone diseases. As a member of the IL-6 family, IL-11 acts primarily through the classical signaling pathway IL-11/Receptors, IL-11 (IL-11R)/Glycoprotein 130 (gp130). The regulatory role of IL-11 in bone metabolism has been found earlier, but mainly focuses on the effects on osteogenesis and osteoclasis. In recent years, more studies have focused on IL-11's roles and related mechanisms in different bone metabolism activities. IL-11 regulates osteoblasts, osteoclasts, BM stromal cells, adipose tissue-derived mesenchymal stem cells, and chondrocytes. It's involved in bone homeostasis, including osteogenesis, osteolysis, bone marrow (BM) hematopoiesis, BM adipogenesis, and bone metastasis. This review exams IL-11's role in pathology and bone tissue, the cytokines and pathways that regulate IL-11 expression, and the feedback regulations of these pathways.
Collapse
Affiliation(s)
| | | | - Xinling Gan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Crivaro A, Mucci J, Bondar C, Ormazabal M, Vaena E, Delpino M, Rozenfeld P. Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease. Mol Genet Metab Rep 2023; 36:100980. [PMID: 37275240 PMCID: PMC10232844 DOI: 10.1016/j.ymgmr.2023.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
Gaucher disease (GD) is caused by biallelic pathogenic variants in GBA1 gene that encodes the lysosomal enzyme glucocerebrosidase. Up to now, specific treatment for GD cannot completely reverse bone complications. Bone is composed of different cell types; including osteoblasts, osteocytes and osteoclasts. Osteoblasts are present on bone surfaces and are derived from local mesenchymal stem cells (MSCs). Depending on environment conditions, MSCs could differentiate into osteoblasts and adipocytes. Mature adipocytes-secreted adipokines and free fatty acids affect both osteoblasts and osteoclasts formation/activity and therefore mediate skeletal homeostasis. The aim of this study was to evaluate possible alterations in GD adipocyte (GD Ad) that could contribute to bone complications. MSCs were grown in adipogenic media in order to evaluate expression of differentiation markers as PPAR-γ. PPAR-γ was observed into the nucleus of GD Ad, indicating that these cells are properly stimulated. However, these cells accumulate lesser lipid droplets (LDs) than Control Ad. In order to study lipid droplet metabolism, we evaluated the lipolysis of these structures by the measurement of free glycerol in culture supernatant. Our results indicated that GD Ad had an alteration in this process, evidenced by an increase in glycerol release. We have also evaluated two enzymes involved in LDs synthesis: fatty acid synthase (FASN) and stearoyl-coenzyme A desaturase 1 (SCD1). The transcription of these genes was decreased in GD Ad, suggesting a dysfunction in the synthesis of LDs. In conclusion, our results show an alteration in LDs metabolism of GD Ad, independent of adipocyte differentiation process. This alteration would be caused by an increase in lipolysis in early stages of differentiation and also by a reduction of lipid synthesis, which could contribute with the skeletal imbalance in GD.
Collapse
Affiliation(s)
- A. Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N1489 (1900), La Plata, Argentina
| | - J.M. Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N1489 (1900), La Plata, Argentina
| | - C. Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N1489 (1900), La Plata, Argentina
| | - M. Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N1489 (1900), La Plata, Argentina
| | - E. Vaena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N1489 (1900), La Plata, Argentina
| | - M.V. Delpino
- Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - P.A. Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N1489 (1900), La Plata, Argentina
| |
Collapse
|
15
|
Wei F, Tuong ZK, Omer M, Ngo C, Asiatico J, Kinzel M, Pugazhendhi AS, Khaled AR, Ghosh R, Coathup M. A novel multifunctional radioprotective strategy using P7C3 as a countermeasure against ionizing radiation-induced bone loss. Bone Res 2023; 11:34. [PMID: 37385982 DOI: 10.1038/s41413-023-00273-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023] Open
Abstract
Radiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy. Our studies revealed that P7C3 repressed ionizing radiation (IR)-induced osteoclastic activity, inhibited adipogenesis, and promoted osteoblastogenesis and mineral deposition in vitro. We also demonstrated that rodents exposed to clinically equivalent hypofractionated levels of IR in vivo develop weakened, osteoporotic bone. However, the administration of P7C3 significantly inhibited osteoclastic activity, lipid formation and bone marrow adiposity and mitigated tissue loss such that bone maintained its area, architecture, and mechanical strength. Our findings revealed significant enhancement of cellular macromolecule metabolic processes, myeloid cell differentiation, and the proteins LRP-4, TAGLN, ILK, and Tollip, with downregulation of GDF-3, SH2B1, and CD200. These proteins are key in favoring osteoblast over adipogenic progenitor differentiation, cell matrix interactions, and shape and motility, facilitating inflammatory resolution, and suppressing osteoclastogenesis, potentially via Wnt/β-catenin signaling. A concern was whether P7C3 afforded similar protection to cancer cells. Preliminarily, and remarkably, at the same protective P7C3 dose, a significant reduction in triple-negative breast cancer and osteosarcoma cell metabolic activity was found in vitro. Together, these results indicate that P7C3 is a previously undiscovered key regulator of adipo-osteogenic progenitor lineage commitment and may serve as a novel multifunctional therapeutic strategy, leaving IR an effective clinical tool while diminishing the risk of adverse post-IR complications. Our data uncover a new approach for the prevention of radiation-induced bone damage, and further work is needed to investigate its ability to selectively drive cancer cell death.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Mahmoud Omer
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Annette R Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
16
|
Liu Y, Zeng Y, Lu J, Zhang X, Zhang Z, Li H, Liu P, Ma B, Gu Y, Song L. Correlation of hemoglobin with osteoporosis in elderly Chinese population: A cross-sectional study. Front Public Health 2023; 11:1073968. [PMID: 37124822 PMCID: PMC10133547 DOI: 10.3389/fpubh.2023.1073968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction In the elder population, both low hemoglobin (Hb)/anemia and osteoporosis (OP) are highly prevalent. However, the relationship between Hb and OP is still poorly understood. This study was to evaluate the correlation between Hb and OP in Chinese elderly population. Methods One thousand and sisty-eight individuals aged 55-85 years were enrolled into this cross-sectional study during June 2019-November 2019. Data on the demographics and clinical characteristics were recorded. Detections of complete blood count, liver/kidney function, glucose metabolism and lipid profile, and thoracolumbar X-ray were performed, and bone mineral density (BMD) at lumbar spine 1-4, femur neck, and total hip was measured by dual-energy X-ray absorptiometry (DXA). Univariate and multivariate linear regression analyses were employed to evaluate the correlation between Hb with BMD T-score. Logistic regression analysis was performed to access the correlation between different Hb levels and the odds ratio (OR) for OP. Results Compared with non-OP group, OP patients had lower level of Hb. Univariate linear regression analysis indicated Hb level was positively related to the BMD of lumbar spine 1-4, femur neck and total hip, and this relationship remained after adjusting confounding variables [gender, age, body mass index (BMI), diabetes mellitus (DM) and morphological vertebral fracture]. Logistic regression analysis showed the ORs for OP decreased with the increase of Hb. Compared with the subjects with the lowest quartile of Hb, the OR for OP in the highest quartile group was 0.60 (0.41-0.89) after adjusting for gender, age and BMI, and the OR for OP was 0.62 (0.41-0.92) after further adjustment for gender, age, BMI, DM, and lipid indexes. Discussion In conclusion, Lower Hb level is related to lower BMD in the elderly population. However, whether Hb level could be used to predict the risk of OP needs to be further determined in more longitudinal clinical studies.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Yue Zeng
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Jun Lu
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoya Zhang
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Zikai Zhang
- Division of Science and Research, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huijuan Li
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Peipei Liu
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ma
- Division of Spine, Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiqun Gu
- Ganquan Community Health Service Center, Shanghai, China
| | - Lige Song
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lige Song,
| |
Collapse
|
17
|
Xu L, Gong Y, Zhao Q, Blake GM, Li K, Zhang Y, Liu Q, Li C, Cheng X. Risk Factors Associated with Bone Marrow Adiposity Deposition in Postmenopausal Women in the CASH China Study. Diabetes Metab Syndr Obes 2023; 16:1167-1176. [PMID: 37139348 PMCID: PMC10149774 DOI: 10.2147/dmso.s401910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/16/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose To investigated the factors that influence BMAC. Patients and Methods Quantitative computed tomography (QCT) and magnetic resonance imaging (MRI) were applied to measure abdominal fat areas, liver fat content, erector muscle fat content, and BMAC of the L2-4 vertebrae. Sex hormone, adipokine, and inflammatory factor levels were measured on the same day. Results Although age, erector muscle fat content, estradiol, testosterone, and adiponectin/leptin levels showed correlations with BMAC in the correlation analysis, the equations obtained from the whole population by multivariate analysis were unclear. Patients were stratified according to BMAC quartiles, and differences were found in vBMD, age, estradiol, testosterone, and erector muscle fat content among the four quartiles. Logistic analyses confirmed that age, estradiol/testosterone ratio, and TNF-α had independent effects on BMAC in all quartiles. In addition, height was related to higher BMAC quartiles, and glucose was related to lower BMAC quartiles. Conclusion Compared to other body fats, BMAC is a unique fat depot. Age, estradiol/testosterone ratio, and TNF-α are all key influencing factors related to BMAC in postmenopausal women. Furthermore, height and glucose levels were related to BMAC in the higher and lower BMAC quartiles, respectively.
