1
|
Chen X, Liu C, McDaniel G, Zeng O, Ali J, Zhou Y, Wang X, Driscoll T, Zeng C, Li Y. Viscoelasticity of Hyaluronic Acid Hydrogels Regulates Human Pluripotent Stem Cell-derived Spinal Cord Organoid Patterning and Vascularization. Adv Healthc Mater 2024:e2402199. [PMID: 39300854 DOI: 10.1002/adhm.202402199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Recently, it has been recognized that natural extracellular matrix (ECM) and tissues are viscoelastic, while only elastic properties have been investigated in the past. How the viscoelastic matrix regulates stem cell patterning is critical for cell-ECM mechano-transduction. Here, this study fabricated different methacrylated hyaluronic acid (HA) hydrogels using covalent cross-linking, consisting of two gels with similar elasticity (stiffness) but different viscoelasticity, and two gels with similar viscoelasticity but different elasticity (stiffness). Meanwhile, a second set of dual network hydrogels are fabricated containing both covalent and coordinated cross-links. Human spinal cord organoid (hSCO) patterning in HA hydrogels and co-culture with isogenic human blood vessel organoids (hBVOs) are investigated. The viscoelastic hydrogels promote regional hSCO patterning compared to the elastic hydrogels. More viscoelastic hydrogels can promote dorsal marker expression, while softer hydrogels result in higher interneuron marker expression. The effects of viscoelastic properties of the hydrogels become more dominant than the stiffness effects in the co-culture of hSCOs and hBVOs. In addition, more viscoelastic hydrogels can lead to more Yes-associated protein nuclear translocation, revealing the mechanism of cell-ECM mechano-transduction. This research provides insights into viscoelastic behaviors of the hydrogels during human organoid patterning with ECM-mimicking in vitro microenvironments for applications in regenerative medicine.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
- High Performance Materials Institute, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Garrett McDaniel
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Olivia Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Changchun Zeng
- High Performance Materials Institute, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 222 S Copeland St, Tallahassee, FL, 32306, USA
| |
Collapse
|
2
|
Harati J, Du P, Galluzzi M, Li X, Lin J, Pan H, Wang PY. Tailored Physicochemical Cues Direct Human Mesenchymal Stem Cell Differentiation through Epigenetic Regulation Using Colloidal Self-Assembled Patterns. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35912-35924. [PMID: 38976770 DOI: 10.1021/acsami.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 μm) and polystyrene (0.4 μm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Science, Beijing 101408, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xian Li
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
3
|
Ghorabe FDE, Aglikov A, Novikov AS, Nosonovsky M, Ryltseva GA, Dudaev AE, Menzianova NG, Skorb EV, Shishatskaya EI. Topography hierarchy of biocompatible polyhydroxyalkanoate film. RSC Adv 2024; 14:19603-19611. [PMID: 38895528 PMCID: PMC11184939 DOI: 10.1039/d4ra03398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are used for various biomedical applications due to their biocompatibility. Surface properties, such as surface roughness, are crucial for PHAs performance. Traditional parameters used for the characterization of surface roughness, such as R a, are often insufficient to capture the complex and hierarchical (multiscale) topography of PHA films. We measure the topography and surface roughness of thin PHA films with atomic force microscopy and analyze the topography data using several relatively novel data processing methods, including the calculation of autocorrelation functions, topological data analysis, and the distribution of minimum and maximum values of pixels over the topography data. The results provide details of multiscale and anisotropic surface properties that are crucial to PHAs biocompatibility but often overlooked by traditional topography analysis methods.
Collapse
Affiliation(s)
- Fares D E Ghorabe
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Aleksandr Aglikov
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Alexander S Novikov
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Michael Nosonovsky
- Mechanical Engineering, University of Wisconsin-Milwaukee 3200 N Cramer St. Milwaukee WI 53211 USA
| | - Galina A Ryltseva
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
| | - Alexey E Dudaev
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS" Akademgorodok, 50/50 660036 Krasnoyarsk Russia
| | - Natalia G Menzianova
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | | |
Collapse
|
4
|
Cai F, Blanquer A, Costa MB, Schweiger L, Sarac B, Greer AL, Schroers J, Teichert C, Nogués C, Spieckermann F, Eckert J. Hierarchical Surface Pattern on Ni-Free Ti-Based Bulk Metallic Glass to Control Cell Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310364. [PMID: 38109153 PMCID: PMC11475312 DOI: 10.1002/smll.202310364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40Zr10Cu34Pd14Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40Zr10Cu34Pd14Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.
Collapse
Affiliation(s)
- Fei‐Fan Cai
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| | - Andreu Blanquer
- Departament de Biologia Cel·lularFisiologia i ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsBellaterra08193Spain
| | - Miguel B. Costa
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Lukas Schweiger
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
| | - Baran Sarac
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| | - A. Lindsay Greer
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Jan Schroers
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenCT 06511USA
| | - Christian Teichert
- Department PhysicsMechanics and Electrical EngineeringChair of PhysicsMontanuniversität LeobenFranz‐Josef‐Strasse 18LeobenA‐8700Austria
| | - Carme Nogués
- Departament de Biologia Cel·lularFisiologia i ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsBellaterra08193Spain
| | - Florian Spieckermann
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
| | - Jürgen Eckert
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| |
Collapse
|
5
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
7
|
Ledoux B, Zanin N, Yang J, Mercier V, Coster C, Dupont-Gillain C, Alsteens D, Morsomme P, Renard HF. Plasma membrane nanodeformations promote actin polymerization through CIP4/CDC42 recruitment and regulate type II IFN signaling. SCIENCE ADVANCES 2023; 9:eade1660. [PMID: 38091386 PMCID: PMC10848735 DOI: 10.1126/sciadv.ade1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
In their environment, cells must cope with mechanical stresses constantly. Among these, nanoscale deformations of plasma membrane induced by substrate nanotopography are now largely accepted as a biophysical stimulus influencing cell behavior and function. However, the mechanotransduction cascades involved and their precise molecular effects on cellular physiology are still poorly understood. Here, using homemade fluorescent nanostructured cell culture surfaces, we explored the role of Bin/Amphiphysin/Rvs (BAR) domain proteins as mechanosensors of plasma membrane geometry. Our data reveal that distinct subsets of BAR proteins bind to plasma membrane deformations in a membrane curvature radius-dependent manner. Furthermore, we show that membrane curvature promotes the formation of dynamic actin structures mediated by the Rho GTPase CDC42, the F-BAR protein CIP4, and the presence of PI(4,5)P2. In addition, these actin-enriched nanodomains can serve as platforms to regulate receptor signaling as they appear to contain interferon-γ receptor (IFNγ-R) and to lead to the partial inhibition of IFNγ-induced JAK/STAT signaling.
Collapse
Affiliation(s)
- Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Croix du Sud 4-5 bte L7.07.07, Louvain-la-Neuve 1348, Belgium
- UNamur, Morph-Im platform, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Natacha Zanin
- UNamur, NAmur Research Institute for LIfe Sciences, Unité de Recherche en Biologie Cellulaire animale, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Jinsung Yang
- Gyeongsang National University, Department of Biochemistry, College of Medicine, Department of Convergence Medical Sciences, Institute of Medical Science, Jinju 52727, South Korea
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Charlotte Coster
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
| | - Christine Dupont-Gillain
- UCLouvain, Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Place Louis Pasteur 1 bte L4.01.10, Louvain-la-Neuve 1348, Belgium
| | - David Alsteens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Croix du Sud 4-5 bte L7.07.07, Louvain-la-Neuve 1348, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
| | - Henri-François Renard
- UNamur, Morph-Im platform, Rue de Bruxelles 61, Namur 5000, Belgium
- UNamur, NAmur Research Institute for LIfe Sciences, Unité de Recherche en Biologie Cellulaire animale, Rue de Bruxelles 61, Namur 5000, Belgium
| |
Collapse
|
8
|
Quan Y, Huang Z, Wang Y, Liu Y, Ding S, Zhao Q, Chen X, Li H, Tang Z, Zhou B, Zhou Y. Coupling of static ultramicromagnetic field with elastic micropillar-structured substrate for cell response. Mater Today Bio 2023; 23:100831. [PMID: 37881448 PMCID: PMC10594574 DOI: 10.1016/j.mtbio.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.
