• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4634180)   Today's Articles (2019)   Subscriber (49987)
For: Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwin H, Stead S, Sharman M. Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.11.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Number Cited by Other Article(s)
1
Fringu I, Anghel D, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Nanomaterials Based on 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine Exhibiting Bifunctional Sensitivity for Monitoring Chloramphenicol and Co2. Biomedicines 2024;12:770. [PMID: 38672126 PMCID: PMC11047853 DOI: 10.3390/biomedicines12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]  Open
2
Li Y, Xiang L, Li L, Gu X, Dong W, Wu Y. Enhanced degradation of chloramphenicol via heterogeneous activation of peroxymonosulfate by Fe3O4 and gallic acid. CHEMOSPHERE 2023;344:140376. [PMID: 37806327 DOI: 10.1016/j.chemosphere.2023.140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
3
Nguyen TN, Thi Pham N, Ngo DH, Kumar S, Cao XT. Covalently Functionalized Graphene with Molecularly Imprinted Polymers for Selective Adsorption and Electrochemical Detection of Chloramphenicol. ACS OMEGA 2023;8:25385-25391. [PMID: 37483252 PMCID: PMC10357450 DOI: 10.1021/acsomega.3c02839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
4
Rafi J, Rajan A, Neppolian B. Enhanced electrocatalytic performance of Aluminium Metal-organic framework towards the detection of broad-spectrum chloramphenicol antibiotic. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
5
In-situ formation/decomposition of deep eutectic solvent during solidification of floating organic droplet-liquid-liquid microextraction method for the extraction of some antibiotics from honey prior to high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021;1660:462653. [PMID: 34788672 DOI: 10.1016/j.chroma.2021.462653] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 01/21/2023]
6
Bongers IEA, van de Schans MGM, Nibbeling CVM, Elbers IJW, Berendsen BJA, Zuidema T. A single method to analyse residues from five different classes of prohibited pharmacologically active substances in milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021;38:1717-1734. [PMID: 34237239 DOI: 10.1080/19440049.2021.1944674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
7
Govindasamy M, Wang SF, Almahri A, Rajaji U. Effects of sonochemical approach and induced contraction of core-shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. ULTRASONICS SONOCHEMISTRY 2021;72:105445. [PMID: 33418401 PMCID: PMC7803933 DOI: 10.1016/j.ultsonch.2020.105445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 05/03/2023]
8
Advances in Gold Nanoparticles-Based Colorimetric Aptasensors for the Detection of Antibiotics: An Overview of the Past Decade. NANOMATERIALS 2021;11:nano11040840. [PMID: 33806173 PMCID: PMC8066193 DOI: 10.3390/nano11040840] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
9
Biosensors in Evaluation of Quality of Meat and Meat Products – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
10
Kumar H, Bhardwaj K, Kaur T, Nepovimova E, Kuča K, Kumar V, Bhatia SK, Dhanjal DS, Chopra C, Singh R, Guleria S, Bhalla TC, Verma R, Kumar D. Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review. Foods 2020;9:E1504. [PMID: 33092226 PMCID: PMC7588929 DOI: 10.3390/foods9101504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]  Open
11
Zhao M, Li X, Zhang Y, Wang Y, Wang B, Zheng L, Zhang D, Zhuang S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem 2020;339:127857. [PMID: 32866699 DOI: 10.1016/j.foodchem.2020.127857] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022]
12
Elder FCT, Feil EJ, Snape J, Gaze WH, Kasprzyk-Hordern B. The role of stereochemistry of antibiotic agents in the development of antibiotic resistance in the environment. ENVIRONMENT INTERNATIONAL 2020;139:105681. [PMID: 32251898 DOI: 10.1016/j.envint.2020.105681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
13
Govindasamy M, Wang SF, Kumaravel S, Ramalingam RJ, Al-Lohedan HA. Facile synthesis of copper sulfide decorated reduced graphene oxide nanocomposite for high sensitive detection of toxic antibiotic in milk. ULTRASONICS SONOCHEMISTRY 2019;52:382-390. [PMID: 30594521 DOI: 10.1016/j.ultsonch.2018.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 05/17/2023]
14
Zhu Y, Yan K, Xu Z, Wu J, Zhang J. Cathodic "signal-on" photoelectrochemical aptasensor for chloramphenicol detection using hierarchical porous flower-like Bi-BiOI@C composite. Biosens Bioelectron 2019;131:79-87. [PMID: 30826654 DOI: 10.1016/j.bios.2019.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
15
