1
|
Zheng R, Zhao K, Chen J, Zhu X, Peng Y, Shen M, Liu ZJ, Peng D, Zhou Y. Genomic signatures of SnRKs highlighted conserved evolution within orchids and stress responses through ABA signaling in the Cymbidium ensifolium. BMC PLANT BIOLOGY 2025; 25:277. [PMID: 40025443 PMCID: PMC11874761 DOI: 10.1186/s12870-025-06280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) are crucial for modulating plant responses to abiotic stresses, linking metabolism with stress signaling pathways. Investigating the roles and stress responses of SnRKs in plants paves the way for developing stress-tolerant strategies in orchid species. Here, 362 SnRK members were identified from nine current orchid genomes, highlighting the conservation of these genes in evolution. Among these, 33 CeSnRKs were found across 20 chromosomes of C. ensifolium genome. Multiple duplication events increased the complexity of CeSnRKs during independent evolution. Moreover, distinct functional domains beyond the kinase domain differentiated the subfamilies. These multi-copy members existed tissue specific expressions falling into 6 main trends, especially CeSnRK1, CeCIPK9, CeCIPK23 displayed a strict floral expression. ABA-related elements were enriched in the promoters of CeSnRKs, and stress-related miRNA binding sites were identified on partial CeSnRKs. Consequently, most CeSnRKs exhibited up-regulated expression during ABA treatment. Several genes, such as CeSnRK2.1 and CeCIPK28 involved growth and development at different times and various tissues. The up-regulation of SnRK2.1, along with high expression of SnRK1 and CIPK27 under drought stress, and the differential expression patterns of CeSnRKs under cold stress, underscore the involvement of CeSnRK genes in different stress responses. Additionally, the diverse interactions of CeSnRKs with proteins highlighted a multifaceted functional network.These findings offer valuable insights for the future functional characterization formation of CeSnRKs and the adaptive evolution of genes in orchids.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Raju C, Sankaranarayanan K. Insights on post-translational modifications in fatty liver and fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167659. [PMID: 39788217 DOI: 10.1016/j.bbadis.2025.167659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders. This review article presents how different chemical moieties of various PTMs like phosphorylation, methylation, ubiquitination, glutathionylation, neddylation, acetylation, SUMOylation, lactylation, crotonylation, hydroxylation, glycosylation, citrullination, S-sulfhydration and succinylation presents the cause-effect contribution towards the MASLD spectra. Additionally, the therapeutic prospects in the management of liver steatosis and hepatic fibrosis via targeting PTMs and regulatory enzymes are also encapsulated. This review seeks to understand the function of protein modifications in progression and promote the markers discovery of diagnostic, prognostic and drug targets towards MASLD management which could also halt the progression of a catalogue of related diseases.
Collapse
Affiliation(s)
- Chithra Raju
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India.
| |
Collapse
|
3
|
Yang T, Wang B, Lv T, Wang P, Zhou Q, Jiang D, Jiang H. Investigating the molecular mechanism of high-molecular-weight glutenin subunit affects gluten aggregation during dough mixing: Experimental characterizations and computational simulations. Food Chem 2025; 466:142205. [PMID: 39612844 DOI: 10.1016/j.foodchem.2024.142205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
This study investigated the impact of high-molecular-weight glutenin subunits (HMW-GS) on gluten aggregation and dough rheology at different mixing stages, using wheat lines with deletions at the Glu-B1 locus. Dough rheology was analyzed across varying mixing levels, while the multiscale structure and composition of gluten were systematically characterized. Additionally, molecular dynamics simulations under increased pressure (10 bar) provided detailed insights into the structural dynamics of different HMW-GSs. The results showed that optimum mixing promoted gluten aggregation, enhancing viscoelasticity, while over-mixing led to disaggregation. HMW-GS deletions, particularly of Bx7, significantly hindered gluten aggregation under optimum mixing, limiting stable disulfide bonds, intermolecular β-sheet formation, and hydrophobic interactions essential for tertiary structure. Conversely, HMW-GS deletions facilitated disaggregation during over-mixing, with Bx7 deletion having a stronger impact. Molecular dynamics simulations further illustrated Bx7's role, showing its more hydrophobic and flexible structure compared to By8, supporting the experimental observation that Bx7 deletion affects gluten network integrity more markedly. These findings underscore the critical role of HMW-GS in modulating gluten aggregation, providing a molecular basis for targeted HMW-GS manipulation in wheat breeding to enhance dough functionality and improve processing stability across various mixing conditions.
Collapse
Affiliation(s)
- Tao Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Tao H, Yang B, Farhangian A, Xu K, Li T, Zhang ZY, Li J. Covalent-Allosteric Inhibitors: Do We Get the Best of Both Worlds? J Med Chem 2025; 68:4040-4052. [PMID: 39937154 DOI: 10.1021/acs.jmedchem.4c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Covalent-allosteric inhibitors (CAIs) may achieve the best of both worlds: increased potency, long-lasting effects, and reduced drug resistance typical of covalent ligands, along with enhanced specificity and decreased toxicity inherent in allosteric modulators. Therefore, CAIs can be an effective strategy to transform many undruggable targets into druggable ones. However, CAIs are challenging to design. In this perspective, we analyze the discovery of known CAIs targeting three protein families: protein phosphatases, protein kinases, and GTPases. We also discuss how computational methods and tools can play a role in addressing the practical challenges of rational CAI design.
Collapse
Affiliation(s)
- Hui Tao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bo Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Atena Farhangian
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Xu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tongtong Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
6
|
Sulaj E, Sandell FL, Schwaigerlehner L, Marzban G, Dohm JC, Kunert R. Systems Biology of Recombinant 2G12 and 353/11 mAb Production in CHO-K1 Cell Lines at Phosphoproteome Level. Proteomes 2025; 13:9. [PMID: 39982319 PMCID: PMC11843875 DOI: 10.3390/proteomes13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Background: Chinese hamster ovary (CHO) cells are extensively used in the pharmaceutical industry for producing complex proteins, primarily because of their ability to perform human-like post-translational modifications. However, the efficiency of high-quality protein production can vary significantly for monoclonal antibody-producing cell lines, within the CHO host cell lines or by extrinsic factors. Methods: To investigate the complex cellular mechanisms underlying this variability, a phosphoproteomics analysis was performed using label-free quantitative liquid chromatography after a phosphopeptide enrichment of recombinant CHO cells producing two different antibodies and a tunicamycin treatment experiment. Using MaxQuant and Perseus for data analysis, we identified 2109 proteins and quantified 4059 phosphosites. Results: Significant phosphorylation dynamics were observed in nuclear proteins of cells producing the difficult-to-produce 2G12 mAb. It suggests that the expression of 2G12 regulates nuclear pathways based on increases and decreases in phosphorylation abundance. Furthermore, a substantial number of changes in the phosphorylation pattern related to tunicamycin treatment have been detected. TM treatment affects, among other phosphoproteins, the eukaryotic elongation factor 2 kinase (Eef2k). Conclusions: The alterations in the phosphorylation landscape of key proteins involved in cellular processes highlight the mechanisms behind stress-induced cellular responses.