Collapse
Affiliation(s)
- Li Xu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
| | - Yanping Gong
- Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China
| | - Qian Zhao
- International Medical Center, Sichuan University West China Hospital, Chengdu, People’s Republic of China
| | - Glen M Blake
- Biomedical Engineering Department, King’s College London, London, UK
| | - Kai Li
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
| | - Yong Zhang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
| | - Qianqian Liu
- Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China
| | - Chunlin Li
- Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China
- Chunlin Li, Department of Endocrinology, the Second Medical Center, the Chinese People’s Liberation Army General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, 100853, People’s Republic of China, Email
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, People’s Republic of China
- Correspondence: Xiaoguang Cheng, Department of Radiology, Beijing Jishuitan Hospital, Beijing, 100035, People’s Republic of China, Email
| |
Collapse
|
18
|
Karadeniz F, Oh JH, Jang MS, Seo Y, Kong CS. Libanoridin Isolated from Corydalis heterocarpa Inhibits Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2022; 24:ijms24010254. [PMID: 36613696 PMCID: PMC9820566 DOI: 10.3390/ijms24010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Bone marrow adiposity is a complication in osteoporotic patients. It is a result of the imbalance between adipogenic and osteogenic differentiation of bone marrow cells. Phytochemicals can alleviate osteoporotic complications by hindering bone loss and decreasing bone marrow adiposity. Corydalis heterocarpa is a biennial halophyte with reported bioactivities, and it is a source of different coumarin derivatives. Libanoridin is a coumarin isolated from C. heterocarpa, and the effect of libanoridin on adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) was evaluated in the present study. Cells were induced to undergo adipogenesis, and their intracellular lipid accumulation and expression of adipogenic markers were observed under libanoridin treatment. Results showed that 10 μM libanoridin-treated adipocytes accumulated 44.94% less lipid compared to untreated adipocytes. In addition, mRNA levels of PPARγ, C/EBPα, and SREBP1c were dose-dependently suppressed with libanoridin treatment, whereas only protein levels of PPARγ were decreased in the presence of libanoridin. Fluorescence staining of adipocytes also revealed that cells treated with 10 μM libanoridin expressed less PPARγ compared to untreated adipocytes. Protein levels of perilipin and leptin, markers of mature adipocytes, were also suppressed in adipocytes treated with 10 μM libanoridin. Analysis of MAPK phosphorylation levels showed that treatment with libanoridin inhibited the activation of p38 and JNK MAPKs observed by decreased levels of phosphorylated p38 and JNK protein. It was suggested that libanoridin inhibited adipogenic differentiation of hBM-MSCs via suppressing MAPK-mediated PPARγ signaling. Future studies revealing the anti-adipogenic effects of libanoridin in vivo and elucidating its action mechanism will pave the way for libanoridin to be utilized as a nutraceutical with anti-osteoporotic properties.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Nutritional Education, Graduate School of Education, Silla University, Busan 46958, Republic of Korea
| | - Mi Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Correspondence: ; Tel.: +82-51-999-5429
| |
Collapse
|
19
|
Liang B, Burley G, Lin S, Shi YC. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett 2022; 27:72. [PMID: 36058940 PMCID: PMC9441049 DOI: 10.1186/s11658-022-00371-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractOsteoporotic fractures lead to increased disability and mortality in the elderly population. With the rapid increase in the aging population around the globe, more effective treatments for osteoporosis and osteoporotic fractures are urgently required. The underlying molecular mechanisms of osteoporosis are believed to be due to the increased activity of osteoclasts, decreased activity of osteoblasts, or both, which leads to an imbalance in the bone remodeling process with accelerated bone resorption and attenuated bone formation. Currently, the available clinical treatments for osteoporosis have mostly focused on factors influencing bone remodeling; however, they have their own limitations and side effects. Recently, cytokine immunotherapy, gene therapy, and stem cell therapy have become new approaches for the treatment of various diseases. This article reviews the latest research on bone remodeling mechanisms, as well as how this underpins current and potential novel treatments for osteoporosis.
Collapse
|
20
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
21
|
Lee SJ, Jang SA, Kim SC, Ryuk JA, Ha H. Lophatherum gracile Bronghiart Suppresses Receptor Activator of Nuclear Factor Kappa-B Ligand-Stimulated Osteoclastogenesis and Prevents Ovariectomy-Induced Osteoporosis. Int J Mol Sci 2022; 23:ijms232213942. [PMID: 36430416 PMCID: PMC9699449 DOI: 10.3390/ijms232213942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lophatherum gracile Bronghiart, used in traditional herbal medicine, has many biological properties including antiviral, antipyretic, antitumor, vasorelaxation, and neutrophilic inflammatory effects. However, its modulatory effects on bone metabolism have not been investigated previously. In this study, we examined the effects of a water extract of the leaves of L. gracile (WELG) on osteoclast differentiation and bone loss, and explored its underlying mechanisms. We found that WELG inhibits osteoclastogenesis by suppressing both receptor activator of nuclear factor-κB ligand (RANKL)-induced early activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB)- and RANKL-induced modulation of the positive and negative regulators of osteoclastogenesis in osteoclast precursors. In vivo study demonstrated that WELG protects against bone loss, weight gain, and fat accumulation without affecting uterine atrophy in an ovariectomy-induced postmenopausal osteoporosis mice model. In addition, photochemical analysis of WELG identified active constituents known to have bone-protective effects. Overall, the results of this study suggest that WELG can be a potential candidate for therapy and prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sung-Ju Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Seon-A Jang
- Future Technology Research Center, KT&G Corporation, 30, Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
- Correspondence: ; Tel.: +82-42-868-9367
| |
Collapse
|
22
|
Harnett MM, Doonan J, Lumb FE, Crowe J, Damink RO, Buitrago G, Duncombe-Moore J, Wilkinson DI, Suckling CJ, Selman C, Harnett W. The parasitic worm product ES-62 protects the osteoimmunology axis in a mouse model of obesity-accelerated ageing. Front Immunol 2022; 13:953053. [PMID: 36105811 PMCID: PMC9465317 DOI: 10.3389/fimmu.2022.953053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1β in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.