Chung HS, Lee YJ, Rahman MM, Abd El-Aty AM, Lee HS, Kabir MH, Kim SW, Park BJ, Kim JE, Hacımüftüoğlu F, Nahar N, Shin HC, Shim JH. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017;605-606:322-331. [PMID: 28668743 DOI: 10.1016/j.scitotenv.2017.06.231] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
16
Kikuchi H, Sakai T, Teshima R, Nemoto S, Akiyama H. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry. Food Chem 2017;230:589-593. [DOI: 10.1016/j.foodchem.2017.03.071] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/17/2017] [Accepted: 03/11/2017] [Indexed: 10/19/2022]
17
Thompson CS, Traynor IM, Fodey TL, Faulkner DV, Crooks SR. Screening method for the detection of residues of amphenicol antibiotics in bovine, ovine and porcine kidney by optical biosensor. Talanta 2017;172:120-125. [DOI: 10.1016/j.talanta.2017.05.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
18
Cristea C, Tertis M, Galatus R. Magnetic Nanoparticles for Antibiotics Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2017;7:E119. [PMID: 28538684 PMCID: PMC5485766 DOI: 10.3390/nano7060119] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/27/2022]
19
Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 2017;167:39-43. [DOI: 10.1016/j.talanta.2017.01.078] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/15/2022]
20
McNamee SE, Rosar G, Persic L, Elliott CT, Campbell K. Feasibility of a novel multispot nanoarray for antibiotic screening in honey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017;34:562-572. [PMID: 28077022 DOI: 10.1080/19440049.2017.1280188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
21
Singh PK, Jairath G, Ahlawat SS, Pathera A, Singh P. Biosensor: an emerging safety tool for meat industry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016;53:1759-65. [PMID: 27413204 PMCID: PMC4926889 DOI: 10.1007/s13197-015-2041-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
22
Fashi A, Khanban F, Yaftian MR, Zamani A. Improved electromembrane microextraction efficiency of chloramphenicol in dairy products: the cooperation of reduced graphene oxide and a cationic surfactant. RSC Adv 2016. [DOI: 10.1039/c6ra20479a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
23
Sniegocki T, Gbylik-Sikorska M, Posyniak A. Transfer of chloramphenicol from milk to commercial dairy products – Experimental proof. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
24
Development of a subcritical water extraction approach for trace analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry tissues. J Chromatogr A 2015;1418:29-35. [PMID: 26433266 DOI: 10.1016/j.chroma.2015.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 11/23/2022]
25
Wu S, Zhang H, Shi Z, Duan N, Fang C, Dai S, Wang Z. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.10.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
26
Pilehvar S, Gielkens K, Trashin SA, Dardenne F, Blust R, De Wael K. (Electro)Sensing of Phenicol Antibiotics—A Review. Crit Rev Food Sci Nutr 2015;56:2416-29. [DOI: 10.1080/10408398.2013.845140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
27
Ahmed MBM, Rajapaksha AU, Lim JE, Vu NT, Kim IS, Kang HM, Lee SS, Ok YS. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015;63:398-405. [PMID: 25495233 DOI: 10.1021/jf5034637] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
28
Mungroo NA, Neethirajan S. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review. BIOSENSORS 2014;4:472-93. [PMID: 25587435 PMCID: PMC4287714 DOI: 10.3390/bios4040472] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022]
29
Gao F, Feng S, Chen Z, Li-Chan EC, Grant E, Lu X. Detection and Quantification of Chloramphenicol in Milk and Honey Using Molecularly Imprinted Polymers: Canadian Penny-Based SERS Nano-Biosensor. J Food Sci 2014;79:N2542-9. [DOI: 10.1111/1750-3841.12705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/02/2014] [Indexed: 11/26/2022]
30
Scientific Opinion on Chloramphenicol in food and feed. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3907] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]  Open
31
Sniegocki T, Posyniak A, Gbylik-Sikorska M, Zmudzki J. Determination of Chloramphenicol in Milk Using a QuEChERS-Based on Liquid Chromatography Tandem Mass Spectrometry Method. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.848638] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
32
Manzetti S, Ghisi R. The environmental release and fate of antibiotics. MARINE POLLUTION BULLETIN 2014;79:7-15. [PMID: 24456854 DOI: 10.1016/j.marpolbul.2014.01.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/13/2013] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
33