Collapse
Affiliation(s)
- Eldi Sulaj
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Felix L. Sandell
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Linda Schwaigerlehner
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Gorji Marzban
- Department of Biotechnology and Food Science, Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Juliane C. Dohm
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Renate Kunert
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| |
Collapse
|
7
|
Islam MN, Ha MT, Min BS, Choi JS, Jung HA. Unveiling the Multitarget Potential of a Rare Caffeoyl Ester from Artemisia capillaris for Diabetes Mellitus: An Integrated In Vitro and In Silico Study. Int J Mol Sci 2025; 26:1286. [PMID: 39941054 PMCID: PMC11818712 DOI: 10.3390/ijms26031286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
As a part of our ongoing search for bioactive constituents of Artemisia capillaris, we isolated 4-O-caffeoyl-2-C-methyl-d-threonic acid (PPT-14). This is a rare caffeic acid ester derivative that is reported here for the first time in the Artemisia species, which is the third occurrence in any plant species worldwide. In this study, we evaluated the anti-diabetic potential of PPT-14 using in vitro and in silico approaches. PPT-14 demonstrated significant inhibitory activity against two crucial enzymes linked to diabetes progression and complications: protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR). These had IC50 values of 64.92 and 19.50 µM, respectively. Additionally, PPT-14 exhibited free radical scavenging activity with 2,2-diphenyl-2-picrylhydrazyl (IC50 14.46 µM). Molecular docking and 200 ns molecular dynamics simulations confirmed that there were stable binding interactions with the key residues of PTP1B and AR, highlighting strong affinity and dynamic stability. Pharmacokinetic analyses revealed favorable water solubility, adherence to Lipinski's Rule of Five, and minimal interactions with cytochrome P450 enzymes, indicating the drug-like potential of PPT-14. Toxicity studies confirmed its safety profile, showing no genotoxicity, hepatotoxicity, or significant toxicity risks, with an acceptable oral LD50 value of 2.984 mol/kg. These findings suggest that PPT-14 could be a promising multitarget lead compound for ameliorating diabetes and its associated complications.
Collapse
Affiliation(s)
- Md. Nurul Islam
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh;
| | - Manh Tuan Ha
- Drug Research and Development Center, College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Byung-Sun Min
- Drug Research and Development Center, College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Marques DSC, da Silva Lima L, de Oliveira Moraes Miranda JF, Dos Anjos Santos CÁ, da Cruz Filho IJ, de Lima MDCA. Exploring the therapeutic potential of acridines: Synthesis, structure, and biological applications. Bioorg Chem 2025; 155:108096. [PMID: 39756205 DOI: 10.1016/j.bioorg.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
The objective of this review was to explore the trends and chemical characteristics of acridines and their derivatives, analyze their contribution to the scientific literature and international cooperation, identify the most influential authors and articles, and provide an overview of the knowledge produced in elucidating their mechanisms of action. To this end, a bibliometric analysis was performed using RStudio software, along with a systematic review focusing on articles indexed in the "Web of Science" and "Scopus" databases. The keywords used were "acridine$", "Synthesi$", "Structure$", and "Biologic* Application$" for the period from 2020 to 2024. Relevant articles were carefully selected from these databases, and a bibliometric analysis was carried out to comprehensively discuss the most relevant biological activities associated with acridines. The results showed that, during the analyzed period, China and India led in the number of publications, followed by Brazil in third place. However, a decline in the number of publications was observed in the last two years of the period. Keyword analysis revealed that antitumor activity remains the most extensively studied aspect of acridines and their derivatives.
Collapse
Affiliation(s)
- Diego Santa Clara Marques
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Lisandra da Silva Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Josué Filipe de Oliveira Moraes Miranda
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Carolina Ávila Dos Anjos Santos
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil.
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| |
Collapse
|
9
|
Ivanov NM, Slivkov AI, Huck WTS. A Urease-Based pH Photoswitch: A General Route to Light-to-pH Transduction. Angew Chem Int Ed Engl 2025; 64:e202415614. [PMID: 39263723 PMCID: PMC11735890 DOI: 10.1002/anie.202415614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
New approaches for the integration of chemical and physical stimuli to control the dynamics of artificial enzymatic reaction networks (ERNs) are needed. Here, we present a general approach to convert a light stimulus into a time-programmed pH response. We developed and characterized a panel of photoswitchable inhibitors of urease. Urease activity, now regulated by light via the photoinhibitors, leads to an increase in pH upon hydrolysis of urea into ammonia. Careful choice of characteristics of light, and concentrations of enzyme, substrate, and photoinhibitor, allowed us to control the timing of the pH transition. Furthermore, as all enzymes have an activity-pH profile, the urease photoinhibitor system can be used to regulate the activities of other enzymes in small reaction networks.
Collapse
Affiliation(s)
- Nikita M. Ivanov
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Alexandar I. Slivkov
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
10
|
Chowdhury A, Gorain B, Mitra Mazumder P. Recent advancements in drug delivery system of flavonoids with a special emphasis on the flavanone naringenin: exploring their application in wound healing and associated processes. Inflammopharmacology 2025; 33:69-90. [PMID: 39576423 DOI: 10.1007/s10787-024-01600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/02/2024] [Indexed: 02/06/2025]
Abstract
Numerous flavonoids have been identified in citrus fruits which show potential to cure several complex diseases. These natural polyphenolic bioactive compounds are the secondary metabolites of various plants, among which naringenin has been explored in several pre-clinical research for its beneficial role in promoting health by modulating various biochemical processes. Its antioxidant, anti-inflammatory, and anti-microbial effects have been projected toward healing of wounds. Further, its application has also been shown to regrow vascular networks, which are known to facilitate the healing of chronic wounds. Thus, the potential of naringenin to modulate various molecular pathways aids in the healing process of wounds. Considering the recent literature, an update has been attempted to present the correlation between the healing mechanisms of wounds by the application of naringenin. Furthermore, the application of naringenin is challenging because of its properties of poor solubility and limited permeability, which can be overcome by the nanotechnology platform. Thus, several nanocarriers that have been employed for the improvement of naringenin delivery are highlighted. Thereby, it can be concluded that a suitable nanocarrier of naringenin could be an effective tool in treating wounds to improve the quality of life of such patients.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
11
|
Sakib MM, Islam MS, Bhuya AR, Shuvo MRK, Abdullah-Al-Shoeb M, Azad MAK, Ghosh A. Genomic identification, evolutionary analysis, and transcript profiling of protein phosphatase 2C in Solanum lycopersicum. Sci Rep 2024; 14:31742. [PMID: 39738553 DOI: 10.1038/s41598-024-82337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
Protein phosphatases (PPs) are a class of enzymes that play a critical role in cellular regulation by catalyzing the removal of phosphate groups from proteins. This dephosphorylation process is essential for controlling and modulating various cellular functions, including signal transduction, cell cycle progression, metabolic regulation, and stress responses. This study focuses on the comprehensive genomic identification, evolutionary analysis, and transcript profiling of the PP2C gene family within Solanum lycopersicum, an economically significant crop with substantial agricultural and nutritional importance. A total of 95 PP2C members have been identified in tomato, which was divided into 12 subgroups. An evolutionary comparison of the tomato PP2C members with other plant species demonstrated that they shared a common ancestor. A total of 14 SlPP2Cs have arisen from segmental duplication events, while no tandem duplication was detected. Certain SlPP2C genes exhibited unique expression patterns in specific tissues, with only a limited number of SlPP2C genes being expressed in all tissues, while almost all SlPP2Cs are upregulated during the flowering stage. Gene expression analysis revealed elevated transcript levels of SlPP2C22, SlPP2C30, and SlPP2C52 during drought stress. An increase in total PP2C enzyme activity was also observed which indicates their significance in drought stress. These findings add to the comprehension of the evolutionary history and significance of tomato PP2C in managing abiotic stress and pave the way for additional verification of the functional aspect of these PP2C genes in tomato.
Collapse
Affiliation(s)
- Miah Mohammad Sakib
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Sifatul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Asifur Rob Bhuya
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Rihan Kabir Shuvo
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Muhammad Abul Kalam Azad
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 N. University Drive, Pine Bluff, AR, 71601, USA
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
12
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Needham EJ, Hingst JR, Onslev JD, Diaz-Vegas A, Leandersson MR, Huckstep H, Kristensen JM, Kido K, Richter EA, Højlund K, Parker BL, Cooke K, Yang G, Pehmøller C, Humphrey SJ, James DE, Wojtaszewski JFP. Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action. Cell Metab 2024; 36:2542-2559.e6. [PMID: 39577414 DOI: 10.1016/j.cmet.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (n = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by "priming" a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.
Collapse
Affiliation(s)
- Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan D Onslev
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alexis Diaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Magnus R Leandersson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hannah Huckstep
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jonas M Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kohei Kido
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristen Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Santos IR, Ribeiro DG, Mendes PDN, Fontes W, Luz IS, Silva LP, Mehta A. Biotechnological potential of silver nanoparticles synthesized by green method to control phytopathogenic bacteria: contributions from a proteomic analysis. Braz J Microbiol 2024; 55:3239-3250. [PMID: 39412601 PMCID: PMC11711604 DOI: 10.1007/s42770-024-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025] Open
Abstract
Silver nanoparticles (AgNPs) synthesized through green synthesis routes are widely used as antimicrobial agents due to their advantages such as biocompatibility, stability, sustainability, speed and cost-effectiveness. Although AgNPs appear to be more potent than silver ions, the mechanisms related to their antibacterial activity are not yet fully understood. The most common proposed mechanism of AgNPs' toxicity so far is the release of silver ions and/or specific functions of the particles. In this context, the present study aimed to investigate the mechanisms of action of AgNPs synthesized using noni fruit peels (Morinda citrifolia) against the phytopathogen Xanthomonas campestris pv. campestris (Xcc) through proteomics. Xcc was treated with AgNPs (32 µM), AgNO3 (32 µM), or received no treatment (Ctrl - control condition), and its proteomic response was comprehensively characterized to elucidate the antimicrobial mechanisms of AgNPs in the phytopathogenic microorganism. A total of 352 differentially abundant proteins were identified. Most proteins were regulated in the AgNPs × Ctrl and AgNPs × AgNO3 comparisons/conditions. When Xcc treated with 32 µM AgNPs were compared to controls, the results showed 134 differentially abundant proteins, including 107 increased and 27 decreased proteins. In contrast, when Xcc treated with 32 µM AgNO3 were compared to Ctrl, the results showed only 14 differentially abundant proteins, including 10 increased proteins and 4 decreased proteins. Finally, when Xcc treated with 32 µM AgNPs were compared to Xcc treated with 32 µM AgNO3, the results showed 204 differentially abundant proteins, including 75 increased proteins and 129 decreased proteins. Gene ontology enrichment analysis revealed that most of the increased proteins were involved in important biological processes such as metal ion homeostasis, detoxification, membrane organization, metabolic processes related to amino acids and carbohydrates, lipid metabolic processes, proteolysis, transmembrane transport, and others. The AgNPs used in this study demonstrated effective antimicrobial activity against the phytopathogenic bacteria Xcc. Furthermore, the obtained results contribute to a better understanding of the mechanisms of action of AgNPs in Xcc and may aid in the development of strategies to control Xcc in brassica.
Collapse
Affiliation(s)
- Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratório de Química e Bioquímica de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Pollyana da Nóbrega Mendes
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil
| | - Wagner Fontes
- Laboratório de Química e Bioquímica de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Isabelle Souza Luz
- Laboratório de Química e Bioquímica de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, CEP 70770-917, DF, Brazil.
| |
Collapse
|
15
|
Han C, Fu S, Chen M, Gou Y, Liu D, Zhang C, Huang X, Xiao L, Zhao M, Zhang J, Xiao Q, Peng D, Xue Y. GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites. Brief Bioinform 2024; 26:bbae694. [PMID: 39749667 PMCID: PMC11695897 DOI: 10.1093/bib/bbae694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases. Then, we developed a hybrid learning framework, the group-based prediction system for the prediction of phosphatase-specific dephosphorylation sites (GPSD). For model training, we integrated 10 types of sequence features and utilized three types of machine learning methods, including penalized logistic regression, deep neural networks, and transformer neural networks. First, a pretrained model was constructed using 561 416 nonredundant p-sites and then fine-tuned to generate computational models for predicting general dephosphorylation sites. In addition, 103 individual phosphatase-specific predictors were constructed via transfer learning and meta-learning. For site prediction, one or multiple protein sequences in FASTA format could be inputted, and the prediction results will be shown together with additional annotations, such as protein-protein interactions, structural information, and disorder propensity. The online service of GPSD is freely available at https://gpsd.biocuckoo.cn/. We believe that GPSD can serve as a valuable tool for further analysis of dephosphorylation.
Collapse
Affiliation(s)
- Cheng Han
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Shanshan Fu
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Dan Liu
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Chi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Xinhe Huang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Leming Xiao
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Miaoying Zhao
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Jiayi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Qiang Xiao
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| |
Collapse
|
16
|
Liu Y, Mei L, Liang C, Zhong CQ, Tong M, Yu R. Cross-Run Hybrid Features Improve the Identification of Data-Independent Acquisition Proteomics. ACS OMEGA 2024; 9:46362-46372. [PMID: 39583733 PMCID: PMC11579728 DOI: 10.1021/acsomega.4c07398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
The analysis of data-independent acquisition (DIA) mass spectrometry data is crucial for comprehensive proteomics studies. However, traditional single-run methods often fall short in terms of identification depth and consistency. We present HFDiscrim, a specialized multirun DIA analysis tool aimed at enhancing the depth and consistency of reliable peptide identifications of DIA analysis tools. HFDiscrim was extensively benchmarked on multiple data sets, including the MCB data set, the ccRCC data set, and a three-species benchmark mixture. Compared to PyProphet, HFDiscrim identified 22.04% more precursors, 19.1% more peptides, and 13.2% more proteins while maintaining a controllable false discovery rate. Furthermore, HFDiscrim demonstrated higher identification rates and improved reproducibility across multiple runs. HFDiscrim is publicly available at https://github.com/yachliu/HFDiscrim.
Collapse
Affiliation(s)
- Yachen Liu
- School
of Informatics, Xiamen University, Xiamen, Fujian 361000, China
- National
Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Longfei Mei
- School
of Informatics, Xiamen University, Xiamen, Fujian 361000, China
| | - Chenyu Liang
- National
Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chuan-Qi Zhong
- School
of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengsha Tong
- National
Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
- School
of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongshan Yu
- School
of Informatics, Xiamen University, Xiamen, Fujian 361000, China
- National
Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Aginome
Scientific, Xiamen, Fujian 361005, China
| |
Collapse
|
17
|
Hillis AL, Tamir T, Perry GE, Asara JM, Johnson JL, Yaron TM, Cantley LC, White FM, Toker A. Parallel phosphoproteomics and metabolomics map the global metabolic tyrosine phosphoproteome. Proc Natl Acad Sci U S A 2024; 121:e2413837121. [PMID: 39536083 PMCID: PMC11588116 DOI: 10.1073/pnas.2413837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Tyrosine phosphorylation of metabolic enzymes is an evolutionarily conserved posttranslational modification that facilitates rapid and reversible modulation of enzyme activity, localization, or function. Despite the high abundance of tyrosine phosphorylation events detected on metabolic enzymes in high-throughput mass spectrometry-based studies, functional characterization of tyrosine phosphorylation sites has been limited to a subset of enzymes. Since tyrosine phosphorylation is dysregulated across human diseases, including cancer, understanding the consequences of metabolic enzyme tyrosine phosphorylation events is critical for informing disease biology and therapeutic interventions. To globally identify metabolic enzyme tyrosine phosphorylation events and simultaneously assign functional significance to these sites, we performed parallel phosphoproteomics and polar metabolomics in nontumorigenic mammary epithelial cells (MCF10A) stimulated with epidermal growth factor (EGF) in the absence or presence of the EGF receptor inhibitor erlotinib. We performed an integrated analysis of the phosphoproteomic and metabolomic datasets to identify tyrosine phosphorylation sites on metabolic enzymes with functional consequences. We identified two previously characterized (pyruvate kinase muscle isozyme, phosphoglycerate mutase 1) and two uncharacterized (glutathione S-transferase Pi 1, glutamate dehydrogenase 1) tyrosine phosphorylation sites on metabolic enzymes with purported functions based on metabolomic analyses. We validated these hits using a doxycycline-inducible CRISPR interference system in MCF10A cells, in which target metabolic enzymes were depleted with simultaneous reexpression of wild-type, phosphomutant, or phosphomimetic isoforms. Together, these data provide a framework for identification, prioritization, and characterization of tyrosine phosphorylation sites on metabolic enzymes with functional significance.
Collapse
Affiliation(s)
- Alissandra L. Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Tigist Tamir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Grace E. Perry
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - John M. Asara
- Mass Spectrometry Core, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jared L. Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Tomer M. Yaron
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Lewis C. Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Forest M. White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
18
|
Penatzer J, Steele L, Breuer J, Fabia R, Hall M, Thakkar RK. FAS(APO), DAMP, and AKT Phosphoproteins Expression Predict the Development of Nosocomial Infection After Pediatric Burn Injury. J Burn Care Res 2024; 45:1607-1616. [PMID: 38863248 PMCID: PMC11565198 DOI: 10.1093/jbcr/irae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 06/13/2024]
Abstract
Pediatric burn injuries are a leading cause of morbidity with infections being the most common acute complication. Thermal injuries elicit a heightened cytokine response while suppressing immune function; however, the mechanisms leading to this dysfunction are still unknown. Our aim was to identify extracellular proteins and circulating phosphoprotein expression in the plasma after burn injury to predict the development of nosocomial infection (NI). Plasma was collected within 72 hours after injury from 64 pediatric burn subjects; of these, 18 went on to develop an NI. Extracellular damage-associated molecular proteins, FAS(APO), and protein kinase b (AKT) signaling phosphoproteins were analyzed. Subjects who went on to develop an NI had elevated high-mobility group box 1, heat shock protein 90 (HSP90), and FAS expression than those who did not develop an NI after injury (NoNI). Concurrently, phosphorylated (p-)AKT and mammalian target of rapamycin (p-mTOR) were elevated in those subjects who went on to develop an NI. Quadratic discriminant analysis revealed distinct differential profiles between NI and NoNI burn subjects using HSP90, FAS, and p-mTOR. The area under the receiver-operator characteristic curves displayed significant ability to distinguish between these 2 burn subject cohorts. These findings provide insight into predicting the signaling proteins involved in the development of NI in pediatric burn patients. Further, these proteins show promise as a diagnostic tool for pediatric burn patients at risk of developing infection while additional investigation may lead to potential therapeutics to prevent NI.
Collapse
Affiliation(s)
- Julia Penatzer
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lisa Steele
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Julie Breuer
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Renata Fabia
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mark Hall
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Rajan K Thakkar
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
19
|
Huang Y, Yuan Y, Yang R, Gou X, Dai S, Zhou J, Guo J, Shen J, Lu Y, Liu Y, Cai Y. A large-scale screening identifies receptor-like kinases with common features in kinase domains that are potentially related to disease resistance in planta. FRONTIERS IN PLANT SCIENCE 2024; 15:1503773. [PMID: 39606670 PMCID: PMC11598347 DOI: 10.3389/fpls.2024.1503773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Introduction The plant genome encodes a plethora of proteins with structural similarity to animal receptor protein kinases, collectively known as receptor-like protein kinases (RLKs), which predominantly localize to the plasma membrane where they activate their kinase domains to convey extracellular signals to the interior of the cell, playing crucial roles in various signaling pathways. Despite the large number of members within the RLK family, to date, only a few have been identified as pattern-recognition receptors (PRRs), leaving many potential RLKs that could play roles in plant immunity undiscovered. Methods In this study, a recombinant strategy was initially employed to screen the kinase domains of 133 RLKs in the Arabidopsis genome to determine their involvement in the pathogen-triggered immunity (PTI) pathway. Subsequently, 6 potential immune-related recombinant RLKs (rRLKs) were selected for the creation of transgenic materials and underwent functional characterization analysis. Finally, a sequence analysis was conducted on the kinase domains of these 133 RLKs as well as the known immune RLK receptor kinase domains from other species. Results It was found that 24 rRLKs activated the PTI response in Arabidopsis fls2 mutant protoplasts following flg22 treatment. Consistently, when 6 of these rRLKs were individually expressed in fls2 background, they exhibited diverse PTI signal transduction capabilities via different pathways while all retained membrane localization. Intriguingly, sequence analysis revealed multiple conserved amino acid sites within kinase domains of these experimentally identified immune-related RLKs in Arabidopsis. Importantly, these patterns are also preserved in RLKs involved in PTI in other species. Discussion This study, on one hand, identifies common features that theoretically can enhance our understanding of immune-related RLKs and facilitate the discovery of novel immune-related RLKs in the future. On the other hand, it provides experimental evidence for the use of recombinant technique to develop diverse rRLKs for molecular breeding, thereby conferring high resistance to plants without compromising their normal growth and development.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yuan Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Xiangjian Gou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Dai
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Jun Zhou
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Jinya Guo
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
20
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
21
|
Provost JJ, Cornely KA, Mertz PS, Peterson CN, Riley SG, Tarbox HJ, Narasimhan SR, Pulido AJ, Springer AL. Phosphorylation of mammalian cytosolic and mitochondrial malate dehydrogenase: insights into regulation. Essays Biochem 2024; 68:183-198. [PMID: 38864157 DOI: 10.1042/ebc20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Kathleen A Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence RI, U.S.A
| | - Pamela S Mertz
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, MD, U.S.A
| | | | - Sophie G Riley
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Harrison J Tarbox
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Shree R Narasimhan
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Andrew J Pulido
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| |
Collapse
|
22
|
Zhan J, Liu Z, Gao H. Theoretical study on the design of allosteric inhibitors of diabetes associated protein PTP1B. Front Pharmacol 2024; 15:1423029. [PMID: 39239651 PMCID: PMC11374740 DOI: 10.3389/fphar.2024.1423029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
The protein tyrosine phosphatase 1B (PTP1B) is a critical therapeutic target for type 2 diabetes mellitus (T2DM). Many PTP1B inhibitors have been reported, however, most of them lack high specificity and have adverse effects. Designing effective PTP1B inhibitors requires understanding the molecular mechanism of action between inhibitors and PTP1B. To this end, molecular dynamics (MD) simulations and molecular mechanics Poisson Boltzmann Surface Area (MM-PB/SA) methods were used to observe the binding patterns of compounds with similar pentacyclic triterpene parent ring structures but different inhibition abilities. Through structure and energy analysis, we found that the positions of cavities and substituents significantly affect combining capacity. Besides, we constructed a series of potential inhibitor molecules using LUDI and rational drug design methods. The ADMET module of Discovery Studio 2020 was used to predict the properties of these inhibitor molecules. Lastly, we obtained compounds with low toxicity and significant inhibitory activity. The study will contribute to the treatment of T2DM.