Collapse
Affiliation(s)
- Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roel Olde Damink
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Josephine Duncombe-Moore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Debbie I. Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
23
|
Wang B, Zhan Y, Yan L, Hao D. How zoledronic acid improves osteoporosis by acting on osteoclasts. Front Pharmacol 2022; 13:961941. [PMID: 36091799 PMCID: PMC9452720 DOI: 10.3389/fphar.2022.961941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis is called a silent disease, because it is difficult to detect until comprehensive examinations for osteoporosis are performed or osteoporotic fractures occur. Zoledronic acid is currently the first-line anti-osteoporotic drug, with good efficacy and treatment compliance. A major advantage of zoledronic acid is that intravenous zoledronic acid often guarantees a therapeutic effect for up to 1 year after infusion. The reasons why zoledronic acid is effective in improving osteoporosis are that it can inhibit osteoclast differentiation and induce osteoclast apoptosis, thus suppressing bone resorption and increasing bone density. The story between zoledronic acid and osteoclasts has been written long time ago. Both the canonical receptor activator of the receptor activator of nuclear factor-κB ligand (RANKL) pathway and the non-canonical Wnt pathway are the main pathways by which zoledronic acid inhibits osteoclast differentiation. Farnesyl pyrophosphate synthase (FPPS), reactive oxygen species (ROS), and ferroptosis that was first proposed in 2012, are all considered to be closely associated with zoledronic acid-induced osteoclast apoptosis. Here, we provide a brief review of the recent progress on the study of zoledronic acid and osteoclasts, and hope to elaborate how zoledronic acid improves osteoporosis by acting on osteoclasts.
Collapse
Affiliation(s)
- Biao Wang
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
| | - Yi Zhan
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- The Sceond Clinical Medical College of Shaanxi University of Chinese Medicine, Xi’an, China
| | - Liang Yan
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dingjun Hao, ; Liang Yan,
| | - Dingjun Hao
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dingjun Hao, ; Liang Yan,
| |
Collapse
|
24
|
Krammer UD, Tschida S, Berner J, Lilja S, Switzeny OJ, Hippe B, Rust P, Haslberger AG. MiRNA-based "fitness score" to assess the individual response to diet, metabolism, and exercise. J Int Soc Sports Nutr 2022; 19:455-473. [PMID: 35937778 PMCID: PMC9351578 DOI: 10.1080/15502783.2022.2106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Regular, especially sustained exercise plays an important role in the prevention and treatment of multiple chronic diseases. Some of the underlying molecular and cellular mechanisms behind the adaptive response to physical activity are still unclear, but recent findings suggest a possible role of epigenetic mechanisms, especially miRNAs, in the progression and management of exercise-related changes. Due to the combination of the analysis of epigenetic biomarkers (miRNAs), the intake of food and supplements, and genetic dispositions, a "fitness score" was evaluated to assess the individual response to nutrition, exercise, and metabolic influence. Methods In response to a 12-week sports intervention, we analyzed genetic and epigenetic biomarkers in capillary blood from 61 sedentary, healthy participants (66.1% females, 33.9% males, mean age 33 years), including Line-1 methylation, three SNPs, and ten miRNAs using HRM and qPCR analysis. These biomarkers were also analyzed in a healthy, age- and sex-matched control group (n, 20) without intervention. Food frequency intake, including dietary supplement intake, and general health questionnaires were surveyed under the supervision of trained staff. Results Exercise training decreased the expression of miR-20a-5p, -22-5p, and -505-3p (p < 0.02) and improved the "fitness score," which estimates eight different lifestyle factors to assess, nutrition, inflammation, cardiovascular fitness, injury risk, regeneration, muscle and hydration status, as well as stress level. In addition, we were able to determine correlations between individual miRNAs, miR-20a-5p, -22-5p, and -101-3p (p < 0.04), and the genetic predisposition for endurance and/or strength and obesity risk (ACE, ACTN3, and FTO), as well as between miRNAs and the body composition (p < 0.05). MiR-19b-3p and -101-3p correlated with the intake of B vitamins. Further, miR-19b-3p correlated with magnesium and miR-378a-3p with iron intake (p < 0.05). Conclusions In summary, our results indicate that a combined analysis of several biomarkers (miRNAs) can provide information about an individual's training adaptions/fitness, body composition, nutritional needs, and possible recovery. In contrast to most studies using muscle biopsies, we were able to show that these biomarkers can also be measured using a minimally invasive method.
Collapse
Affiliation(s)
| | - Sylvia Tschida
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Julia Berner
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Stephanie Lilja
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | | - Berit Hippe
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- HealthBioCare GmbH, Vienna, Austria
| | - Petra Rust
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | |
Collapse
|
25
|
Effects of Metformin on Bone Mineral Density and Adiposity-Associated Pathways in Animal Models with Type 2 Diabetes Mellitus: A Systematic Review. J Clin Med 2022; 11:jcm11144193. [PMID: 35887957 PMCID: PMC9323116 DOI: 10.3390/jcm11144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, there have been investigations on metformin (Met) as a potential treatment for bone diseases such as osteoporosis, as researchers have outlined that type 2 diabetes mellitus (T2DM) poses an increased risk of fractures. Hence, this systematic review was conducted according to the 2020 PRISMA guidelines to evaluate the evidence that supports the bone-protective effects of metformin on male animal models with T2DM. Five databases—Google Scholar, PubMed, Wiley Online Library, SCOPUS, and ScienceDirect—were used to search for original randomized controlled trials published in English with relevant keywords. The search identified 18 articles that matched the inclusion criteria and illustrated the effects of Met on bone. This study demonstrates that Met improved bone density and reduced the effects of T2DM on adiposity formation in the animal models. Further research is needed to pinpoint the optimal dosage of Met required to exhibit these therapeutic effects.
Collapse
|
26
|
Salmi A, Quacquarelli F, Chauveau C, Clabaut A, Broux O. An integrative bioinformatics approach to decipher adipocyte-induced transdifferentiation of osteoblast. Genomics 2022; 114:110422. [PMID: 35817314 DOI: 10.1016/j.ygeno.2022.110422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022]
Abstract
In human, bone loss is associated with increased marrow adipose tissue and recent data suggest that medullary adipocytes could play a role in osteoporosis by acting on neighboring bone-forming osteoblasts. Supporting this hypothesis, we previously showed, in a coculture model based on human bone marrow stromal cells, that factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this work, we employed an original integrative bioinformatics approach connecting proteomic and transcriptomic data from adipocytes and osteoblasts, respectively, to investigate the mechanisms underlying their crosstalk. Our analysis identified a total of 271 predicted physical interactions between adipocyte-secreted proteins and osteoblast membrane protein coding genes and proposed three pathways for their potential contribution to osteoblast transdifferentiation, the PI3K-AKT, the JAK2-STAT3 and the SMAD pathways. Our findings demonstrated the effectiveness of our integrative omics strategy to decipher cell-cell communication events.