Meneely J, Elliott C. Rapid surface plasmon resonance immunoassays for the determination of mycotoxins in cereals and cereal-based food products. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
34
Chen L, Li B. Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey. Food Chem 2013;141:23-8. [DOI: 10.1016/j.foodchem.2013.02.085] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 11/25/2022]
35
Nwani CD, Mkpadobi BN, Onyishi G, Echi PC, Chukwuka CO, Oluah SN, Ivoke N. Changes in behavior and hematological parameters of freshwater African catfishClarias gariepinus(Burchell 1822) following sublethal exposure to chloramphenicol. Drug Chem Toxicol 2013;37:107-13. [DOI: 10.3109/01480545.2013.834348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
36
Zhang Y, Lei J. Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.6.1839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
37
Leston S, Nunes M, Viegas I, Ramos F, Pardal MÂ. The effects of chloramphenicol on Ulva lactuca. CHEMOSPHERE 2013;91:552-7. [PMID: 23395526 DOI: 10.1016/j.chemosphere.2012.12.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 05/24/2023]
38
Determination of Chloramphenicol in Honey, Shrimp, and Poultry Meat with Liquid Chromatography–Mass Spectrometry: Validation of the Method According to Commission Decision 2002/657/EC. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9596-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
39
McGrath TF, Andersson K, Campbell K, Fodey TL, Elliott CT. Development of a rapid low cost fluorescent biosensor for the detection of food contaminants. Biosens Bioelectron 2013;41:96-102. [DOI: 10.1016/j.bios.2012.07.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 11/26/2022]
40
McGrath TF, Campbell K, Fodey TL, O'Kennedy R, Elliott CT. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants. Anal Bioanal Chem 2013;405:2535-44. [PMID: 23338757 DOI: 10.1007/s00216-012-6677-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 01/25/2023]
41
Kara M, Uzun L, Kolayli S, Denizli A. Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey. J Appl Polym Sci 2013. [DOI: 10.1002/app.38936] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
42
A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.10.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
43
Cheng N, Gao H, Deng J, Wang B, Xu R, Cao W. Removal of Chloramphenicol by Macroporous Adsorption Resins in Honey: A Novel Approach on Reutilization of Antibiotics Contaminated Honey. J Food Sci 2012;77:T169-72. [DOI: 10.1111/j.1750-3841.2012.02868.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
44
Narsaiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R. Optical biosensors for food quality and safety assurance-a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2012;49:383-406. [PMID: 23904648 PMCID: PMC3550887 DOI: 10.1007/s13197-011-0437-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 01/18/2023]
45
Turnipseed SB, Clark SB, Storey JM, Carr JR. Analysis of veterinary drug residues in frog legs and other aquacultured species using liquid chromatography quadrupole time-of-flight mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012;60:4430-4439. [PMID: 22390215 DOI: 10.1021/jf2049905] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
46
Yang S, Ho C, Lee C, Shih B, Horng H, Hong CY, Yang H, Chung Y, Chen J, Lin T. Immunomagnetic reduction assay on chloramphenicol extracted from shrimp. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
47
Yi Y, Wang Z, Li M, Zhu K, Ying G. Preparation and purification of monoclonal antibodies against chloramphenicol. Cytotechnology 2012;64:157-63. [PMID: 22160396 PMCID: PMC3279585 DOI: 10.1007/s10616-011-9401-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/06/2011] [Indexed: 11/30/2022]  Open
48
Cetinkaya F, Yibar A, Soyutemiz G, Okutan B, Ozcan A, Karaca M. Determination of tetracycline residues in chicken meat by liquid chromatography-tandem mass spectrometry. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2012;5:45-9. [DOI: 10.1080/19393210.2012.655782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
49
Rezende DR, Filho NF, Rocha GL. Simultaneous determination of chloramphenicol and florfenicol in liquid milk, milk powder and bovine muscle by LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012;29:559-70. [PMID: 22239562 DOI: 10.1080/19440049.2011.641161] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
50
Samsonova JV, Cannavan A, Elliott CT. A Critical Review of Screening Methods for the Detection of Chloramphenicol, Thiamphenicol, and Florfenicol Residues in Foodstuffs. Crit Rev Anal Chem 2012. [DOI: 10.1080/10408347.2012.629951] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA