1
|
Li X, Zhu M. Genome-wide identification of the Hsp70 gene family in Penaeus chinensis and their response to environmental stress. Anim Biotechnol 2024; 35:2344205. [PMID: 38651890 DOI: 10.1080/10495398.2024.2344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The heat shock protein 70 (HSP70) gene family plays a crucial role in the response of organisms to environmental stress. However, it has not been systematically characterized in shrimp. In this study, we identified 25 PcHsp70 genes in the Penaeus chinensis genome. The encoded proteins were categorized into six subgroups based on phylogenetic relationships. Tandem duplication was the main driver of amplification in the PcHsp70 family, and the genes have experienced strong purifying selection during evolution. Transcriptome data analysis revealed that the 25 PcHsp70 members have different expression patterns in shrimp under conditions of low temperature, low salinity, and white spot syndrome virus infection. Among them, PcHsp70.11 was significantly induced under all three stress conditions, suggesting that this gene plays an important role in response to environmental stress in P. chinensis. To the best of our knowledge, this is the first study to systematically analyze the Hsp70 gene family in shrimp. The results provide important information on shrimp Hsp70s, contributing to a better understanding of the role of these genes in environmental stress and providing a basis for further functional studies.
Collapse
Affiliation(s)
- Xinran Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Miao Zhu
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
2
|
Cossette ML, Stewart DT, Shafer ABA. Comparative Genomics of the World's Smallest Mammals Reveals Links to Echolocation, Metabolism, and Body Size Plasticity. Genome Biol Evol 2024; 16:evae225. [PMID: 39431406 DOI: 10.1093/gbe/evae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Originating 30 million years ago, shrews (Soricidae) have diversified into around 400 species worldwide. Shrews display a wide array of adaptations, with some species having developed distinctive traits such as echolocation, underwater diving, and venomous saliva. Accordingly, these tiny insectivores are ideal to study the genomic mechanisms of evolution and adaptation. We conducted a comparative genomic analysis of four shrew species and 16 other mammals to identify genomic variations unique to shrews. Using two existing shrew genomes and two de novo assemblies for the maritime (Sorex maritimensis) and smoky (Sorex fumeus) shrews, we identified mutations in conserved regions of the genomes, also known as accelerated regions, gene families that underwent significant expansion, and positively selected genes. Our analyses unveiled shrew-specific genomic variants in genes associated with the nervous, metabolic, and auditory systems, which can be linked to unique traits in shrews. Notably, genes suggested to be under convergent evolution in echolocating mammals exhibited accelerated regions in shrews, and pathways linked to putative body size plasticity were detected. These findings provide insight into the evolutionary mechanisms shaping shrew species, shedding light on their adaptation and divergence over time.
Collapse
Affiliation(s)
- Marie-Laurence Cossette
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aaron B A Shafer
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Forensic Science, Trent University, Peterborough, ON, Canada
| |
Collapse
|
3
|
Chen Z, Li P, He J, Wang W, Pu X, Chen S, Gao B, Wang X, Zhu RL, Yuan W, Liu L. Identification of a novel gene, Bryophyte Co-retained Gene 1, that has a positive role in desiccation tolerance in the moss Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6609-6624. [PMID: 39082751 DOI: 10.1093/jxb/erae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/30/2024] [Indexed: 11/01/2024]
Abstract
The moss Physcomitrium patens is a model system for the evolutionary study of land plants, and as such, it may contain as yet unannotated genes with functions related to the adaptation to water deficiency that was required during the water-to-land transition. In this study, we identified a novel gene, Bryophyte Co-retained Gene 1 (BCG1), in P. patens that is responsive to dehydration and rehydration. Under de- and rehydration treatments, BCG1 was significantly co-expressed with DHNA, which encodes a dehydrin (DHN). Examination of previous microarray data revealed that BCG1 is highly expressed in spores, archegonia (female reproductive organ), and mature sporophytes. In addition, the bcg1 mutant showed reduced dehydration tolerance, and this was accompanied by a relatively low level of chlorophyll content during recovery. Comprehensive transcriptomics uncovered a detailed set of regulatory processes that were affected by the disruption to BCG1. Experimental evidence showed that BCG1 might function in antioxidant activity, the abscisic acid pathway, and in intracellular Ca2+ homeostasis to resist desiccation. Overall, our results provide insights into the role of a bryophyte co-retained gene in desiccation tolerance.
Collapse
Affiliation(s)
- Zexi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ping Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jianfang He
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenbo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Silin Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuewen Wang
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30601, USA
| | - Rui-Liang Zhu
- School of Life Sciences, East, China Normal University, Shanghai 200241, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Lu J, Chen YN, Yin TM. Expression and functional divergence of a type-A response regulator paralog pair formed by dispersed duplication during Populus deltoides evolution. Commun Biol 2024; 7:1367. [PMID: 39438601 PMCID: PMC11496517 DOI: 10.1038/s42003-024-07091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Gene duplication and divergence are essential to plant evolution. The Arabidopsis type-A response regulator (ARR) family, negative regulators in cytokinin signaling, exemplifies gene expansion and differential retention. Despite extensive research, the understanding of type-A RR homologs in woody plants remains limited. In this study, the evolution history of type-A RR gene families across four rosids and one monocot has been comprehensively investigated. Focusing on Populus deltoides, a unique pair of dispersed duplicates, PdRR8 and PdFERR, is identified, and their duplication is estimated to have occurred in the common ancestor of the four rosids. The duplication remnants corresponding to PdRR8 have been retained in all rosids but the counterpart of PdFERR has been lost. In poplar, PdRR8 shows the highest expression levels in leaves, while PdFERR is specifically expressed in female floral buds. Among various external stimuli, cold strongly represses PdRR8 promoter activity, whereas 6-BA markedly inhibits that of PdFERR. Overexpression of PdRR8 in the Arabidopsis arr16arr17 double-mutant fully complements the reduced hydrotropic response. In contrast, PdFERR fails to rescue the hydrotropic defects of the mutant. Results of evolutionary, expression and functional analyses indicate that PdRR8, rather than PdFERR, is the true ortholog of the ARR16-ARR17 paralogs. Though PdRR8 and PdFERR originate from a common ancestral gene and evolve under strong negative selection, these two dispersed duplicates have exhibited differential expression and some degree of functional divergence.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Ying-Nan Chen
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| | - Tong-Ming Yin
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Oyovwi MOS, Ohwin EP, Rotu RA, Olowe TG. Internet-Based Abnormal Chromosomal Diagnosis During Pregnancy Using a Noninvasive Innovative Approach to Detecting Chromosomal Abnormalities in the Fetus: Scoping Review. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e58439. [PMID: 39412876 PMCID: PMC11525087 DOI: 10.2196/58439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Chromosomal abnormalities are genetic disorders caused by chromosome errors, leading to developmental delays, birth defects, and miscarriages. Currently, invasive procedures such as amniocentesis or chorionic villus sampling are mostly used, which carry a risk of miscarriage. This has led to the need for a noninvasive and innovative approach to detect and prevent chromosomal abnormalities during pregnancy. OBJECTIVE This review aims to describe and appraise the potential of internet-based abnormal chromosomal preventive measures as a noninvasive approach to detecting and preventing chromosomal abnormalities during pregnancy. METHODS A thorough review of existing literature and research on chromosomal abnormalities and noninvasive approaches to prenatal diagnosis and therapy was conducted. Electronic databases such as PubMed, Google Scholar, ScienceDirect, CENTRAL, CINAHL, Embase, OVID MEDLINE, OVID PsycINFO, Scopus, ACM, and IEEE Xplore were searched for relevant studies and articles published in the last 5 years. The keywords used included chromosomal abnormalities, prenatal diagnosis, noninvasive, and internet-based, and diagnosis. RESULTS The review of literature revealed that internet-based abnormal chromosomal diagnosis is a potential noninvasive approach to detecting and preventing chromosomal abnormalities during pregnancy. This innovative approach involves the use of advanced technology, including high-resolution ultrasound, cell-free DNA testing, and bioinformatics, to analyze fetal DNA from maternal blood samples. It allows early detection of chromosomal abnormalities, enabling timely interventions and treatment to prevent adverse outcomes. Furthermore, with the advancement of technology, internet-based abnormal chromosomal diagnosis has emerged as a safe alternative with benefits including its cost-effectiveness, increased accessibility and convenience, potential for earlier detection and intervention, and ethical considerations. CONCLUSIONS Internet-based abnormal chromosomal diagnosis has the potential to revolutionize prenatal care by offering a safe and noninvasive alternative to invasive procedures. It has the potential to improve the detection of chromosomal abnormalities, leading to better pregnancy outcomes and reduced risk of miscarriage. Further research and development in this field is needed to make this approach more accessible and affordable for pregnant women.
Collapse
Affiliation(s)
| | - Ejiro Peggy Ohwin
- Department of Human Physiology, Faculty of Basic Medical Science, Delta State University, Abraka, Nigeria
| | | | - Temitope Gideon Olowe
- Department of Obstetrics & Gynaecology, University of Medical Sciences, Ondo, Nigeria
| |
Collapse
|
6
|
Xue B, Liang Z, Liu Y, Li D, Liu C. Genome-Wide Identification of the RALF Gene Family and Expression Pattern Analysis in Zea mays (L.) under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2883. [PMID: 39458830 PMCID: PMC11511124 DOI: 10.3390/plants13202883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Rapid Alkalization Factor (RALF) is a signaling molecule in plants that plays a crucial role in growth and development, reproductive processes, and responses to both biotic and abiotic stresses. Although RALF peptides have been characterized in Arabidopsis and rice, a comprehensive bioinformatics analysis of the ZmRALF gene family in maize is still lacking. In this study, we identified 20 RALF genes in the maize genome. Sequence alignment revealed significant structural variation among the ZmRALF family genes. Phylogenetic analysis indicates that RALF proteins from Arabidopsis, rice, and maize can be classified into four distinct clades. Duplication events suggest that the expansion of the RALF gene family in maize primarily relies on whole-genome duplication. ZmRALF genes are widely expressed across various tissues; ZmRALF1/15/18/19 are highly expressed in roots, while ZmRALF6/11/14/16 are predominantly expressed in anthers. RNA-seq and RT-qPCR demonstrated that the expression levels of ZmRALF7, ZmRALF9, and ZmRALF13 were significantly up-regulated and down-regulated in response to PEG and NaCl stresses, respectively. Overall, our study provides new insights into the role of the RALF gene family in abiotic stress.