Collapse
Affiliation(s)
- Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yuxin Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Qian Zhao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Haifeng Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
9
|
An HW, Lee J, Park JW. Surface characteristics and in vitro biocompatibility of surface-modified titanium foils as a regenerative barrier membrane for guided bone regeneration. J Biomater Appl 2023; 37:1228-1242. [PMID: 36205350 DOI: 10.1177/08853282221132351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated surface characteristics and biocompatibility of surface-modified thin titanium (Ti) foils as a regenerative barrier membrane for future application in guided bone regeneration (GBR) surgery to augment atrophic alveolar bone. Anodic oxidation and post-heat treatment were performed to prepare various Ti foil samples. Then, the in vitro soft and hard tissue compatibility of the samples was evaluated by examining the cell responses using primary human gingival fibroblasts (HGFs) and MG63 human osteoblast-like cells. Investigated Ti foil samples showed marked differences in physicochemical surface properties. Additional 400°C heat treatment applied to the anodized Ti surface led to formation of an anatase titanium dioxide structure and well-organized nanoscale protrusions, and significantly increased surface wettability. Anodization and heat treatment enhanced the growth of HGFs and MG63 cells in Ti foil samples. Additional heat treatment for 10 and 30 min further significantly improved the response of HGFs including spreading and proliferation, and upregulated the mRNA expression of cell adhesion- and maturation-related genes as well as the osteoblast differentiation of MG63 cells. Ti foil sample with thin oxide coating obtained by a 30 min heat treatment exhibited poor clinical plasticity as a regenerative barrier membrane, which showed complete coating failure in the bending test. Our results indicate that anatase Ti oxide coating of a specific film thickness with nanoscale surface protrusion morphology and hydrophilic characteristics obtained by anodization and post-heat treatment would be an effective approach as a biocompatible Ti regenerative membrane for inducing better regeneration of both gingival tissue and bone.
Collapse
Affiliation(s)
- Hyun-Wook An
- Graduate School, 34986Kyungpook National University, Daegu, Korea.,Megagen Implant R&D Center, Daegu, Korea
| | - Jaesik Lee
- Megagen Implant R&D Center, Daegu, Korea
| | - Jin-Woo Park
- Department of Pediatric Dentistry, 65498Kyungpook National University School of Dentistry, Daegu, Korea
| |
Collapse
|
10
|
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11:1110765. [PMID: 36911202 PMCID: PMC9995824 DOI: 10.3389/fbioe.2023.1110765] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.
Collapse
Affiliation(s)
- Qian Hu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qihui Bian
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Leiyun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hsuan-Shun Huang
- Department of Research, Center for Prevention and Therapy of Gynecological Cancers, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Mao J, Saiding Q, Qian S, Liu Z, Zhao B, Zhao Q, Lu B, Mao X, Zhang L, Zhang Y, Sun X, Cui W. Reprogramming stem cells in regenerative medicine. SMART MEDICINE 2022; 1:e20220005. [PMID: 39188749 PMCID: PMC11235200 DOI: 10.1002/smmd.20220005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 08/28/2024]
Abstract
Induced pluripotent stem cells (iPSCs) that are generated from adult somatic cells are induced to express genes that make them pluripotent through reprogramming techniques. With their unlimited proliferative capacity and multifaceted differentiation potential and circumventing the ethical problems encountered in the application of embryonic stem cells (ESC), iPSCs have a broad application in the fields of cell therapy, drug screening, and disease models and may open up new possibilities for regenerative medicine to treat diseases in the future. In this review, we begin with different reprogramming cell technologies to obtain iPSCs, including biotechnological, chemical, and physical modulation techniques, and present their respective strengths, and limitations, as well as the recent progress of research. Secondly, we review recent research advances in iPSC reprogramming-based regenerative therapies. iPSCs are now widely used to study various clinical diseases of hair follicle defects, myocardial infarction, neurological disorders, liver diseases, and spinal cord injuries. This review focuses on the translational clinical research around iPSCs as well as their potential for growth in the medical field. Finally, we summarize the overall review and look at the potential future of iPSCs in the field of cell therapy as well as tissue regeneration engineering and possible problems. We believe that the advancing iPSC research will help drive long-awaited breakthroughs in cellular therapy.
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhimo Liu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Binfan Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
13
|
Ribeiro S, Pugliese E, Korntner SH, Fernandes EM, Gomes ME, Reis RL, O'Riordan A, Bayon Y, Zeugolis DI. Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures. Eng Life Sci 2022; 22:619-633. [PMID: 36247829 PMCID: PMC9550738 DOI: 10.1002/elsc.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.
Collapse
Affiliation(s)
- Sofia Ribeiro
- MedtronicSofradim ProductionTrevouxFrance
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Eugenia Pugliese
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Stefanie H. Korntner
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Emanuel M. Fernandes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | - Yves Bayon
- MedtronicSofradim ProductionTrevouxFrance
| | - Dimitrios I. Zeugolis
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL)Charles Institute of DermatologyConway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials EngineeringUniversity College Dublin (UCD)DublinIreland
| |
Collapse
|
14
|
Harati J, Tao X, Shahsavarani H, Du P, Galluzzi M, Liu K, Zhang Z, Shaw P, Shokrgozar MA, Pan H, Wang PY. Polydopamine-Mediated Protein Adsorption Alters the Epigenetic Status and Differentiation of Primary Human Adipose-Derived Stem Cells (hASCs). Front Bioeng Biotechnol 2022; 10:934179. [PMID: 36032703 PMCID: PMC9399727 DOI: 10.3389/fbioe.2022.934179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Polydopamine (PDA) is a biocompatible cell-adhesive polymer with versatile applications in biomedical devices. Previous studies have shown that PDA coating could improve cell adhesion and differentiation of human mesenchymal stem cells (hMSCs). However, there is still a knowledge gap in the effect of PDA-mediated protein adsorption on the epigenetic status of MSCs. This work used gelatin-coated cell culture surfaces with and without PDA underlayer (Gel and PDA-Gel) to culture and differentiate primary human adipose-derived stem cells (hASCs). The properties of these two substrates were significantly different, which, in combination with a variation in extracellular matrix (ECM) protein bioactivity, regulated cell adhesion and migration. hASCs reduced focal adhesions by downregulating the expression of integrins such as αV, α1, α2, and β1 on the PDA-Gel compared to the Gel substrate. Interestingly, the ratio of H3K27me3 to H3K27me3+H3K4me3 was decreased, but this only occurred for upregulation of AGG and BMP4 genes during chondrogenic differentiation. This result implies that the PDA-Gel surface positively affects the chondrogenic, but not adipogenic and osteogenic, differentiation. In conclusion, for the first time, this study demonstrates the sequential effects of PDA coating on the biophysical property of adsorbed protein and then focal adhesions and differentiation of hMSCs through epigenetic regulation. This study sheds light on PDA-mediated mechanotransduction.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Mohammad Ali Shokrgozar
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| |
Collapse
|
15
|
Xing F, Yin HM, Zhe M, Xie JC, Duan X, Xu JZ, Xiang Z, Li ZM. Nanotopographical 3D-Printed Poly(ε-caprolactone) Scaffolds Enhance Proliferation and Osteogenic Differentiation of Urine-Derived Stem Cells for Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14071437. [PMID: 35890332 PMCID: PMC9317219 DOI: 10.3390/pharmaceutics14071437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
3D-printing technology can be used to construct personalized bone substitutes with customized shapes, but it cannot regulate the topological morphology of the scaffold surface, which plays a vital role in regulating the biological behaviors of stem cells. In addition, stem cells are able to sense the topographical and mechanical cues of surface of scaffolds by mechanosensing and mechanotransduction. In our study, we fabricated a 3D-printed poly(ε-caprolactone) (PCL) scaffold with a nanotopographical surface and loaded it with urine-derived stem cells (USCs) for application of bone regeneration. The topological 3D-printed PCL scaffolds (TPS) fabricated by surface epiphytic crystallization, possessed uniformly patterned nanoridges, of which the element composition and functional groups of nanoridges were the same as PCL. Compared with bare 3D-printed PCL scaffolds (BPS), TPS have a higher ability for protein adsorption and mineralization in vitro. The proliferation, cell length, and osteogenic gene expression of USCs on the surface of TPS were significantly higher than that of BPS. In addition, the TPS loaded with USCs exhibited a good ability for bone regeneration in cranial bone defects. Our study demonstrated that nanotopographical 3D-printed scaffolds loaded with USCs are a safe and effective therapeutic strategy for bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Hua-Mo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Ji-Chang Xie
- Laboratoire Roberval, FRE UTC-CNRS 2012, Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS60319, CEDEX, 60203 Compiègne, France;
| | - Xin Duan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
- Correspondence: (X.D.); (J.-Z.X.)
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
- Correspondence: (X.D.); (J.-Z.X.)
