1
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Davis S, Scott C, Oetjen J, Charles PD, Kessler BM, Ansorge O, Fischer R. Deep topographic proteomics of a human brain tumour. Nat Commun 2023; 14:7710. [PMID: 38001067 PMCID: PMC10673928 DOI: 10.1038/s41467-023-43520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Philip D Charles
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
3
|
Role of the Intermediate Filament Protein Peripherin in Health and Disease. Int J Mol Sci 2022; 23:ijms232315416. [PMID: 36499746 PMCID: PMC9740141 DOI: 10.3390/ijms232315416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate filaments are the most heterogeneous class among cytoskeletal elements. While some of them have been well-characterized, little is known about peripherin. Peripherin is a class III intermediate filament protein with a specific expression in the peripheral nervous system. Epigenetic modifications are involved in this cell-type-specific expression. Peripherin has important roles in neurite outgrowth and stability, axonal transport, and axonal myelination. Moreover, peripherin interacts with proteins involved in vesicular trafficking, signal transduction, DNA/RNA processing, protein folding, and mitochondrial metabolism, suggesting a role in all these processes. This review collects information regarding peripherin gene regulation, post-translational modifications, and functions and its involvement in the onset of a number of diseases.
Collapse
|
4
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
5
|
Alkaslasi MR, Piccus ZE, Hareendran S, Silberberg H, Chen L, Zhang Y, Petros TJ, Le Pichon CE. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat Commun 2021; 12:2471. [PMID: 33931636 PMCID: PMC8087807 DOI: 10.1038/s41467-021-22691-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
In vertebrates, motor control relies on cholinergic neurons in the spinal cord that have been extensively studied over the past hundred years, yet the full heterogeneity of these neurons and their different functional roles in the adult remain to be defined. Here, we develop a targeted single nuclear RNA sequencing approach and use it to identify an array of cholinergic interneurons, visceral and skeletal motor neurons. Our data expose markers for distinguishing these classes of cholinergic neurons and their rich diversity. Specifically, visceral motor neurons, which provide autonomic control, can be divided into more than a dozen transcriptomic classes with anatomically restricted localization along the spinal cord. The complexity of the skeletal motor neurons is also reflected in our analysis with alpha, gamma, and a third subtype, possibly corresponding to the elusive beta motor neurons, clearly distinguished. In combination, our data provide a comprehensive transcriptomic description of this important population of neurons that control many aspects of physiology and movement and encompass the cellular substrates for debilitating degenerative disorders.
Collapse
Affiliation(s)
- Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Zoe E Piccus
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Sangeetha Hareendran
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Silberberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Li Chen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yajun Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Timothy J Petros
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Liang Y, Tong F, Zhang L, Zhu L, Li W, Huang W, Zhao S, He G, Zhou Y. iTRAQ-based proteomic analysis discovers potential biomarkers of diffuse axonal injury in rats. Brain Res Bull 2019; 153:289-304. [PMID: 31539556 DOI: 10.1016/j.brainresbull.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
Diffuse axonal injury (DAI) is one of the most common and severe pathological consequences of traumatic brain injury (TBI). The molecular mechanism of DAI is highly complicated and still elusive, yet a clear understanding is crucial for the diagnosis, treatment, and prognosis of DAI. In our study, we used rats to establish a DAI model and applied isobaric tags for relative and absolute quantitation (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins (DEPs) in the corpus callosum. As a result, a total of 514 proteins showed differential expression between the injury groups and the control. Among these DEPs, 14 common DEPs were present at all seven time points postinjury (1, 3, 6, 12, 24, 48, and 72 h). Next, bioinformatic analysis was performed to elucidate the pathogenesis of DAI, which was found to possibly involve calcium ion-regulatory proteins (e.g., calsenilin and ryanodine receptor 2), cytoskeleton organization (e.g., peripherin, NFL, NFM, and NFH), apoptotic processes (e.g., calsenilin and protein kinase C delta type), and inflammatory response proteins (e.g., complement C3 and C-reactive protein). Moreover, peripherin and calsenilin were successfully confirmed by western blotting to be significantly upregulated during DAI, and immunohistochemical (IHC) analysis revealed that their expression increased and could be observed in axons after injury, thus indicating their potential as DAI biomarkers. Our experiments not only provide insight into the molecular mechanisms of axonal injury in rats during DAI but also give clinicians and pathologists important reference data for the diagnosis of DAI. Our findings may expand the list of DAI biomarkers and improve the postmortem diagnostic rate of DAI.
Collapse
Affiliation(s)
- Yue Liang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Fang Tong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Lin Zhang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Longlong Zhu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Wenhe Li
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Weisheng Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Shuquan Zhao
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Guanglong He
- Institute of Forensic Science, Ministry of Public Security People's Republic of China, No. 17 Nanli Mulidi, Beijing, 100038, PR China.
| | - Yiwu Zhou
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| |
Collapse
|
7
|
Frith TJ, Granata I, Wind M, Stout E, Thompson O, Neumann K, Stavish D, Heath PR, Ortmann D, Hackland JO, Anastassiadis K, Gouti M, Briscoe J, Wilson V, Johnson SL, Placzek M, Guarracino MR, Andrews PW, Tsakiridis A. Human axial progenitors generate trunk neural crest cells in vitro. eLife 2018; 7:35786. [PMID: 30095409 PMCID: PMC6101942 DOI: 10.7554/elife.35786] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.
Collapse
Affiliation(s)
- Thomas Jr Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Ilaria Granata
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli, Italy
| | - Matthew Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Erin Stout
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Oliver Thompson
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dylan Stavish
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Daniel Ortmann
- Anne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - James Os Hackland
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | | | - Mina Gouti
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Mario R Guarracino
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli, Italy
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Abu-Bonsrah KD, Zhang D, Bjorksten AR, Dottori M, Newgreen DF. Generation of Adrenal Chromaffin-like Cells from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10:134-150. [PMID: 29233551 PMCID: PMC5768882 DOI: 10.1016/j.stemcr.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 11/29/2022] Open
Abstract
Adrenomedullary chromaffin cells are catecholamine (CA)-producing cells originating from trunk neural crest (NC) via sympathoadrenal progenitors (SAPs). We generated NC and SAPs from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro via BMP2/FGF2 exposure, ascertained by qPCR and immunoexpression of SOX10, ASCL1, TFAP2α, and PHOX2B, and by fluorescence-activated cell sorting selection for p75NTR and GD2, and confirmed their trunk-like HOX gene expression. We showed that continuing BMP4 and curtailing FGF2 in vitro, augmented with corticosteroid mimetic, induced these cells to upregulate the chromaffin cell-specific marker PNMT and other CA synthesis and storage markers, and we demonstrated noradrenaline and adrenaline by Faglu and high-performance liquid chromatography. We showed these human cells' SAP-like property of migration and differentiation into cells expressing chromaffin cell markers by implanting them into avian embryos in vivo and in chorio-allantoic membrane grafts. These cells have the potential for investigating differentiation of human chromaffin cells and for modeling diseases involving this cell type.