Collapse
Affiliation(s)
- Baoping Xue
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zicong Liang
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Yue Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110866, China
| | - Dongyang Li
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| | - Chang Liu
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China
| |
Collapse
|
7
|
Su X, Wang J, Sun S, Peng W, Li M, Mao P, Dou L. Genome-wide identification of the EIN3/EIL transcription factor family and their responses under abiotic stresses in Medicago sativa. BMC PLANT BIOLOGY 2024; 24:898. [PMID: 39343877 PMCID: PMC11440698 DOI: 10.1186/s12870-024-05588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Medicago sativa, often referred to as the "king of forage", is prized for its high content of protein, minerals, carbohydrates, and digestible nutrients. However, various abiotic stresses can hinder its growth and development, ultimately resulting in reduced yield and quality, including water deficiency, high salinity, and low temperature. The ethylene-insensitive 3 (EIN3)/ethylene-insensitive 3-like (EIL) transcription factors are key regulators in the ethylene signaling pathway in plants, playing crucial roles in development and in the response to abiotic stresses. Research on the EIN3/EIL gene family has been reported for several species, but minimal information is available for M. sativa. RESULTS In this study, we identified 10 MsEIN3/EIL genes from the M. sativa genome (cv. Zhongmu No.1), which were classified into three clades based on phylogenetic analysis. The conserved structural domains of the MsEIN3/EIL genes include motifs 1, 2, 3, 4, and 9. Gene duplication analyses suggest that segmental duplication (SD) has played a significant role in the expansion of the MsEIN3/EIL gene family throughout evolution. Analysis of the cis-acting elements in the promoters of MsEIN3/EIL genes indicates their potential to respond to various hormones and environmental stresses. We conducted a further analysis of the tissue-specific expression of the MsEIN3/EIL genes and assessed the gene expression profiles of MsEIN3/EIL under various stresses using transcriptome data, including cold, drought, salt and abscisic acid treatments. The results showed that MsEIL1, MsEIL4, and MsEIL5 may act as positive regulatory factors involved in M. sativa's response to abiotic stress, providing important genetic resources for molecular design breeding. CONCLUSION This study investigated MsEIN3/EIL genes in M. sativa and identified three candidate transcription factors involved in the regulation of abiotic stresses. These findings will offer valuable insights into uncovering the molecular mechanisms underlying various stress responses in M. sativa.
Collapse
Affiliation(s)
- Xinru Su
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Juan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shoujiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Peng
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Manli Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liru Dou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Wang K, Xue B, He Y, Zhao H, Liu B, Jiang W, Jin P, Wang Y, Zhang X, He X. Evolution, Gene Duplication, and Expression Pattern Analysis of CrRLK1L Gene Family in Zea mays (L.). Int J Mol Sci 2024; 25:10487. [PMID: 39408815 PMCID: PMC11477507 DOI: 10.3390/ijms251910487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) plays pivotal roles in regulating plant growth and development, mediating intercellular signal transduction, and modulating responses to environmental stresses. However, a comprehensive genome-wide identification and analysis of the CrRLK1L gene family in maize remains elusive. In this study, a total of 24 CrRLK1L genes were identified in the maize whole genome. A phylogenetic analysis further revealed that CrRLK1L proteins from Arabidopsis, rice, and maize were grouped into nine distinct subgroups, with subgroup IV being unique to maize. Gene structure analysis demonstrated that the number of introns varied greatly among ZmCrRLK1L genes. Notably, the genome-wide duplication (WGD) events promoted the expansion of the ZmCrRLK1L gene family. Compared with Arabidopsis, there were more collinear gene pairs between maize and rice. Tissue expression patterns indicated that ZmCrRLK1L genes are widely expressed in various tissues, with ZmCrRLK1L5/9 specifically highly expressed in roots, and ZmCrRLK1L8/14/16/21/22 expressed in anthers. Additionally, RNA-seq and RT-qPCR analyses revealed that the expression of ZmCrRLK1L1/2/20/22 genes exhibited different expression patterns under drought and salt stresses. In summary, our study lays a foundation for elucidating the biological roles of ZmCrRLK1L genes in maize growth and development, reproductive development, and stress responses.
Collapse
Affiliation(s)
- Kai Wang
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (K.W.); (B.X.); (H.Z.); (W.J.); (Y.W.)
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Baoping Xue
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (K.W.); (B.X.); (H.Z.); (W.J.); (Y.W.)
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Yan He
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Haibin Zhao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (K.W.); (B.X.); (H.Z.); (W.J.); (Y.W.)
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Bo Liu
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Wenting Jiang
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (K.W.); (B.X.); (H.Z.); (W.J.); (Y.W.)
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Pengfei Jin
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (K.W.); (B.X.); (H.Z.); (W.J.); (Y.W.)
| | - Xiangqian Zhang
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| | - Xiaolong He
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (K.W.); (B.X.); (H.Z.); (W.J.); (Y.W.)
- Engineering Research Center of Microbial Resources Development and Green Recycling of Shaanxi Province, Yan’an University, Yan’an 716000, China; (Y.H.); (B.L.); (P.J.)
| |
Collapse
|
9
|
Wan T, Cao Y, Lai YJ, Pan Z, Li YZ, Zhuo L. Functional investigation of the two ClpPs and three ClpXs in Myxococcus xanthus DK1622. mSphere 2024; 9:e0036324. [PMID: 39189774 PMCID: PMC11423568 DOI: 10.1128/msphere.00363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
ClpXP is a protease complex that plays important roles in protein quality control and cell cycle regulation, but the functions of multiple ClpXs and multiple ClpPs in M. xanthus remain unknown. The genome of Myxococcus xanthus DK1622 contains two clpPs and three clpXs. The clpP1 and clpX1 genes are cotranscribed and are both essential, while the other copies are isolated in the genome and are deletable. The deletion of clpX2 caused the mutant to be deficient in fruiting body development, while the clpX3 gene is involved in resistance to thermal stress. Both ClpPs possess catalytic active sites, but only ClpP1 shows in vitro peptidase activity on the typical substrate Suc-LY-AMC. All of these clpP and clpX genes exhibit strong transcriptional upregulation in the stationary phase, and the transcription of the three clpX genes appears to be coordinated. Our results demonstrated that multiple ClpPs and multiple ClpXs are functionally divergent and may assist in the environmental adaptation and functional diversification of M. xanthus.IMPORTANCEClpXP is an important protease complex of bacteria and is involved in various physiological processes. Myxococcus xanthus DK1622 possesses two ClpPs and three ClpXs with unclear functions. We investigated the functions of these genes and demonstrated the essential roles of clpP1 and clpX1. Only ClpP1 has in vitro peptidase activity on Suc-LY-AMC, and the isolated clpX copies participate in distinct cellular processes. All of these genes exhibited significant transcriptional upregulation in the stationary phase. Divergent functions appear in multiple ClpPs and multiple ClpXs in M. xanthus DK1622.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| |
Collapse
|
10
|
Prokop JW, Alberta S, Witteveen-Lane M, Pell S, Farag HA, Bhargava D, Vaughan RM, Frisch A, Bauss J, Bhatti H, Arora S, Subrahmanya C, Pearson D, Goodyke A, Westgate M, Cook TW, Mitchell JT, Zieba J, Sims MD, Underwood A, Hassouna H, Rajasekaran S, Tamae Kakazu MA, Chesla D, Olivero R, Caulfield AJ. SARS-CoV-2 Genotyping Highlights the Challenges in Spike Protein Drift Independent of Other Essential Proteins. Microorganisms 2024; 12:1863. [PMID: 39338537 PMCID: PMC11433680 DOI: 10.3390/microorganisms12091863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
As of 2024, SARS-CoV-2 continues to propagate and drift as an endemic virus, impacting healthcare for years. The largest sequencing initiative for any species was initiated to combat the virus, tracking changes over time at a full virus base-pair resolution. The SARS-CoV-2 sequencing represents a unique opportunity to understand selective pressures and viral evolution but requires cross-disciplinary approaches from epidemiology to functional protein biology. Within this work, we integrate a two-year genotyping window with structural biology to explore the selective pressures of SARS-CoV-2 on protein insights. Although genotype and the Spike (Surface Glycoprotein) protein continue to drift, most SARS-CoV-2 proteins have had few amino acid alterations. Within Spike, the high drift rate of amino acids involved in antibody evasion also corresponds to changes within the ACE2 binding pocket that have undergone multiple changes that maintain functional binding. The genotyping suggests selective pressure for receptor specificity that could also confer changes in viral risk. Mapping of amino acid changes to the structures of the SARS-CoV-2 co-transcriptional complex (nsp7-nsp14), nsp3 (papain-like protease), and nsp5 (cysteine protease) proteins suggest they remain critical factors for drug development that will be sustainable, unlike those strategies targeting Spike.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Sheryl Alberta
- Advanced Technology Lab, Corewell Health, Grand Rapids, MI 49503, USA; (S.A.); (S.P.)
| | - Martin Witteveen-Lane
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Samantha Pell
- Advanced Technology Lab, Corewell Health, Grand Rapids, MI 49503, USA; (S.A.); (S.P.)