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
| |
Collapse
|
16
|
Park JW, Seo JH, Lee HJ. Enhanced osteogenic differentiation of mesenchymal stem cells by surface lithium modification in a sandblasted/acid-etched titanium implant. J Biomater Appl 2022; 37:447-458. [PMID: 35594165 DOI: 10.1177/08853282221104242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study investigated the osteogenesis-related cell functions of osteoprogenitor cells modulated by surface chemistry modification using lithium (Li) ions in a current clinical oral implant surface in order to gain insights into the future development of titanium (Ti) implants with enhanced osteogenic capacity. Wet chemical treatment was performed to modify a sandblasted/acid-etched (SLA) Ti implant surface using Li ions. The osteogenesis-related cell response to the surface Li ion-modified SLA sample was evaluated using two kinds of murine bone marrow stem cells, bipotent ST2 cells and primary multipotent mesenchymal stem cells (MSCs). The modified surface exhibited the formation of an Li-containing Ti oxide layer with plate-like nanostructures. The Li-incorporated surface enhanced early cellular events, including spreading, focal adhesion formation and integrin mRNA expression (α2, α5, αv and β3), and accelerated osteogenic differentiation of bipotent ST2 cells compared with unmodified SLA surface. Surface Li modification significantly increased GSK-3β phosphorylation and suppressed β-catenin phosphorylation, and promoted the subsequent osteogenic differentiation of primary MSCs. These results indicate that surface chemistry modification of SLA implants by wet chemical treatment with Li ions induces a more favorable osseointegration outcome through the promotion of the osteogenic differentiation of bone marrow MSCs via the positive regulation of GSK-3β and β-catenin activity.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Periodontology, School of Dentistry, 65498Kyungpook National University, Daegu, Korea.,Jin-Woo Park, Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu 41940, Korea.
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, 542877Korea University, Seoul, Korea
| | - Heon-Jin Lee
- School of Dentistry, 65498Kyungpook National University, Daegu, Korea
| |
Collapse
|
17
|
Hybrid Surface Nanostructures Using Chemical Vapor Deposition and Colloidal Self-Assembled Patterns for Human Mesenchymal Stem Cell Culture—A Preliminary Study. COATINGS 2022. [DOI: 10.3390/coatings12030311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Surface coatings are critical in biomaterials and biomedical devices. Chemical vapor deposition (CVD) is a well-known technology for the generation of thin films on a surface. However, the granular structures produced using CVD are rare. Recently, we used PPX-C, an excellent insulating material, for granular structure coating using CVD. Colloidal self-assembly is also a well-established method to generate granular structures named colloidal self-assembled patterns (cSAPs). In this study, we combined these two technologies to generate hierarchical granular structures and tested the biophysical effect of these hybrid surfaces on human bone marrow mesenchymal stem cells (hBMSCs). Two CVD-derived granular structures were made using water or glycerin droplets (i.e., CVD or GlyCVD surfaces). Water drops generate porous particles, while glycerin drops generate core–shell particles on the surface. These particles were dispersed randomly on the surface with sizes ranging from 1 to 20 μm. These CVD surfaces were hydrophobic (WCA ~ 80–110 degrees). On the other hand, a binary colloidal crystal (BCC), one type of cSAPs, composed of 5 μm Si and 400 nm carboxylated polystyrene (PSC) particles, had a close-packed structure and a hydrophilic surface (WCA ~ 45 degrees). The hybrid surfaces (i.e., CVD-BCC and GlyCVD-BCC) were smooth (Ra ~ 1.1–1.5 μm) and hydrophilic (WCA ~ 50 degrees), indicating a large surface coverage of BCC dominating the surface property. The hybrid surfaces were expected to be slightly negatively charged due to naturally charged CVD particles and negatively charged BCC particles. Cell adhesion was reduced on the hybrid surfaces, leading to an aggregated cell morphology, without reducing cell activity, compared to the flat control after 5 days. qPCR analysis showed that gene expression of type II collagen (COL2) was highly expressed on the GlyCVD-BCC without chemical induction after 3 and 14 days compared to the flat control. This proof-of-concept study demonstrates the potential of combining two technologies to make hybrid structures that can modulate stem cell attachment and differentiation.
Collapse
|
18
|
Urrutia-Cabrera D, Hsiang-Chi Liou R, Lin J, Shi Y, Liu K, Hung SSC, Hewitt AW, Wang PY, Ching-Bong Wong R. Combinatorial Approach of Binary Colloidal Crystals and CRISPR Activation to Improve Induced Pluripotent Stem Cell Differentiation into Neurons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8669-8679. [PMID: 35166105 DOI: 10.1021/acsami.1c17975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conventional methods of neuronal differentiation in human induced pluripotent stem cells (iPSCs) are tedious and complicated, involving multistage protocols with complex cocktails of growth factors and small molecules. Artificial extracellular matrices with a defined surface topography and chemistry represent a promising venue to improve neuronal differentiation in vitro. In the present study, we test the impact of a type of colloidal self-assembled patterns (cSAPs) called binary colloidal crystals (BCCs) on neuronal differentiation. We developed a CRISPR activation (CRISPRa) iPSC platform that constitutively expresses the dCas9-VPR system, which allows robust activation of the proneural transcription factor NEUROD1 to rapidly induce neuronal differentiation within 7 days. We show that the combinatorial use of BCCs can further improve this neuronal differentiation system. In particular, our results indicate that fine tuning of silica (Si) and polystyrene (PS) particle size is critical to generate specific topographies to improve neuronal differentiation and branching. BCCs with 5 μm silica and 100 nm carboxylated PS (PSC) have the most prominent effect on increasing neurite outgrowth and more complex ramification, while BCCs with 2 μm Si and 65 nm PSC particles are better at promoting neuronal enrichment. These results indicate that biophysical cues can support rapid differentiation and improve neuronal maturation. In summary, our combinatorial approach of CRISPRa and BCCs provides a robust and rapid pipeline for the in vitro production of human neurons. Specific BCCs can be adapted to the late stages of neuronal differentiation protocols to improve neuronal maturation, which has important implications in tissue engineering, in vitro biological studies, and disease modeling.
Collapse
Affiliation(s)
- Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325016, China
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
- Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen 510810, China
| |
Collapse
|
19
|
Djamgoz MB, Pchelintseva E. Mechanosensitive Ion Channels and Stem Cell Differentiation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Centre, Cyprus International University, Nicosia, TRNC, Mersin 10, Turkey
| | | |
Collapse
|
20
|
Lin J, Zeng J, Sun W, Liu K, Enkhbat M, Yi D, Harati J, Liu J, Kingshott P, Chen B, Ma F, Wang PY. Colloidal Self-Assembled Patterns Maintain the Pluripotency and Promote the Hemopoietic Potential of Human Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:771773. [PMID: 34869369 PMCID: PMC8636751 DOI: 10.3389/fcell.2021.771773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
The generation of blood cells in a significant amount for clinical uses is still challenging. Human pluripotent stem cells-derived hemopoietic cells (hPSC-HCs) are a promising cell source to generate blood cells. Previously, it has been shown that the attached substrates are crucial in the maintenance or differentiation of hPSCs. In this study, a new family of artificial extracellular matrix (ECM) called colloidal self-assembled patterns (cSAPs: #1-#5) was used for the expansion of mouse and human PSCs. The optimized cSAP (i.e., #4 and #5) was selected for subsequent hemopoietic differentiation of human embryonic stem cells (hESCs). Results showed that the hematopoietic potential of hESCs was enhanced approx 3-4 folds on cSAP #5 compared to the flat control. The cell population of hematopoietic progenitors (i.e., CD34+CD43+ cells) and erythroid progenitors (i.e., CD71+GPA+ cells) were enhanced 4 folds at day 8 and 3 folds at day 14. RNA sequencing analysis of cSAP-derived hESCs showed that there were 300 genes up-regulated and 627 genes down-regulated compared to the flat control. The enriched signaling pathways, including up-regulation (i.e., Toll-like receptor, HIF-1a, and Notch) or down-regulation (i.e., FAs, MAPK, JAK/STAT, and TGF-β) were classic in the maintenance of hESC phenotype Real time PCR confirmed that the expression of focal adhesion (PTK2, VCL, and CXCL14) and MAPK signaling (CAV1) related genes was down-regulated 2-3 folds compared to the flat control. Altogether, cSAP enhances the pluripotency and the hematopoietic potential of hESCs that subsequently generates more blood-like cells. This study reveals the potential of cSAPs on the expansion and early-stage blood cell lineage differentiation of hPSCs.
Collapse
Affiliation(s)
- Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiahui Zeng
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Wencui Sun
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Danying Yi
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxin Liu
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Bo Chen
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Feng Ma
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
21
|
Enkhbat M, Liu Y, Kim J, Xu Y, Yin Z, Liu T, Deng C, Zou C, Xie X, Li X, Wang P. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yung‐Chiang Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Yanshan Xu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Zongyi Yin
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Tzu‐Ming Liu
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chu‐Xia Deng
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chang Zou
- The First Affiliated Hospital of Southern University Shenzhen People's Hospital Shenzhen Guangdong 518020 China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Peng‐Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- Department of Chemistry and Biotechnology Swinburne University of Technology Victoria 3122 Australia
| |
Collapse
|
22
|
Shi Y, Lin J, Tao X, Qu J, Liao S, Li M, Deng K, Du P, Liu K, Thissen H, Li L, Kingshott P, Wang PY. Harnessing Colloidal Self-Assembled Patterns (cSAPs) to Regulate Bacterial and Human Stem Cell Response at Biointerfaces In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20982-20994. [PMID: 33913681 DOI: 10.1021/acsami.1c02591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The generation of complex physicochemical signals on the surface of biomedical materials is still challenging despite the fact that a broad range of surface modification methods have been developed over the last few decades. Colloidal self-assembled patterns (cSAPs) are combinations of unique colloids differing in size and surface chemistry acting as building blocks that can be programmed to generate surface patterns with exquisite control of complexity. This study reports on producing a variety of pre-modified colloids for the fabrication of cSAPs as well as post-assembly modifications to yield complex surfaces. The surface of cSAPs presents hierarchical micro- and nanostructures, localized hydrophilic/hydrophobic characteristics, and tunable surface functionality imparted by the individual colloids. The selected cSAPs can control bacterial adhesion (S. aureus, P. aeruginosa, and E. coli) and affect the cell cycle of human bone marrow stem cells (hBMSCs). Moreover, in a mouse subcutaneous model, cSAPs with selective [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium (SBMA) modification can reduce the inflammatory response after being challenged with bacteria. This study reveals that functionalized cSAPs are versatile tools for controlling cellular responses at biointerfaces, which is instructive for biomaterials or biodevices.
Collapse
Affiliation(s)
- Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jing Qu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Shumin Liao
- Department of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Mengyao Li
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong 519020, China
| | - Ke Deng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, 3168 Victoria, Australia
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Peter Kingshott
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
23
|
Deng K, Du P, Liu K, Tao X, Harati J, Jhang JW, Kim J, Wang PY. Programming Colloidal Self-Assembled Patterns (cSAPs) into Thermo-Responsible Hybrid Surfaces for Controlling Human Stem Cells and Macrophages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18563-18580. [PMID: 33861071 DOI: 10.1021/acsami.1c02969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid surfaces with tunable topography, chemistry, and stiffness have potential to rebuild native extracellular matrix (ECM) and manipulate cell behavior in vitro. However, the fabrication of controllable hybrid surfaces is still challenging. In this study, colloidal self-assembly technology was used to program particles into highly ordered structures with hybrid chemistry and stiffness at biointerfaces. These colloidal self-assembled patterns (cSAPs), including unary, binary, and ternary cSAPs, composed of silicon (Si), polystyrene (PS), and/or poly(N-isopropylacrylamide) (pNIPAM) nanogels (PNGs), were fabricated using either coassembly or layer-by-layer (LBL) methods. The selected binary cSAPs (i.e., PS/PNG and PNG/PS) have a tunable surface topography and wettability between 25 and 37 °C; thus, they can be used as dynamic cell culture substrates. Human adipose-derived mesenchymal stem cells (hASCs), bone marrow-derived mesenchymal stem cells (hBMSCs), and macrophages (THP-1) were investigated on these hybrid cSAPs under a static or dynamic system. The results showed that hybrid cSAPs significantly influenced the focal adhesions, cell morphology, cell migration, and gene expressions of stem cells. In general, stem cells had more vinculin puncta, smaller spreading size, and faster migration speed than the TCPS control. Hybrid cSAPs up-regulated gene expressions of focal adhesion kinase (FAK) and chondrocytes (AGG and SOX9) under static culture, while they also up-regulated osteocytes (COL1 and RUNX2) under dynamic culture. THP-1 macrophages were at M0 state on all cSAPs under static culture. However, cells became sensitive under dynamic culture. For example, some M1 genes (i.e., IL6, CD68, and TNFα) and M2 genes (i.e., IL10 and CD206) were down-regulated, while other M1 genes (i.e., IL1β) and M2 genes (i.e., TGF-β and IL1ra) were up-regulated, depending on the particle combinations. In conclusion, new hybrid cSAPs with thermoresponsive surface properties are versatile materials for stem cells and macrophages manipulation.
Collapse
Affiliation(s)
- Ke Deng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jhe-Wei Jhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
24
|
Wang L, Zhou W, Yu Z, Yu S, Zhou L, Cao Y, Dargusch M, Wang G. An In Vitro Evaluation of the Hierarchical Micro/Nanoporous Structure of a Ti3Zr2Sn3Mo25Nb Alloy after Surface Dealloying. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15017-15030. [PMID: 33764752 DOI: 10.1021/acsami.1c02140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A process to dealloy a Ti-3Zr-2Sn-3Mo-25Nb (TLM) titanium alloy to create a porous surface structure has been reported in this paper aiming to enhance the bioactivity of the alloy. A simple nanoporous topography on the surface was produced through dealloying the as-solution treated TLM alloy. In contrast, dealloying the as-cold rolled alloy created a hierarchical micro/nanoporous topography. SEM and XPS were performed to characterize the topography and element chemistry of both porous structures. The roughness, hydrophilicity, protein adsorption, cell adhesion, proliferation, and osteogenic differentiation were tested. The elements of Zr, Mo, Sn, and Nb were depleted at the nanoporous TLM surface with a diameter of 15.6 ± 2.3 nm. Dissolving the microscale α phase from the alloy surface contributed to the formation of the microscale grooves on the surface. The simple nanoporous topographical surface exhibited hydrophilicity and higher protein adsorption ability, which facilitated the early adhesion of osteoblasts compared with the hierarchical micro/nanoporous surface. On the other hand, the hierarchical micro/nanoporous surface improved cell proliferation and differentiation and still retained the contact guidance function, which implied good bonding for osseointegration. This research revealed the effect of phase composition on the surface morphology of dealloying titanium alloy and the synergistic effect of micron and nanometer topography on the function of osteoblasts. This paper therefore provides insights into the surface topological design of titanium-based biomaterials with improved biocompatibility.
Collapse
Affiliation(s)
- Lan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China
| | - Zhentao Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China
- East China Jiaotong University, Nanchang 330013, PR China
| | - Lian Zhou
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China
| | - Yemin Cao
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Gui Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, St Lucia, Queensland 4072 Australia
| |
Collapse
|
25
|
Tupone MG, d'Angelo M, Castelli V, Catanesi M, Benedetti E, Cimini A. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:639765. [PMID: 33816451 PMCID: PMC8012845 DOI: 10.3389/fbioe.2021.639765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Exploring and developing multifunctional intelligent biomaterials is crucial to improve next-generation therapies in tissue engineering and regenerative medicine. Recent findings show how distinct characteristics of in situ microenvironment can be mimicked by using different biomaterials. In vivo tissue architecture is characterized by the interconnection between cells and specific components of the extracellular matrix (ECM). Last evidence shows the importance of the structure and composition of the ECM in the development of cellular and molecular techniques, to achieve the best biodegradable and bioactive biomaterial compatible to human physiology. Such biomaterials provide specialized bioactive signals to regulate the surrounding biological habitat, through the progression of wound healing and biomaterial integration. The connection between stem cells and biomaterials stimulate the occurrence of specific modifications in terms of cell properties and fate, influencing then processes such as self-renewal, cell adhesion and differentiation. Recent studies in the field of tissue engineering and regenerative medicine have shown to deal with a broad area of applications, offering the most efficient and suitable strategies to neural repair and regeneration, drawing attention towards the potential use of biomaterials as 3D tools for in vitro neurodevelopment of tissue models, both in physiological and pathological conditions. In this direction, there are several tools supporting cell regeneration, which associate cytokines and other soluble factors delivery through the scaffold, and different approaches considering the features of the biomaterials, for an increased functionalization of the scaffold and for a better promotion of neural proliferation and cells-ECM interplay. In fact, 3D scaffolds need to ensure a progressive and regular delivery of cytokines, growth factors, or biomolecules, and moreover they should serve as a guide and support for injured tissues. It is also possible to create scaffolds with different layers, each one possessing different physical and biochemical aspects, able to provide at the same time organization, support and maintenance of the specific cell phenotype and diversified ECM morphogenesis. Our review summarizes the most recent advancements in functional materials, which are crucial to achieve the best performance and at the same time, to overcome the current limitations in tissue engineering and nervous tissue regeneration.