Collapse
Affiliation(s)
- Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Zhenyang Liu
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
23
|
Nam K, Thodika ARA, Tischlik S, Phoeurk C, Nagy TM, Schierholz L, Ådén J, Rogne P, Drescher M, Sauer-Eriksson AE, Wolf-Watz M. Magnesium induced structural reorganization in the active site of adenylate kinase. SCIENCE ADVANCES 2024; 10:eado5504. [PMID: 39121211 PMCID: PMC11313852 DOI: 10.1126/sciadv.ado5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | - Sonja Tischlik
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Chanrith Phoeurk
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Bio-Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Léon Schierholz
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | |
Collapse
|
24
|
Chen X, Gao J, Shen Y. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1400-1417. [PMID: 38815085 DOI: 10.1111/tpj.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Gao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| |
Collapse
|
25
|
Cui M, Liu Z, Wang S, Bae S, Guo H, Zhou J, Liu R, Wang L. CRISPR-based dissection of microRNA-23a ~ 27a ~ 24-2 cluster functionality in hepatocellular carcinoma. Oncogene 2024; 43:2708-2721. [PMID: 39112518 PMCID: PMC11364504 DOI: 10.1038/s41388-024-03115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
The miR-23a ~ 27a ~ 24-2 cluster, commonly upregulated in diverse cancers, including hepatocellular carcinoma (HCC), raises questions about the specific functions of its three mature miRNAs and their integrated function. Utilizing CRISPR knockout (KO), CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa) technologies, we established controlled endogenous miR-23a ~ 27 ~ a24-2 cell models to unravel their roles and signaling pathways in HCC. Both miR-23a KO and miR-27a KO displayed reduced cell growth in vitro and in vivo, revealing an integrated oncogenic function. Functional analysis indicated cell cycle arrest, particularly at the G2/M phase, through the downregulation of CDK1/cyclin B activation. High-throughput RNA-seq, combined with miRNA target prediction, unveiled the miR-23a/miR-27a-regulated gene network, validated through diverse technologies. While miR-23a and miR-27a exhibited opposing roles in cell migration and mesenchymal-epithelial transition, an integrated CRISPRi/a analysis suggested an oncogenic role of the miR-23a ~ 27a ~ 24-2 cluster in cell migration. This involvement potentially encompasses two signaling axes: miR-23a-BMPR2 and miR-27a-TMEM170B in HCC cells. In conclusion, our CRISPRi/a study provides a valuable tool for comprehending the integrated roles and underlying mechanisms of endogenous miRNA clusters, paving the way for promising directions in miRNA-targeted therapy interventions.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhichao Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuaibin Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hua Guo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Gary CR, Acharige NPN, Oyewumi TO, Pflum MKH. Kinase-catalyzed biotinylation for discovery and validation of substrates to multispecificity kinases NME1 and NME2. J Biol Chem 2024; 300:107588. [PMID: 39032654 PMCID: PMC11375270 DOI: 10.1016/j.jbc.2024.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multispecificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate-modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.
Collapse
Affiliation(s)
- Chelsea R Gary
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | | | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
27
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
28
|
Ramos-Barbero M, Pérez-Jiménez A, Serrano-Carmona S, Mokhtari K, Lupiáñez JA, Rufino-Palomares EE. The Efficacy of Intratissue Percutaneous Electrolysis (EPI ®) and Nutritional Factors for the Treatment of Induced Tendinopathy in Wistar Rats: Hepatic Intermediary Metabolism Effects. Int J Mol Sci 2024; 25:7315. [PMID: 39000426 PMCID: PMC11242821 DOI: 10.3390/ijms25137315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Achilles tendinopathy (TP) is characterized as the third most common disease of the musculoskeletal system, and occurs in three phases. There is currently no evidence of effective treatment for this medical condition. In this study, the modulatory effects of the minimally invasive technique intratissue percutaneous electrolysis (EPI) and combinations of EPI with four nutritional factors included in the diet, hydroxytyrosol (HT), maslinic acid (MA), glycine, and aspartate (AA), on hepatic intermediary metabolism was examined in Wistar rats with induced tendinopathy at various stages of TP. Results obtained showed that induced tendinopathy produced alterations in the liver intermediary metabolisms of the rats. Regarding carbohydrate metabolism, a reduction in the activity of pro-inflammatory enzymes in the later stages of TP was observed following treatment with EPI alone. Among the combined treatments using nutritional factors with EPI, HT+EPI and AA+EPI had the greatest effect on reducing inflammation in the late stages of TP. In terms of lipid metabolism, the HT+EPI and AA+EPI groups showed a decrease in lipogenesis. In protein metabolism, the HT+EPI group more effectively reduced the inflammatory effects of induced TP. Treatment with EPI combined with nutritional factors might help regulate intermediary metabolism in TP disease and reduce the inflammation process.
Collapse
Affiliation(s)
- Marta Ramos-Barbero
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Science, University of Granada, 18071 Granada, Spain
| | | | - Khalida Mokhtari
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
29
|
Sojka J, Šamajová O, Šamaj J. Gene-edited protein kinases and phosphatases in molecular plant breeding. TRENDS IN PLANT SCIENCE 2024; 29:694-710. [PMID: 38151445 DOI: 10.1016/j.tplants.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein phosphorylation, the most common and essential post-translational modification, belongs to crucial regulatory mechanisms in plants, affecting their metabolism, intracellular transport, cytoarchitecture, cell division, growth, development, and interactions with the environment. Protein kinases and phosphatases, two important families of enzymes optimally regulating phosphorylation, have now become important targets for gene editing in crops. We review progress on gene-edited protein kinases and phosphatases in crops using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). We also provide guidance for computational prediction of alterations and/or changes in function, activity, and binding of protein kinases and phosphatases as consequences of CRISPR/Cas9-based gene editing with its possible application in modern crop molecular breeding towards sustainable agriculture.
Collapse
Affiliation(s)
- Jiří Sojka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
30
|
Banerjee A, Mathew S, Naqvi MM, Yilmaz SZ, Zacharopoulou M, Doruker P, Kumita JR, Yang SH, Gur M, Itzhaki LS, Gordon R, Bahar I. Influence of point mutations on PR65 conformational adaptability: Insights from molecular simulations and nanoaperture optical tweezers. SCIENCE ADVANCES 2024; 10:eadn2208. [PMID: 38820156 PMCID: PMC11141623 DOI: 10.1126/sciadv.adn2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Samuel Mathew
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
| | - Mohsin M. Naqvi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Sema Z. Yilmaz
- Department of Mechanical Engineering, Istanbul Technical University, 34437 Istanbul, Turkey
| | - Maria Zacharopoulou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Janet R. Kumita
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Shang-Hua Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University, 34437 Istanbul, Turkey
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
31
|
Welsh CL, Madan LK. Protein Tyrosine Phosphatase regulation by Reactive Oxygen Species. Adv Cancer Res 2024; 162:45-74. [PMID: 39069369 DOI: 10.1016/bs.acr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Protein Tyrosine Phosphatases (PTPs) help to maintain the balance of protein phosphorylation signals that drive cell division, proliferation, and differentiation. These enzymes are also well-suited to redox-dependent signaling and oxidative stress response due to their cysteine-based catalytic mechanism, which requires a deprotonated thiol group at the active site. This review focuses on PTP structural characteristics, active site chemical properties, and vulnerability to change by reactive oxygen species (ROS). PTPs can be oxidized and inactivated by H2O2 through three non-exclusive mechanisms. These pathways are dependent on the coordinated actions of other H2O2-sensitive proteins, such as peroxidases like Peroxiredoxins (Prx) and Thioredoxins (Trx). PTPs undergo reversible oxidation by converting their active site cysteine from thiol to sulfenic acid. This sulfenic acid can then react with adjacent cysteines to form disulfide bonds or with nearby amides to form sulfenyl-amide linkages. Further oxidation of the sulfenic acid form to the sulfonic or sulfinic acid forms causes irreversible deactivation. Understanding the structural changes involved in both reversible and irreversible PTP oxidation can help with their chemical manipulation for therapeutic intervention. Nonetheless, more information remains unidentified than is presently known about the precise dynamics of proteins participating in oxidation events, as well as the specific oxidation states that can be targeted for PTPs. This review summarizes current information on PTP-specific oxidation patterns and explains how ROS-mediated signal transmission interacts with phosphorylation-based signaling machinery controlled by growth factor receptors and PTPs.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
32
|
Doddihal V, Mann FG, Ross EJ, McKinney MC, Guerrero-Hernández C, Brewster CE, McKinney SA, Sánchez Alvarado A. A PAK family kinase and the Hippo/Yorkie pathway modulate WNT signaling to functionally integrate body axes during regeneration. Proc Natl Acad Sci U S A 2024; 121:e2321919121. [PMID: 38713625 PMCID: PMC11098123 DOI: 10.1073/pnas.2321919121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/09/2024] Open
Abstract
Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/β-catenin signaling along the AP axis and, functions synergistically with the β-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.
