1
|
Mhaske A, Shukla S, Ahirwar K, Singh KK, Shukla R. Receptor-Assisted Nanotherapeutics for Overcoming the Blood-Brain Barrier. Mol Neurobiol 2024; 61:8702-8738. [PMID: 38558360 PMCID: PMC11496374 DOI: 10.1007/s12035-024-04015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024]
Abstract
Blood-brain barrier (BBB) is a distinguishing checkpoint that segregates peripheral organs from neural compartment. It protects the central nervous system from harmful ambush of antigens and pathogens. Owing to such explicit selectivity, the BBB hinders passage of various neuroprotective drug molecules that escalates into poor attainability of neuroprotective agents towards the brain. However, few molecules can surpass the BBB and gain access in the brain parenchyma by exploiting surface transporters and receptors. For successful development of brain-targeted therapy, understanding of BBB transporters and receptors is crucial. This review focuses on the transporter and receptor-based mechanistic pathway that can be manoeuvred for better comprehension of reciprocity of receptors and nanotechnological vehicle delivery. Nanotechnology has emerged as one of the expedient noninvasive approaches for brain targeting via manipulating the hurdle of the BBB. Various nanovehicles are being reported for brain-targeted delivery such as nanoparticles, nanocrystals, nanoemulsion, nanolipid carriers, liposomes and other nanovesicles. Nanotechnology-aided brain targeting can be a strategic approach to circumvent the BBB without altering the inherent nature of the BBB.
Collapse
Affiliation(s)
- Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Shalini Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
- Biomedical Evidence-based Transdisciplinary Health Research Institute, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang Z, Zhang M, Niu X, Mao X, Yue T, Zhang X. Clathrin-Mediated Endocytosis of Multiple Nanoparticles Tends to Be Less Cooperative: A Computational Study. J Phys Chem B 2024; 128:9785-9797. [PMID: 39352204 DOI: 10.1021/acs.jpcb.4c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Yezhuo Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Man Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinhui Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Nayak TR, Chrastina A, Valencia J, Cordova-Robles O, Yedidsion R, Buss T, Cederstrom B, Koziol J, Levin MD, Olenyuk B, Schnitzer JE. Rapid precision targeting of nanoparticles to lung via caveolae pumping system in endothelium. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01786-z. [PMID: 39379614 DOI: 10.1038/s41565-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/08/2024] [Indexed: 10/10/2024]
Abstract
Modern medicine seeks precision targeting, imaging and therapy to maximize efficacy and avoid toxicities. Nanoparticles (NPs) have tremendous yet unmet clinical potential to carry and deliver imaging and therapeutic agents systemically with tissue precision. But their size contributes to rapid scavenging by the reticuloendothelial system and poor penetration of key endothelial cell (EC) barriers, limiting target tissue uptake, safety and efficacy. Here we discover the ability of the EC caveolae pumping system to outpace scavenging and deliver NPs rapidly and specifically into the lungs. Gold and dendritic NPs are conjugated to antibodies targeting caveolae of the lung microvascular endothelium. SPECT-CT imaging and biodistribution analyses reveal that rat lungs extract most of the intravenous dose within minutes to achieve precision lung imaging and targeting with high lung concentrations exceeding peak blood levels. These results reveal how much ECs can both limit and promote tissue penetration of NPs and the power and size-dependent limitations of the caveolae pumping system. This study provides a new retargeting paradigm for NPs to avoid reticuloendothelial system uptake and achieve rapid precision nanodelivery for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Tapas R Nayak
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Jose Valencia
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | | | - Robert Yedidsion
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | | | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA.
- Institute of Engineering in Medicine, UCSD, La Jolla, CA, USA.
| |
Collapse
|
4
|
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma. Front Immunol 2024; 15:1480701. [PMID: 39430767 PMCID: PMC11486717 DOI: 10.3389/fimmu.2024.1480701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) remains a significant difficulty, as there has been no improvement in survival rates over the past fifty years. Hence, exploration and confirmation of new dependable treatment targets and biomarkers is imperative for OSCC therapy. TEAD transcription factors are crucial for integrating and coordinating multiple signaling pathways that are essential for embryonic development, organ formation, and tissue homeostasis. In addition, by attaching to coactivators, TEAD modifies the expression of genes such as Cyr61, Myc, and connective tissue growth factor, hence facilitating tumor progression. Therefore, TEAD is regarded as an effective predictive biomarker due to its significant connection with clinical parameters in several malignant tumors, including OSCC. The efficacy of existing drugs that specifically target TEAD has demonstrated encouraging outcomes, indicating its potential as an optimal target for OSCC treatment. This review provides an overview of current targeted therapy strategies for OSCC by highlighting the transcription mechanism and involvement of TEAD in oncogenic signaling pathways. Finally, the feasibility of utilizing TEAD as an innovative approach to address OSCC and its potential clinical applications were analyzed and discussed.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Medical College of Qingdao Huanghai University, Qingdao, China
| | - Dan Shao
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Gao
- Department of Quality Inspection, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Peng Zhao
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Fanzhi Kong
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Jiawei Deng
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Lianzhu Yang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Sun
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People's Liberation Army of China (PLA), Beijing, China
| |
Collapse
|
5
|
Aldor NL, Jadaa NA, Miller SY, Alla I, Richardson S, Kitaev V, Poynter SJ. Cationic Polystyrene Latex Nanocarriers for Immunostimulatory Long Double-Stranded RNA Delivery to Ovarian Cancer Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35487. [PMID: 39318330 DOI: 10.1002/jbm.b.35487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/05/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Long double-stranded (ds)RNA, a potent stimulator of type I interferon and the innate immune response. In the present study, we demonstrated, for the first time, the efficacy of cationic polystyrene latex nanostructures (clNPs) as a dsRNA carrier, improving cellular delivery and robustly potentiating the immunostimulatory capacity of dsRNA in the ovarian cancer cell line SKOV3. The clNPs complexed with an in vitro transcribed dsRNA molecule, were bound by SKOV3 cells, and had increased cellular association compared to uncomplexed clNPs. clNPs complexed with dsRNA induced a more robust innate immune response compared to dsRNA alone. Transcript expression of two interferon-stimulated genes, were increased 47- and 108-fold over dsRNA and induced a significant antiviral state against vesicular-stomatitis virus, resulting in a 3.3-fold improvement on the efficacy of dsRNA. These data highlight the potential of polystyrene latex nanostructures as dsRNA carriers for anticancer immunotherapies, improving the uptake and efficacy of the nucleic acid.
Collapse
Affiliation(s)
- N L Aldor
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - N A Jadaa
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Y Miller
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - I Alla
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Richardson
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - V Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S J Poynter
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Zhang Z, Li S, Wang H, Shan Y. The Effects of the Carrier and Ligand Spatial Conformation on RNA Nanodrug Cell Delivery. Anal Chem 2024. [PMID: 39096242 DOI: 10.1021/acs.analchem.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Small interfering RNA (siRNA) highlights the immense therapeutic potential for cancer treatment. The major challenge in siRNA therapy is the effective RNA nanodrug delivery system, which is facilitated by the ligand and the carrier. In this study, we analyzed the binding specificity of linear RGD and circular RGD to αVβ3 integrins by mapping the morphology using super-resolution direct stochastic optical reconstruction microscopy. Meanwhile, the binding dynamics was investigated using single-molecule force spectroscopy. Then, the effects of the ligand and carrier on RNA nanodrug cell entry dynamic parameters were evaluated at the single particle level by the force tracing technique. Furthermore, the delivery efficiency of RNA nanodrugs was assessed using AFM-based nanoindentation at the single cell level. This report will provide valuable insights for rational design strategies aiming to achieve improved efficiency for nanodrug delivery systems.
Collapse
Affiliation(s)
- Zhuang Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
7
|
Barlas FB, Olceroglu B, Ag Seleci D, Gumus ZP, Siyah P, Dabbek M, Garnweitne G, Stahl F, Scheper T, Timur S. Enhancing chemotherapeutic efficacy: Niosome-encapsulated Dox-Cis with MUC-1 aptamer. Cancer Med 2024; 13:e70079. [PMID: 39118454 PMCID: PMC11310550 DOI: 10.1002/cam4.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. OBJECTIVE This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox-Cis), encapsulated within niosomes and modified with MUC-1 aptamers to enhance biocompatibility and target specific cancer cells. METHODS The chemical structure of the Dox-Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC-1 positive HeLa cells and MUC-1 negative U87 cells. RESULTS The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox-Cis/MUC-1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox-Cis/MUC-1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). CONCLUSION The study underscores the potential of the Dox-Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.
Collapse
Affiliation(s)
- Firat Baris Barlas
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Bilge Olceroglu
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Didem Ag Seleci
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
| | - Pinar Siyah
- Department of Biochemistry, School of PharmacyBahçeşehir UniversityIstanbulTurkey
| | - Meriam Dabbek
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Georg Garnweitne
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Frank Stahl
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Thomas Scheper
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
- Department of Biochemistry, Faculty of ScienceEge UniversityIzmirTurkey
| |
Collapse
|
8
|
Lu H, Liu X, Zhang M, Bera H, Xu W, Jiang H, Zhao X, Wu L, Cun D, Yang M. Pulmonary fibroblast-specific delivery of siRNA exploiting exosomes-based nanoscaffolds for IPF treatment. Asian J Pharm Sci 2024; 19:100929. [PMID: 39258001 PMCID: PMC11385781 DOI: 10.1016/j.ajps.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 09/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive pulmonary disease that leads to interstitial inflammation, lung damage, and eventually life-threatening complications. Among various pathologic factors, Smad4 is a pivotal molecule involved in the progression and exacerbation of IPF. It mediates nuclear transfer of Smad2/Smad3 complexes and initiates the transcription of fibrosis-promoting genes. Thus, the inhibition of Smad4 expression in pulmonary fibroblasts by small interfering RNAs (siRNAs) might be a promising therapeutic strategy for IPF. Herein, we engineered exosome membranes (EM) by cationic lipid (i.e., DOTAP) to load siRNAs against Smad4 (DOTAP/siSmad4@EM), and investigated their specific delivery to pulmonary fibroblasts for treating IPF in a mouse model via pulmonary administration. As reference nanoscaffolds, undecorated DOTAP/siSmad4 complexes (lipoplexes, consisting of cationic lipid DOTAP and siRNAs) and siSmad4-loaded lipid nanoparticles (DOTAP/siSmad4@lipo, consisting of lipoplexes fused with DPPC-Chol liposomes) were also prepared. The results showed that DOTAP/siSmad4@EM exhibited a higher cellular uptake and gene silencing efficacies in mouse pulmonary fibroblasts (viz., MLg2908) as compared to the two reference nanoscaffolds. Furthermore, the outcomes of the in vivo experiments illustrated that DOTAP/siSmad4@EM could significantly down-regulate the Smad4 expression with augmented anti-fibrosis efficiency. Additionally, the DOTAP/siSmad4@EM conferred excellent biocompatibility with low cytokine levels in bronchoalveolar lavage fluid and proinflammatory responses in the pulmonary area. Taken together, the outcomes of our investigation imply that specific inhibition of Smad4 expression in pulmonary fibroblasts by pulmonary administrated DOTAP/siSmad4@EM is a promising therapeutic strategy for IPF, which could safely and effectively deliver siRNA drugs to the targeted site of action.
Collapse
Affiliation(s)
- Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, West Bengal 713212, India
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
9
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
10
|
Fuster MG, Wang J, Fandiño O, Víllora G, Paredes AJ. Folic Acid-Decorated Nanocrystals as Highly Loaded Trojan Horses to Target Cancer Cells. Mol Pharm 2024; 21:2781-2794. [PMID: 38676649 DOI: 10.1021/acs.molpharmaceut.3c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The nanocrystal (NC) technology has become one of the most commonly used strategies for the formulation of poorly soluble actives. Given their large specific surface, NCs are mainly used to enhance the oral absorption of poorly soluble actives. Differently from conventional nanoparticles, which require the use of carrier materials and have limited drug loadings, NCs' drug loading approaches 100% since they are formed of the pure drug and surrounded by a thin layer of a stabilizer. In this work, we report the covalent decoration of curcumin NCs with folic acid (FA) using EDC/NHS chemistry and explore the novel systems as highly loaded "Trojan horses" to target cancer cells. The decorated NCs demonstrated a remarkable improvement in curcumin uptake, exhibiting enhanced growth inhibition in cancer cells (HeLa and MCF7) while sparing healthy cells (J774A.1). Cellular uptake studies revealed significantly heightened entry of FA-decorated NCs into cancer cells compared to unmodified NCs while also showing reduced uptake by macrophages, indicating a potential for prolonged circulation in vivo. These findings underline the potential of NC highly loaded nanovectors for drug delivery and, in particular, for cancer therapies, effectively targeting folate receptor-overexpressing cells while evading interception by macrophages, thus preserving their viability and offering a promising avenue for precise and effective treatments.
Collapse
Affiliation(s)
- Marta G Fuster
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, Murcia 30100, Spain
| | - Jiawen Wang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Octavio Fandiño
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Gloria Víllora
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, Murcia 30100, Spain
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
11
|
Jian C, Wu T, Wang L, Gao C, Fu Z, Zhang Q, Shi C. Biomimetic Nanoplatform for Dual-Targeted Clearance of Activated and Senescent Cancer-Associated Fibroblasts to Improve Radiation Resistance in Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309279. [PMID: 38214439 DOI: 10.1002/smll.202309279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Radiation resistance in breast cancer resulting in residual lesions or recurrence is a significant cause to radiotherapy failure. Cancer-associated fibroblasts (CAFs) and radiotherapy-induced senescent CAFs can further lead to radiation resistance and tumor immunosuppressive microenvironment. Here, an engineering cancer-cell-biomimetic nanoplatform is constructed for dual-targeted clearance of CAFs as well as senescent CAFs. The nanoplatform is prepared by 4T1 cell membrane vesicles chimerized with FAP single-chain fragment variable as the biomimetic shell for targeting of CAFs and senescent CAFs, and PLGA nanoparticles (NPs) co-encapsulated with nintedanib and ABT-263 as the core for clearance of CAFs and senescent CAFs, which are noted as FAP-CAR-CM@PLGA-AB NPs. It is evidenced that FAP-CAR-CM@PLGA-AB NPs directly suppressed the tumor-promoting effect of senescent CAFs. It also exhibits prolonged blood circulation and enhanced tumor accumulation, dual-cleared CAFs and senescent CAFs, improved radiation resistance in both acquired and patient-derived radioresistant tumor cells, and effective antitumor effect with the tumor suppression rate of 86.7%. In addition, FAP-CAR-CM@PLGA-AB NPs reverse the tumor immunosuppressive microenvironment and enhance systemic antitumor immunity. The biomimetic system for dual-targeted clearance of CAFs and senescent CAFs provides a potential strategy for enhancing the radio-sensitization of breast cancer.
Collapse
Affiliation(s)
- Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Qian Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| |
Collapse
|
12
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
13
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
14
|
Al-Fatlawi INAA, Pouresmaeil V, Davoodi-Dehaghani F, Pouresmaeil A, Akhtari A, Tabrizi MH. Effects of solid lipid nanocarrier containing methyl urolithin A by coating folate-bound chitosan and evaluation of its anti-cancer activity. BMC Biotechnol 2024; 24:18. [PMID: 38600497 PMCID: PMC11005287 DOI: 10.1186/s12896-024-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 μg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values of 45 μg/mL and 1500 μg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 μg/mL. CONCLUSIONS Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aida Pouresmaeil
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Akhtari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
15
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
16
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
17
|
Kalashnikova I, Patrikeeva S, Nanovskaya TN, Andreev YA, Ahmed MS, Rytting E. Folate-mediated Transport of Nanoparticles across the Placenta. Pharm Nanotechnol 2024; 12:171-183. [PMID: 37461351 DOI: 10.2174/2211738511666230717122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 05/23/2024]
Abstract
BACKGROUND In this study, a prototype of a targeted nanocarrier for drug delivery for prenatal therapy of the developing fetus was developed and examined in vitro and ex vivo. The folate transport mechanism in the human placenta was utilized as a possible pathway for the transplacental delivery of targeted nanoparticles. METHODS Several types of folic acid-decorated polymeric nanoparticles were synthesized and characterized. During transport studies of targeted and non-targeted fluorescent nanoparticles across the placental barrier, the apparent permeability values, uptake, transfer indices, and distribution in placental tissue were determined. RESULTS The nanoparticles had no effect on BeWo b30 cell viability. In vitro, studies showed significantly higher apparent permeability of the targeted nanoparticles across the cell monolayers as compared to the nontargeted nanoparticles (Pe = 5.92 ± 1.44 ×10-6 cm/s for PLGA-PEG-FA vs. 1.26 ± 0.31 ×10-6 cm/s for PLGA-PEG, P < 0.05), and the transport of the targeted nanoparticles was significantly inhibited by excess folate. Ex vivo placental perfusion showed significantly greater accumulation of the targeted nanoparticles in the placental tissue (4.31 ± 0.91%/g for PLGA-PEG-FA vs. 2.07 ± 0.26%/g for PLGA-PEG). CONCLUSION The data obtained suggested different mechanisms for the uptake and transplacental transfer of targeted versus nontargeted nanoparticles. This targeted nanoformulation may be a promising strategy for fetal drug therapy.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Svetlana Patrikeeva