Collapse
Affiliation(s)
- Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Center for Microscopy, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Yoshikawa C, Nakaji-Hirabayashi T, Nishijima N, Nonsuwan P, Toh RJ, Kowalczyk W, Thissen H. Ultra-low fouling photocrosslinked coatings for the selective capture of cells expressing CD44. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111630. [PMID: 33545815 DOI: 10.1016/j.msec.2020.111630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 11/27/2022]
Abstract
The effective control of biointerfacial interactions is of outstanding interest in a broad range of biomedical applications, ranging from cell culture tools to biosensors and implantable medical devices. For many of these applications, highly specific interactions between cells and material surfaces are desired. Sophisticated control over these interactions requires reducing or preventing non-specific interactions on the one hand and displaying highly specific signals that can be recognized by extracellular receptors on the other. We have recently developed ultra-low fouling coatings that can be applied in a single step using photoreactive copolymers of 2-hydroxypropyl acrylamide and N-benzophenone acrylamide. Here, we have expanded this approach by incorporating polymerizable peptide monomers into these copolymers. The monomers QQGWFGAGK(acrylamide) and acrylamide-GAGQQGWF were synthesized after identifying the QQGWF sequence as a binding motif for CD44 by phage display for the first time. Our results demonstrate that UV-crosslinked coatings fabricated using the QQGWFGAGK(acrylamide) monomer are effective at selectively binding hMSC in the presence of HepG2 and HEK293 cells due to the difference in CD44 expression. Our results also demonstrate that the peptide modified coatings retain their low biofouling character using a BCA protein binding assay as well as an E. coli bacterial attachment assay over a 24 h period. Our approach provides an alternative to traditional integrin-mediated selective cell binding on surfaces and opens the door to new diagnostic applications, exploiting the fact that the transmembrane protein CD44 is highly expressed in multiple diseases.
Collapse
Affiliation(s)
- Chiaki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.
| | - Tadashi Nakaji-Hirabayashi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.
| | - Nanami Nishijima
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Punnida Nonsuwan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - Rou Jun Toh
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Wioleta Kowalczyk
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.
| |
Collapse
|
27
|
Casagrande RB, Baldin EK, Steffens D, Pavulack D, Pranke P, Brandalise RN, de Fraga Malfatti C. HA-hybrid matrix composite coating on Ti-Cp for biomedical application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:82. [PMID: 32959099 DOI: 10.1007/s10856-020-06423-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Calcium phosphate coatings have been applied to titanium metal substrates and their alloys as a synergistic alternative capable of combining the mechanical properties of metals and the excellent bioactive properties provided by ceramic materials. However, the unsatisfactory adhesion of hydroxyapatite coatings on metallic substrates, as well as their limitation when subjected to mechanical stresses have been reported as a limitation. Biofunctional coatings have been proposed as an alternative to single ceramic coatings, aiming at optimizing the long-term clinical success of biomaterials such as Ti. This work aims at evaluating the morphological properties and biological behavior of Ti-cp coated with matrix composite coating hydroxyapatite-containing hybrid. The hybrid matrix was obtained from TEOS and MTES silicon precursors, with dispersed hydroxyapatite suspended by dip coating. For the morphological characterization FTIR, SEM/FEG, AFM and contact angle measurement were used. Biological behavior was evaluated for toxicity, cell viability and the osteogenic differentiation capacity of mesenchymal stem cells. The composite coatings obtained showed regular dispersion of hydroxyapatite particles in the hybrid matrix, with uniform coating adhering to the Ti-Cp substrate. Nevertheless, although they provided similar viability behavior of mesenchymal stem cells to the Ti-Cp substrate, the evaluated coatings did not present osteoinductive properties. This result is probably due to the pronounced hydrophobic behavior caused by the incorporation of HA.
Collapse
Affiliation(s)
- Rosiana Boniatti Casagrande
- LAPEC-Corrosion Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., Porto Alegre, RS, Brazil.
| | - Estela Kerstner Baldin
- LAPEC-Corrosion Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., Porto Alegre, RS, Brazil
| | - Daniela Steffens
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), 2752 Ipiranga Av., Porto Alegre, RS, Brazil
- Stem Cell Research Institute-Instituto de Pesquisa com Células-tronco-(IPCT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90610-000, Brazil
| | - Daniela Pavulack
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), 2752 Ipiranga Av., Porto Alegre, RS, Brazil
- Stem Cell Research Institute-Instituto de Pesquisa com Células-tronco-(IPCT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90610-000, Brazil
| | - Rosmary Nichele Brandalise
- PGPROTEC-Postgraduate Program in Process and Technology Engineering, Universidade de Caxias do Sul (UCS), Francisco Getúlio Vargas Street, 1130, Caxias do Sul, RS, Brazil
| | - Célia de Fraga Malfatti
- LAPEC-Corrosion Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Liu C, Sun M, Wang Y, Zhu T, Ye G, You D, Dong L, Zhao W, Cheng K, Weng W, Zhang YS, Yu M, Wang H. Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31793-31803. [PMID: 32485098 DOI: 10.1021/acsami.0c07761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Titanium dioxide (TiO2) photofunctionalization has been demonstrated as an effective surface modification method for the osseointegration of implants. However, the insufficient understanding of the mechanism underlying photofunctionalization limits its clinical applications. Here, we report an ultraviolet (UV) radiant energy-dependent functionalization on TiO2 nanodots (TN) surfaces. We found the cell adhesion, proliferation, and osteogenic differentiation gradually increased with the accumulation of UV radiant energy (URE). The optimal functionalizing treatment energy was found to be 2000 mJ/cm2, which could regulate cell-specific behaviors on TN surfaces. The enhanced cell behaviors were regulated by the adsorption and functional site exposure of the extracellular matrix (ECM) proteins, which were the result of the surface physicochemical changes induced by the URE. The correlation between the URE and the reconstruction of surface hydroxyl groups was considered as an alternative mechanism of this energy-dependent functionalization. We also demonstrated the synergistic effects of FAK-RHOA and ERK1/2 signaling pathways on mediating the URE-dependent cell behaviors. Overall, this study provides a novel insight into the mechanisms of photofunctionalization, guiding the design of implants and the clinical practice of photofunctionalization.
Collapse
Affiliation(s)
- Chao Liu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Mouyuan Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Yu Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Tianer Zhu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Guanchen Ye
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Dongqi You
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Lingqing Dong
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenquan Zhao
- The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mengfei Yu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
- The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
29
|
Babaie A, Lumicisi J, Thissen H, Wang PY, Sumer H, Kingshott P. Binary Colloidal Crystal (BCC) Substrates for Controlling the Fate of Mouse Embryonic Stem Cells. Colloids Surf B Biointerfaces 2020; 194:111133. [PMID: 32554259 DOI: 10.1016/j.colsurfb.2020.111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
Understanding the interactions of stem cells with surface topography can give us an invaluable tool in controlling stemness and fate of stem cells for further use in biomedical applications. In this study, we have fabricated topographical features using a class of cell culture substrates called binary colloidal crystals (BCCs), that are made by self-assembly of mixtures of spherical micron sized silica (Si) and nanometer sized polystyrene (PS) or poly (methyl methacrylate) (PMMA) particles. The substrates formed are arrays of ordered, hexagonally packed large Si particles inter-dispersed with the PS particles that are stabilized by gentle heating, which melts the PS or PMMA forming substrates suitable for cell culture. BCC substrates were used for culture of mouse embryonic stem cells (mESCs). Compared to tissue culture plates, COM1 (Si5-PMMA0.4), COM2 (Si5-PS0.4) and COM4 (Si2-PSC0.22) have shown to provide a better support for mESC proliferation in the presence of the cytokine leukemia inhibitory factor (LIF). The behavior of mESCs with the BCCs in presence and absence of LIF, was further explored and it was found that interaction of mESCs with the culture substrate can be controlled by tuning surface topography and roughness, which is determined by the size and type of particles used in making BCCs. Furthermore, it was shown that limiting cell-surface interactions and controlling colony shape can promote stemness maintenance on COM1 and COM2 substrates as indicated by better proliferation and higher expression of pluripotency genes including Nanog both in presence and in absence of LIF. Together with higher expression of GATA6 gene, it can be stated that these surfaces can be used for endodermic priming of mESCs. Therefore, we believe that these surfaces, especially COM1 and COM2 surfaces can be beneficial as stem cell culture systems for further use in biomedical research.