Collapse
Affiliation(s)
- Viraj Doddihal
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Eric J. Ross
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | | | | | | | | |
Collapse
|
33
|
Kang H, Yang Y, Wei B. Synthetic molecular switches driven by DNA-modifying enzymes. Nat Commun 2024; 15:3781. [PMID: 38710688 DOI: 10.1038/s41467-024-47742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Taking inspiration from natural systems, in which molecular switches are ubiquitous in the biochemistry regulatory network, we aim to design and construct synthetic molecular switches driven by DNA-modifying enzymes, such as DNA polymerase and nicking endonuclease. The enzymatic treatments on our synthetic DNA constructs controllably switch ON or OFF the sticky end cohesion and in turn cascade to the structural association or disassociation. Here we showcase the concept in multiple DNA nanostructure systems with robust assembly/disassembly performance. The switch mechanisms are first illustrated in minimalist systems with a few DNA strands. Then the ON/OFF switches are realized in complex DNA lattice and origami systems with designated morphological changes responsive to the specific enzymatic treatments.
Collapse
Affiliation(s)
- Hong Kang
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuexuan Yang
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Bryan Wei
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
34
|
Tong M, Liu Z, Li J, Wei X, Shi W, Liang C, Yu C, Huang R, Lin Y, Wang X, Wang S, Wang Y, Huang J, Wang Y, Li T, Qin J, Zhan D, Ji ZL. PhosMap: An ensemble bioinformatic platform to empower interactive analysis of quantitative phosphoproteomics. Comput Biol Med 2024; 174:108391. [PMID: 38613887 DOI: 10.1016/j.compbiomed.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Liquid chromatography-mass spectrometry (LC-MS)-based quantitative phosphoproteomics has been widely used to detect thousands of protein phosphorylation modifications simultaneously from the biological specimens. However, the complicated procedures for analyzing phosphoproteomics data has become a bottleneck to widening its application. METHODS Here, we develop PhosMap, a versatile and scalable tool to accomplish phosphoproteomics data analysis. A standardized phosphorylation data format was created for data analyses, from data preprocessing to downstream bioinformatic analyses such as dimension reduction, differential phosphorylation analysis, kinase activity, survival analysis, and so on. For better usability, we distribute PhosMap as a Docker image for easy local deployment upon any of Windows, Linux, and Mac system. RESULTS The source code is deposited at https://github.com/BADD-XMU/PhosMap. A free PhosMap webserver (https://huggingface.co/spaces/Bio-Add/PhosMap), with easy-to-follow fashion of dashboards, is curated for interactive data analysis. CONCLUSIONS PhosMap fills the technical gap of large-scale phosphorylation research by empowering researchers to process their own phosphoproteomics data expediently and efficiently, and facilitates better data interpretation.
Collapse
Affiliation(s)
- Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiaao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wenhao Shi
- Analysis Center, Chemistry Department, Tsinghua University, Beijing, 100084, China
| | - Chenyu Liang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyu Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rongting Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxiang Lin
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinkang Wang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shun Wang
- Departments of Pathology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Wang
- Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Jun Qin
- Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Dongdong Zhan
- Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China.
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
35
|
Glavy JS. The yin and yang of nuclear envelope breakdown through the activity of phosphatase holoenzyme PP2A-B55 SUR-6. Trends Cell Biol 2024; 34:272-273. [PMID: 38302392 DOI: 10.1016/j.tcb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Cell division is a highly regulated and guardedly orchestrated process including nuclear envelope breakdown (NEBD). A recent study from Kapoor, Adhikary, and Kotak identifies the symphonic role of a phosphatase holoenzyme in NEBD.
Collapse
Affiliation(s)
- Joseph S Glavy
- Department of Pharmaceutical Sciences, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA.
| |
Collapse
|
36
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
37
|
Wang Z, He Z, Gao C, Wang C, Song X, Wang Y. Phosphorylation of birch BpNAC90 improves the activation of gene expression to confer drought tolerance. HORTICULTURE RESEARCH 2024; 11:uhae061. [PMID: 38659443 PMCID: PMC11040210 DOI: 10.1093/hr/uhae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
The NAC transcription factors (TFs) play important roles in mediating abiotic stress tolerance; however, the mechanism is still not fully known. Here, an NAC gene (BpNAC90) from a gene regulatory network of Betula platyphylla (birch) that responded to drought was characterized. Overexpression and knockout of BpNAC90 displayed increased and reduced drought tolerance, respectively, relative to wild-type (WT) birch. BpNAC90 binds to different DNA motifs to regulate target genes in conferring drought tolerance, such as Eomes2, ABRE and Tgif2. BpNAC90 is phosphorylated by drought stress at Ser 205 by birch SNF1-related protein kinase 2 (BpSRK2A). Mutated BpNAC90 (termed S205A) with abolished phosphorylation, was transformed into birch for overexpression. The transgenic S205A plants displayed significantly reduced drought tolerance compared with plants overexpressing BpNAC90, but still showed increased drought tolerance relative to WT birch. At the same time, S205A showed a decreased capability to bind to motifs and reduced activation of target gene expression, which contributed to the reduced drought tolerance. Additionally, BpSRK2A and BpNAC90 can be induced by drought stress and form a complex to phosphorylate BpNAC90. The results together indicated that phosphorylation of BpNAC90 is necessary in conferring drought tolerance in birch.
Collapse
Affiliation(s)
- Zhibo Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingshun Song
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
38
|
Jiang W, Jaehnig EJ, Liao Y, Yaron-Barir TM, Johnson JL, Cantley LC, Zhang B. Illuminating the Dark Cancer Phosphoproteome Through a Machine-Learned Co-Regulation Map of 26,280 Phosphosites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585786. [PMID: 38562798 PMCID: PMC10983930 DOI: 10.1101/2024.03.19.585786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, but limited knowledge about the regulation and function of most phosphosites restricts our ability to extract meaningful biological insights from phosphoproteomics data. To address this, we combine machine learning and phosphoproteomic data from 1,195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network mapping the co-regulation of 26,280 phosphosites. Integrating network features from CoPheeMap into a machine learning model, CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA reveals 24,015 associations between 9,399 phosphosites and 104 serine/threonine kinases, including many unannotated phosphosites and under-studied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. By applying CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and cancer-associated phosphosites, we demonstrate the effectiveness of these tools in systematically illuminating phosphosites of interest, revealing dysregulated signaling processes in human cancer, and identifying under-studied kinases as putative therapeutic targets.