Collapse
Affiliation(s)
- Kwaku Dad Abu-Bonsrah
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052 VIC, Australia; Centre for Neural Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Dongcheng Zhang
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052 VIC, Australia
| | - Andrew R Bjorksten
- Department of Anaesthesia and Pain Management, The Royal Melbourne Hospital Grattan Street, Parkville, 3052 VIC, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, University of Melbourne, Parkville, 3010 VIC, Australia; Department of Anatomy and Neurosciences, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Donald F Newgreen
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052 VIC, Australia.
| |
Collapse
|
9
|
Kirkcaldie MTK, Dwyer ST. The third wave: Intermediate filaments in the maturing nervous system. Mol Cell Neurosci 2017; 84:68-76. [PMID: 28554564 DOI: 10.1016/j.mcn.2017.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/16/2023] Open
Abstract
Intermediate filaments are critical for the extreme structural specialisations of neurons, providing integrity in dynamic environments and efficient communication along axons a metre or more in length. As neurons mature, an initial expression of nestin and vimentin gives way to the neurofilament triplet proteins and α-internexin, substituted by peripherin in axons outside the CNS, which physically consolidate axons as they elongate and find their targets. Once connection is established, these proteins are transported, assembled, stabilised and modified, structurally transforming axons and dendrites as they acquire their full function. The interaction between these neurons and myelinating glial cells optimises the structure of axons for peak functional efficiency, a property retained across their lifespan. This finely calibrated structural regulation allows the nervous system to maintain timing precision and efficient control across large distances throughout somatic growth and, in maturity, as a plasticity mechanism allowing functional adaptation.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Samuel T Dwyer
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
10
|
Johnson Chacko L, Pechriggl EJ, Fritsch H, Rask-Andersen H, Blumer MJF, Schrott-Fischer A, Glueckert R. Neurosensory Differentiation and Innervation Patterning in the Human Fetal Vestibular End Organs between the Gestational Weeks 8-12. Front Neuroanat 2016; 10:111. [PMID: 27895556 PMCID: PMC5108762 DOI: 10.3389/fnana.2016.00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
Balance orientation depends on the precise operation of the vestibular end organs and the vestibular ganglion neurons. Previous research on the assemblage of the neuronal network in the developing fetal vestibular organ has been limited to data from animal models. Insights into the molecular expression profiles and signaling moieties involved in embryological development of the human fetal inner ear have been limited. We present an investigation of the cells of the vestibular end organs with specific focus on the hair cell differentiation and innervation pattern using an uninterrupted series of unique specimens from gestational weeks 8-12. Nerve fibers positive for peripherin innervate the entire fetal crista and utricle. While in rodents only the peripheral regions of the cristae and the extra-striolar region of the statolithic organs are stained. At week 9, transcription factors PAX2 and PAX8 were observed in the hair cells whereas PAX6 was observed for the first time among the supporting cells of the cristae and the satellite glial cells of the vestibular ganglia. Glutamine synthetase, a regulator of the neurotransmitter glutamate, is strongly expressed among satellite glia cells, transitional zones of the utricle and supporting cells in the sensory epithelium. At gestational week 11, electron microscopic examination reveals bouton contacts at hair cells and first signs of the formation of a protocalyx at type I hair cells. Our study provides first-hand insight into the fetal development of the vestibular end organs as well as their pattern of innervation by means of immunohistochemical and EM techniques, with the aim of contributing toward our understanding of balance development.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | | | - Michael J F Blumer
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of InnsbruckInnsbruck, Austria; University Clinics Innsbruck, Tirol KlinikenInnsbruck, Austria
| |
Collapse
|
11
|
Eira J, Silva CS, Sousa MM, Liz MA. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 2016; 141:61-82. [PMID: 27095262 DOI: 10.1016/j.pneurobio.2016.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease.
Collapse
Affiliation(s)
- Jessica Eira
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal
| | - Catarina Santos Silva
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal
| | - Mónica Mendes Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal; Nerve Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal
| | - Márcia Almeida Liz
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal.
| |
Collapse
|
12
|
Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments. Methods Enzymol 2016; 568:635-60. [DOI: 10.1016/bs.mie.2015.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
13
|
Zhao J, Liem RKH. α-Internexin and Peripherin: Expression, Assembly, Functions, and Roles in Disease. Methods Enzymol 2015; 568:477-507. [PMID: 26795481 DOI: 10.1016/bs.mie.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
α-Internexin and peripherin are neuronal-specific intermediate filament (IF) proteins. α-Internexin is a type IV IF protein like the neurofilament triplet proteins (NFTPs, which include neurofilament light chain, neurofilament medium chain, and neurofilament high chain) that are generally considered to be the primary components of the neuronal IFs. However, α-internexin is often expressed together with the NFTPs and has been proposed as the fourth subunit of the neurofilaments in the central nervous system. α-Internexin is also expressed earlier in the development than the NFTPs and is a maker for neuronal IF inclusion disease. α-Internexin can self-polymerize in vitro and in transfected cells and it is present in the absence of the NFTP in development and in granule cells in the cerebellum. In contrast, peripherin is a type III IF protein. Like α-internexin, peripherin is specific to the nervous system, but it is expressed predominantly in the peripheral nervous system (PNS). Peripherin can also self-assemble both in vitro and in transfected cells. It is as abundant as the NFTPs in the sciatic nerve and can be considered a fourth subunit of the neurofilaments in the PNS. Peripherin has multiple isoforms that arise from intron retention, cryptic intron receptor site or alternative translation initiation. The functional significance of these isoforms is not clear. Peripherin is a major component found in inclusions of patients with amyotrophic lateral sclerosis (ALS) and peripherin expression is upregulated in ALS patients.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA
| | - Ronald K H Liem
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA.
| |
Collapse
|
14
|
Pechriggl EJ, Bitsche M, Glueckert R, Rask‐Andersen H, Blumer MJF, Schrott‐Fischer A, Fritsch H. Development of the innervation of the human inner ear. Dev Neurobiol 2014; 75:683-702. [DOI: 10.1002/dneu.22242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Elisabeth J. Pechriggl
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| | - Mario Bitsche
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| | - Rudolf Glueckert
- Department of OtolaryngologyMedical University of InnsbruckAnichstrasse 356020Innsbruck Austria
- University Clinics InnsbruckTiroler LandeskrankenanstaltenInnsbruck Austria
| | - Helge Rask‐Andersen
- Departments of OtolaryngologyUppsala University Hospital751 85Uppsala Sweden
| | - Michael J. F. Blumer
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| | | | - Helga Fritsch
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| |
Collapse
|
15
|
Mantovani C, Terenghi G, Magnaghi V. Senescence in adipose-derived stem cells and its implications in nerve regeneration. Neural Regen Res 2014; 9:10-5. [PMID: 25206738 PMCID: PMC4146315 DOI: 10.4103/1673-5374.125324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Adult mesenchymal stem cells, specifically adipose-derived stem cells have self-renewal and multiple differentiation potentials and have shown to be the ideal candidate for therapeutic applications in regenerative medicine, particularly in peripheral nerve regeneration. Adipose-derived stem cells are easily harvested, although they may show the effects of aging, hence their potential in nerve repair may be limited by cellular senescence or donor age. Cellular senescence is a complex process whereby stem cells grow old as consequence of intrinsic events (e.g., DNA damage) or environmental cues (e.g., stressful stimuli or diseases), which determine a permanent growth arrest. Several mechanisms are implicated in stem cell senescence, although no one is exclusive of the others. In this review we report some of the most important factors modulating the senescence process, which can influence adipose-derived stem cell morphology and function, and compromise their clinical application for peripheral nerve regenerative cell therapy.