Collapse
Affiliation(s)
- Ali Babaie
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - James Lumicisi
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
30
|
Tao X, Du P, Li L, Lin J, Shi Y, Wang PY. Human Platelet Lysate Supports Mouse Skeletal Myoblast Growth but Suppresses Cell Fusion on Nanogrooves. ACS APPLIED BIO MATERIALS 2020; 3:3594-3604. [DOI: 10.1021/acsabm.0c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
31
|
Lee JH, Luo J, Choi HK, Chueng STD, Lee KB, Choi JW. Functional nanoarrays for investigating stem cell fate and function. NANOSCALE 2020; 12:9306-9326. [PMID: 32090229 PMCID: PMC7671654 DOI: 10.1039/c9nr10963c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stem cells show excellent potential in the field of tissue engineering and regenerative medicine based on their excellent capability to not only self-renew but also differentiate into a specialized cell type of interest. However, the lack of a non-destructive monitoring system makes it challenging to identify and characterize differentiated cells before their transplantation without compromising cell viability. Thus, the development of a non-destructive monitoring method for analyzing cell function is highly desired and can significantly benefit stem cell-based therapies. Recently, nanomaterial-based scaffolds (e.g., nanoarrays) have made possible considerable advances in controlling the differentiation of stem cells and characterization of the differentiation status sensitively in real time. This review provides a selective overview of the recent progress in the synthesis methods of nanoarrays and their applications in controlling stem cell fate and monitoring live cell functions electrochemically. We believe that the topics discussed in this review can provide brief and concise guidelines for the development of novel nanoarrays and promote the interest in live cell study applications. A method which can not only control but also monitor stem cell fate and function will be a promising technology that can accelerate stem cell therapies.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
33
|
Zan F, Wei Q, Fang L, Xian M, Ke Y, Wu G. Role of Stiffness versus Wettability in Regulating Cell Behaviors on Polymeric Surfaces. ACS Biomater Sci Eng 2020; 6:912-922. [PMID: 33464847 DOI: 10.1021/acsbiomaterials.9b01430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substrate wettability and stiffness, two factors impacting cell behaviors simultaneously, have been attracting much attention to elaborate which one dominates. In this study, hydrophilic poly(2-hydroxyethyl methacrylate) brushes were grafted onto the surfaces of poly(dimethylsiloxane) (PDMS) with elastic moduli of 3.66, 101.65 and 214.97 MPa and decreasing water contact angle from 120.4° to 38.5°. Cell behaviors of three cell lines including mBMSCs, ATDC-5, and C28/I2 were then investigated on the hydrophilic and hydrophobic PDMS with different stiffness, respectively. The proliferation of three cell lines was faster on the hydrophilic PDMS than the hydrophobic PDMS, but the stiffness of the hydrophilic or hydrophobic PDMS did not have a significant impact on cell proliferation. The increase of the stiffness enhanced cell migration, the cell spread and the gene expression proportion of extracellular matrix/intercellular adhesion molecules (integrin + FAK/NCAM + N-cadherin) for all three cell lines, but the increase of the wettability showed small enhancement in cell migration, cell spread and gene expression. Moreover, the cartilage-specific gene expression of SOX9 and COL2 downregulated for all three cell lines with the increasing stiffness. The interpretation of the effect of substrate wettability and stiffness on cell behaviors would function as very useful guideline to direct scaffold fabrication.
Collapse
Affiliation(s)
- Fei Zan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Qiang Wei
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Liming Fang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Guangdong Province Key Laboratory of Biomedical Engineering, Guangzhou 510641, China
| | - Mengyue Xian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Yu Ke
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| |
Collapse
|
34
|
Manini P, Lucci V, Lino V, Sartini S, Rossella F, Falco G, Chiappe C, d’Ischia M. Synthetic mycomelanin thin films as emergent bio-inspired interfaces controlling the fate of embryonic stem cells. J Mater Chem B 2020; 8:4412-4418. [DOI: 10.1039/d0tb00623h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycomelanin thin films from 1,8-dihydroxynaphthalene can serve as a biointerface inducing adhesion and proliferation of ESCs and promoting their differentiation towards endodermal lineages.
Collapse
Affiliation(s)
- Paola Manini
- Department of Chemical Sciences
- University of Napoli Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Valeria Lucci
- Department of Biology
- University of Napoli Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Valeria Lino
- Department of Chemical Sciences
- University of Napoli Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | | | - Francesco Rossella
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze – CNR
- I-56127 Pisa
- Italy
| | - Geppino Falco
- Department of Biology
- University of Napoli Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| | - Cinzia Chiappe
- Department of Pharmacy
- University of Pisa
- I-56126 Pisa
- Italy
| | - Marco d’Ischia
- Department of Chemical Sciences
- University of Napoli Federico II
- Complesso Universitario Monte S. Angelo
- I-80126 Napoli
- Italy
| |
Collapse
|
35
|
Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int 2019; 2019:2180925. [PMID: 31949436 PMCID: PMC6948329 DOI: 10.1155/2019/2180925] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lang Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Cheng Long
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| |
Collapse
|
36
|
Yin HM, Liu W, Huang YF, Ren Y, Xu L, Xu JZ, Zhao B, Li ZM. Surface Epitaxial Crystallization-Directed Nanotopography for Accelerating Preosteoblast Proliferation and Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42956-42963. [PMID: 31661240 DOI: 10.1021/acsami.9b14800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface nanotopography provides a physical stimulus to direct cell fate, especially in the case of osteogenic differentiation. However, fabrication of nanopatterns usually suffers from complex procedures. Herein, a feasible and versatile method was presented to create unique nanosheets on a poly(ε-caprolactone) (PCL) substrate via surface epitaxial crystallization. The thickness, periodic distance, and root-mean-square nanoroughness of surface nanosheets were tunable by simply altering the PCL concentration in the growth solution. Epitaxial nanosheets possessed an identical composition as the substrate, being a prerequisite to revealing the independent effect of biophysical linkage on the osteogenic mechanism of the patterned surface. Preosteoblasts' response to the epitaxial nanosheets was examined in the aspect of preosteoblast proliferation and osteogenic differentiation. The expression of alkaline phosphatase, collagen type I, osteopontin, and osteocalcin as well as mineralization was significantly promoted by the epitaxial nanosheets. Acceleration of osteogenic differentiation was attributed to activating the TAZ/RUNX2 signaling pathway. The findings demonstrate that surface epitaxial crystallization is a feasible approach to design and construct nanotopography for bone tissue engineering.
Collapse
Affiliation(s)
- Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Wei Liu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yan-Fei Huang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yue Ren
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Ling Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Baisong Zhao
- Department of Anesthesiology , Guangzhou Women and Children's Medical Center , Guangzhou 510623 , China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
37
|
Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/06/2018] [Indexed: 05/13/2023]
Abstract
With their hierarchical structures and the substantial surface areas, hollow particles have gained immense research interest in biomedical applications. For scalable fabrications, emulsion-based approaches have emerged as facile and versatile strategies. Here, the recent achievements in this field are unfolded via an "emulsion particulate strategy," which addresses the inherent relationship between the process control and the bioactive structures. As such, the interior architectures are manipulated by harnessing the intermediate state during the emulsion revolution (intrinsic strategy), whereas the external structures are dictated by tailoring the building blocks and solidification procedures of the Pickering emulsion (extrinsic strategy). Through integration of the intrinsic and extrinsic emulsion particulate strategy, multifunctional hollow particles demonstrate marked momentum for label-free multiplex detections, stimuli-responsive therapies, and stem cell therapies.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
38
|
Camarero-Espinosa S, Cooper-White JJ. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials 2019; 210:105-115. [DOI: 10.1016/j.biomaterials.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
|
39
|
Pedrosa CR, Arl D, Grysan P, Khan I, Durrieu S, Krishnamoorthy S, Durrieu MC. Controlled Nanoscale Topographies for Osteogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8858-8866. [PMID: 30785254 DOI: 10.1021/acsami.8b21393] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by the inability to precisely control geometries, especially at high spatial resolutions and across practically large areas. In this paper, we demonstrate well-controlled and periodic nanopillar arrays of silicon and investigate their impact on osteogenic differentiation of human mesenchymal stem cells (hMSCs). Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm, exhibiting standard deviations below 15% across full wafers, were realized using the self-assembly of block copolymer colloids. Immunofluorescence and quantitative polymerase chain reaction measurements reveal clear dependence of osteogenic differentiation of hMSCs on the diameter and periodicity of the arrays. Further, the differentiation of hMSCs was found to be dependent on the age of the donor. While osteoblastic differentiation was found to be promoted by the pillars with larger diameters and heights independent of donor age, they were found to be different for different spacings. Pillar arrays with smaller pitch promoted differentiation from a young donor, while a larger spacing promoted those of an old donor. These findings can contribute for the development of personalized treatments of bone diseases, namely, novel implant nanostructuring depending on patient age.