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tatiana N Nanovskaya
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yaroslav A Andreev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mahmoud S Ahmed
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
Xia D, Li J, Feng L, Gao Z, Liu J, Wang X, Hu Y. Advances in Targeting Drug Biological Carriers for Enhancing Tumor Therapy Efficacy. Macromol Biosci 2023; 23:e2300178. [PMID: 37466216 DOI: 10.1002/mabi.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Chemotherapy drugs continue to be the main component of oncology treatment research and have been proven to be the main treatment modality in tumor therapy. However, the poor delivery efficiency of cancer therapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. The recent integration of biological carriers and functional agents is expected to camouflage synthetic biomimetic nanoparticles for targeted delivery. The promising candidates, including but not limited to red blood cells and their membranes, platelets, tumor cell membrane, bacteria, immune cell membrane, and hybrid membrane are typical representatives of biological carriers because of their excellent biocompatibility and biodegradability. Biological carriers are widely used to deliver chemotherapy drugs to improve the effectiveness of drug delivery and therapeutic efficacy in vivo, and tremendous progress is made in this field. This review summarizes recent developments in biological vectors as targeted drug delivery systems based on microenvironmental stimuli-responsive release, thus highlighting the potential applications of target drug biological carriers. The review also discusses the possibility of clinical translation, as well as the exploitation trend of these target drug biological carriers.
Collapse
Affiliation(s)
- Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jia Li
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Lingzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Ziqing Gao
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jun Liu
- Department of Laboratory Medicine, Wuxi No. 5 People's Hospital Affiliated Jiangnan University, Wuxi, Jiangsu, 214005, P.R. China
| | - Xiangqian Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226361, P.R. China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
19
|
Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023; 203:115130. [PMID: 37913890 DOI: 10.1016/j.addr.2023.115130] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Oral administration is the preferred route of drug delivery in clinical practice due to its noninvasiveness, safety, convenience, and high patient compliance. The gastrointestinal tract (GIT) plays a crucial role in facilitating the targeted delivery of oral drugs. However, the GIT presents multiple barriers that impede drug absorption, including the gastric barrier in the stomach and the mucus and epithelial barriers in the intestine. In recent decades, nanotechnology has emerged as a promising approach for overcoming these challenges by utilizing nanocarrier-based drug delivery systems such as liposomes, micelles, polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Encapsulating drugs within nanocarriers not only protects them from degradation but also enhances their transport and absorption across the GIT, ultimately improving oral bioavailability. The aim of this review is to elucidate the mechanisms underlying nanocarrier-mediated transportation across the GIT into systemic circulation via both the blood circulation and lymphatic pathway.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China; China Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
20
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
21
|
Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Mol Biol Rep 2023; 50:9663-9676. [PMID: 37828275 DOI: 10.1007/s11033-023-08809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
As far as health issues are concerned, cancer causes one out of every six deaths around the globe. As potent therapeutics are still awaited for the successful treatment of cancer, some unconventional treatments like radiotherapy, surgery, and chemotherapy and some advanced technologies like gene therapy, stem cell therapy, natural antioxidants, targeted therapy, photodynamic therapy, nanoparticles, and precision medicine are available to diagnose and treat cancer. In the present scenario, the prime focus is on developing efficient nanomedicines to treat cancer. Although stem cell therapy has the capability to target primary as well as metastatic cancer foci, it also has the ability to repair and regenerate injured tissues. However, nanoparticles are designed to have such novel therapeutic capabilities. Targeted therapy is also now available to arrest the growth and development of cancer cells without damaging healthy tissues. Another