Collapse
Affiliation(s)
- Cristina Mantovani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Terenghi
- Blond McIndoe Laboratories, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Valerio Magnaghi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Cisint S, Crespo CA, Medina MF, Iruzubieta Villagra L, Fernández SN, Ramos I. Innervation of amphibian reproductive system. Histological and ultrastructural studies. Auton Neurosci 2014; 185:51-8. [PMID: 24882461 DOI: 10.1016/j.autneu.2014.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
In the present study we describe for the first time in anuran amphibians the histological and ultrastructural characteristics of innervation in the female reproductive organs. The observations in Rhinella arenarum revealed the presence of nerve fibers located predominantly in the ovarian hilium and in the oviduct wall. In both organs the nerves fibers are placed near blood vessels and smooth muscles fibers. In the present study the histological observations were confirmed using antibodies against peripherin and neurofilament 200 proteins. Ultrastructural analyses demonstrated that the innervation of the reproductive organs is constituted by unmyelinated nerve fibers surrounded by Schwann cells. Axon terminals contain a population of small, clear, translucent vesicles that coexist with a few dense cored vesicles. The ultrastructural characteristics together with the immunopositive reaction to tyrosine hydroxylase of the nerve fibers and the type of synaptic vesicles present in the axon terminal would indicate that the reproductive organs of R. arenarum females are innervated by the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- Susana Cisint
- Institute of Biology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Chacabuco 461, 4000 S.M. de Tucumán, Argentina
| | - Claudia A Crespo
- Institute of Biology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Chacabuco 461, 4000 S.M. de Tucumán, Argentina
| | - Marcela F Medina
- Institute of Biology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Chacabuco 461, 4000 S.M. de Tucumán, Argentina
| | - Lucrecia Iruzubieta Villagra
- Institute of Biology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Chacabuco 461, 4000 S.M. de Tucumán, Argentina
| | - Silvia N Fernández
- Institute of Biology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Chacabuco 461, 4000 S.M. de Tucumán, Argentina; Superior Institute of Biological Research, National Council for Scientific and Technical Research, National University of Tucumán, Chacabuco 461, 4000-S.M. de Tucumán, Argentina
| | - Inés Ramos
- Institute of Biology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Chacabuco 461, 4000 S.M. de Tucumán, Argentina; Superior Institute of Biological Research, National Council for Scientific and Technical Research, National University of Tucumán, Chacabuco 461, 4000-S.M. de Tucumán, Argentina. http://
| |
Collapse
|
17
|
Ang CE, Wernig M. Induced neuronal reprogramming. J Comp Neurol 2014; 522:2877-86. [PMID: 24771471 DOI: 10.1002/cne.23620] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022]
Abstract
Cellular differentiation processes during normal embryonic development are guided by extracellular soluble factors such as morphogen gradients and cell contact signals, eventually resulting in induction of specific combinations of lineage-determining transcription factors. The young field of epigenetic reprogramming takes advantage of this knowledge and uses cell fate determination factors to convert one lineage into another such as the conversion of fibroblasts into pluripotent stem cells or neurons. These induced cell fate conversions open up new avenues for studying disease processes, generating cell material for therapeutic intervention such as drug screening and potentially also for cell-based therapies. However, there are still limitations that have to be overcome to fulfill these promises, centering on reprogramming efficiencies, cell identity, and maturation. In this review, we discuss the discovery of induced neuronal reprogramming, ways to improve the conversion process, and finally how to define properly the identity of those converted neuronal cells.
Collapse
Affiliation(s)
- Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; Department of Bioengineering, Stanford University School of Medicine, Stanford, California, 94305
| | | |
Collapse
|
18
|
Affiliation(s)
- Beat Ludin
- Friedrich Miescher Institute, Basel, Switzerland
| | - Andrew Matus
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
19
|
Udit S, Gautron L. Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research. Front Neurosci 2013; 7:134. [PMID: 23914153 PMCID: PMC3728986 DOI: 10.3389/fnins.2013.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Neurons residing in the gut-brain axis remain understudied despite their important role in coordinating metabolic functions. This lack of knowledge is observed, in part, because labeling gut-brain axis neurons and their connections using conventional neuroanatomical methods is inherently challenging. This article summarizes genetic approaches that enable the labeling of distinct populations of gut-brain axis neurons in living laboratory rodents. In particular, we review the respective strengths and limitations of currently available genetic and viral approaches that permit the marking of gut-brain axis neurons without the need for antibodies or conventional neurotropic tracers. Finally, we discuss how these methodological advances are progressively transforming the study of the healthy and diseased gut-brain axis in the context of its role in chronic metabolic diseases, including diabetes and obesity.
Collapse
Affiliation(s)
- Swalpa Udit
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas Dallas, TX, USA
| | | |
Collapse
|
20
|
Wu HH, Levitt P. Prenatal expression of MET receptor tyrosine kinase in the fetal mouse dorsal raphe nuclei and the visceral motor/sensory brainstem. Dev Neurosci 2013; 35:1-16. [PMID: 23548689 DOI: 10.1159/000346367] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/04/2012] [Indexed: 12/15/2022] Open
Abstract
Signaling via MET receptor tyrosine kinase (MET) has been implicated in a number of neurodevelopmental events, including cell migration, dendritic and axonal development and synaptogenesis. Related to its role in the development of forebrain circuitry, we recently identified a functional promoter variant of the MET gene that is associated with autism spectrum disorder (ASD). The association of the MET promoter variant rs1858830 C allele is significantly enriched in families with a child who has ASD and co-occurring gastrointestinal conditions. The expression of MET in the forebrain had been mapped in detail in the developing mouse and rhesus macaque. However, in mammals, its expression in the developing brainstem has not been studied extensively throughout developmental stages. Brainstem and autonomic circuitry are implicated in ASD pathophysiology and in gastrointestinal dysfunction. To advance our understanding of the neurodevelopmental influences of MET signaling in brainstem circuitry development, we employed in situ hybridization and immunohistochemistry to map the expression of Met and its ligand, Hgf, through prenatal development of the mouse midbrain and hindbrain. Our results reveal a highly selective expression pattern of Met in the brainstem, including a subpopulation of neurons in cranial motor nuclei (nVII, nA and nXII), B6 subgroup of the dorsal raphe, Barrington's nucleus, and a small subset of neurons in the nucleus of solitary tract. In contrast to Met, neither full-length nor known splice variants of Hgf were localized in the prenatal brainstem. RT-PCR revealed Hgf expression in target tissues of Met-expressing brainstem neurons, suggesting that MET in these neurons may be activated by HGF from peripheral sources. Together, these data suggest that MET signaling may influence the development of neurons that are involved in central regulation of gastrointestinal function, tongue movement, swallowing, speech, stress and mood.
Collapse
Affiliation(s)
- Hsiao-Huei Wu
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, Calif. 90089, USA
| | | |
Collapse
|
21
|
Nandigama R, Ibañez-Tallon I, Lips K, Schwantes U, Kummer W, Bschleipfer T. Expression of nicotinic acetylcholine receptor subunit mRNA in mouse bladder afferent neurons. Neuroscience 2013; 229:27-35. [DOI: 10.1016/j.neuroscience.2012.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/21/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022]
|
22
|
Sasselli V, Micci MA, Kahrig KM, Pasricha PJ. Evaluation of ES-derived neural progenitors as a potential source for cell replacement therapy in the gut. BMC Gastroenterol 2012; 12:81. [PMID: 22735038 PMCID: PMC3412704 DOI: 10.1186/1471-230x-12-81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 06/26/2012] [Indexed: 01/28/2023] Open
Abstract
Background Stem cell-based therapy has recently been explored for the treatment of disorders of the enteric nervous system (ENS). Pluripotent embryonic stem (ES) cells represent an attractive cell source; however, little or no information is currently available on how ES cells will respond to the gut environment. In this study, we investigated the ability of ES cells to respond to environmental cues derived from the ENS and related tissues, both in vitro and in vivo. Methods Neurospheres were generated from mouse ES cells (ES-NS) and co-cultured with organotypic preparations of gut tissue consisting of the longitudinal muscle layers with the adherent myenteric plexus (LM-MP). Results LM-MP co-culture led to a significant increase in the expression of pan-neuronal markers (βIII-tubulin, PGP 9.5) as well as more specialized markers (peripherin, nNOS) in ES-NS, both at the transcriptional and protein level. The increased expression was not associated with increased proliferation, thus confirming a true neurogenic effect. LM-MP preparations exerted also a myogenic effect on ES-NS, although to a lesser extent. After transplantation in vivo into the mouse pylorus, grafted ES-NS failed to acquire a distinct phenotype al least 1 week following transplantation. Conclusions This is the first study reporting that the gut explants can induce neuronal differentiation of ES cells in vitro and induce the expression of nNOS, a key molecule in gastrointestinal motility regulation. The inability of ES-NS to adopt a neuronal phenotype after transplantation in the gastrointestinal tract is suggestive of the presence of local inhibitory influences that prevent ES-NS differentiation in vivo.
Collapse
Affiliation(s)
- Valentina Sasselli
- Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
23
|
Szaro BG, Strong MJ. Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
24
|
VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity. Proc Natl Acad Sci U S A 2010; 107:22296-301. [PMID: 21135246 DOI: 10.1073/pnas.1013413108] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we generated mice in which the vesicular glutamate transporter 2 (VGLUT2) is ablated selectively from DRG neurons. We report that conditional knockout (cKO) of the Slc17a6 gene encoding VGLUT2 from the great majority of nociceptors profoundly decreased VGLUT2 mRNA and protein in these neurons, and reduced firing of lamina I spinal cord neurons in response to noxious heat and mechanical stimulation. In behavioral assays, cKO mice showed decreased responsiveness to acute noxious heat, mechanical, and chemical (capsaicin) stimuli, but responded normally to cold stimulation and in the formalin test. Strikingly, although tissue injury-induced heat hyperalgesia was lost in the cKO mice, mechanical hypersensitivity developed normally. In a model of nerve injury-induced neuropathic pain, the magnitude of heat hypersensitivity was diminished in cKO mice, but both the mechanical allodynia and the microgliosis generated by nerve injury were intact. These findings suggest that VGLUT2 expression in nociceptors is essential for normal perception of acute pain and heat hyperalgesia, and that heat and mechanical hypersensitivity induced by peripheral injury rely on distinct (VGLUT2 dependent and VGLUT2 independent, respectively) primary afferent mechanisms and pathways.
Collapse
|
25
|
Expression of peripherin in human cochlea. Cell Tissue Res 2010; 342:345-51. [DOI: 10.1007/s00441-010-1081-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/22/2010] [Indexed: 12/16/2022]
|
26
|
Barclay M, Julien JP, Ryan AF, Housley GD. Type III intermediate filament peripherin inhibits neuritogenesis in type II spiral ganglion neurons in vitro. Neurosci Lett 2010; 478:51-5. [PMID: 20132868 DOI: 10.1016/j.neulet.2010.01.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/23/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023]
Abstract
Peripherin, a type III intermediate filament protein, forms part of the cytoskeleton in a subset of neurons, most of which have peripheral fibre projections. Studies suggest a role for peripherin in axon outgrowth and regeneration, but evidence for this in sensory and brain tissues is limited. The exclusive expression of peripherin in a sub-population of primary auditory neurons, the type II spiral ganglion neurons (SGN) prompted our investigation of the effect of peripherin gene deletion (pphKO) on these neurons. We used confocal immunofluorescence to examine the establishment of the innervation of the cochlear outer hair cells by the type II SGN neurites in vivo and in vitro, in wildtype (WT) and pphKO mice, in the first postnatal week. The distribution of the type II SGN nerve fibres was normal in pphKO cochleae. However, using P1 spiral ganglion explants under culture conditions where the majority of neurites were derived from type II SGN, pphKO resulted in increased numbers of neurites/explant compared to WT controls. Type II SGN neurites from pphKO explants extended approximately double the distance of WT neurites, and had reduced complexity based on greater distance between turning points. Addition of brain-derived neurotrophic factor (BDNF) to the culture media increased neurite number in WT and KO explants approximately 30-fold, but did not affect neurite length or distance between turning. These results indicate that peripherin may interact with other cytoskeletal elements to regulate outgrowth of the peripheral neurites of type II SGN, distinguishing these neurons from the type I SGN innervating the inner hair cells.
Collapse
Affiliation(s)
- Meagan Barclay
- Department of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
27
|
Szaro BG, Strong MJ. Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends Neurosci 2010; 33:27-37. [DOI: 10.1016/j.tins.2009.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 09/21/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022]
|
28
|
5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 2009; 29:9683-99. [PMID: 19657021 DOI: 10.1523/jneurosci.1145-09.2009] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although the mature enteric nervous system (ENS) has been shown to retain stem cells, enteric neurogenesis has not previously been demonstrated in adults. The relative number of enteric neurons in wild-type (WT) mice and those lacking 5-HT(4) receptors [knock-out (KO)] was found to be similar at birth; however, the abundance of ENS neurons increased during the first 4 months after birth in WT but not KO littermates. Enteric neurons subsequently decreased in both WT and KO but at 12 months were significantly more numerous in WT. We tested the hypothesis that stimulation of the 5-HT(4) receptor promotes enteric neuron survival and/or neurogenesis. In vitro, 5-HT(4) agonists increased enteric neuronal development/survival, decreased apoptosis, and activated CREB (cAMP response element-binding protein). In vivo, in WT but not KO mice, 5-HT(4) agonists induced bromodeoxyuridine incorporation into cells that expressed markers of neurons (HuC/D, doublecortin), neural precursors (Sox10, nestin, Phox2b), or stem cells (Musashi-1). This is the first demonstration of adult enteric neurogenesis; our results suggest that 5-HT(4) receptors are required postnatally for ENS growth and maintenance.
Collapse
|
29
|
Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009; 27:78-87. [PMID: 18845761 PMCID: PMC2729673 DOI: 10.1634/stemcells.2008-0543] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration.
Collapse
Affiliation(s)
- Slaven Erceg
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | |
Collapse
|
30
|
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 2009; 80:282-95. [PMID: 19539727 DOI: 10.1016/j.brainresbull.2009.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022]
Abstract
Intermediate filaments represent the most abundant cytoskeletal element in mature neurons. Mutations and/or accumulations of neuronal intermediate filament proteins are frequently observed in several human neurodegenerative disorders. Although it is now admitted that disorganization of the neurofilament network may be directly involved in neurodegeneration, certain type of perikaryal intermediate filament aggregates confer protection in motor neuron disease. The use of various mouse models provided a better knowledge of the role played by the disorganization of intermediate filaments in the pathogenesis of neurodegenerative disorders, but the mechanisms leading to the formation of these aggregates remain elusive. Here, we will review some neurodegenerative diseases involving intermediate filaments abnormalities and possible mechanisms susceptible to provoke them.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Department of Anatomy and Physiology of Laval University, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | |
Collapse
|
31
|
Liu W, Boström M, Rask-Andersen H. Expression of peripherin in the pig spiral ganglion--aspects of nerve injury and regeneration. Acta Otolaryngol 2009; 129:608-14. [PMID: 18763177 DOI: 10.1080/00016480802369294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION Peripherin protein may be important not only for developing neurons but also for the maintenance and regeneration of axonal processes in the mature cochlea. More knowledge about its expression and function could improve our understanding with reference to axonal regrowth and nerve restoration in the damaged cochlea. OBJECTIVE To investigate the existence of peripherin protein in adult pig spiral ganglion and cultured spiral ganglion neurons of the guinea pig. MATERIALS AND METHODS Immunohistochemistry with anti-peripherin antibodies was performed on sections of adult pig spiral ganglion and guinea pig spiral ganglion cell (SGC) culture. RESULTS In pig auditory neurons, both type I and type II SGCs showed expression of the protein peripherin. These cells were not preferentially located near the intraganglionic spiral bundle (IGSB). The IGSB consisted of thin calibre fibres showing intense peripherin and thicker fibres that were TUJ-1 positive. Only a few fibres within the IGSB co-expressed both peripherin and TUJ-1. Cultured guinea pig neurons displayed a rich expression of peripherin, including the nuclei. This protein was expressed in regions such as the perikaryon and axons but there was also a segmental expression of peripherin in some regions. Peripherin was more expressed in areas of axon branching and in the centre of the active growth cones and lammelipodia.
Collapse
|
32
|
Smeal RM, Tresco PA. The influence of substrate curvature on neurite outgrowth is cell type dependent. Exp Neurol 2008; 213:281-92. [DOI: 10.1016/j.expneurol.2008.05.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 01/04/2023]
|
33
|
Transgenic mice expressing the Peripherin-EGFP genomic reporter display intrinsic peripheral nervous system fluorescence. Transgenic Res 2008; 17:1103-16. [PMID: 18709437 DOI: 10.1007/s11248-008-9210-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
The development of homologous recombination methods for the precise modification of bacterial artificial chromosomes has allowed the introduction of disease causing mutations or fluorescent reporter genes into human loci for functional studies. We have introduced the EGFP gene into the human PRPH-1 locus to create the Peripherin-EGFP (hPRPH1-G) genomic reporter construct. The hPRPH1-G reporter was used to create transgenic mice with an intrinsically fluorescent peripheral nervous system (PNS). During development, hPRPH1-G expression was concomitant with the acquisition of neuronal cell fate and growing axons could be observed in whole embryo mounts. In the adult, sensory neurons were labeled in both the PNS and central nervous system, while motor neurons in the spinal cord had more limited expression. The fusion protein labeled long neuronal processes, highlighting the peripheral circuitry of hPRPH1-G transgenic mice to provide a useful resource for a range of neurobiological applications.
Collapse
|
34
|
Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats. Neuroscience 2008; 155:90-103. [PMID: 18571867 DOI: 10.1016/j.neuroscience.2008.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 01/10/2023]
Abstract
Following transection of the spinal cord, severed axonal ends retract from the lesion site and attempt regeneration within 24 h of injury. Molecular mechanisms underlying such rapid axonal reactions after severance are not fully characterized so far. To better understand the early axonal degenerating and regenerating processes, we examined the immunohistological expression of axonal cytoskeletal proteins from 5 min to 48 h after scalpel-transection of adult rat spinal cord white matter. Within 30 min of transection, expression of neurofilament (NF)- and peripherin-like immunoreactivity (-IR) was enhanced in severed axonal ends, which conversely lost beta-III-tubulin-IR expression, indicating differential expression of beta-III-tubulin-IR and NF/peripherin-IR. During the next few hours, the strongly-NF/peripherin-IR-positive severed axonal ends adhered to each other and these cytoskeletal alterations expanded bi-directionally (rostro-caudally) 100-300 microm away from the transection point. Within 6 h of transection, secondary axotomy occurred at about 300 microm-rostral and -caudal to the primary transection point, which finally formed strongly-NF/peripherin-IR-positive zipper-like axon segments at the transection site. Notably, sprouting of secondarily severed axons was observed within 6 h of injury. The regenerative axons, which extended toward the transection site, could not traverse the transection site where the zipper-like axon segments resided. The zipper-like axon segments showed abnormal axolemmal permeability through the leakage of an axonal tracer. Western blot analysis revealed a slight increase in peripherin content in transected spinal cord. Local treatment with cycloheximide suppressed the axotomy-induced peripherin-IR-enhancement in severed ends, suggesting the occurrence of intra-axonal peripherin synthesis in vivo. Treatment with calpain inhibitors frequently formed abnormally swollen microtubule-free ends, which suggests that calpain-activation is critical for functional growth cone formation in adult rat spinal cord. These observations indicate that adult rat cordotomy with a scalpel results in the rapid formation of intensely NF-IR-positive zipper-like axon segments at the transection site, which are similar to "preserved fibers" reported by Ramon y Cajal [Ramon y Cajal S (1928) Degeneration and regeneration in the nervous system. New York: Hafner]. On the other hand, axonal regenerative responses start within 6 h of injury, which may be supported by calpain-activation and intra-axonal protein synthesis.
Collapse
|
35
|
Barton KM, Levine EM. Expression patterns and cell cycle profiles of PCNA, MCM6, cyclin D1, cyclin A2, cyclin B1, and phosphorylated histone H3 in the developing mouse retina. Dev Dyn 2008; 237:672-82. [PMID: 18265020 DOI: 10.1002/dvdy.21449] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A challenge in studying organogenesis is the ability to identify progenitor cell populations. To address this problem, we characterized the expression patterns of cell cycle proteins during mouse retinal development and used flow cytometry to determine the expression profiles in the cell cycle. We found that MCM6 and PCNA are expressed in essentially all retinal progenitor cells throughout the proliferative period and these proteins are readily detectable in all cell cycle phases. Furthermore, their expression levels are downregulated as cells exit the cell cycle and differentiate. We also analyzed the expression of Cyclins D1, A2, and B1, and phosphorylated Histone H3 and found unexpected expression patterns and cell cycle profiles. The combined utilization of the markers tested and the use of flow cytometry should further facilitate the study of stem and progenitor cell behavior during development and in adult tissues.
Collapse
Affiliation(s)
- Kirston M Barton
- Department of Ophthalmology and Visual Sciences, Department of Neurobiology and Anatomy, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
36
|
Fornaro M, Lee J, Raimondo S, Nicolino S, Geuna S, Giacobini-Robecchi M. Neuronal intermediate filament expression in rat dorsal root ganglia sensory neurons: An in vivo and in vitro study. Neuroscience 2008; 153:1153-63. [DOI: 10.1016/j.neuroscience.2008.02.080] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/14/2008] [Accepted: 02/28/2008] [Indexed: 01/17/2023]
|
37
|
Sunesson L, Hellman U, Larsson C. Protein kinase Cepsilon binds peripherin and induces its aggregation, which is accompanied by apoptosis of neuroblastoma cells. J Biol Chem 2008; 283:16653-64. [PMID: 18408015 DOI: 10.1074/jbc.m710436200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A hallmark of the afflicted nervous tissue in amyotrophic lateral sclerosis is the presence of protein aggregates, which to a large extent contain the intermediate filament protein peripherin. Here we show that activation of protein kinase C (PKC) or overexpression of PKCepsilon induces the aggregation of peripherin in cultured neuroblastoma cells with elevated amounts of peripherin. The formation of aggregates was coupled to an increased apoptosis, suggesting a functional link between these events. Both induction of aggregates and apoptosis were suppressed in cells that had been transfected with small interfering RNAs targeting PKCepsilon. PKCepsilon and peripherin associate as shown by co-immunoprecipitation, and the interaction is dependent on and mediated by the C1b domain of PKCepsilon. The interaction was specific for PKCepsilon since corresponding structures from other isoforms did not co-precipitate peripherin, with the exception for PKCeta and -, which pulled down minute amounts. PKCepsilon interacts with vimentin through the same structures but does not induce its aggregation. When the PKCepsilon C1b domain is expressed in neuroblastoma cells together with peripherin, both phorbol ester-induced peripherin aggregation and apoptosis are abolished, supporting a model in which PKCepsilon through its interaction with peripherin facilitates its aggregation and subsequent cell death. These events may be prevented by expressing molecules that bind peripherin at the same site as PKCepsilon.
Collapse
Affiliation(s)
- Lovisa Sunesson
- Center for Molecular Pathology, Lund University, Entrance 78, 3rd floor, Malmö University Hospital, UMAS SE-205 02 Malmö
| | | | | |
Collapse
|
38
|
Abstract
Several recent studies have highlighted the role of axonal transport in the pathogenesis of motor neuron diseases. Mutations in genes that control microtubule regulation and dynamics have been shown to cause motor neuron degeneration in mice and in a form of human motor neuron disease. In addition, mutations in the molecular motors dynein and kinesins and several proteins associated with the membranes of intracellular vesicles that undergo transport cause motor neuron degeneration in humans and mice. Paradoxically, evidence from studies on the legs at odd angles (Loa) mouse and a transgenic mouse model for human motor neuron disease suggest that partial limitation of the function of dynein may in fact lead to improved axonal transport in the transgenic mouse, leading to delayed disease onset and increased life span.
Collapse
Affiliation(s)
- Ali Morsi El-Kadi
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | | |
Collapse
|
39
|
Fgfr2b mediated epithelial–mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning. Mech Dev 2007; 124:868-83. [DOI: 10.1016/j.mod.2007.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 09/01/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
|
40
|
Barclay M, Noakes PG, Ryan AF, Julien JP, Housley GD. Neuronal expression of peripherin, a type III intermediate filament protein, in the mouse hindbrain. Histochem Cell Biol 2007; 128:541-50. [PMID: 17899157 DOI: 10.1007/s00418-007-0340-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2007] [Indexed: 11/28/2022]
Abstract
Peripherin is a 57 kDa Type III intermediate filament protein associated with neurite extension, neuropathies such as amyotrophic lateral sclerosis, and cranial nerve and dorsal root projections. However, knowledge of peripherin expression in the CNS is limited. We have used immunoperoxidase histochemistry to characterise peripherin expression in the mouse hindbrain, including the inferior colliculus, pons, medulla and cerebellum. Peripherin immunolabelling was observed in the nerve fibres and nuclei that are associated with all cranial nerves [(CN) V-XII] in the hindbrain. Peripherin expression was prominent in the cell bodies and axons of the mesenchephalic trigeminal nucleus and the pars compacta region of nucleus ambiguus, and in the fibres that comprise the solitary tract, the descending spinal trigeminal tract and the trigeminal and facial nerves. A small proportion of peripherin positive fibres in CN VIII likely arise from cochlear type II spiral ganglion neurons. Peripherin positive fibres were also observed in the inferior cerebellar peduncle and folia in the intermediate zone of the cerebellum. Antibody specificity was confirmed by absence of labelling in hindbrain tissue from peripherin knockout mice. This study shows that in the adult mouse hindbrain, peripherin is expressed in discrete neuronal subpopulations that have sensory, motor and autonomic functions.