Collapse
Affiliation(s)
- Catarina R Pedrosa
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN) , 33600 Pessac , France
- CNRS, CBMN UMR5248 , 33600 Pessac , France
- Bordeaux INP, CBMN UMR5248 , 33600 Pessac , France
- Materials Research and Technology (MRT) Department , Luxembourg Institute of Science and Technology (LIST) , L-4422 Belvaux , Luxembourg
| | - Didier Arl
- Materials Research and Technology (MRT) Department , Luxembourg Institute of Science and Technology (LIST) , L-4422 Belvaux , Luxembourg
| | - Patrick Grysan
- Materials Research and Technology (MRT) Department , Luxembourg Institute of Science and Technology (LIST) , L-4422 Belvaux , Luxembourg
| | - Irfan Khan
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN) , 33600 Pessac , France
- CNRS, CBMN UMR5248 , 33600 Pessac , France
- Bordeaux INP, CBMN UMR5248 , 33600 Pessac , France
| | - Stéphanie Durrieu
- ARNA Laboratory , Université de Bordeaux , 33076 Bordeaux , France
- ARNA Laboratory , INSERM, U1212-CNRS UMR 5320 , 33000 Bordeaux , France
| | - Sivashankar Krishnamoorthy
- Materials Research and Technology (MRT) Department , Luxembourg Institute of Science and Technology (LIST) , L-4422 Belvaux , Luxembourg
| | - Marie-Christine Durrieu
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN) , 33600 Pessac , France
- CNRS, CBMN UMR5248 , 33600 Pessac , France
- Bordeaux INP, CBMN UMR5248 , 33600 Pessac , France
| |
Collapse
|
40
|
Kavand H, Rahaie M, Koohsorkhi J, Haghighipour N, Bonakdar S. A conductive cell-imprinted substrate based on CNT-PDMS composite. Biotechnol Appl Biochem 2019; 66:445-453. [PMID: 30817028 DOI: 10.1002/bab.1741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/24/2019] [Indexed: 11/08/2022]
Abstract
Cell function regulation is influenced by continuous biochemical and biophysical signal exchange within the body. Substrates with nano/micro-scaled topographies that mimic the physiological niche are widely applied for tissue engineering applications. As the cartilage niche is composed of several stimulating factors, a multifunctional substrate providing topographical features while having the capability of electrical stimulation is presented. Herein, we demonstrate a biocompatible and conductive chondrocyte cell-imprinted substrate using polydimethylsiloxane (PDMS) and carbon nanotubes (CNTs) as conductive fillers. Unlike the conventional silicon wafers or structural photoresist masters used for molding, cell surface topographical replication is challenging as biological cells showed extremely sensitive to chemical solvent residues during molding. The composite showed no significant difference compared with PDMS with regard to cytotoxicity, whereas an enhanced cell adhesion was observed on the conductive composite's surface. Integration of nanomaterials into the cell seeding scaffolds can make tissue regeneration process more efficient.
Collapse
Affiliation(s)
- Hanie Kavand
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Javad Koohsorkhi
- Advanced Micro and Nano Devices Lab, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
41
|
Khoury J, Selezneva I, Pestov S, Tarassov V, Ermakov A, Mikheev A, Lazov M, Kirkpatrick SR, Shashkov D, Smolkov A. Surface bioactivation of PEEK by neutral atom beam technology. Bioact Mater 2019; 4:132-141. [PMID: 30873505 PMCID: PMC6400009 DOI: 10.1016/j.bioactmat.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 12/03/2022] Open
Abstract
Polyetheretherketone (PEEK) is an alternative to metallic implants and a material of choice in many applications, including orthopedic, spinal, trauma, and dental. While titanium (Ti) and Ti-alloys are widely used in many intraosseous implants due to its biocompatibility and ability to osseointegrate, negatives include stiffness which contributes to shear stress, radio-opacity, and Ti-sensitivity. Many surgeons prefer to use PEEK due to its biocompatibility, similar elasticity to bone, and radiolucency, however, due to its inert properties, it fails to fully integrate with bone. Accelerated Neutral Atom Beam (ANAB) technology has been successfully employed to demonstrate enhanced bioactivity of PEEK both in vitro and in vivo. In this study, we further characterize surfaces of PEEK modified by ANAB as well as elucidate attachment and genetic effects of dental pulp stem cells (DPSC) exposed to these surfaces. ANAB modification resulted in decreased contact angle at 72.9 ± 4.5° as compared to 92.4 ± 8.5° for control (p < 0.01) and a decreased average surface roughness, however with a nano-textured surface profile. ANAB treatment also increased the ability of DPSC attachment and proliferation with considerable genetic differences showing earlier progression towards osteogenic differentiation. This surface modification is achieved without adding a coating or changing the chemical composition of the PEEK material. Taken together, we show that ANAB processing of PEEK surface enhances the bioactivity of implantable medical devices without an additive or a coating. PEEK is a material of choice for biomaterials except that it is inert and does not integrate with bone. Neutral atom beam technology (ANAB) is a surface modification technique that modifies the surface at a nano-scale level and makes the surface more hydrophilic. Increased cell attachment and proliferation is seen on ANAB-treated PEEK. Dental pulp stem cells differentiate towards osteoblast when grown on ANAB-treated PEEK. ANAB makes PEEK bioactive.
Collapse
Affiliation(s)
- Joseph Khoury
- Exogenesis Corporation, Billerica, MA, USA
- Corresponding author.
| | - Irina Selezneva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Sergei Pestov
- MIREA – Russian Technological University, Moscow, Russia
| | | | - Artem Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Andrey Mikheev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Mikhail Lazov
- MIREA – Russian Technological University, Moscow, Russia
| | | | | | | |
Collapse
|
42
|
Niepel MS, Ekambaram BK, Schmelzer CEH, Groth T. Polyelectrolyte multilayers of poly (l-lysine) and hyaluronic acid on nanostructured surfaces affect stem cell response. NANOSCALE 2019; 11:2878-2891. [PMID: 30688341 DOI: 10.1039/c8nr05529g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Laser interference lithography (LIL) and the layer-by-layer (LbL) technique are combined here for the first time to design a system with variable nanotopographies and surface viscoelasticity to regulate cell behavior. LIL is used to generate hexagonally arranged nanostructures of gold with different periodicity. In contrast, LBL is used to assemble a multilayer system of poly-l-lysine and hyaluronic acid on top of the nanostructures. Moreover, the viscoelastic properties of that system are controlled by chemical cross-linking. We show that the topography designed with LIL is still present after multilayer deposition and that the formation of the multilayer system renders the surfaces hydrophilic, which is opposite to the hydrophobic nature of pristine nanostructures. The heterogenic system is applied to study the effect on adhesion and differentiation of human adipose-derived stem cells (hADSC). We show that hADSC spreading is increasing with cross-linking degree on flat multilayers, while it is decreasing on nanostructures modified with multilayers. In addition, early effects on signal transduction processes are seen. Finally, hADSC differentiation into chondrogenic and osteogenic lineages is superior to adipogenic lineages on nanostructures modified with multilayers. Hence, the presented system offers great potential to guide stem cell differentiation on surfaces of implants and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Marcus S Niepel
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Biomedical Materials Group, Interdisciplinary Centre of Materials Science, D-06099 Halle (Saale), Germany
| | | | | | | |
Collapse
|
43
|
Cui C, Wang J, Qian D, Huang J, Lin J, Kingshott P, Wang PY, Chen M. Binary Colloidal Crystals Drive Spheroid Formation and Accelerate Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3679-3689. [PMID: 30614683 DOI: 10.1021/acsami.8b17090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provides significant advances to cell therapy, disease modeling, and drug screening applications. However, the current differentiation protocol is inefficient in mimicking biophysical and biochemical characteristics of cardiac niche. Hence, immature cardiomyocytes are often generated. In this study, hiPSC-CMs were generated on a new family of substrates called monolayer binary colloidal crystals (BCCs). Four BCCs were fabricated with different sizes (2 or 5 or 0.4 or 0.2 μm) and materials [Si or polystyrene (PS) or poly(methyl methacrylate)] abbreviated as 2PS, 5PS, 2PM, and 5PM. BCCs have complex surface micro-/nanotopographies and heterogeneous chemistries which are important modulators in microenvironments in vitro. The results showed that hiPSCs formed adhered spheroids with strong pluripotent markers ( Oct4, Nanog, and Sox2) on PM surfaces compared to PS and flat surfaces. After 30-day differentiation, hiPSC-CMs on PM surfaces showed markedly improved myofibril ultrastructures, Ca2+ handling, and electrophysiological properties, indicating that more mature hiPSC-CMs were generated. hiPSC-CMs generated on 5PM are more similar to adult heart tissue compared to other surfaces in terms of genes ( ACTC1, TNNT2, RYR2, SERCA2a, SCN5a, KCNJ2, CACNA1c, ITGB1, GJA1, MYH6, and MYH7) and protein (ssTnI and cTnI) expressions. We further demonstrated that 5PM surfaces facilitated cadherin switching (from E- to N-) during cardiac differentiation and mature N-cadherin expression, which were positively correlated with the cardiogensis markers ( GATA4, MEF2c, and NKX2.5). This study illuminated that a tailored surface nanotopography was beneficial in hiPSC culture and in situ cardiac differentiation. This one-step approach and BCCs can be a next-generation tool for hiPSC expansion and CM differentiation.