Collapse
|
39
|
Ghosh S, Baltussen MG, Ivanov NM, Haije R, Jakštaitė M, Zhou T, Huck WTS. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chem Rev 2024; 124:2553-2582. [PMID: 38476077 PMCID: PMC10941194 DOI: 10.1021/acs.chemrev.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks in vitro enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities. Such functional systems are useful for a variety of reasons such as creating new-to-nature dynamic materials, producing value-added chemicals, constructing metabolic modules for synthetic cells, and even enabling molecular computation. In this review, we offer insights into the chemical characteristics of ERNs while also delving into their potential applications and associated challenges.
Collapse
Affiliation(s)
- Souvik Ghosh
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mathieu G. Baltussen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nikita M. Ivanov
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rianne Haije
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Miglė Jakštaitė
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tao Zhou
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
40
|
Yang X, Hu X, Yin J, Li W, Fu Y, Yang B, Fan J, Lu F, Qin T, Kang X, Zhuang X, Li F, Xiao R, Shi T, Song K, Li J, Chen G, Sun C. Comprehensive multi-omics analysis reveals WEE1 as a synergistic lethal target with hyperthermia through CDK1 super-activation. Nat Commun 2024; 15:2089. [PMID: 38453961 PMCID: PMC10920785 DOI: 10.1038/s41467-024-46358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.
Collapse
Affiliation(s)
- Xiaohang Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Xingyuan Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Jingjing Yin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Wenting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Yu Fu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Bin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Junpeng Fan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Funian Lu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Tianyu Qin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xiaoyan Kang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xucui Zhuang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Rourou Xiao
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Jing Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, 33 Yingfeng Road, Guangzhou, 510000, PR China.
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| |
Collapse
|
41
|
Lin P, Zhang B, Yang H, Yang S, Xue P, Chen Y, Yu S, Zhang J, Zhang Y, Chen L, Fan C, Li F, Ling D. An artificial protein modulator reprogramming neuronal protein functions. Nat Commun 2024; 15:2039. [PMID: 38448420 PMCID: PMC10917760 DOI: 10.1038/s41467-024-46308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging μ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China
| | - Hongli Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liwei Chen
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China.
| |
Collapse
|
42
|
Ma J, Yan L, Yang J, He Y, Wu L. Effect of Modification Strategies on the Biological Activity of Peptides/Proteins. Chembiochem 2024; 25:e202300481. [PMID: 38009768 DOI: 10.1002/cbic.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Covalent attachment of biologically active peptides/proteins with functional moieties is an effective strategy to control their biodistribution, pharmacokinetics, enzymatic digestion, and toxicity. This review focuses on the characteristics of different modification strategies and their effects on the biological activity of peptides/proteins and illustrates their relevant applications and potential.
Collapse
Affiliation(s)
- Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
43
|
Chen J, Kang G, Lei W, Li J, Wang H, Bi Y, Zhang W, Zhang L, Chai L, Wang P, Li X. DUSP22 suppresses tumor progression by directly dephosphorylating AKT in non-small cell lung cancer. Mol Carcinog 2024; 63:314-325. [PMID: 37937915 DOI: 10.1002/mc.23654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Protein kinase B (AKT) plays a pivotal in regulating cell migration, proliferation, apoptosis, and survival, making it a prominent target for anticancer therapy. While the kinase activity of AKT has been extensively explored, its dephosphorylation have largely remained uncharted. Herein, we aimed to unravel the molecular mechanisms governing AKT dephosphorylation, with a specific emphasis on dual-specificity phosphatases DUSP22. Our investigation sought to shed light on the potential of DUSP22 as a potential therapeutic target for non-small cell lung cancer (NSCLC). To determine the expression level of DUSP22 in NSCLC cell lines, the gene expression profiling interactive analysis (GEPIA) and Oncomine database were searched. Additionally, the effect of DUSP22 on patient survival was analyzed with Kaplan-Meier database. Antitumor effects of DUSP22 were tested in A549 and H1299 cell lines. Experiments are based on: (1) cell viability determined by the cell counting kit-8 assay and colony-formation assay; (2) cell migratory ability assessed through the scratch assay and the transwell migration assay; (3) the mechanism behind the antitumor effects of DUSP22 dissected with co-immunoprecipitation (Co-IP) and in vitro kinase assays. Our study revealed a significant downregulation of DUSP22 in both NSCLC cell lines and tissues. Meanwhile, survival rate analysis results demonstrated that reduced DUSP22 expression was correlated with poorer overall survival in lung cancer patients. Moreover, DUSP22 exhibited an inhibitory effect on the cell viability and migratory capacity of A549 and H1299 cells. This inhibition was accompanied by the decrease in the phosphorylation of AKT and p38. Mechanistically, the phosphatase domain of DUSP22 interacted with AKT, resulting in the inhibition of AKT phosphorylation. This inhibitory effect was contingent upon the phosphatase activity of DUSP22. These findings provide compelling evidence that DUSP22 directly interacted with AKT, leading to the dephosphorylation of AKT at S473 and T308 residues, ultimately curbing the proliferation and migration of lung cancer cells. Additionally, our results also highlight a preclinical rationale for utilizing DUSP22 as a prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Jingying Chen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
- Institute of Translational Medicine, Henan University, Kaifeng, China
| | - Guoqi Kang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
| | - Weidong Lei
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
| | - Jizhuo Li
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
| | - Huiling Wang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
| | - Yuanlin Bi
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
| | - Wanru Zhang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
| | - Liming Zhang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
- Institute of Translational Medicine, Henan University, Kaifeng, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
- Institute of Translational Medicine, Henan University, Kaifeng, China
| | - Peiling Wang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
- Institute of Translational Medicine, Henan University, Kaifeng, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, Henan University, Kaifeng, China
- Institute of Translational Medicine, Henan University, Kaifeng, China
| |
Collapse
|
44
|
Mugiya T, Mothibe M, Khathi A, Ngubane P, Sibiya N. Glycaemic abnormalities induced by small molecule tryosine kinase inhibitors: a review. Front Pharmacol 2024; 15:1355171. [PMID: 38362147 PMCID: PMC10867135 DOI: 10.3389/fphar.2024.1355171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers. Over the last two decades, there has been an increase in the use of targeted chemotherapy for cancers such as renal cell carcinoma, chronic leukaemia, and gastrointestinal stromal tumours. Small molecule tyrosine kinase inhibitors have been at the forefront of targeted chemotherapy. Studies have shown that small molecule tyrosine kinase inhibitors can alter glycaemic control and glucose metabolism, with some demonstrating hypoglycaemic activities whilst others showing hyperglycaemic properties. The mechanism by which small molecule tyrosine kinase inhibitors cause glycaemic dysregulation is not well understood, therefore, the clinical significance of these chemotherapeutic agents on glucose handling is also poorly documented. In this review, the effort is directed at mapping mechanistic insights into the effect of various small molecule tyrosine kinase inhibitors on glycaemic dysregulation envisaged to provide a deeper understanding of these chemotherapeutic agents on glucose metabolism. Small molecule tyrosine kinase inhibitors may elicit these observed glycaemic effects through preservation of β-cell function, improving insulin sensitivity and insulin secretion. These compounds bind to a spectrum of receptors and proteins implicated in glucose regulation for example, non-receptor tyrosine kinase SRC and ABL. Then receptor tyrosine kinase EGFR, PDGFR, and FGFR.