Collapse
Affiliation(s)
- Ayyoub Salmi
- Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France, Univ. Lille F-59000, Marrow Adiposity and Bone Lab - MABLab, ULR 4490 Lille, France
| | - Federica Quacquarelli
- Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France, Univ. Lille F-59000, Marrow Adiposity and Bone Lab - MABLab, ULR 4490 Lille, France
| | - Christophe Chauveau
- Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France, Univ. Lille F-59000, Marrow Adiposity and Bone Lab - MABLab, ULR 4490 Lille, France
| | - Aline Clabaut
- Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France, Univ. Lille F-59000, Marrow Adiposity and Bone Lab - MABLab, ULR 4490 Lille, France
| | - Odile Broux
- Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France, Univ. Lille F-59000, Marrow Adiposity and Bone Lab - MABLab, ULR 4490 Lille, France.
| |
Collapse
|
27
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania
| |
Collapse
|
28
|
Soy-whey Dual-protein Alleviates Osteoporosis of Ovariectomized Rats via Regulating Bone Fat Metabolism through Gut-Liver-Bone Axis. Nutrition 2022; 103-104:111723. [DOI: 10.1016/j.nut.2022.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022]
|
29
|
Huang HB, Luo HT, Wei NN, Liu ML, He F, Yang W, Dong J, Yang XF, Li FR. Integrative analysis reveals a lineage-specific circular RNA landscape for adipo-osteogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2022; 13:106. [PMID: 35279206 PMCID: PMC8917624 DOI: 10.1186/s13287-022-02792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background The balance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) is critical to skeletal development and diseases. As a research hotspot, circular RNAs (circRNAs) have expanded our understanding of a hidden layer of the transcriptome. Yet, their roles during adipo-osteogenesis remain poorly described. Methods The identity of human MSCs derived from bone marrow and adipose were first determined by flow cytometry, cellular staining, and quantitative polymerase chain reaction (qPCR). Multi-strategic RNA-sequencing was performed using Poly A, RiboMinus and RiboMinus/RNase R methods. Integrative analysis was performed to identify lineage-specific expressed circRNAs. The structural and expressional characteristics were identified by Sanger sequencing and qPCR, respectively. The regulatory effects of adipogenesis-specific circ-CRLF1 were confirmed using siRNA transcfection and qPCR. Results We generated a whole transcriptome map during adipo-osteogenesis based on 10 Poly A, 20 RiboMinus and 20 RiboMinus/ RNase R datasets. A total of 31,326 circRNAs were identified and quantified from ~ 3.4 billion paired-end reads. Furthermore, the integrative analysis revealed that 1166 circRNA genes exhibited strong lineage-specific expression patterns. Their host genes were enriched in distinct biological functions, such as cell adhesion, cytokine signaling, and cell division. We randomly selected and validated the back-spliced junction sites and expression patterns of 12 lineage-specific circRNAs. Functional analysis indicated that circ-CRLF1 negatively regulated adipogenesis. Conclusions Our integrative analysis reveals an accurate and generally applicable lineage-specific circRNA landscape for adipo-osteogenesis of MSCs and provides a potential therapeutic target, circ-CRLF1, for the treatment of skeleton-related disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02792-5.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hai-Tao Luo
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na-Na Wei
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Miao-Ling Liu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China. .,Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China. .,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
30
|
Dracunculin Inhibits Adipogenesis in Human Bone Marrow-Derived Mesenchymal Stromal Cells by Activating AMPK and Wnt/β-Catenin Signaling. Int J Mol Sci 2022; 23:ijms23020653. [PMID: 35054838 PMCID: PMC8776130 DOI: 10.3390/ijms23020653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Increased bone marrow adiposity is widely observed in patients with obesity and osteoporosis and reported to have deleterious effects on bone formation. Dracunculin (DCC) is a coumarin isolated from Artemisia spp. but, until now, has not been studied for its bioactive potential except antitrypanosomal activity. In this context, current study has reported the anti-adipogenic effect of DCC in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). DCC dose-dependently inhibited the lipid accumulation and expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) in hBM-MSCs induced to undergo adipogenesis. To elucidate its action mechanism, the effect of DCC on Wnt/β-catenin and AMPK pathways was examined. Results showed that DCC treatment activated Wnt/β-catenin signaling pathway via AMPK evidenced by increased levels of AMPK phosphorylation and Wnt10b expression after DCC treatment. In addition, DCC treated adipo-induced hBM-MSCs exhibited significantly increased nuclear levels of β-catenin compared with diminished nuclear PPARγ levels. In conclusion, DCC was shown to be able to hinder adipogenesis by activating the β-catenin via AMPK, providing potential utilization of DCC as a nutraceutical against bone marrow adiposity.
Collapse
|
31
|
Matsushita Y, Ono W, Ono N. Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Front Endocrinol (Lausanne) 2022; 13:882297. [PMID: 35528017 PMCID: PMC9075612 DOI: 10.3389/fendo.2022.882297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow contains precursor cells for osteoblasts and adipocytes in the stromal compartment. Bone marrow adipose tissue (BMAT) is an important constituent of the bone marrow that is particularly abundant in adults. BMAT is composed of the proximal "regulated" BMAT containing individual adipocytes interspersed within actively hematopoietic marrow, and the distal "constitutive" BMAT containing large adipocytes in the area of low hematopoiesis. Historically, bone marrow adipocytes were regarded as one of the terminal states of skeletal stem cells, which stand at the pinnacle of the lineage and possess trilineage differentiation potential into osteoblasts, chondrocytes and adipocytes. Recent single-cell RNA-sequencing studies uncover a discrete group of preadipocyte-like cells among bone marrow stromal cells (BMSCs), and recent mouse genetic lineage-tracing studies reveal that these adipocyte precursor cells possess diverse functions in homeostasis and regeneration. These adipogenic subsets of BMSCs are abundant in the central marrow space and can directly convert not only into lipid-laden adipocytes but also into skeletal stem cell-like cells and osteoblasts under regenerative conditions. It remains determined whether there are distinct adipocyte precursor cell types contributing to two types of BMATs. In this short review, we discuss the functions of the recently identified subsets of BMSCs and their trajectory toward marrow adipocytes, which is influenced by multiple modes of cell-autonomous and non-cell autonomous regulations.
Collapse
|
32
|
Shim KS, Gu DR, Hwang YH, Yang H, Ryuk JA, Ha H. Water Extract of Fritillariae thunbergii Bulbus Inhibits RANKL-Mediated Osteoclastogenesis and Ovariectomy-Induced Trabecular Bone Loss. Molecules 2021; 27:molecules27010169. [PMID: 35011398 PMCID: PMC8746409 DOI: 10.3390/molecules27010169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/03/2022] Open
Abstract
Fritillariae thunbergii bulbus has been widely used to treat symptoms of coughs and airway congestion in the chest due to pathological colds and damp phlegm in traditional Chinese medicine. Despite its long history of traditional use, its pharmacological activities on osteoclastogenesis and osteoporosis have not been evaluated. This study investigated the effects of the water extract of Fritillariae thunbergii bulbus (WEFT) on osteoclast differentiation in bone marrow-derived macrophage cells and on ovariectomy (OVX)-induced osteoporosis in mice. We found that WEFT significantly inhibited osteoclastogenesis by downregulating the receptor activator of the NF-κB ligand (RANKL) signaling-induced nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) expression. In an OVX-induced osteoporosis model, WEFT significantly prevented the OVX-induced trabecular loss of femurs, accompanied by a reduction in fat accumulation in the bone marrow and liver. In addition, WEFT significantly prevented weight gain and gonadal fat gain without recovering uterine atrophy. Using ultrahigh-performance liquid chromatography-tandem mass spectrometry, seven alkaloids (peimisine glucoside, yibeissine, peiminoside, sipeimine-glucoside, peimisine, peimine, and peiminine) were identified in WEFT. The results of this study suggest that WEFT can be a potential pharmacological candidate to reduce menopausal osteoporosis and menopause-related symptoms, such as fat accumulation.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Korea; (K.-S.S.); (D.-R.G.); (Y.-H.H.); (H.Y.); (J.-A.R.)
| | - Dong-Ryun Gu
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Korea; (K.-S.S.); (D.-R.G.); (Y.-H.H.); (H.Y.); (J.-A.R.)
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Korea; (K.-S.S.); (D.-R.G.); (Y.-H.H.); (H.Y.); (J.-A.R.)
- Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Korea
| | - Hyun Yang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Korea; (K.-S.S.); (D.-R.G.); (Y.-H.H.); (H.Y.); (J.-A.R.)
| | - Jin-Ah Ryuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Korea; (K.-S.S.); (D.-R.G.); (Y.-H.H.); (H.Y.); (J.-A.R.)