Collapse
Affiliation(s)
- Chang Cui
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiaxian Wang
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
- Department of R&D , HELP Stem Cell Therapeutics , Nanjing 210010 , China
| | - Duoduo Qian
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiayi Huang
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiao Lin
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Peter Kingshott
- Department of Chemistry and Biotechnology , Swinburne University of Technology , Victoria 3122 , Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology , Swinburne University of Technology , Victoria 3122 , Australia
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Minglong Chen
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| |
Collapse
|
44
|
Chen LH, Sung TC, Lee HHC, Higuchi A, Su HC, Lin KJ, Huang YR, Ling QD, Kumar SS, Alarfaj AA, Munusamy MA, Nasu M, Chen DC, Hsu ST, Chang Y, Lee KF, Wang HC, Umezawa A. Xeno-free and feeder-free culture and differentiation of human embryonic stem cells on recombinant vitronectin-grafted hydrogels. Biomater Sci 2019; 7:4345-4362. [DOI: 10.1039/c9bm00418a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xeno-free culture and cardiomyocyte differentiation of human embryonic stem cells on vitronectin-grafted hydrogels by adjusting surface charge and elasticity.
Collapse
|
45
|
Diba FS, Boden A, Thissen H, Bhave M, Kingshott P, Wang PY. Binary colloidal crystals (BCCs): Interactions, fabrication, and applications. Adv Colloid Interface Sci 2018; 261:102-127. [PMID: 30243666 DOI: 10.1016/j.cis.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
The organization of matter into hierarchical structures is a fundamental characteristic of functional materials and living organisms. Binary colloidal crystal (BCC) systems present a diversified range of nanotopographic structures where large and small colloidal particles simultaneously self-assemble into either 2D monolayer or 3D hierarchical crystal lattices. More importantly, understanding how BCCs form opens up the possibility to fabricate more complex systems such as ternary or quaternary colloidal crystals. Monolayer BCCs can also offer the possibility to achieve surface micro- and nano-topographies with heterogeneous chemistries, which can be challenging to achieve with other traditional fabrication tools. A number of fabrication methods have been reported that enable generation of BCC structures offering high accuracy in growth with controllable stoichiometries; however, it is still a challenge to make uniform BCC structures over large surface areas. Therefore, fully understand the mechanism of binary colloidal self-assembly is crucial and new/combinational methods are needed. In this review, we summarize the recent advances in BCC fabrication using particles made of different materials, shapes, and dispersion medium. Depending on the potential application, the degree of order and efficiency of crystal formation has to be determined in order to induce variability in the intended lattice structures. The mechanisms involved in the formation of highly ordered lattice structures from binary colloidal suspensions and applications are discussed. The generation of BCCs can be controlled by manipulation of their extensive phase behavior, which facilitates a wide range potential applications in the fields of both material and biointerfacial sciences including photonics, biosensors, chromatography, antifouling surfaces, biomedical devices, and cell culture tools.
Collapse
|
46
|
Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1719-1731. [DOI: 10.1016/j.nano.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023]
|
47
|
Abstract
Exposure of protein modified surfaces to air may be necessary in several applications. For example, air contact may be inevitable during the implantation of biomedical devices, for analysis of protein modified surfaces, or for sensor applications. Protein coatings are very sensitive to dehydration and can undergo significant and irreversible alterations of their conformations upon exposure to air. With the use of two compatible solutes from extremophilic bacteria, ectoine and hydroxyectoine, the authors were able to preserve the activity of dried protein monolayers for up to >24 h. The protective effect can be explained by the preferred exclusion model; i.e., the solutes trap a thin water layer around the protein, retaining an aqueous environment and preventing unfolding of the protein. Horseradish peroxidase (HRP) immobilized on compact TiO2 was used as a model system. Structural differences between the compatible solute stabilized and unstabilized protein films, and between different solutes, were analyzed by static time-of-flight secondary ion mass spectrometry (ToF-SIMS). The biological activity difference observed in a colorimetric activity assay was correlated to changes in protein conformation by application of principal component analysis to the static ToF-SIMS data. Additionally, rehydration of the denatured HRP was observed in ToF-SIMS with an exposure of denatured protein coatings to ectoine and hydroxyectoine solutions.
Collapse
|
48
|
Zheng G, Guan B, Hu P, Qi X, Wang P, Kong Y, Liu Z, Gao P, Li R, Zhang X, Wu X, Sui L. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation. Cell Prolif 2018; 51:e12460. [PMID: 29701270 DOI: 10.1111/cpr.12460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/03/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To investigate the role of hierarchical micro/nanoscale topography of direct metal laser sintering (DMLS) titanium surfaces in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the possible underlying epigenetic mechanism. MATERIALS AND METHODS Three groups of titanium specimens were prepared, including DMLS group, sandblasted, large-grit, acid-etched (SLA) group and smooth titanium (Ti) group. BMSCs were cultured on discs followed by surface characterization. Cell adhesion and proliferation were examined by SEM and CCK-8 assay, while osteogenic-related gene expression was detected by real-time RT-PCR. Immunofluorescence, western blotting and in vivo study were also performed to evaluate the potential for osteogenic induction of materials. In addition, to investigate the underlying epigenetic mechanisms, immunofluorescence and western blotting were performed to evaluate the global level of H3K4me3 during osteogenesis. The H3K4me3 and H3K27me3 levels at the promoter area of the osteogenic gene Runx2 were detected by ChIP assay. RESULTS The DMLS surface exhibits greater protein adsorption ability and shows better cell adhesion performance than SLA and Ti surfaces. Moreover, both in vitro and in vivo studies demonstrated that the DMLS surface is more favourable for the osteogenic differentiation of BMSCs than SLA and Ti surfaces. Accordingly, osteogenesis-associated gene expression in BMSCs is efficiently induced by a rapid H3K27 demethylation and increase in H3K4me3 levels at gene promoters upon osteogenic differentiation on DMLS titanium surface. CONCLUSIONS Topographical cues of DMLS surfaces have greater potential for the induction of osteogenic differentiation of BMSCs than SLA and Ti surfaces both in vitro and in vivo. A potential epigenetic mechanism is that the appropriate topography allows rapid H3K27 demethylation and an increased H3K4me3 level at the promoter region of osteogenesis-associated genes during the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Guoying Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Binbin Guan
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Penghui Hu
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xingying Qi
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Pingting Wang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Yu Kong
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zihao Liu
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Ping Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Rui Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
49
|
Ekambaram BK, Niepel MS, Fuhrmann B, Schmidt G, Groth T. Introduction of Laser Interference Lithography to Make Nanopatterned Surfaces for Fundamental Studies on Stem Cell Response. ACS Biomater Sci Eng 2018; 4:1820-1832. [DOI: 10.1021/acsbiomaterials.8b00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Nakazawa K, Kawata Y, Hishida M, Yamamura Y, Saito K. Reduction of Shear Viscosity in Phospholipid Vesicle Dispersions by Self-organized Ripple Structures of Vesicle Surfaces. CHEM LETT 2018. [DOI: 10.1246/cl.170959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Koyomi Nakazawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yuki Kawata
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|