| | - Hosam A. Farag
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Disha Bhargava
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Robert M. Vaughan
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Austin Frisch
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jacob Bauss
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Humza Bhatti
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Sanjana Arora
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Charitha Subrahmanya
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - David Pearson
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Austin Goodyke
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Mason Westgate
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Taylor W. Cook
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jackson T. Mitchell
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jacob Zieba
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Matthew D. Sims
- Section of Infectious Diseases, Corewell Health, Royal Oak, MI 48073, USA;
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Auburn Hills, MI 48309, USA
| | - Adam Underwood
- Division of Mathematics and Science, Walsh University, North Canton, OH 44720, USA;
| | - Habiba Hassouna
- Adult Infectious Disease, Corewell Health, Grand Rapids, MI 49503, USA;
| | - Surender Rajasekaran
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Maximiliano A. Tamae Kakazu
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
- Division of Pulmonary and Critical Care Medicine, Corewell Health, Grand Rapids, MI 49503, USA
| | - Dave Chesla
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Rosemary Olivero
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
- Pediatric Infectious Disease, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| | | |
Collapse
|
11
|
Huang Y, Liu J, Cheng L, Xu D, Liu S, Hu H, Ling Y, Yang R, Zhang Y. Genome-Wide Analysis of the Histone Modification Gene ( HM) Family and Expression Investigation during Anther Development in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2496. [PMID: 39273980 PMCID: PMC11396841 DOI: 10.3390/plants13172496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification of members and their functions in the rice (Oryza sativa L.) histone modification gene family (OsHM) at the whole-genome level remains unclear. In this study, a total of 130 OsHMs were identified through a genome-wide analysis. The OsHM gene family can be classified into 11 subfamilies based on a phylogenetic analysis. An analysis of the genes structures and conserved motifs indicates that members of each subfamily share specific conserved protein structures, suggesting their potential conserved functions. Molecular evolutionary analysis reveals that a significant number of OsHMs proteins originated from gene duplication events, particularly segmental duplications. Additionally, transcriptome analysis demonstrates that OsHMs are widely expressed in various tissues of rice and are responsive to multiple abiotic stresses. Fourteen OsHMs exhibit high expression in rice anthers and peaked at different pollen developmental stages. RT-qPCR results further elucidate the expression patterns of these 14 OsHMs during different developmental stages of anthers, highlighting their high expression during the meiosis and tetrad stages, as well as in the late stage of pollen development. Remarkably, OsSDG713 and OsSDG727 were further identified to be nucleus-localized. This study provides a fundamental framework for further exploring the gene functions of HMs in plants, particularly for researching their functions and potential applications in rice anthers' development and male sterility.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Duo Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sijia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
12
|
Li G, Chen Z, Guo X, Tian D, Li C, Lin M, Hu C, Yan J. Genome-Wide Identification and Analysis of Maize DnaJ Family Genes in Response to Salt, Heat, and Cold at the Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2024; 13:2488. [PMID: 39273972 PMCID: PMC11396969 DOI: 10.3390/plants13172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
DnaJ proteins, also known as HSP40s, play a key role in plant growth and development, and response to environmental stress. However, little comprehensive research has been conducted on the DnaJ gene family in maize. Here, we identify 91 ZmDnaJ genes from maize, which are likely distributed in the chloroplast, nucleus, and cytoplasm. Our analysis revealed that ZmDnaJs were classified into three types, with conserved protein motifs and gene structures within the same type, particularly among members of the same subfamily. Gene duplication events have likely contributed to the expansion of the ZmDnaJ family in maize. Analysis of cis-regulatory elements in ZmDnaJ promoters suggested involvement in stress responses, growth and development, and phytohormone sensitivity in maize. Specifically, four cis-acting regulatory elements associated with stress responses and phytohormone regulation indicated a role in adaptation. RNA-seq analysis showed constitutive expression of most ZmDnaJ genes, some specifically in pollen and endosperm. More importantly, certain genes also responded to salt, heat, and cold stresses, indicating potential interaction between stress regulatory networks. Furthermore, early responses to heat stress varied among five inbred lines, with upregulation of almost tested ZmDnaJ genes in B73 and B104 after 6 h, and fewer genes upregulated in QB1314, MD108, and Zheng58. After 72 h, most ZmDnaJ genes in the heat-sensitive inbred lines (B73 and B104) returned to normal levels, while many genes, including ZmDnaJ55, 79, 88, 90, and 91, remained upregulated in the heat-tolerant inbred lines (QB1314, MD108, and Zheng58) suggesting a synergistic function for prolonged protection against heat stress. In conclusion, our study provides a comprehensive analysis of the ZmDnaJ family in maize and demonstrates a correlation between heat stress tolerance and the regulation of gene expression within this family. These offer a theoretical basis for future functional validation of these genes.
Collapse
Affiliation(s)
- Gang Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Chenchen Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Min Lin
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Changquan Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jingwan Yan
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
13
|
Fu Y, Khan MF, Wang Y, Parveen S, Sultana M, Liu Q, Shafique L. In Silico Analysis: Molecular Characterization and Evolutionary Study of CLCN Gene Family in Buffalo. Genes (Basel) 2024; 15:1163. [PMID: 39336754 PMCID: PMC11431104 DOI: 10.3390/genes15091163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Chloride channels (ClCs) have received global interest due to their significant role in the regulation of ion homeostasis, fluid transport, and electrical excitability of tissues and organs in different mammals and contributing to various functions, such as neuronal signaling, muscle contraction, and regulating the electrolytes' balance in kidneys and other organs. In order to define the chloride voltage-gated channel (CLCN) gene family in buffalo, this study used in silico analyses to examine physicochemical properties, evolutionary patterns, and genome-wide identification. We identified eight CLCN genes in buffalo. The ProtParam tool analysis identified a number of important physicochemical properties of these proteins, including hydrophilicity, thermostability, in vitro instability, and basic nature. Based on their evolutionary relationships, a phylogenetic analysis divided the eight discovered genes into three subfamilies. Furthermore, a gene structure analysis, motif patterns, and conserved domains using TBtool demonstrated the significant conservation of this gene family among selected species over the course of evolution. A comparative amino acid analysis using ClustalW revealed similarities and differences between buffalo and cattle CLCN proteins. Three duplicated gene pairs were identified, all of which were segmental duplications except for CLCN4-CLCN5, which was a tandem duplication in buffalo. For each gene pair, the Ka/Ks test ratio findings showed that none of the ratios was more than one, indicating that these proteins were likely subject to positive selection. A synteny analysis confirmed a conserved pattern of genomic blocks between buffalo and cattle. Transcriptional control in cells relies on the binding of transcription factors to specific sites in the genome. The number of transcription factor binding sites (TFBSs) was higher in cattle compared to buffalo. Five main recombination breakpoints were identified at various places in the recombination analysis. The outcomes of our study provide new knowledge about the CLCN gene family in buffalo and open the door for further research on candidate genes in vertebrates through genome-wide studies.
Collapse
Affiliation(s)
- Yiheng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Muhammad Farhan Khan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China;
- Department of Chemistry, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Yingqi Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Shakeela Parveen
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab 63100, Pakistan; (S.P.); (M.S.)
| | - Mehwish Sultana
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab 63100, Pakistan; (S.P.); (M.S.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Laiba Shafique
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China;
| |
Collapse
|
14
|
Kalhor R, Beslon G, Lafond M, Scornavacca C. A Rigorous Framework to Classify the Postduplication Fate of Paralogous Genes. J Comput Biol 2024; 31:815-833. [PMID: 39088355 DOI: 10.1089/cmb.2023.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Gene duplication has a central role in evolution; still, little is known on the fates of the duplicated copies, their relative frequency, and on how environmental conditions affect them. Moreover, the lack of rigorous definitions concerning the fate of duplicated genes hinders the development of a global vision of this process. In this paper, we present a new framework aiming at characterizing and formally differentiating the fate of duplicated genes. Our framework has been tested via simulations, where the evolution of populations has been simulated using aevol, an in silico experimental evolution platform. Our results show several patterns that confirm some of the conclusions from previous studies, while also exhibiting new tendencies; this may open up new avenues to better understand the role of duplications as a driver of evolution.
Collapse
Affiliation(s)
- Reza Kalhor
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Manuel Lafond
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
| | - Celine Scornavacca
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France
| |
Collapse
|
15
|
Alicea B, Bastani S, Gordon NK, Crawford-Young S, Gordon R. The Molecular Basis of Differentiation Wave Activity in Embryogenesis. Biosystems 2024; 243:105272. [PMID: 39033973 DOI: 10.1016/j.biosystems.2024.105272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
As development varies greatly across the tree of life, it may seem difficult to suggest a model that proposes a single mechanism for understanding collective cell behaviors and the coordination of tissue formation. Here we propose a mechanism called differentiation waves, which unify many disparate results involving developmental systems from across the tree of life. We demonstrate how a relatively simple model of differentiation proceeds not from function-related molecular mechanisms, but from so-called differentiation waves. A phenotypic model of differentiation waves is introduced, and its relation to molecular mechanisms is proposed. These waves contribute to a differentiation tree, which is an alternate way of viewing cell lineage and local action of the molecular factors. We construct a model of differentiation wave-related molecular mechanisms (genome, epigenome, and proteome) based on bioinformatic data from the nematode Caenorhabditis elegans. To validate this approach across different modes of development, we evaluate protein expression across different types of development by comparing Caenorhabditis elegans with several model organisms: fruit flies (Drosophila melanogaster), yeast (Saccharomyces cerevisiae), and mouse (Mus musculus). Inspired by gene regulatory networks, two Models of Interactive Contributions (fully-connected MICs and ordered MICs) are used to suggest potential genomic contributions to differentiation wave-related proteins. This, in turn, provides a framework for understanding differentiation and development.
Collapse
Affiliation(s)
- Bradly Alicea
- Orthogonal Research and Education Lab, Champaign-Urbana, IL, USA; OpenWorm Foundation, Boston, MA, USA; University of Illinois Urbana-Champaign, USA.
| | - Suroush Bastani
- Orthogonal Research and Education Lab, Champaign-Urbana, IL, USA.
| | | | | | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, Panacea, FL, USA.
| |
Collapse
|
16
|
Wang S, Shen Y, Lin Z, Miao Y, Wang C, Zhang W, Zhang Y. New genes driven by segmental duplications share a testis-specific expression pattern in the chromosome-level genome assembly of tree sparrow. Integr Zool 2024; 19:1004-1008. [PMID: 38014459 DOI: 10.1111/1749-4877.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Based on a chromosome-level genome assembly, a burst of new genes with different structures but a similar testis-specific expression pattern was detected in tree sparrow.
Collapse
Affiliation(s)
- Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhaocun Lin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yuquan Miao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Chengqi Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Mou SJ, Angon PB. Genome-wide characterization and expression profiling of FARL (FHY3/FAR1) family genes in Zea mays. J Genet Eng Biotechnol 2024; 22:100401. [PMID: 39179323 PMCID: PMC11342881 DOI: 10.1016/j.jgeb.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
A significant role of the plant is played by the transcription factor FARL, which is light signal transduction as well as plant growth and development. Despite being transposases, FARL has developed a variety of dominant biological actions in evolution and speciation. On the other hand, little is known about the Zea mays FARL protein family. This study identifies and characterizes fifteen ZmFARL genes genome-wide, and RNA sequencing data was used to profile their expression. 105 FARL proteins from five plant species were classified into five groups based on sequence alignment and phylogeny. The ZmFARL genes' exon-intron and motif distribution were conserved based on their evolutionary group. The fifteen ZmFARL genes were distributed over seven of the ten Z. mays chromosomes, although no duplication was discovered. Cis-element analysis reveals that ZmFARL genes play a variety of activities, including tissue-specific, stress- and hormone-responsive expressions. Furthermore, the results of the RNA sequencing used to profile expression showed that the genes ZmFARL2 and ZmFARL5 were much more expressed than other genes in various tissues, particularly in leaf characteristics. The identification of likely genes involved in cellular activity in Z. mays and related species will be aided by the characterization of the FARL genes.