Collapse
Affiliation(s)
- Meagan Barclay
- Department of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
41
|
New insights into peripherin expression in cochlear neurons. Neuroscience 2007; 150:212-22. [PMID: 17964735 DOI: 10.1016/j.neuroscience.2007.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/06/2007] [Accepted: 08/31/2007] [Indexed: 12/26/2022]
Abstract
Peripherin is an intermediate filament protein that is expressed in peripheral and enteric neurons. In the cochlear nervous system, peripherin expression has been extensively used as a differentiation marker by preferentially labeling the type II neuronal population at adulthood, but yet without knowing its function. Since the expression of peripherin has been associated in time with the process of axonal extension and during regeneration of nerve fibers in other systems, it was of interest to determine whether peripherin expression in cochlear neurons was a static phenotypic trait or rather prone to modifications following nerve injury. In the present study, we first compared the expression pattern of peripherin and beta III-tubulin from late embryonic stages to the adult in rat cochlea. The staining for both proteins was seen before birth within all cochlear neurons. By birth, and for 2 or 3 days, peripherin expression was gradually restricted to the type II neuronal population and their projections. In contrast, from postnatal day (P) 10 onwards, while the expression of beta III-tubulin was still found in projections of all cochlear neurons, only the type I population had beta III-tubulin immunoreactivity in their cell bodies. We next investigated the expression of peripherin in axotomized cochlear neurons using an organotypic explant model. Peripherin expression was surprisingly re-expressed in a vast majority of neurons after axotomy. In parallel, the expression and localization of beta III-tubulin and peripherin in dissociated cultures of cochlear neurons were studied. Both proteins were distributed along the entire neuronal length but exhibited complementary distribution, especially within the projections. Moreover, peripherin immunoreactivity was still abundant in the growth cone, whereas that of beta III-tubulin was decreasing at this compartment. Our findings are consistent with a model in which peripherin plays an important structural role in cochlear neurons and their projections during both development and regenerative processes and which is compatible with the assumption that frequently developmentally regulated factors are reactivated during neuronal regeneration.
Collapse
|
42
|
Leonard RB, Kevetter GA. Vestibular efferents contain peripherin. Neurosci Lett 2006; 408:104-7. [PMID: 16997461 DOI: 10.1016/j.neulet.2006.08.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 08/11/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
Vestibular efferents have a common origin with the motoneurons of the facial nerve. In adults they share a number of common features, such as the same transmitter. Here we show using retrograde transport and immunohistochemistry, that the vestibular efferents, like facial motoneurons, contain peripherin. This supports the suggestion that peripherin-positive fibers at the apex of the cristae ampullaris are efferents.
Collapse
Affiliation(s)
- Robert B Leonard
- Department of Neurosciences and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
43
|
Xiao S, McLean J, Robertson J. Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1001-12. [PMID: 17045786 DOI: 10.1016/j.bbadis.2006.09.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/15/2023]
Abstract
One of the pathological hallmarks of ALS is the presence of axonal spheroids and perikaryal accumulations/aggregations comprised of the neuronal intermediate filament proteins, neurofilaments and peripherin. These abnormalities represent a point of convergence of both familial and sporadic forms of the disease and understanding their formation may reveal shared pathways in what is otherwise considered a highly heterogeneous disorder. Here we provide a review of the basic biology of neurofilaments and peripherin and the evidence linking them with ALS disease pathogenesis.
Collapse
Affiliation(s)
- Shangxi Xiao
- Department of Laboratory Medicine and Pathobiology, Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6, Queen's Park Crescent West, Toronto, ON, Canada M5S 3H2
| | | | | |
Collapse
|
44
|
Dourou V, Lyroudia K, Karayannopoulou G, Papadimitriou C, Molyvdas I. Comparative evaluation of neural tissue antigens--neurofilament protein (NF), peripherin (PRP), S100B protein (S100B), neuron-specific enolase (NSE) and chromogranin-A (CgA)--in both normal and inflamed human mature dental pulp. Acta Histochem 2006; 108:343-50. [PMID: 16919707 DOI: 10.1016/j.acthis.2006.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 05/01/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
The immunohistochemical detection of neurofilament protein (NF), peripherin (PRP), S100B protein (S100B), neuron-specific enolase (NSE) and chromogranin-A (CgA) has been studied in nerve fibres and bundles of human dental pulp. This was done in order to identify possible differences in the distribution pattern of the above markers between normal and inflamed pulp and, further, to evaluate their potential use as peripheral markers of dental innervation as well as objective markers for the determination of the extent of inflammation. Both normal and inflamed human dental pulp showed positive immunolabelling for NF, S100B and NSE and lack of labelling for PRP and CgA protein. An increased density of NF, S100B and NSE immunoreactive nerve fibres was observed in inflamed pulp samples compared to non-inflamed. The findings of this study suggest the possible application of NF, S100B and NSE as markers of dental innervation. Furthermore, they may be useful for the determination of the extent of pulpal inflammation, and might be utilized in alternative modalities of biological pulp therapy to reduce the inflammation process. The absence of CgA immunolabelling implies the presumptive absence of neuroendocrine antigens, while further research is required in order to clarify the involvement of PRP in dental pulp.
Collapse
Affiliation(s)
- Vassiliki Dourou
- Department of Endodontology, Dental School, Aristotle University of Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
45
|
Bates MD, Dunagan DT, Welch LC, Kaul A, Harvey RP. The Hlx homeobox transcription factor is required early in enteric nervous system development. BMC DEVELOPMENTAL BIOLOGY 2006; 6:33. [PMID: 16854219 PMCID: PMC1564389 DOI: 10.1186/1471-213x-6-33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 07/19/2006] [Indexed: 11/13/2022]
Abstract
Background Development of the enteric nervous system (ENS) requires interactions between migrating neural crest cells and the nascent gastrointestinal tract that are dependent upon genes expressed by both cell compartments. Hlx, a homeobox transcription factor gene that is expressed in mouse intestinal and hepatic mesenchyme, is required for normal embryonic growth of intestine and liver, and the Hlx-/- genotype is embryonic lethal. We hypothesized that Hlx is required for ENS development. Results Enteric neurons were identified in Hlx+/+ and Hlx-/- mouse embryos by immunostaining of embryo sections for the neural markers PGP9.5 and Phox2b, or by staining for β-galactosidase in whole-mount embryos containing the dopamine β-hydroxylase-nLacZ transgene. In Hlx+/+ embryos, neural crest cells/enteric neurons have moved from the stomach into the intestine by E10.5. By contrast, neural crest cells/enteric neurons remain largely restricted to the lateral stomach mesenchyme of Hlx-/- embryos, with only a few scattered neural crest cells/enteric neurons in the intestine between E10.5–16.5. Conclusion The Hlx homeobox transcription factor is required for early aspects of ENS development.
Collapse
Affiliation(s)
- Michael D Bates
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Dana T Dunagan
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lynn C Welch
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ajay Kaul
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
46
|
Odemis V, Lamp E, Pezeshki G, Moepps B, Schilling K, Gierschik P, Littman DR, Engele J. Mice deficient in the chemokine receptor CXCR4 exhibit impaired limb innervation and myogenesis. Mol Cell Neurosci 2005; 30:494-505. [PMID: 16198599 DOI: 10.1016/j.mcn.2005.07.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/13/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022] Open
Abstract
The chemokine CXCL12/SDF-1 and its receptor CXCR4 regulate the development and the function of the hematopoietic system and control morphogenesis of distinct brain areas. Here, we demonstrate that inactivation of CXCR4 results in a massive loss of spinal cord motoneurons and dorsal root ganglion neurons and, subsequently, in a reduced innervation of the developing mouse fore- and hindlimbs. However, only the death of sensory neurons seems to be a direct consequence of receptor inactivation as suggested by the observations that DRG neurons, but not motoneurons, of wild-type animals express CXCR4 and respond to CXCL12 with an increase in cell survival. In contrast, the increased death of motoneurons in CXCR4-deficient animals seems to result from impaired limb myogenesis and a subsequent loss of muscle-derived neurotrophic support. In summary, our findings unravel a previously unrecognized complex role of CXCL12/CXCR4 in the control of limb neuromuscular development.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Cell Death/genetics
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Extremities
- Female
- Ganglia, Spinal/abnormalities
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/immunology
- Limb Deformities, Congenital/metabolism
- Male
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Motor Neurons/ultrastructure
- Muscle, Skeletal/abnormalities
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiopathology
- Nerve Growth Factors/deficiency
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/ultrastructure
- Peripheral Nerves/abnormalities
- Peripheral Nerves/pathology
- Peripheral Nerves/physiopathology
- Receptors, CXCR4/genetics
- Spinal Cord/abnormalities
- Spinal Cord/pathology
- Spinal Cord/physiopathology
Collapse
Affiliation(s)
- Veysel Odemis
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ko TL, Chien CL, Lu KS. The expression of alpha-internexin and peripherin in the developing mouse pineal gland. J Biomed Sci 2005; 12:777-89. [PMID: 16132113 DOI: 10.1007/s11373-005-9006-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022] Open
Abstract
The mammalian pineal gland contains pinealocytes, interstitial glial cells, perivascular macrophages, neurons and neuron-like cells. The neuronal identity of neurons and neuron-like cells was an enigma. alpha-Internexin and peripherin are specific neuronal intermediate filament proteins and are expressed differentially in the CNS and PNS. We investigated the development of immunoreactivity and expression patterns of mRNAs for alpha-internexin and peripherin in the mouse pineal gland to determine the neuronal identity of these cells. Both alpha-internexin- and peripherin-immunoreactive cells were readily visualized only after birth. Both proteins were at the highest level on the postnatal day 7 (P7), rapidly declined at P14, and obtained their adult level at P21. Both protein and mRNA of alpha-internexin are expressed in some cells and nerve processes, but not all, of adult mouse pineal gland. Less number of peripherin immunoreactive or RNA-expressing cells and nerve processes were identified. Accumulations of alpha-internexin and peripherin proteins were also found in the cells from the aged pineal gland (P360). We concluded that some cells in the developing mouse pineal gland may differentiated into neurons and neuron-like cells expressing both alpha-internexin and/or peripherin only postnatally, and these cells possess dual properties of CNS and PNS neurons in nature. We suggested that they may act as interneurons between the pinealocyte and the distal neurons innervating the pinealocytes, or form a local circuitry with pinealocytes to play a role of paracrine regulatory function on the pinealocytes.
Collapse
Affiliation(s)
- Tsui-Ling Ko
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, 100, Taipei, Taiwan
| | | | | |
Collapse
|
48
|
Merigo F, Mucignat-Caretta C, Zancanaro C. Timing of neuronal intermediate filament proteins expression in the mouse vomeronasal organ during pre- and postnatal development. An immunohistochemical study. Chem Senses 2005; 30:707-17. [PMID: 16179384 DOI: 10.1093/chemse/bji063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.
Collapse
Affiliation(s)
- Flavia Merigo
- Section of Anatomy and Histology, Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | | | | |
Collapse
|
49
|
Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS. Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 2005; 23:923-30. [PMID: 15883233 DOI: 10.1634/stemcells.2005-0038] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human embryonic stem cells (hESCs) have been directed to differentiate into neuronal cells using many cell-culture techniques. Central nervous system cells with clinical importance have been produced from hESCs. To date, however, there have been no definitive reports of generation of peripheral neurons from hESCs. We used a modification of the method of Sasai and colleagues for mouse and primate embryonic stem cells to elicit neuronal differentiation from hESCs. When hESCs are cocultured with the mouse stromal line PA6 for 3 weeks, neurons are induced that coexpress (a) peripherin and Brn3a, and (b) peripherin and tyrosine hydroxylase, combinations characteristic of peripheral sensory and sympathetic neurons, respectively. In vivo, peripheral sensory and sympathetic neurons develop from the neural crest (NC). Analysis of expression of mRNAs identified in other species as NC markers reveals that the PA6 cells induce NC-like cells before neuronal differentiation takes place. Several NC markers, including SNAIL, dHAND, and Sox9, are increased at 1 week of coculture relative to naive cells. Furthermore, the expression of several NC marker genes known to be downregulated upon in vivo differentiation of NC derivatives, was observed to be present at lower levels at 3 weeks of PA6-hESC coculture than at 1 week. Our report is the first on the expression of molecular markers of NC-like cells in primates, in general, and in humans, specifically. Our results suggest that this system can be used for studying molecular and cellular events in the almost inaccessible human NC, as well as for producing normal human peripheral neurons for developing therapies for diseases such as familial dysautonomia.
Collapse
Affiliation(s)
- Oz Pomp
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
50
|
Hjerling-Leffler J, Marmigère F, Heglind M, Cederberg A, Koltzenburg M, Enerbäck S, Ernfors P. The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 2005; 132:2623-32. [PMID: 15872002 DOI: 10.1242/dev.01852] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The boundary cap (BC) is a transient neural crest-derived group of cells located at the dorsal root entry zone (DREZ) that have been shown to differentiate into sensory neurons and glia in vivo. We find that when placed in culture, BC cells self-renew, show multipotency in clonal cultures and express neural crest stem cell (NCSCs) markers. Unlike sciatic nerve NCSCs, the BC-NCSC (bNCSCs) generates sensory neurons upon differentiation. The bNCSCs constitute a common source of cells for functionally diverse types of neurons, as a single bNCSC can give rise to several types of nociceptive and thermoreceptive sensory neurons. Our data suggests that BC cells comprise a source of multipotent sensory specified stem cells that persist throughout embryogenesis.
Collapse
Affiliation(s)
- Jens Hjerling-Leffler
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|