Collapse
Affiliation(s)
- Takudzwa Mugiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
45
|
Crean RM, Corbella M, Calixto AR, Hengge AC, Kamerlin SCL. Sequence - dynamics - function relationships in protein tyrosine phosphatases. QRB DISCOVERY 2024; 5:e4. [PMID: 38689874 PMCID: PMC11058592 DOI: 10.1017/qrd.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 05/02/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are crucial regulators of cellular signaling. Their activity is regulated by the motion of a conserved loop, the WPD-loop, from a catalytically inactive open to a catalytically active closed conformation. WPD-loop motion optimally positions a catalytically critical residue into the active site, and is directly linked to the turnover number of these enzymes. Crystal structures of chimeric PTPs constructed by grafting parts of the WPD-loop sequence of PTP1B onto the scaffold of YopH showed WPD-loops in a wide-open conformation never previously observed in either parent enzyme. This wide-open conformation has, however, been observed upon binding of small molecule inhibitors to other PTPs, suggesting the potential of targeting it for drug discovery efforts. Here, we have performed simulations of both enzymes and show that there are negligible energetic differences in the chemical step of catalysis, but significant differences in the dynamical properties of the WPD-loop. Detailed interaction network analysis provides insight into the molecular basis for this population shift to a wide-open conformation. Taken together, our study provides insight into the links between loop dynamics and chemistry in these YopH variants specifically, and how WPD-loop dynamic can be engineered through modification of the internal protein interaction network.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Ana R. Calixto
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Shina C. L. Kamerlin
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
46
|
Zhang P, Liu D, Ma J, Sun C, Wang Z, Zhu Y, Zhang X, Liu Y. Genome-wide analysis and expression pattern of the ZoPP2C gene family in Zingiber officinale Roscoe. BMC Genomics 2024; 25:83. [PMID: 38245685 PMCID: PMC10799369 DOI: 10.1186/s12864-024-09966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.
Collapse
Affiliation(s)
- Pan Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Deqi Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Chong Sun
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhaofei Wang
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xuemei Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yiqing Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
47
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
48
|
Ramos-Barbero M, Rufino-Palomares EE, Serrano-Carmona S, Hernández-Yera M, García-Salguero L, Lupiáñez JA, Pérez-Jiménez A. Effect of Nutraceutical Factors on Hepatic Intermediary Metabolism in Wistar Rats with Induced Tendinopathy. Int J Mol Sci 2024; 25:629. [PMID: 38203800 PMCID: PMC10779845 DOI: 10.3390/ijms25010629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Tendinopathy (TP) is a complex clinical syndrome characterized by local inflammation, pain in the affected area, and loss of performance, preceded by tendon injury. The disease develops in three phases: Inflammatory phase, proliferative phase, and remodeling phase. There are currently no proven treatments for early reversal of this type of injury. However, the metabolic pathways of the transition metabolism, which are necessary for the proper functioning of the organism, are known. These metabolic pathways can be modified by a number of external factors, such as nutritional supplements. In this study, the modulatory effect of four dietary supplements, maslinic acid (MA), hydroxytyrosol (HT), glycine, and aspartate (AA), on hepatic intermediary metabolism was observed in Wistar rats with induced tendinopathy at different stages of the disease. Induced tendinopathy in rats produces alterations in the liver intermediary metabolism. Nutraceutical treatments modify the intermediary metabolism in the different phases of tendinopathy, so AA treatment produced a decrease in carbohydrate metabolism. In lipid metabolism, MA and AA caused a decrease in lipogenesis at the tendinopathy and increased fatty acid oxidation. In protein metabolism, MA treatment increased GDH and AST activity; HT decreased ALT activity; and the AA treatment does not cause any alteration. Use of nutritional supplements of diet could help to regulate the intermediary metabolism in the TP.
Collapse
Affiliation(s)
- Marta Ramos-Barbero
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | | | - Manuel Hernández-Yera
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.R.-B.); (L.G.-S.); (J.A.L.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
49
|
Bremer HJ, Pflum MKH. Kinase-Catalyzed Biotinylation to Identify Phosphatase Substrates (K-BIPS). Methods Mol Biol 2024; 2743:135-152. [PMID: 38147213 PMCID: PMC11793920 DOI: 10.1007/978-1-0716-3569-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Phosphorylation is a reversible post-translational modification that alters the functions of proteins to govern various cellular events, including cell signaling. Kinases catalyze the transfer of a phosphoryl group onto the hydroxyl residue of serine, threonine, and tyrosine, while phosphatases catalyze the removal. Unregulated kinase and phosphatase activity have been observed in various cancers and neurodegenerative diseases. Despite their importance in cell biology, the role of phosphatases in cellular events has yet to be fully characterized, partly due to the lack of tools to identify phosphatase-substrate pairs in a biological context. The method called kinase-catalyzed biotinylation to identify phosphatase substrates (K-BIPS) was developed to remedy the lack of information surrounding phosphatase biology, particularly focused on substrate identification. In the K-BIPS method, the γ-phosphoryl modified adenosine 5'-triphosphate (ATP) analog, ATP-biotin, is used by kinases to biotin-label phosphoproteins. Because phosphatases must initially remove a phosphoryl group for subsequent biotinylation by ATP-biotin, phosphatase substrates are identified in K-BIPS by comparing biotinylated proteins in the presence and absence of active phosphatases. K-BIPS has been used to discover novel substrates of both serine/threonine and tyrosine phosphatases. This chapter describes the K-BIPS method to enable the identification of substrates to any phosphatases of interest, which will augment studies of phosphatase biology.
Collapse
Affiliation(s)
- Hannah J Bremer
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
50
|
Zou J, Qin Z, Li R, Yan X, Huang H, Yang B, Zhou F, Zhang L. iProPhos: A Web-Based Interactive Platform for Integrated Proteome and Phosphoproteome Analysis. Mol Cell Proteomics 2024; 23:100693. [PMID: 38097182 PMCID: PMC10828474 DOI: 10.1016/j.mcpro.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/29/2024] Open
Abstract
Large-scale omics studies have generated a wealth of mass spectrometry-based proteomics data, which provide additional insights into disease biology spanning genomic boundaries. However, there is a notable lack of web-based analysis and visualization tools that facilitate the reutilization of these data. Given this challenge, we present iProPhos, a user-friendly web server to deliver interactive and customizable functionalities. iProPhos incorporates a large number of samples, including 1444 tumor samples and 746 normal samples across 12 cancer types, sourced from the Clinical Proteomic Tumor Analysis Consortium. Additionally, users can also upload their own proteomics/phosphoproteomics data for analysis and visualization. In iProPhos, users can perform profiling plotting and differential expression, patient survival, clinical feature-related, and correlation analyses, including protein-protein, mRNA-protein, and kinase-substrate correlations. Furthermore, functional enrichment, protein-protein interaction network, and kinase-substrate enrichment analyses are accessible. iProPhos displays the analytical results in interactive figures and tables with various selectable parameters. It is freely accessible at http://longlab-zju.cn/iProPhos without login requirement. We present two case studies to demonstrate that iProPhos can identify potential drug targets and upstream kinases contributing to site-specific phosphorylation. Ultimately, iProPhos allows end-users to leverage the value of big data in cancer proteomics more effectively and accelerates the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Jing Zou
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Ziran Qin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Ran Li
- School of Medicine, Hangzhou City University, Hangzhou, China.
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Huizhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Yang
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China; Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Long Zhang
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|