Collapse
Affiliation(s)
- Sharah Jabeen Mou
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
18
|
Wang C, Xiong S, Hu S, Yang L, Huang Y, Chen H, Xu B, Xiao T, Liu Q. Genome-wide identification of Gα family in grass carp (Ctenopharyngodon idella) and reproductive regulation functional characteristics of Cignaq. BMC Genomics 2024; 25:800. [PMID: 39182029 PMCID: PMC11344465 DOI: 10.1186/s12864-024-10717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The Gα family plays a crucial role in the complex reproductive regulatory network of teleosts. However, the characterization and function of Gα family members, especially Gαq, remain poorly understood in teleosts. To analyze the characterization, expression, and function of grass carp (Ctenopharyngodon idella) Gαq, we identified the Gα family members in grass carp genome, and analyzed the expression, distribution, and signal transduction of Gαq/gnaq. We also explored the role of Gαq in the reproductive regulation of grass carp. RESULTS Our results showed that the grass carp genome contains 27 Gα genes with 46 isoforms, which are divided into four subfamilies: Gαs, Gαi/o, Gαq/11, and Gα12/13. The expression level of Cignaq in the testis was the highest and significantly higher than in other tissues, followed by the hypothalamus and brain. The luteinizing hormone receptor (LHR) was mainly localized to the nucleus in grass carp oocytes, with signals also present in follicular cells. In contrast, Gαq signal was mainly found in the cytoplasm of oocytes, with no signal in follicular cells. In the testis, Gαq and LHR were co-localized in the cytoplasm. Furthermore, the grass carp Gαq recombinant protein significantly promoted Cipgr expression. CONCLUSIONS These results provided preliminary evidence for understanding the role of Gαq in the reproductive regulation of teleosts.
Collapse
Affiliation(s)
- Chong Wang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shuting Xiong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shitao Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Le Yang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Haitai Chen
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Witt ASA, Carvalho JVRP, Serafim MSM, Arias NEC, Rodrigues RAL, Abrahão JS. The GC% landscape of the Nucleocytoviricota. Braz J Microbiol 2024:10.1007/s42770-024-01496-7. [PMID: 39180708 DOI: 10.1007/s42770-024-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic studies on sequence composition employ various approaches, such as calculating the proportion of guanine and cytosine within a given sequence (GC% content), which can shed light on various aspects of the organism's biology. In this context, GC% can provide insights into virus-host relationships and evolution. Here, we present a comprehensive gene-by-gene analysis of 61 representatives belonging to the phylum Nucleocytoviricota, which comprises viruses with the largest genomes known in the virosphere. Parameters were evaluated not only based on the average GC% of a given viral species compared to the entire phylum but also considering gene position and phylogenetic history. Our results reveal that while some families exhibit similar GC% among their representatives (e.g., Marseilleviridae), others such as Poxviridae, Phycodnaviridae, and Mimiviridae have members with discrepant GC% values, likely reflecting adaptation to specific biological cycles and hosts. Interestingly, certain genes located at terminal regions or within specific genomic clusters show GC% values distinct from the average, suggesting recent acquisition or unique evolutionary pressures. Horizontal gene transfer and the presence of potential paralogs were also assessed in genes with the most discrepant GC% values, indicating multiple evolutionary histories. Taken together, to the best of our knowledge, this study represents the first global and gene-by-gene analysis of GC% distribution and profiles within genomes of Nucleocytoviricota members, highlighting their diversity and identifying potential new targets for future studies.
Collapse
Affiliation(s)
- Amanda Stéphanie Arantes Witt
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mateus Sá Magalhães Serafim
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nidia Esther Colquehuanca Arias
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Vieira de Souza E, L Bookout A, Barnes CA, Miller B, Machado P, Basso LA, Bizarro CV, Saghatelian A. Rp3: Ribosome profiling-assisted proteogenomics improves coverage and confidence during microprotein discovery. Nat Commun 2024; 15:6839. [PMID: 39122697 PMCID: PMC11316118 DOI: 10.1038/s41467-024-50301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/08/2024] [Indexed: 08/12/2024] Open
Abstract
There has been a dramatic increase in the identification of non-canonical translation and a significant expansion of the protein-coding genome. Among the strategies used to identify unannotated small Open Reading Frames (smORFs) that encode microproteins, Ribosome profiling (Ribo-Seq) is the gold standard for the annotation of novel coding sequences by reporting on smORF translation. In Ribo-Seq, ribosome-protected footprints (RPFs) that map to multiple genomic sites are removed since they cannot be unambiguously assigned to a specific genomic location. Furthermore, RPFs necessarily result in short (25-34 nucleotides) reads, increasing the chance of multi-mapping alignments, such that smORFs residing in these regions cannot be identified by Ribo-Seq. Moreover, it has been challenging to identify protein evidence for Ribo-Seq. To solve this, we developed Rp3, a pipeline that integrates proteogenomics and Ribosome profiling to provide unambiguous evidence for a subset of microproteins missed by current Ribo-Seq pipelines. Here, we show that Rp3 maximizes proteomics detection and confidence of microprotein-encoding smORFs.
Collapse
Affiliation(s)
- Eduardo Vieira de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Brendan Miller
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
21
|
Liu W, Zhang Z, Wu Y, Zhang Y, Li X, Li J, Zhu W, Ma Z, Li W. Terpene synthases GhTPS6 and GhTPS47 participate in resistance to Verticillium dahliae in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108798. [PMID: 38852238 DOI: 10.1016/j.plaphy.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Terpene synthases (TPSs) are enzymes responsible for catalyzing the production of diverse terpenes, the largest class of secondary metabolites in plants. Here, we identified 107 TPS gene loci encompassing 92 full-length TPS genes in upland cotton (Gossypium hirsutum L.). Phylogenetic analysis showed they were divided into six subfamilies. Segmental duplication and tandem duplication events contributed greatly to the expansion of TPS gene family, particularly the TPS-a and TPS-b subfamilies. Expression profile analysis screened out that GhTPSs may mediate the interaction between cotton and Verticillium dahliae. Three-dimensional structures and subcellular localizations of the two selected GhTPSs, GhTPS6 and GhTPS47, which belong to the TPS-a subfamily, demonstrated similarity in protein structures and nucleus and cytoplasm localization. Virus-induced gene silencing (VIGS) of the two GhTPSs yielded plants characterized by increased wilting and chlorosis, more severe vascular browning, and higher disease index than control plants. Additionally, knockdown of GhTPS6 and GhTPS47 led to the down-regulation of cotton terpene synthesis following V. dahliae infection, indicating that these two genes may positively regulate resistance to V. dahliae through the modulation of disease-resistant terpene biosynthesis. Overall, our study represents a comprehensive analysis of the G. hirsutum TPS gene family, revealing their potential roles in defense responses against Verticillium wilt.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuchen Wu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuzhi Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianing Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wei Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Russo A, Alessandrini M, El Baidouri M, Frei D, Galise TR, Gaidusch L, Oertel HF, Garcia Morales SE, Potente G, Tian Q, Smetanin D, Bertrand JAM, Onstein RE, Panaud O, Frey JE, Cozzolino S, Wicker T, Xu S, Grossniklaus U, Schlüter PM. Genome of the early spider-orchid Ophrys sphegodes provides insights into sexual deception and pollinator adaptation. Nat Commun 2024; 15:6308. [PMID: 39060266 PMCID: PMC11282089 DOI: 10.1038/s41467-024-50622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| | - Mattia Alessandrini
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Moaine El Baidouri
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Daniel Frei
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Lara Gaidusch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Hannah F Oertel
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sara E Garcia Morales
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Qin Tian
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dmitry Smetanin
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Joris A M Bertrand
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Renske E Onstein
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Leipzig, Germany
| | - Olivier Panaud
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Jürg E Frey
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, Mainz, Germany
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
23
|
Cai W, Liu P, Wang Z, Jiang H, Liu C, Fei Z, Yang Z. Link prediction in protein-protein interaction network: A similarity multiplied similarity algorithm with paths of length three. J Theor Biol 2024; 589:111850. [PMID: 38740126 DOI: 10.1016/j.jtbi.2024.111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are crucial for various biological processes, and predicting PPIs is a major challenge. To solve this issue, the most common method is link prediction. Currently, the link prediction methods based on network Paths of Length Three (L3) have been proven to be highly effective. In this paper, we propose a novel link prediction algorithm, named SMS, which is based on L3 and protein similarities. We first design a mixed similarity that combines the topological structure and attribute features of nodes. Then, we compute the predicted value by summing the product of all similarities along the L3. Furthermore, we propose the Max Similarity Multiplied Similarity (maxSMS) algorithm from the perspective of maximum impact. Our computational prediction results show that on six datasets, including S. cerevisiae, H. sapiens, and others, the maxSMS algorithm improves the precision of the top 500, area under the precision-recall curve, and normalized discounted cumulative gain by an average of 26.99%, 53.67%, and 6.7%, respectively, compared to other optimal methods.
Collapse
Affiliation(s)
- Wangmin Cai
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Peiqiang Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
| | - Zunfang Wang
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Hong Jiang
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Chang Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Zhaojie Fei
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Zhuang Yang
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
24
|
Ellsworth SA, Rautsaw RM, Ward MJ, Holding ML, Rokyta DR. Selection Across the Three-Dimensional Structure of Venom Proteins from North American Scolopendromorph Centipedes. J Mol Evol 2024:10.1007/s00239-024-10191-y. [PMID: 39026042 DOI: 10.1007/s00239-024-10191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gene duplication followed by nucleotide differentiation is one of the simplest mechanisms to develop new functions for genes. However, the evolutionary processes underlying the divergence of multigene families remain controversial. We used multigene families found within the diversity of toxic proteins in centipede venom to test two hypotheses related to venom evolution: the two-speed mode of venom evolution and the rapid accumulation of variation in exposed residues (RAVER) model. The two-speed mode of venom evolution proposes that different types of selection impact ancient and younger venomous lineages with negative selection being the predominant form in ancient lineages and positive selection being the dominant form in younger lineages. The RAVER hypothesis proposes that, instead of different types of selection acting on different ages of venomous lineages, the different types of selection will selectively contribute to amino acid variation based on whether the residue is exposed to the solvent where it can potentially interact directly with toxin targets. This hypothesis parallels the longstanding understanding of protein evolution that suggests that residues found within the structural or active regions of the protein will be under negative or purifying selection, and residues that do not form part of these areas will be more prone to positive selection. To test these two hypotheses, we compared the venom of 26 centipedes from the order Scolopendromorpha from six currently recognized species from across North America using both transcriptomics and proteomics. We first estimated their phylogenetic relationships and uncovered paraphyly among the genus Scolopendra and evidence for cryptic diversity among currently recognized species. Using our phylogeny, we then characterized the diverse venom components from across the identified clades using a combination of transcriptomics and proteomics. We conducted selection-based analyses in the context of predicted three-dimensional properties of the venom proteins and found support for both hypotheses. Consistent with the two-speed hypothesis, we found a prevalence of negative selection across all proteins. Consistent with the RAVER hypothesis, we found evidence of positive selection on solvent-exposed residues, with structural and less-exposed residues showing stronger signal for negative selection. Through the use of phylogenetics, transcriptomics, proteomics, and selection-based analyses, we were able to describe the evolution of venom from an ancient venomous lineage and support principles of protein evolution that directly relate to multigene family evolution.