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Korea; (K.-S.S.); (D.-R.G.); (Y.-H.H.); (H.Y.); (J.-A.R.)
- Correspondence: ; Tel.: +82-42-868-9367
| |
Collapse
|
33
|
Xu X, Chu Y, Zhang Y, Li G, Yang P, Zhang J, Duan J, Yang H, Xu H, Wang M. Chondrocyte Adipogenic Differentiation in Softening Osteoarthritic Cartilage. J Dent Res 2021; 101:655-663. [PMID: 34903082 DOI: 10.1177/00220345211057539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A chondrocyte-to-osteoblast lineage continuum exists in the growth plate. Adipogenic differentiation of chondrocytes in vivo should be investigated. Here, unilateral anterior crossbite (UAC), which can induce osteoarthritic lesions in the temporomandibular joint (TMJ), was applied to 6-wk-old C57BL/6 mice. Matrix loss in TMJ cartilage was obvious, as demonstrated by safranin O staining, and the condylar cartilage elastic modulus values, detected by using atomic force microscopy (AFM), were reduced, indicating cartilage softening that might be linked with loss of the highly charged proteoglycan. By crossing the Rosa26/tdTomato (TdT) mice with Sox9;CreERT2 mice or with Col10;CreERT2 mice, we obtained the Sox9-TdT and Col10-TdT strains, respectively, in which the Sox9- or Col10-expressing cells, accordingly, were labeled by TdT. A few TdT-labeled cells in both strains expressed AdipoQ or DMP-1. The Sox9-TdT+AdipoQ+ cells were primarily located in the deep zone cartilage and then in the whole cartilage. Col10-TdT+AdipoQ+ cells, Sox9-TdT+DMP-1+ cells, and Col10-TdT+DMP-1+ cells were located in the deep zone region. UAC promoted AdipoQ and DMP-1 expression in cartilage. The percentages of Sox9-TdT+AdipoQ+ and Col10-TdT+AdipoQ+ cells to Sox9-TdT+ and Col10-TdT+ cells, respectively, were increased (both P < 0.05), implying that more chondrocytes were undergoing adipogenic differentiation in the UAC group, the cartilage of which was softened. The percentages of Sox9-TdT+DMP-1+ and Col10-TdT+DMP-1+ cells to Sox9-TdT+ cells and Col10-TdT+ cells, respectively, were increased (both P < 0.05), consistent with our report that UAC enhanced deep zone cartilage calcification, causing stiffening of the deep zone cartilage. Our present data demonstrated that TMJ chondrocyte descendants can become adipogenic in vivo in addition to becoming osteogenic. This potential was promoted in osteoarthritic cartilage, in which deep zone cartilage calcification-associated cartilage stiffening and proteoglycan loss-associated cartilage softening were both stimulated.
Collapse
Affiliation(s)
- X Xu
- School of Stomatology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Fourth Military Medical University, Xi'an, China
| | - Y Chu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Fourth Military Medical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Y Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Fourth Military Medical University, Xi'an, China
| | - G Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - P Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, Guangdong, China
| | - J Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Fourth Military Medical University, Xi'an, China
| | - J Duan
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Fourth Military Medical University, Xi'an, China
| | - H Yang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Fourth Military Medical University, Xi'an, China
| | - H Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - M Wang
- School of Stomatology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
34
|
Kirk AB, Michelsen-Correa S, Rosen C, Martin CF, Blumberg B. PFAS and Potential Adverse Effects on Bone and Adipose Tissue Through Interactions With PPARγ. Endocrinology 2021; 162:6364127. [PMID: 34480479 PMCID: PMC9034324 DOI: 10.1210/endocr/bqab194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/06/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a widely dispersed, broad class of synthetic chemicals with diverse biological effects, including effects on adipose and bone differentiation. PFAS most commonly occur as mixtures and only rarely, if ever, as single environmental contaminants. This poses significant regulatory questions and a pronounced need for chemical risk assessments, analytical methods, and technological solutions to reduce the risk to public and environmental health. The effects of PFAS on biological systems may be complex. Each may have several molecular targets initiating multiple biochemical events leading to a number of different adverse outcomes. An exposure to mixtures or coexposures of PFAS complicates the picture further. This review illustrates how PFAS target peroxisome proliferator-activated receptors. Additionally, we describe how such activation leads to changes in cell differentiation and bone development that contributes to metabolic disorder and bone weakness. This discussion sheds light on the importance of seemingly modest outcomes observed in test animals and highlights why the most sensitive end points identified in some chemical risk assessments are significant from a public health perspective.
Collapse
Affiliation(s)
- Andrea B Kirk
- Correspondence: Andrea Kirk, PhD, US EPA Headquarters, William Jefferson Clinton Bldg, 1200 Pennsylvania Ave NW, Mail Code 5201P, Washington, DC 20460, USA.
| | - Stephani Michelsen-Correa
- EPA Office of Chemical Safety and Pollution Prevention, Biopesticides and Pollution Prevention Division, Washington, District of Columbia 20460, USA
| | - Cliff Rosen
- Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | - Bruce Blumberg
- University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
35
|
Dixit M, Duran‐Ortiz S, Yildirim G, Poudel SB, Louis LD, Bartke A, Schaffler MB, Kopchick JJ, Yakar S. Induction of somatopause in adult mice compromises bone morphology and exacerbates bone loss during aging. Aging Cell 2021; 20:e13505. [PMID: 34811875 PMCID: PMC8672783 DOI: 10.1111/acel.13505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Somatopause refers to the gradual declines in growth hormone (GH) and insulin‐like growth factor‐1 throughout aging. To define how induced somatopause affects skeletal integrity, we used an inducible GH receptor knockout (iGHRKO) mouse model. Somatopause, induced globally at 6 months of age, resulted in significantly more slender bones in both male and female iGHRKO mice. In males, induced somatopause was associated with progressive expansion of the marrow cavity leading to significant thinning of the cortices, which compromised bone strength. We report progressive declines in osteocyte lacunar number, and increases in lacunar volume, in iGHRKO males, and reductions in lacunar number accompanied by ~20% loss of overall canalicular connectivity in iGHRKO females by 30 months of age. Induced somatopause did not affect mineral/matrix ratio assessed by Raman microspectroscopy. We found significant increases in bone marrow adiposity and high levels of sclerostin, a negative regulator of bone formation in iGHRKO mice. Surprisingly, however, despite compromised bone morphology, osteocyte senescence was reduced in the iGHRKO mice. In this study, we avoided the confounded effects of constitutive deficiency in the GH/IGF‐1 axis on the skeleton during growth, and specifically dissected its effects on the aging skeleton. We show here, for the first time, that induced somatopause compromises bone morphology and the bone marrow environment.