Collapse
Affiliation(s)
- Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Matthew L Holding
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
25
|
Zhang Y, Tang J, Zheng Y, Guo W, Guo Y, Chang M, Wang H, Li Y, Chang Z, Xu Y, Wang Z. Evolutionary and Expression Analysis of the Pig MAGE Gene Family. Animals (Basel) 2024; 14:2095. [PMID: 39061557 PMCID: PMC11274276 DOI: 10.3390/ani14142095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The melanoma-associated antigen (MAGE) family found in eukaryotes plays a crucial role in cell proliferation and differentiation, spermatogenesis, neural development, etc. This study explored the validation and evolution of MAGE genes in eukaryotic genomes and their distribution and expression patterns in pigs. In total, 249 MAGE genes were found on 13 eukaryotic species. In total, 33, 25, and 18 genes were located on human, mouse, and pig genomes, respectively. We found eight, four, and three tandemly duplicated gene clusters on the human, mouse, and pig genomes, respectively. The majority of MAGE genes in mammals are located on the X chromosome. According to the phylogenetic analysis, the MAGE family genes were classified into 11 subfamilies. The NDN gene in zebrafish (DreNDN) was the root of this evolutionary tree. In total, 10 and 11 MAGE genes on human and mouse genomes, respectively, exhibited a collinearity relationship with the MAGE genes on pig genomes. Taking the MAGE family genes in pigs, the MAGE subfamilies had similar gene structures, protein motifs, and biochemical attributes. Using the RNA-seq data of Duroc pigs and Rongchang pigs, we detected that the expression of type I MAGE genes was higher in reproductive tissues, but type II MAGE genes were predominantly expressed in the brain tissue. These findings are a valuable resource for gaining insight into the evolution and expression of the MAGE family genes.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Jian Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yiwen Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Wanshu Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Minghang Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Hui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yanyan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoyue Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (J.T.); (Y.Z.); (W.G.); (Y.G.); (M.C.); (H.W.); (Y.L.); (Z.C.)
- Center for Bioinformatics, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
26
|
Braz HB, Barreto RDSN, da Silva-Júnior LN, Horvath-Pereira BDO, da Silva TS, da Silva MD, Acuña F, Miglino MA. Evolutionary Patterns of Maternal Recognition of Pregnancy and Implantation in Eutherian Mammals. Animals (Basel) 2024; 14:2077. [PMID: 39061539 PMCID: PMC11274353 DOI: 10.3390/ani14142077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The implantation of the embryo into the maternal endometrium is a complex process associated with the evolution of viviparity and placentation in mammals. In this review, we provide an overview of maternal recognition of pregnancy signals and implantation modes in eutherians, focusing on their diverse mechanisms and evolutionary patterns. Different pregnancy recognition signals and implantation modes have evolved in eutherian mammals, reflecting the remarkable diversity of specializations in mammals following the evolution of viviparity. Superficial implantation is the ancestral implantation mode in Eutheria and its major clades. The other modes, secondary, partially, and primary interstitial implantation have each independently evolved multiple times in the evolutionary history of eutherians. Although significant progress has been made in understanding pregnancy recognition signals and implantation modes, there is still much to uncover. Rodents and chiropterans (especially Phyllostomidae) offer valuable opportunities for studying the transitions among implantation modes, but data is still scarce for these diverse orders. Further research should focus on unstudied taxa so we can establish robust patterns of evolutionary changes in pregnancy recognition signaling and implantation modes.
Collapse
Affiliation(s)
| | - Rodrigo da Silva Nunes Barreto
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - Leandro Norberto da Silva-Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Veterinary Medicine, University of Marília, Marília 17525-902, SP, Brazil
| | - Bianca de Oliveira Horvath-Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Mônica Duarte da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Francisco Acuña
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata B1900, Argentina;
| | | |
Collapse
|
27
|
Singh D, Tripathi A, Mitra R, Bhati J, Rani V, Taunk J, Singh D, Yadav RK, Siddiqui MH, Pal M. Genome-wide identification of MATE and ALMT genes and their expression profiling in mungbean (Vigna radiata L.) under aluminium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116558. [PMID: 38850702 DOI: 10.1016/j.ecoenv.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The Multidrug and toxic compound extrusion (MATE) and aluminium activated malate transporter (ALMT) gene families are involved in response to aluminium (Al) stress. In this study, we identified 48 MATE and 14 ALMT gene families in Vigna radiata genome and classified into 5 (MATE) and 3 (ALMT) clades by phylogenetic analysis. All the VrMATE and VrALMT genes were distributed across mungbean chromosomes. Tandem duplication was the main driving force for evolution and expansion of MATE gene family. Collinearity of mungbean with soybean indicated that MATE gene family is closely linked to Glycine max. Eight MATE transporters in clade 2 were found to be associated with previously characterized Al tolerance related MATEs in various plant species. Citrate exuding motif (CEM) was present in seven VrMATEs of clade 2. Promoter analysis revealed abundant plant hormone and stress responsive cis-elements. Results from quantitative real time-polymerase chain reaction (qRT-PCR) revealed that VrMATE19, VrMATE30 and VrALMT13 genes were markedly up-regulated at different time points under Al stress. Overall, this study offers a new direction for further molecular characterization of the MATE and ALMT genes in mungbean for Al tolerance.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Ankita Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jyotika Bhati
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Varsha Rani
- Department of Agriculture, Meerut Institute of Technology, Meerut 250103, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut 250103, India
| | - Rajendra Kumar Yadav
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Madan Pal
- Division of Plant Physiology, ICAR, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
28
|
Zheng Q, Huang Y, He X, Zhang MM, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of GATA Gene Family in Orchidaceae. Genes (Basel) 2024; 15:915. [PMID: 39062694 PMCID: PMC11276399 DOI: 10.3390/genes15070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The GATA transcription factors play crucial roles in plant growth, development, and responses to environmental stress. Despite extensive studies of GATA genes in many plants, their specific functions and mechanisms in orchids remain unexplored. In our study, a total of 149 GATA genes were identified in the genomes of seven sequenced orchid species (20 PeqGATAs, 23 CgGATAs, 24 CeGATAs, 23 DcaGATAs, 20 DchGATAs, 27 DnoGATAs, and 12 GelGATAs), classified into four subfamilies. Subfamily I typically contains genes with two exons, while subfamily II contains genes with two or three exons. Most members of subfamilies III and IV have seven or eight exons, with longer introns compared to subfamilies I and II. In total, 24 pairs (CgGATAs-DchGATAs), 27 pairs (DchGATAs-DnoGATAs), and 14 pairs (DnoGATAs-GelGATAs) of collinear relationships were identified. Cis-acting elements in GATA promoters were mainly enriched in abscisic acid (ABA) response elements and methyl jasmonate (MeJA) elements. Expression patterns and RT-qPCR analysis revealed that GATAs are involved in the regulation of floral development in orchids. Furthermore, under high-temperature treatment, GL17420 showed an initial increase followed by a decrease, GL18180 and GL17341 exhibited a downregulation followed by upregulation and then a decrease, while GL30286 and GL20810 displayed an initial increase followed by slight inhibition and then another increase, indicating diverse regulatory mechanisms of different GATA genes under heat stress. This study explores the function of GATA genes in orchids, providing a theoretical basis and potential genetic resources for orchid breeding and stress resistance improvement.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
29
|
He X, Zhang MM, Huang Y, Yu J, Zhao X, Zheng Q, Liu ZJ, Lan S. Genome-Based Identification of the Dof Gene Family in Three Cymbidium Species and Their Responses to Heat Stress in Cymbidium goeringii. Int J Mol Sci 2024; 25:7662. [PMID: 39062906 PMCID: PMC11277557 DOI: 10.3390/ijms25147662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
As an important genus in Orchidaceae, Cymbidium has rich ecological diversity and significant economic value. DNA binding with one zinc finger (Dof) proteins are pivotal plant-specific transcription factors that play crucial roles in the growth, development, and stress response of plants. Although the Dof genes have been identified and functionally analyzed in numerous plants, exploration in Orchidaceae remains limited. We conducted a thorough analysis of the Dof gene family in Cymbidium goeringii, C. ensifolium, and C. sinensis. In total, 91 Dof genes (27 CgDofs, 34 CeDofs, 30 CsDofs) were identified, and Dof genes were divided into five groups (I-V) based on phylogenetic analysis. All Dof proteins have motif 1 and motif 2 conserved domains and over half of the genes contained introns. Chromosomal localization and collinearity analysis of Dof genes revealed their evolutionary relationships and potential gene duplication events. Analysis of cis-elements in CgDofs, CeDofs, and CsDofs promoters showed that light-responsive cis-elements were the most common, followed by hormone-responsive elements, plant growth-related elements, and abiotic stress response elements. Dof proteins in three Cymbidium species primarily exhibit a random coil structure, while homology modeling exhibited significant similarity. In addition, RT-qPCR analysis showed that the expression levels of nine CgDofs changed greatly under heat stress. CgDof03, CgDof22, CgDof27, CgDof08, and CgDof23 showed varying degrees of upregulation. Most upregulated genes under heat stress belong to group I, indicating that the Dof genes in group I have great potential for high-temperature resistance. In conclusion, our study systematically demonstrated the molecular characteristics of Dof genes in different Cymbidium species, preliminarily revealed the patterns of heat stress, and provided a reference for further exploration of stress breeding in orchids.
Collapse
Affiliation(s)
- Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Jiali Yu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| |
Collapse
|
30
|
Qian F, Zuo D, Xue Y, Guan W, Ullah N, Zhu J, Cai G, Zhu B, Wu X. Comprehensive genome-wide identification of Snf2 gene family and their expression profile under salt stress in six Brassica species of U's triangle model. PLANTA 2024; 260:49. [PMID: 38985323 DOI: 10.1007/s00425-024-04473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
MAIN CONCLUSION We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.
Collapse
Affiliation(s)
- Fang Qian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yujun Xue
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Wenjie Guan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Naseeb Ullah
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Jiarong Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
31
|
Okay A, Kırlıoğlu T, Durdu YŞ, Akdeniz SŞ, Büyük İ, Aras ES. Omics approaches to understand the MADS-box gene family in common bean (Phaseolus vulgaris L.) against drought stress. PROTOPLASMA 2024; 261:709-724. [PMID: 38240857 PMCID: PMC11196313 DOI: 10.1007/s00709-024-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 06/25/2024]
Abstract
MADS-box genes are known to play important roles in diverse aspects of growth/devolopment and stress response in several plant species. However, no study has yet examined about MADS-box genes in P. vulgaris. In this study, a total of 79 PvMADS genes were identified and classified as type I and type II according to the phylogenetic analysis. While both type I and type II PvMADS classes were found to contain the MADS domain, the K domain was found to be present only in type II PvMADS proteins, in agreement with the literature. All chromosomes of the common bean were discovered to contain PvMADS genes and 17 paralogous gene pairs were identified. Only two of them were tandemly duplicated gene pairs (PvMADS-19/PvMADS-23 and PvMADS-20/PvMADS-24), and the remaining 15 paralogous gene pairs were segmentally duplicated genes. These duplications were found to play an important role in the expansion of type II PvMADS genes. Moreover, the RNAseq and RT-qPCR analyses showed the importance of PvMADS genes in response to drought stress in P. vulgaris.
Collapse
Affiliation(s)
- Aybüke Okay
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Tarık Kırlıoğlu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Yasin Şamil Durdu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Sanem Şafak Akdeniz
- Kalecik Vocational School Plant Protection Program, Ankara University, Ankara, 06100, Turkey
| | - İlker Büyük
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| | - E Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| |
Collapse
|
32
|
Fan W, Chen J, Cao Y, Tan J, Li J, Wang S, Jin P, Song X. A novel C-type lectin protein (BjCTL5) interacts with apoptosis stimulating proteins of p53 (ASPP) to activate NF-κB signaling pathway in primitive chordate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105166. [PMID: 38521378 DOI: 10.1016/j.dci.2024.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
C-type lectin proteins (CTLs), a group of pattern recognition receptors (PRRs), play pivotal roles in immune responses. However, the signal transduction and regulation of CTLs in cephalochordates have yet to be explored. In this study, we examined the composition of CTLs in Branchiostoma japonicum, identifying a total of 272 CTLs. These CTLs underwent further analysis concerning domain arrangement, tandem and segmental duplication events. A multidomain C-type lectin gene, designated as BjCTL5, encompassing CLECT, KR, CUB, MAM, and SR domains, was the focal point of our investigation. BjCTL5 exhibits ubiquitous expression across all detected tissues and is responsive to stimulation by LPS, mannose, and poly (I:C). The recombinant protein of BjCTL5 can bind to Escherichia coli and Staphylococcus aureus, inducing their agglutination and inhibiting the proliferation of S. aureus. Yeast two-hybrid, CoIP, and confocal immunofluorescence experiments revealed the interaction between BjCTL5 and apoptosis-stimulating proteins of p53, BjASPP. Intriguingly, BjCTL5 was observed to induce the luciferase activity of the NF-κB promoter in HEK293T cells. These results suggested a potential interaction between BjCTL5 and BjASPP, implicating that they involve in the activation of the NF-κB signaling pathway, which provides an evolutionary viewpoint on NF-κB signaling pathway in primitive chordate.
Collapse
Affiliation(s)
- Wenyu Fan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianing Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunpeng Cao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiabo Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinlong Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| | - Xiaojun Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
33
|
Deng H, Zhang Y, Manzoor MA, Sabir IA, Han B, Song C. Genome-scale identification, expression and evolution analysis of B-box members in Dendrobium huoshanense. Heliyon 2024; 10:e32773. [PMID: 38975129 PMCID: PMC11225821 DOI: 10.1016/j.heliyon.2024.e32773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
B-box (BBX) proteins have been recognized as vital determinants in plant development, morphogenesis, and adaptive responses to a myriad of environmental stresses. These zinc-finger proteins play a pivotal role in various biological processes. Their influence spans photomorphogenesis, the regulation of flowering, and imparting resilience to a wide array of challenges, encompassing both biotic and abiotic factors. Chromosome localization, gene structure and conserved motifs, phylogenetic analysis, collinearity analysis, expression profiling, fluorescence quantitative analysis, and tobacco transient transformation methods were used for functional localization and expression pattern analysis of the DhBBX gene. A total of 23 DhBBX members were identified from Dendrobium huoshanense. Subsequent phylogenetic evaluations effectively segregated these genes into five discrete evolutionary subsets. The predictions of subcellular localizations revealed that all these proteins were localized in the nucleus. The genetic composition and patterns showed that the majority of these genes consisted of several exons, with a few variations that could be attributed to transposon insertion. A comprehensive analysis using qRT-PCR was conducted to unravel the expression patterns of these genes in D. huoshanense, with a specific concentration on their responses to various hormone treatments and cold stress. Subcellular localization reveals that DhBBX21 and DhBBX9 are located in the nucleus. Our results provide a deep comprehension of the complex regulatory mechanisms of BBXs in response to various environmental and hormonal stimuli. These discoveries encourage further detailed and focused investigations into the operational dynamics of the BBX gene family in a wider range of plant species.
Collapse
Affiliation(s)
- Hui Deng
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201109, China
| | - Irfan Ali Sabir
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| |
Collapse
|
34
|
Schäfer Y, Palitzsch K, Leptin M, Whiteley AR, Wiehe T, Suurväli J. Copy number variation and population-specific immune genes in the model vertebrate zebrafish. eLife 2024; 13:e98058. [PMID: 38832644 PMCID: PMC11192531 DOI: 10.7554/elife.98058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024] Open
Abstract
Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.
Collapse
Affiliation(s)
| | | | - Maria Leptin
- Institute for Genetics, University of CologneCologneGermany
| | - Andrew R Whiteley
- WA Franke College of Forestry and Conservation, University of MontanaMissoulaUnited States
| | - Thomas Wiehe
- Institute for Genetics, University of CologneCologneGermany
| | - Jaanus Suurväli
- Institute for Genetics, University of CologneCologneGermany
- Department of Biological Sciences, University of ManitobaWinnipegCanada
| |
Collapse
|
35
|
Sultana M, Tayyab M, Parveen S, Hussain M, Shafique L. Genetic characterization, structural analysis, and detection of positive selection in small heat shock proteins of Cypriniformes and Clupeiformes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:843-864. [PMID: 38587724 DOI: 10.1007/s10695-024-01337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
In the current investigation, a total of 42 full-length, non-redundant small heat shock proteins (sHsp) were detected in Cyprinus carpio, Labeo rohita, Danio rerio, Salmo salar, Oncorhynchus mykiss, and Clupea harengus. The sHsp genes were classified into three groups based on phylogenetic analysis. All the sHsps were shown to have higher aliphatic index values, which is an indication that these proteins are more thermally stable. The hydrophilic nature of sHsps was deduced from the fact that all fish species had negative GRAVY scores. In all of the representative fish species, sHsp genes were assigned to distinct chromosomes in an inconsistent and unequal manner. Segmental duplications are the main events that have contributed to the expansion of the sHsp genes in all species. We were also able to determine the selective pressure that was placed on particular codons and discovered several significant coding sites within the coding region of sHsps. Eventually, diversifying positive selection was found to be connected with evolutionary changes in sHsp proteins, which showed that gene evolution controlled the fish adaption event in response to environmental conditions. Clarification of the links between sHsps and environmental stress in fish will be achieved through rigorous genomic comparison, which will also yield substantial new insights.
Collapse
Affiliation(s)
- Mehwish Sultana
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Tayyab
- Department of Zoology, Wildlife & Fisheries, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Shakeela Parveen
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan.
- Department of Zoology, Wildlife & Fisheries, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Hussain
- Department of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Laiba Shafique
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, 535011, People's Republic of China.
| |
Collapse
|
36
|
Martin RA, Tate AT. Pleiotropy alleviates the fitness costs associated with resource allocation trade-offs in immune signalling networks. Proc Biol Sci 2024; 291:20240446. [PMID: 38835275 DOI: 10.1098/rspb.2024.0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.
Collapse
Affiliation(s)
- Reese A Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
37
|
Li L, Xu JB, Zhu ZW, Ma R, Wu XZ, Geng YK. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Pisum sativum L. BMC Genomics 2024; 25:539. [PMID: 38822248 PMCID: PMC11140923 DOI: 10.1186/s12864-024-10262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 06/02/2024] Open
Abstract
Squamous promoter binding protein-like (SPL) genes encode plant-specific transcription factors (TFs) that play essential roles in modulating plant growth, development, and stress response. Pea (Pisum sativum L.) is a coarse grain crop of great importance in food production, biodiversity conservation and molecular genetic research, providing genetic information and nutritional resources for improving agricultural production and promoting human health. However, only limited researches on the structure and functions of SPL genes exist in pea (PsSPLs). In this study, we identified 22 PsSPLs and conducted a genome-wide analysis of their physical characteristics, chromosome distribution, gene structure, phylogenetic evolution and gene expression patterns. As a result, the PsSPLs were unevenly distributed on the seven chromosomes of pea and harbored the SBP domain, which is composed of approximately 76 amino acid residues. The phylogenetic analysis revealed that the PsSPLs clustered into eight subfamilies and showed high homology with SPL genes in soybean. Further analysis showed the presence of segmental duplications in the PsSPLs. The expression patterns of 22 PsSPLs at different tissues, developmental stages and under various stimulus conditions were evaluated by qRT-PCR method. It was found that the expression patterns of PsSPLs from the same subfamily were similar in different tissues, the transcripts of most PsSPLs reached the maximum peak value at 14 days after anthesis in the pod. Abiotic stresses can cause significantly up-regulated PsSPL19 expression with spatiotemporal specificity, in addition, four plant hormones can cause the up-regulated expression of most PsSPLs including PsSPL19 in a time-dependent manner. Therefore, PsSPL19 could be a key candidate gene for signal transduction during pea growth and development, pod formation, abiotic stress and plant hormone response. Our findings should provide insights for the elucidating of development regulation mechanism and breeding for resistance to abiotic stress pea.
Collapse
Affiliation(s)
- Long Li
- Minzu University of China, 100010, Beijing, P.R. China
- College of Agronomy, Hebei Agricultural University, 071001, Baoding, P.R. China
| | - Jian Bo Xu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China
| | - Zhi Wen Zhu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100, Yangling, Shaanxi, P.R. China
| | - Xiao Zong Wu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China.
- Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China.
| | - Yu Ke Geng
- Minzu University of China, 100010, Beijing, P.R. China.
| |
Collapse
|
38
|
Chen S, Zhang L, Ma Q, Chen M, Cao X, Zhao S, Zhang X. Jasmonate ZIM Domain Protein ( JAZ) Gene SLJAZ15 Increases Resistance to Orobanche aegyptiaca in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1493. [PMID: 38891302 PMCID: PMC11174562 DOI: 10.3390/plants13111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Orobanche aegyptiaca Pers. is a holoparasitic plant that severely reduces tomato (Solanum lycopersicum L.) production in China. However, there is a lack of effective control methods and few known sources of genetic resistance. In this study, we focused on key genes in the JAZ family, comparing the JAZ family in Arabidopsis thaliana (L. Heynh.) to the tomato genome. After identifying the JAZ family members in S. lycopersicum, we performed chromosomal localization and linear analysis with phylogenetic relationship analysis of the JAZ family. We also analyzed the gene structure of the JAZ gene family members in tomato and the homology of the JAZ genes among the different species to study their relatedness. The key genes for O. aegyptiaca resistance were identified using VIGS (virus-induced gene silencing), and the parasitization rate of silenced tomato plants against O. aegyptiaca increased by 47.23-91.13%. The genes were localized in the nucleus by subcellular localization. Heterologous overexpression in A. thaliana showed that the key gene had a strong effect on the parasitization process of O. aegyptiaca, and the overexpression of the key gene reduced the parasitization rate of O. aegyptiaca 1.69-fold. Finally, it was found that the SLJAZ15 gene can positively regulate the hormone content in tomato plants and affect plant growth and development, further elucidating the function of this gene.
Collapse
Affiliation(s)
| | | | | | | | | | - Sifeng Zhao
- Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College, Shihezi University, Shihezi 832003, China; (S.C.); (L.Z.); (Q.M.); (M.C.); (X.C.)
| | - Xuekun Zhang
- Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College, Shihezi University, Shihezi 832003, China; (S.C.); (L.Z.); (Q.M.); (M.C.); (X.C.)
| |
Collapse
|
39
|
Lv W, Zhu L, Tan L, Gu L, Wang H, Du X, Zhu B, Zeng T, Wang C. Genome-Wide Identification Analysis of GST Gene Family in Wild Blueberry Vaccinium duclouxii and Their Impact on Anthocyanin Accumulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1497. [PMID: 38891305 PMCID: PMC11174658 DOI: 10.3390/plants13111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Vaccinium duclouxii, a wild blueberry species native to the mountainous regions of southwestern China, is notable for its exceptionally high anthocyanin content, surpassing that of many cultivated varieties and offering significant research potential. Glutathione S-transferases (GSTs) are versatile enzymes crucial for anthocyanin transport in plants. Yet, the GST gene family had not been previously identified in V. duclouxii. This study utilized a genome-wide approach to identify and characterize the GST gene family in V. duclouxii, revealing 88 GST genes grouped into seven distinct subfamilies. This number is significantly higher than that found in closely related species, with these genes distributed across 12 chromosomes and exhibiting gene clustering. A total of 46 members are classified as tandem duplicates. The gene structure of VdGST is relatively conserved among related species, showing closer phylogenetic relations to V. bracteatum and evidence of purifying selection. Transcriptomic analysis and qRT-PCR indicated that VdGSTU22 and VdGSTU38 were highly expressed in flowers, VdGSTU29 in leaves, and VdGSTF11 showed significant expression in ripe and fully mature fruits, paralleling trends seen with anthocyanin accumulation. Subcellular localization identified VdGSTF11 primarily in the plasma membrane, suggesting a potential role in anthocyanin accumulation in V. duclouxii fruits. This study provides a foundational basis for further molecular-level functional analysis of the transport and accumulation of anthocyanins in V. duclouxii, enhancing our understanding of the molecular mechanisms underlying anthocyanin metabolism in this valuable species.
Collapse
Affiliation(s)
- Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lifa Tan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
40
|
Huang S, Shen Z, An R, Jia Q, Wang D, Wei S, Mu J, Zhang Y. Identification and characterization of the plasma membrane H +-ATPase genes in Brassica napus and functional analysis of BnHA9 in salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108566. [PMID: 38554537 DOI: 10.1016/j.plaphy.2024.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
As a primary proton pump, plasma membrane (PM) H+-ATPase plays critical roles in regulating plant growth, development, and stress responses. PM H+-ATPases have been well characterized in many plant species. However, no comprehensive study of PM H+-ATPase genes has been performed in Brassica napus (rapeseed). In this study, we identified 32 PM H+-ATPase genes (BnHAs) in the rapeseed genome, and they were distributed on 16 chromosomes. Phylogenetical and gene duplication analyses showed that the BnHA genes were classified into five subfamilies, and the segmental duplication mainly contributed to the expansion of the rapeseed PM H+-ATPase gene family. The conserved domain and subcellular analyses indicated that BnHAs encoded canonical PM H+-ATPase proteins with 14 highly conserved domains and localized on PM. Cis-acting regulatory element and expression pattern analyses indicated that the expression of BnHAs possessed tissue developmental stage specificity. The 25 upstream open reading frames with the canonical initiation codon ATG were predicted in the 5' untranslated regions of 11 BnHA genes and could be used as potential target sites for improving rapeseed traits. Protein interaction analysis showed that BnBRI1.c associated with BnHA2 and BnHA17, indicating that the conserved activity regulation mechanism of BnHAs may be present in rapeseed. BnHA9 overexpression in Arabidopsis enhanced the salt tolerance of the transgenic plants. Thus, our results lay a foundation for further research exploring the biological functions of PM H+-ATPases in rapeseed.
Collapse
Affiliation(s)
- Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhen Shen
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Daojie Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shihao Wei
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
41
|
Li Y, Zhang Y, Cui J, Wang X, Li M, Zhang L, Kang J. Genome-Wide Identification, Phylogenetic and Expression Analysis of Expansin Gene Family in Medicago sativa L. Int J Mol Sci 2024; 25:4700. [PMID: 38731920 PMCID: PMC11083626 DOI: 10.3390/ijms25094700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Expansins, a class of cell-wall-loosening proteins that regulate plant growth and stress resistance, have been studied in a variety of plant species. However, little is known about the Expansins present in alfalfa (Medicago sativa L.) due to the complexity of its tetraploidy. Based on the alfalfa (cultivar "XinjiangDaye") reference genome, we identified 168 Expansin members (MsEXPs). Phylogenetic analysis showed that MsEXPs consist of four subfamilies: MsEXPAs (123), MsEXPBs (25), MsEXLAs (2), and MsEXLBs (18). MsEXPAs, which account for 73.2% of MsEXPs, and are divided into twelve groups (EXPA-I-EXPA-XII). Of these, EXPA-XI members are specific to Medicago trunctula and alfalfa. Gene composition analysis revealed that the members of each individual subfamily shared a similar structure. Interestingly, about 56.3% of the cis-acting elements were predicted to be associated with abiotic stress, and the majority were MYB- and MYC-binding motifs, accounting for 33.9% and 36.0%, respectively. Our short-term treatment (≤24 h) with NaCl (200 mM) or PEG (polyethylene glycol, 15%) showed that the transcriptional levels of 12 MsEXPs in seedlings were significantly altered at the tested time point(s), indicating that MsEXPs are osmotic-responsive. These findings imply the potential functions of MsEXPs in alfalfa adaptation to high salinity and/or drought. Future studies on MsEXP expression profiles under long-term (>24 h) stress treatment would provide valuable information on their involvement in the response of alfalfa to abiotic stress.
Collapse
Affiliation(s)
- Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Yangyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jing Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Lili Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Z.); (J.C.); (X.W.); (M.L.); (L.Z.)
| |
Collapse
|
42
|
Hao L, Li S, Dai J, Wang L, Yan Z, Shi Y, Zheng M. Characterization and expression profiles of the ZmLBD gene family in Zea mays. Mol Biol Rep 2024; 51:554. [PMID: 38642178 DOI: 10.1007/s11033-024-09483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The Lateral Organ Boundaries Domain (LBD) gene family is a family of plant-specific transcription factors (TFs) that are widely involved in processes such as lateral organ formation, stress response, and nutrient metabolism. However, the function of LBD genes in maize remains poorly understood. METHODS AND RESULTS In this study, a total of 49 ZmLBD genes were identified at the genome-wide level of maize, they were classified into nine branches based on phylogenetic relationships, and all of them were predicted to be nuclear localized. The 49 ZmLBD genes formed eight pairs of segmental duplicates, and members of the same branches' members had similar gene structure and conserved motif composition. The promoters of ZmLBD genes contain multiple types of cis-acting elements. In addition, by constructing the regulatory network of ZmLBD and other genes and miRNAs, 12 and 22 ZmLBDs were found to be involved in the gene regulatory network and miRNA regulatory network, respectively. The expression pattern analysis suggests that ZmLBD genes may be involved in different biological pathways, and drought stress induced the expressions of two inbred lines. CONCLUSIONS The findings enhance our comprehension of the potential roles of the ZmLBD gene family in maize growth and development, which is pivotal for genetic enhancement and breeding efforts pertaining to this significant crop.
Collapse
Affiliation(s)
- Lidong Hao
- Postdoctoral Work Station of Gansu Dunhuang Seed Group Co., Ltd, Jiuquan, 735000, Gansu, China
- Post-Doctoral Research Center of Biology, Lanzhou University, Lanzhou, 730000, Gansu, China
- Qionghai Tropical Crops Service Center, Qionghai, 571400, Hainan, China
| | - Shifeng Li
- Research Institute of Gansu Dunhuang Seed Industry Group Co., Ltd, Jiuquan, 735000, Gansu, China
| | - Jun Dai
- Qionghai Tropical Crops Service Center, Qionghai, 571400, Hainan, China.
| | - Li Wang
- Dongfang Agricultural Service Center, Dongfang, 572600, Hainan, China.
| | - Zhibin Yan
- Research Institute of Gansu Dunhuang Seed Industry Group Co., Ltd, Jiuquan, 735000, Gansu, China
| | - Yunqiang Shi
- Suihua Branch of Agricultural Science of Heilongjiang Province, Suihua, 152000, Heilongjiang, China
| | - Meiyu Zheng
- College of Agriculture and Hydraulic Engineering, Suihua University, Suihua, 152000, Heilongjiang, China
| |
Collapse
|
43
|
Benfica LF, Brito LF, do Bem RD, de Oliveira LF, Mulim HA, Braga LG, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Detection and characterization of copy number variation in three differentially-selected Nellore cattle populations. Front Genet 2024; 15:1377130. [PMID: 38694873 PMCID: PMC11061390 DOI: 10.3389/fgene.2024.1377130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.
Collapse
Affiliation(s)
- Lorena F. Benfica
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ricardo D. do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Larissa G. Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Sarah F. M. Bonilha
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| | - Maria Eugenia Z. Mercadante
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| |
Collapse
|
44
|
Wighard S, Witte H, Sommer RJ. Conserved switch genes that arose via whole-genome duplication regulate a cannibalistic nematode morph. SCIENCE ADVANCES 2024; 10:eadk6062. [PMID: 38598624 PMCID: PMC11006230 DOI: 10.1126/sciadv.adk6062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Experimental genetics in a nematode reveals a key role for developmental plasticity in the evolution of nutritional diversity.