Collapse
Affiliation(s)
- Manisha Dixit
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| | - Silvana Duran‐Ortiz
- Edison Biotechnology Institute and Dept. of Biomedical Sciences Ohio University Athens OH USA
| | - Godze Yildirim
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| | - Leeann D. Louis
- Department of Biomedical Engineering City College of New York New York NY USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine Springfield IL USA
| | | | - John J. Kopchick
- Edison Biotechnology Institute and Dept. of Biomedical Sciences Ohio University Athens OH USA
| | - Shoshana Yakar
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| |
Collapse
|
36
|
Choi LY, Kim MH, Yang WM. Promotion of osteogenesis by Sweroside via BMP2-involved signaling in postmenopausal osteoporosis. Phytother Res 2021; 35:7050-7063. [PMID: 34818696 DOI: 10.1002/ptr.7336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023]
Abstract
Phlomis umbrosa has been traditionally used for bone diseases in traditional Korean Medicine. Sweroside (SOS), marker compounds of P. umbrosa, has been known to promote osteoblast differentiation. In this study, ameliorative effects of SOS on osteoporosis and potential target pathway were investigated. Ovariectomized mice were administered three doses of SOS three times a week for 4 weeks after inducing osteoporosis. Bone mineral content (BMC) and bone mineral density (BMD) were analyzed by dual energy X-ray absorptiometry. A human osteosarcoma cell line (SaOS-2) was differentiated to clarify the promoting effects of SOS on osteoblast differentiation and bone formation. Osteoblastic bone-forming markers were evaluated in lumbar vertebrae (LV) and mineralized SaOS-2 cells. SOS markedly elevated BMC and BMD levels and attenuated the bone marrow adipocytes in the femoral shaft. SOS increased the formation of bone matrix in SaOS-2 cells. Bone morphogenetic protein-2 (BMP2) and runt-related transcription factor 2 (CBFA1) in LV and SaOS-2 cells were up-regulated by SOS. SOS increased alkaline phosphatase (ALPL), osteopontin (SPP1), and bone sialoprotein-1 (BSPH1). In conclusion, SOS induced the formation of mineralized bone matrix by regulating BMP2/CBFA1-mediated molecules. Therefore, SOS could be a therapeutic compound of treatment for osteoporosis by producing the new bone matrix.
Collapse
Affiliation(s)
- La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Freire EBL, d’Alva CB, Madeira MP, Lima GEDCP, Montenegro APDR, Fernandes VO, Montenegro Junior RM. Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9724. [PMID: 34574647 PMCID: PMC8465110 DOI: 10.3390/ijerph18189724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
Congenital Generalized Lipodystrophy (CGL) is a rare syndrome characterized by the almost total absence of subcutaneous adipose tissue due to the inability of storing lipid in adipocytes. Patients present generalized lack of subcutaneous fat and normal to low weight. They evolve with severe metabolic disorders, non-alcoholic fatty liver disease, early cardiac abnormalities, and infectious complications. Although low body weight is a known risk factor for osteoporosis, it has been reported that type 1 and 2 CGL have a tendency of high bone mineral density (BMD). In this review, we discuss the role of bone marrow tissue, adipokines, and insulin resistance in the setting of the normal to high BMD of CGL patients. Data bases from Pubmed and LILACS were searched, and 113 articles published until 10 April 2021 were obtained. Of these, 76 were excluded for not covering the review topic. A manual search for additional literature was performed using the bibliographies of the studies located. The elucidation of the mechanisms responsible for the increase in BMD in this unique model of insulin resistance may contribute to the understanding of the interrelationships between bone, muscle, and adipose tissue in a pathophysiological and therapeutic perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renan Magalhães Montenegro Junior
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza 60416200, CE, Brazil; (E.B.L.F.); (C.B.d.); (M.P.M.); (G.E.d.C.P.L.); (A.P.D.R.M.); (V.O.F.)
| | | |
Collapse
|
38
|
Guo D, Zhao M, Xu W, He H, Li B, Hou T. Dietary interventions for better management of osteoporosis: An overview. Crit Rev Food Sci Nutr 2021; 63:125-144. [PMID: 34251926 DOI: 10.1080/10408398.2021.1944975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a public health concern and a cause of bone loss, increased risk of skeletal fracture, and a heavy economic burden. It is common in postmenopausal women and the elderly and is impacted by dietary factors, lifestyle and some secondary factors. Although many drugs are available for the treatment of osteoporosis, these therapies are accompanied by subsequent side effects. Hence, dietary interventions are highly important to prevent osteoporosis. This review was aimed to provide a comprehensive understanding of the roles of dietary nutrients derived from natural foods and of common dietary patterns in the regulation of osteoporosis. Nutrients from daily diets, such as unsaturated fatty acids, proteins, minerals, peptides, phytoestrogens, and prebiotics, can regulate bone metabolism and reverse bone loss. Meanwhile, these nutrients generally existed in food groups and certain dietary patterns also play critical roles in skeletal health. Appropriate dietary interventions (nutrients and dietary patterns) could be primary and effective strategies to prevent and treat osteoporosis across the lifespan for the consumers and food enterprises.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Liu C, Liu AS, Zhong D, Wang CG, Yu M, Zhang HW, Xiao H, Liu JH, Zhang J, Yin K. Circular RNA AFF4 modulates osteogenic differentiation in BM-MSCs by activating SMAD1/5 pathway through miR-135a-5p/FNDC5/Irisin axis. Cell Death Dis 2021; 12:631. [PMID: 34145212 PMCID: PMC8213698 DOI: 10.1038/s41419-021-03877-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.
Collapse
Affiliation(s)
- Chao Liu
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, PR China
| | - An-Song Liu
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Da Zhong
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, PR China
| | - Cheng-Gong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan Province, PR China
| | - Mi Yu
- Medical College of University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Hao-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Han Xiao
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Jian-Hua Liu
- Department of Hematology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Ke Yin
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan Province, PR China.
| |
Collapse
|
40
|
Mechanoadaptation of the bones of mice with high fat diet induced obesity in response to cyclical loading. J Biomech 2021; 124:110569. [PMID: 34171678 DOI: 10.1016/j.jbiomech.2021.110569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
An upward trend in childhood obesity implies a great need to determine its effects, both immediate and long-term. Obesity is osteoprotective in adults, but we know very little about the effects of obesity on the growing skeleton, particularly its ability to adapt to load. The objective of this research is to assess bone mechanoadaptation in adolescent obese mice. Ten mice were fed a high-fat diet (HFD) from 4 to 16 weeks of age, while a control group of the same size received a normal diet (ND). At 14 weeks of age, right tibiae were cyclically loaded with a 12 N peak load for HFD mice and a 9 N peak load for ND mice three times a week for two weeks, resulting in equal peak strains of about 2500 microstrain. At 16 weeks of age, mice were sacrificed, and tibiae and gonadal fat pads were dissected. Fat pads were weighed as an obesity indicator, and tibiae were imaged with microCT to measure bone structure. The left tibiae (nonloaded) were subsequently decalcified, stained with osmium, and scanned to quantify marrow fat. Results showed that HFD mice had larger tibial cross-sectional areas compared to ND mice, as well as greater marrow adiposity. However, there was no significant difference in the amount of bone adaptation in the cortical or trabecular bone between the two groups. This indicates that the bones of HFD and ND mice adapt equally well to loading.
Collapse
|
41
|
Adipocyte-induced transdifferentiation of osteoblasts and its potential role in age-related bone loss. PLoS One 2021; 16:e0245014. [PMID: 33497412 PMCID: PMC7837466 DOI: 10.1371/journal.pone.0245014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
Our preliminary findings have lead us to propose bone marrow adipocyte secretions as new contributors to bone loss. Indeed, using a coculture model based on human bone marrow stromal cells, we previously showed that soluble factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this study, microarray gene expression profiling showed profound transcriptomic changes in osteoblasts following coculture and confirmed the enrichment of the adipocyte gene signature. Double immunofluorescence microscopic analyses demonstrated the coexpression of adipogenic and osteoblastic specific markers in individual cells, providing evidence for a transdifferentiation event. At the molecular level, this conversion was associated with upregulated expression levels of reprogramming genes and a decrease in the DNA methylation level. In line with these in vitro results, preliminary immunohistochemical analysis of bone sections revealed adipogenic marker expression in osteoblasts from elderly subjects. Altogether, these data suggest that osteoblast transdifferentiation could contribute to decreased bone mass upon ageing.