Collapse
Affiliation(s)
- Sara Wighard
- Max Planck institute for Biology, Tübingen, 72076, Germany
| | - Hanh Witte
- Max Planck institute for Biology, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Max Planck institute for Biology, Tübingen, 72076, Germany
| |
Collapse
|
45
|
Xu Y, Cheng J, Hu H, Yan L, Jia J, Wu B. Genome-Wide Identification of NAC Family Genes in Oat and Functional Characterization of AsNAC109 in Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1017. [PMID: 38611546 PMCID: PMC11013824 DOI: 10.3390/plants13071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The plant-specific NAC gene family is one of the largest transcription factor families, participating in plant growth regulation and stress response. Despite extensive characterization in various plants, our knowledge of the NAC family in oat is lacking. Herein, we identified 333 NAC genes from the latest release of the common oat genome. We provide a comprehensive overview of the oat NAC gene family, covering gene structure, chromosomal localization, phylogenetic characteristics, conserved motif compositions, and gene duplications. AsNAC gene expression in different tissues and the response to various abiotic stresses were characterized using RT-qPCR. The main driver of oat NAC gene family expansion was identified as segmental duplication using collinearity analysis. In addition, the functions of AsNAC109 in regulating abiotic stress tolerance in Arabidopsis were clarified. This is the first genome-wide investigation of the NAC gene family in cultivated oat, which provided a unique resource for subsequent research to elucidate the mechanisms responsible for oat stress tolerance and provides valuable clues for the improvement of stress resistance in cultivated oat.
Collapse
Affiliation(s)
- Yahui Xu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.X.); (J.C.)
| | - Jialong Cheng
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.X.); (J.C.)
| | - Haibin Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
| | - Lin Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
| | - Juqing Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.X.); (J.C.)
| | - Bin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
| |
Collapse
|
46
|
Alam P, Albalawi T. Insights into cucumber ( Cucumis sativus) genetics: Genome-wide discovery and computational analysis of the Calreticulin Domain-Encoding gene (CDEG) family. Saudi J Biol Sci 2024; 31:103959. [PMID: 38404540 PMCID: PMC10883824 DOI: 10.1016/j.sjbs.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
Cucumber is an essential vegetable crop throughout the world. Cucumber development is vital for accomplishing both quality and productivity requirements. Meanwhile, numerous factors have resulted in substantial cucumber losses. However, the calreticulin domain-encoding genes (CDEGs) in cucumber were not well-characterized and had little function. In the genome-wide association study (GWAS), we recognized and characterized the CDEGs in Cucumis sativus (cucumber). Through a comprehensive study of C. sativus, our research has unveiled the presence of three unique genes, denoted as CsCRTb, CsCRT3, and CsCNX1, unevenly distributed on three chromosomes in the genome of C. sativus. In accordance to the phylogenetic investigation, these genes may be categorized into three subfamilies. Based on the resemblance with AtCDE genes, we reorganized the all CsCDE genes in accordance with international nomenclature. The expression analysis and cis-acting components revealed that each of CsCDE gene promoter region enclosed number of cis-elements connected with hormone and stress response. According to subcellular localization studies demonstrated that, they were found in deferent locations of the cell such as endoplasmic reticulum, plasma membrane, golgi apparatus, and vacuole, according to subcellular localization studies. Chromosomal distribution analysis and synteny analysis demonstrated the probability of segmental or tandem duplications within the cucumber CDEG gene family. Additionally, miRNAs displayed diverse modes of action, including mRNA cleavage and translational inhibition. We used the RNA seq data to analyze the expression of CDEG genes in response to cold stress and also improved cold tolerance, which was brought on by treating cucumber plants to an exogenous chitosan oligosaccharide spray. Our investigation revealed that these genes responded to this stress in a variety of ways, demonstrating that they may adapt quickly to environmental changes in cucumber plants. This study provides a base for further understanding in reference to CDE gene family and reveals that genes play significant functions in cucumber stress responses.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
47
|
Ma R, Huang W, Hu Q, Tian G, An J, Fang T, Liu J, Hou J, Zhao M, Sun L. Tandemly duplicated MYB genes are functionally diverged in the regulation of anthocyanin biosynthesis in soybean. PLANT PHYSIOLOGY 2024; 194:2549-2563. [PMID: 38235827 DOI: 10.1093/plphys/kiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Gene duplications have long been recognized as a driving force in the evolution of genes, giving rise to novel functions. The soybean (Glycine max) genome is characterized by a large number of duplicated genes. However, the extent and mechanisms of functional divergence among these duplicated genes in soybean remain poorly understood. In this study, we revealed that 4 MYB genes (GmMYBA5, GmMYBA2, GmMYBA1, and Glyma.09g235000)-presumably generated by tandem duplication specifically in the Phaseoleae lineage-exhibited a stronger purifying selection in soybean compared to common bean (Phaseolus vulgaris). To gain insights into the diverse functions of these tandemly duplicated MYB genes in anthocyanin biosynthesis, we examined the expression, transcriptional activity, induced metabolites, and evolutionary history of these 4 MYB genes. Our data revealed that Glyma.09g235000 is a pseudogene, while the remaining 3 MYB genes exhibit strong transcriptional activation activity, promoting anthocyanin biosynthesis in different soybean tissues. GmMYBA5, GmMYBA2, and GmMYBA1 induced anthocyanin accumulation by upregulating the expression of anthocyanin pathway-related genes. Notably, GmMYBA5 showed a lower capacity for gene induction compared to GmMYBA2 and GmMYBA1. Metabolomics analysis further demonstrated that GmMYBA5 induced distinct anthocyanin accumulation in Nicotiana benthamiana leaves and soybean hairy roots compared to GmMYBA2 and GmMYBA1, suggesting their functional divergence leading to the accumulation of different metabolites accumulation following gene duplication. Together, our data provide evidence of functional divergence within the MYB gene cluster following tandem duplication, which sheds light on the potential evolutionary directions of gene duplications during legume evolution.
Collapse
Affiliation(s)
- Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxuan Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Quan Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guo Tian
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie An
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jia Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingjing Hou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
48
|
Jiao Y, Tan J, Guo H, Huang B, Ying Y, Ramakrishnan M, Zhang Z. Genome-wide analysis of the KNOX gene family in Moso bamboo: insights into their role in promoting the rapid shoot growth. BMC PLANT BIOLOGY 2024; 24:213. [PMID: 38528453 DOI: 10.1186/s12870-024-04883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND KNOTTED1-like homeobox (KNOX) genes, plant-specific homologous box transcription factors (TFs), play a central role in regulating plant growth, development, organ formation, and response to biotic and abiotic stresses. However, a comprehensive genome-wide identification of the KNOX genes in Moso bamboo (Phyllostachys edulis), the fastest growing plant, has not yet been conducted, and the specific biological functions of this family remain unknown. RESULTS The expression profiles of 24 KNOX genes, divided into two subfamilies, were determined by integrating Moso bamboo genome and its transcriptional data. The KNOX gene promoters were found to contain several light and stress-related cis-acting elements. Synteny analysis revealed stronger similarity with rice KNOX genes than with Arabidopsis KNOX genes. Additionally, several conserved structural domains and motifs were identified in the KNOX proteins. The expansion of the KNOX gene family was primarily regulated by tandem duplications. Furthermore, the KNOX genes were responsive to naphthaleneacetic acid (NAA) and gibberellin (GA) hormones, exhibiting distinct temporal expression patterns in four different organs of Moso bamboo. Short Time-series Expression Miner (STEM) analysis and quantitative real-time PCR (qRT-PCR) assays demonstrated that PeKNOX genes may play a role in promoting rapid shoot growth. Additionally, Gene Ontology (GO) and Protein-Protein Interaction (PPI) network enrichment analyses revealed several functional annotations for PeKNOXs. By regulating downstream target genes, PeKNOXs are involved in the synthesis of AUX /IAA, ultimately affecting cell division and elongation. CONCLUSIONS In the present study, we identified and characterized a total of 24 KNOX genes in Moso bamboo and investigated their physiological properties and conserved structural domains. To understand their functional roles, we conducted an analysis of gene expression profiles using STEM and RNA-seq data. This analysis successfully revealed regulatory networks of the KNOX genes, involving both upstream and downstream genes. Furthermore, the KNOX genes are involved in the AUX/IAA metabolic pathway, which accelerates shoot growth by influencing downstream target genes. These results provide a theoretical foundation for studying the molecular mechanisms underlying the rapid growth and establish the groundwork for future research into the functions and transcriptional regulatory networks of the KNOX gene family.
Collapse
Affiliation(s)
- Yang Jiao
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Tan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Hui Guo
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Bin Huang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yeqing Ying
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
49
|
Akter N, Islam MSU, Rahman MS, Zohra FT, Rahman SM, Manirujjaman M, Sarkar MAR. Genome-wide identification and characterization of protein phosphatase 2C (PP2C) gene family in sunflower (Helianthus annuus L.) and their expression profiles in response to multiple abiotic stresses. PLoS One 2024; 19:e0298543. [PMID: 38507444 PMCID: PMC10954154 DOI: 10.1371/journal.pone.0298543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States of America
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
50
|
Espinosa-Vellarino FL, Garrido I, Casimiro I, Silva AC, Espinosa F, Ortega A. Enzymes Involved in Antioxidant and Detoxification Processes Present Changes in the Expression Levels of Their Coding Genes under the Stress Caused by the Presence of Antimony in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:609. [PMID: 38475456 DOI: 10.3390/plants13050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Currently, there is an increasing presence of heavy metals and metalloids in soils and water due to anthropogenic activities. However, the biggest problem caused by this increase is the difficulty in recycling these elements and their high permanence in soils. There are plants with great capacity to assimilate these elements or make them less accessible to other organisms. We analyzed the behavior of Solanum lycopersicum L., a crop with great agronomic interest, under the stress caused by antimony (Sb). We evaluated the antioxidant response throughout different exposure times to the metalloid. Our results showed that the enzymes involved in the AsA-GSH cycle show changes in their expression level under the stress caused by Sb but could not find a relationship between the NITROSOGLUTATHIONE REDUCTASE (GSNOR) expression data and nitric oxide (NO) content in tomato roots exposed to Sb. We hypothesize that a better understanding of how these enzymes work could be key to develop more tolerant varieties to this kind of abiotic stress and could explain a greater or lesser phytoremediation capacity. Moreover, we deepened our knowledge about Glutathione S-transferase (GST) and Glutathione Reductase (GR) due to their involvement in the elimination of the xenobiotic component.
Collapse
Affiliation(s)
- Francisco Luis Espinosa-Vellarino
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Inmaculada Garrido
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ilda Casimiro
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ana Cláudia Silva
- Centro Tecnológico Nacional Agroalimentario "Extremadura" (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
| | - Francisco Espinosa
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Alfonso Ortega
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|