Collapse
|
42
|
Regeneration during Obesity: An Impaired Homeostasis. Animals (Basel) 2020; 10:ani10122344. [PMID: 33317011 PMCID: PMC7763812 DOI: 10.3390/ani10122344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Regeneration represents the biological processes that allow cells and tissues to renew and develop. During obesity, a variety of changes and reactions are seen. This includes inflammation and metabolic disorders. These obesity-induced changes do impact the regeneration processes. Such impacts that obesity has on regeneration would affect tissues and organs development and would also have consequences on the outcomes of therapies that depend on cells regeneration (such as burns, radiotherapy and leukemia) given to patients suffering from obesity. Therefore, a particular attention should be given to patients suffering from obesity in biological, therapeutic and clinical contexts that depend on regeneration ability. Abstract Obesity is a health problem that, in addition to the known morbidities, induces the generation of a biological environment with negative impacts on regeneration. Indeed, factors like DNA damages, oxidative stress and inflammation would impair the stem cell functions, in addition to some metabolic and development patterns. At the cellular and tissulaire levels, this has consequences on growth, renewal and restoration which results into an impaired regeneration. This impaired homeostasis concerns also key metabolic tissues including muscles and liver which would worsen the energy balance outcome towards further development of obesity. Such impacts of obesity on regeneration shows the need of a specific care given to obese patients recovering from diseases or conditions requiring regeneration such as burns, radiotherapy and leukemia. On the other hand, since stem cells are suggested to manage obesity, this impaired regeneration homeostasis needs to be considered towards more optimized stem cells-based obesity therapies within the context of precision medicine.
Collapse
|
43
|
Suresh S, Lee J, Noguchi CT. Effects of Erythropoietin in White Adipose Tissue and Bone Microenvironment. Front Cell Dev Biol 2020; 8:584696. [PMID: 33330462 PMCID: PMC7732496 DOI: 10.3389/fcell.2020.584696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is expressed primarily in fetal liver and adult kidney to stimulate red blood cell production. Erythropoietin receptor expression is not restricted to erythroid progenitor cells, and non-erythroid EPO activity includes immune response and bone remodeling. In bone fracture models, EPO administration promotes bone formation and accelerates bone healing. In contrast, in healthy adult mice, exogenous EPO-stimulated erythropoiesis has been concomitant with bone loss, particularly at high EPO, that may be accompanied by increased osteoclast activation. Other EPO-associated responses include reduced inflammation and loss of fat mass with high-fat diet feeding, especially in male mice. While EPO exhibited a sex-dimorphic response in regulation of fat mass and inflammation in obese mice, EPO-stimulated erythropoiesis as well as EPO-associated bone loss was comparable in males and females. EPO administration in young mice and in obese mice resulted in bone loss without increasing osteoclasts, suggesting an osteoclast-independent mechanism, while loss of endogenous EPO decreased bone development and maintenance. Ossicle formation of bone marrow stromal cell transplants showed that EPO directly regulates the balance between osteogenesis and adipogenesis. Therefore, during development, endogenous EPO contributes to normal bone development and in maintaining the balance between osteogenesis and adipogenesis in bone marrow stromal cells, while EPO treatment in mice increased erythropoiesis, promoted bone loss, decreased bone marrow adipogenesis, and increased osteoclast activity. These observations in mouse models suggest that the most prevalent use of EPO to treat anemia associated with chronic kidney disease may compromise bone health and increase fracture risk, especially at a high dose.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
44
|
Przekora A, Kazimierczak P, Wojcik M. Ex vivo determination of chitosan/curdlan/hydroxyapatite biomaterial osseointegration with the use of human trabecular bone explant: New method for biocompatibility testing of bone implants reducing animal tests. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111612. [PMID: 33321655 DOI: 10.1016/j.msec.2020.111612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Permanent orthopedic/dental implants should reveal good osseointegration, which is defined as an ability of the biomaterial to form a direct connection with the surrounding host bone tissue after its implantation into the living organism. Currently, biomaterial osseointegration is confirmed exclusively with the use of in vivo animal tests. This study presents for the first time ex vivo determination of osseointegration process using human trabecular bone explant that was drilled and filled with the chitosan/curdlan/hydroxyapatite biomaterial, followed by its long-term culture under in vitro conditions. Within this study, it was clearly proved that tested biomaterial allows for the formation of the connection with bone explant since osteoblasts, having ability to produce bone extracellular matrix (type I collagen, fibronectin), were detected at a bone-implant interface by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Importantly, in this research it was demonstrated by Live/Dead staining and CLSM imaging that human bone explants may stay alive for a long period of time (at least approx. 50 days) during their culture under in vitro conditions. Therefore, ex vivo bone explant, which is a heterogeneous tissue containing many different cell types, may serve as an excellent model to test biomaterial osseointegration during comparative and preliminary studies, reducing animal tests which is compatible with the principles of '3Rs', aiming to Replace, Reduce and Refine the use of animals wherever possible.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Paulina Kazimierczak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Michal Wojcik
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
45
|
Yang J, Ueharu H, Mishina Y. Energy metabolism: A newly emerging target of BMP signaling in bone homeostasis. Bone 2020; 138:115467. [PMID: 32512164 PMCID: PMC7423769 DOI: 10.1016/j.bone.2020.115467] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Energy metabolism is the process of generating energy (i.e. ATP) from nutrients. This process is indispensable for cell homeostasis maintenance and responses to varying conditions. Cells require energy for growth and maintenance and have evolved to have multiple pathways to produce energy. Both genetic and functional studies have demonstrated that energy metabolism, such as glucose, fatty acid, and amino acid metabolism, plays important roles in the formation and function of bone cells including osteoblasts, osteocytes, and osteoclasts. Dysregulation of energy metabolism in bone cells consequently disturbs the balance between bone formation and bone resorption. Metabolic diseases have also been reported to affect bone homeostasis. Bone morphogenic protein (BMP) signaling plays critical roles in regulating the formation and function of bone cells, thus affecting bone development and homeostasis. Mutations of BMP signaling-related genes in mice have been reported to show abnormalities in energy metabolism in many tissues, including bone. In addition, BMP signaling correlates with critical signaling pathways such as mTOR, HIF, Wnt, and self-degradative process autophagy to coordinate energy metabolism and bone homeostasis. These findings will provide a newly emerging target of BMP signaling and potential therapeutic strategies and the improved management of bone diseases. This review summarizes the recent advances in our understanding of (1) energy metabolism in regulating the formation and function of bone cells, (2) function of BMP signaling in whole body energy metabolism, and (3) mechanistic interaction of BMP signaling with other signaling pathways and biological processes critical for energy metabolism and bone homeostasis.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Bone marrow fat: friend or foe in people with diabetes mellitus? Clin Sci (Lond) 2020; 134:1031-1048. [PMID: 32337536 DOI: 10.1042/cs20200220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Global trends in the prevalence of overweight and obesity put the adipocyte in the focus of huge medical interest. This review highlights a new topic in adipose tissue biology, namely the emerging pathogenic role of fat accumulation in bone marrow (BM). Specifically, we summarize current knowledge about the origin and function of BM adipose tissue (BMAT), provide evidence for the association of excess BMAT with diabetes and related cardiovascular complications, and discuss potential therapeutic approaches to correct BMAT dysfunction. There is still a significant uncertainty about the origins and function of BMAT, although several subpopulations of stromal cells have been suggested to have an adipogenic propensity. BM adipocytes are higly plastic and have a distinctive capacity to secrete adipokines that exert local and endocrine functions. BM adiposity is abundant in elderly people and has therefore been interpreted as a component of the whole-body ageing process. BM senescence and BMAT accumulation has been also reported in patients and animal models with Type 2 diabetes, being more pronounced in those with ischaemic complications. Understanding the mechanisms responsible for excess and altered function of BMAT could lead to new treatments able to preserve whole-body homeostasis.
Collapse
|
47
|
Zhang G, Li H, Zhao W, Li M, Tian L, Ju W, Li X. miR-205 regulates bone turnover in elderly female patients with type 2 diabetes mellitus through targeted inhibition of Runx2. Exp Ther Med 2020; 20:1557-1565. [PMID: 32742387 PMCID: PMC7388399 DOI: 10.3892/etm.2020.8867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore the expression of microribonucleic acid (microRNA) (miR)-205 in bone tissues and serum of elderly female patients with type 2 diabetes mellitus (T2DM) complicated with osteoporosis (OP), and to investigate the effect of miR-205 on osteogenesis/adipogenesis of bone marrow mesenchymal stem cells (BMSCs) and its mechanism in elderly female mice with T2DM + OP. The bone tissues and serum of 24 female patients with T2DM + OP at the Third Affiliated Hospital of Qiqihar Medical University were collected as the research group, while those of 24 healthy people were collected as the control group. The expression level of miR-205 was detected in both groups via reverse transcription-polymerase chain reaction (RT-PCR). Then the elderly female mouse model of T2DM + OP was established as a model group, while normal mice of the same age were used as the control group. The mice in the model and control groups were transfected with miR-205 mimic, negative control (NC)-mimic, miR-205-inhibitor and NC-inhibitor. Alizarin red S (ARS) staining and RT-PCR were conducted after osteogenic induction for 21 days, and oil red O (ORO) staining and RT-PCR were performed after adipogenic induction for 24 days. The overexpression of miR-205 inhibited osteogenic differentiation and promoted adipogenic differentiation of BMSCs in elderly female mice with T2DM + OP, while knockdown of miR-205 promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs in elderly female mice with T2DM + OP. In addition, miR-205 was able to directly suppress the expression of its target gene RUNX family transcription factor 2 (Runx2). The expression level of miR-205 was obviously increased in female patients with T2DM + OP and the elderly female mouse model of T2DM + OP. In addition, miR-205 was able to regulate the osteogenic/adipogenic differentiation of BMSCs, and miR-205/Runx2 may be a new method and target for the treatment of female patients with T2DM + OP.
Collapse
Affiliation(s)
- Guangfeng Zhang
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Huafeng Li
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wenjie Zhao
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Min Li
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Linlin Tian
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wenwen Ju
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Xiaobing Li
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| |
Collapse
|
48
|
Winter EM, Ireland A, Butterfield NC, Haffner-Luntzer M, Horcajada MN, Veldhuis-Vlug AG, Oei L, Colaianni G, Bonnet N. Pregnancy and lactation, a challenge for the skeleton. Endocr Connect 2020; 9:R143-R157. [PMID: 32438342 PMCID: PMC7354730 DOI: 10.1530/ec-20-0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
In this review we discuss skeletal adaptations to the demanding situation of pregnancy and lactation. Calcium demands are increased during pregnancy and lactation, and this is effectuated by a complex series of hormonal changes. The changes in bone structure at the tissue and whole bone level observed during pregnancy and lactation appear to largely recover over time. The magnitude of the changes observed during lactation may relate to the volume and duration of breastfeeding and return to regular menses. Studies examining long-term consequences of pregnancy and lactation suggest that there are small, site-specific benefits to bone density and that bone geometry may also be affected. Pregnancy- and lactation-induced osteoporosis (PLO) is a rare disease for which the pathophysiological mechanism is as yet incompletely known; here, we discuss and speculate on the possible roles of genetics, oxytocin, sympathetic tone and bone marrow fat. Finally, we discuss fracture healing during pregnancy and lactation and the effects of estrogen on this process.
Collapse
Affiliation(s)
- E M Winter
- Leiden University Medical Center, Department of Internal Medicine, Division of Endocrinology, Center for Bone Quality, Leiden, the Netherlands
- Correspondence should be addressed to E M Winter:
| | - A Ireland
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - N C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Commonwealth Building, DuCane Road, London, United Kingdom
| | - M Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - M-N Horcajada
- Nestlé Research, Department of Musculoskeletal Health, Innovation EPFL Park, Lausanne, Switzerland.
| | - A G Veldhuis-Vlug
- Leiden University Medical Center, Department of Internal Medicine, Division of Endocrinology, Center for Bone Quality, Leiden, the Netherlands
- Jan van Goyen Medical Center, Department of Internal Medicine, Amsterdam, the Netherlands
| | - L Oei
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - G Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - N Bonnet
- Nestlé Research, Department of Musculoskeletal Health, Innovation EPFL Park, Lausanne, Switzerland.
| |
Collapse
|
49
|
Muruganandan S, Ionescu AM, Sinal CJ. At the Crossroads of the Adipocyte and Osteoclast Differentiation Programs: Future Therapeutic Perspectives. Int J Mol Sci 2020; 21:ijms21072277. [PMID: 32224846 PMCID: PMC7177886 DOI: 10.3390/ijms21072277] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
The coordinated development and function of bone-forming (osteoblasts) and bone-resorbing (osteoclasts) cells is critical for the maintenance of skeletal integrity and calcium homeostasis. An enhanced adipogenic versus osteogenic potential of bone marrow mesenchymal stem cells (MSCs) has been linked to bone loss associated with diseases such as diabetes mellitus, as well as aging and postmenopause. In addition to an inherent decrease in bone formation due to reduced osteoblast numbers, recent experimental evidence indicates that an increase in bone marrow adipocytes contributes to a disproportionate increase in osteoclast formation. Therefore, a potential strategy for therapeutic intervention in chronic bone loss disorders such as osteoporosis is to interfere with the pro-osteoclastogenic influence of marrow adipocytes. However, application of this approach is limited by the extremely complex regulatory processes in the osteoclastogenic program. For example, key regulators of osteoclastogenesis such as the receptor activator of nuclear factor-kappaB ligand (RANKL) and the soluble decoy receptor osteoprotegerin (OPG) are not only secreted by both osteoblasts and adipocytes, but are also regulated through several cytokines produced by these cell types. In this context, biologically active signaling molecules secreted from bone marrow adipocytes, such as chemerin, adiponectin, leptin, visfatin and resistin, can have a profound influence on the osteoclast differentiation program of hematopoietic stem cells (HSCs), and thus, hold therapeutic potential under disease conditions. In addition to these paracrine signals, adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), C/EBP beta (C/EBPβ) and peroxisome proliferator-associated receptor gamma (PPARγ) are also expressed by osteoclastogenic cells. However, in contrast to MSCs, activation of these adipogenic transcription factors in HSCs promotes the differentiation of osteoclast precursors into mature osteoclasts. Herein, we discuss the molecular mechanisms that link adipogenic signaling molecules and transcription factors to the osteoclast differentiation program and highlight therapeutic strategies targeting these mechanisms for promoting bone homeostasis.
Collapse
Affiliation(s)
- Shanmugam Muruganandan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +614-971-0412
| | - Andreia M. Ionescu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA;
| | | |
Collapse
|
50
|
Bone Control of Muscle Function. Int J Mol Sci 2020; 21:ijms21041178. [PMID: 32053970 PMCID: PMC7072735 DOI: 10.3390/ijms21041178] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Bone and muscle represent a single functional system and are tightly connected to each other. Indeed, diseases characterized by alterations of muscle physiology have effects on bone remodeling and structure and vice versa. Muscle influence on bone has been deeply studied, and recent studies identified irisin as new molecule involved in this crosstalk. Muscle regulation by bone needs to be extensively investigated since in the last few years osteocalcin was recognized as a key molecule in the bone–muscle interaction. Osteocalcin can exist in two forms with different degrees of carboxylation. The undercarboxylated form of osteocalcin is a hormone released by the bone matrix during the osteoclast bone resorption and can bind its G-protein coupled receptor GPRC6A expressed in the muscle, thus regulating its function. Recently, this hormone was described as an antiaging molecule for its ability to regulate bone, muscle and cognitive functions. Indeed, the features of this bone-related hormone were used to test a new therapeutic approach for sarcopenia, since injection of osteocalcin in older mice induces the acquirement of physical abilities of younger animals. Even if this approach should be tested in humans, osteocalcin represents the most surprising molecule in endocrine regulation by the skeleton.
Collapse
|