alternative approach in this direction is photodynamic therapy (PDT), which has more potential to treat cancer as it does minimal damage and does not limit other technologies, as in the case of chemotherapy and radiotherapy. The best possible way to treat cancer is by developing novel therapeutics through translational research. In the present scenario, an important event in modern oncology therapy is the shift from an organ-centric paradigm guiding therapy to complete molecular investigations. The lacunae in anticancer therapy may be addressed through the creation of contemporary and pertinent cancer therapeutic techniques. In the meantime, the growth of nanotechnology, material sciences, and biomedical sciences has revealed a wide range of contemporary therapies with intelligent features, adaptable functions, and modification potential. The development of numerous therapeutic techniques for the treatment of cancer is summarized in this article. Additionally, it can serve as a resource for oncology and immunology researchers.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Alok Bhardwaj
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| |
Collapse
|
22
|
Cheng Q, Wang T, Zhang J, Tian L, Zeng C, Meng Z, Zhang C, Meng Q. Multifunctional gene delivery vectors containing different liver-targeting fragments for specifically transfecting hepatocellular carcinoma (HCC) cells. J Mater Chem B 2023; 11:9721-9731. [PMID: 37791430 DOI: 10.1039/d3tb01866k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Gene therapy is a promising strategy for HCC treatment, but it commonly faces the problem of low specificity in gene transfection. In this study, we designed and synthesized a series of peptide-based gene delivery vectors (H-01 to H-18) containing varied HCC cell-targeting fragments for specifically binding different receptors highly expressed on HCC cell membranes. The physicochemical properties of peptide vectors or peptide/DNA complexes were characterized, and the gene delivery abilities of peptide vectors were evaluated in HepG2 cell lines. The results showed that peptide vectors H-02 and H-09, which contained targeted fragments for ACE2 and c-Met receptors, respectively, could specifically transfect HCC cells in a highly -efficient manner in vitro. Furthermore, the liver-targeting function in vivo of Cy5.5 labeled H-02 (H-17) and H-09 (H-18) was investigated by fluorescence imaging.
Collapse
Affiliation(s)
- Qin Cheng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Taoran Wang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jing Zhang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Long Tian
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Chunlan Zeng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhao Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Changhao Zhang
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qingbin Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
23
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
24
|
Jiang Y, Li Y, Fu X, Wu Y, Wang R, Zhao M, Mao C, Shi S. Interplay between G protein-coupled receptors and nanotechnology. Acta Biomater 2023; 169:1-18. [PMID: 37517621 DOI: 10.1016/j.actbio.2023.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
25
|
Wu H, Zhang T, Li N, Gao J. Cell membrane-based biomimetic vehicles for effective central nervous system target delivery: Insights and challenges. J Control Release 2023; 360:169-184. [PMID: 37343724 DOI: 10.1016/j.jconrel.2023.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Central nervous system (CNS) disorders, including brain tumor, ischemic stroke, Alzheimer's disease, and Parkinson's disease, threaten human health. And the existence of the blood-brain barrier (BBB) hinders the delivery of drugs and the design of drug targeting delivery vehicles. Over the past decades, great interest has been given to cell membrane-based biomimetic vehicles since the rise of targeting drug delivery systems and biomimetic nanotechnology. Cell membranes are regarded as natural multifunction biomaterials, and provide potential for targeting delivery design and modification. Cell membrane-based biomimetic vehicles appear timely with the participation of cell membranes and nanoparticles, and raises new lights for BBB recognition and transport, and effective therapy with its biological multifunction and high biocompatibility. This review summarizes existing challenges in CNS target delivery and recent advances of different kinds of cell membrane-based biomimetic vehicles for effective CNS target delivery, and deliberates the BBB targeting mechanism. It also discusses the challenges and possibility of clinical translation, and presents new insights for development.
Collapse
Affiliation(s)
- Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, Zhejiang, PR China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China; Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, Zhejiang, PR China.
| |
Collapse
|
26
|
Benhaghnazar RL, Medina-Kauwe L. Adenovirus-Derived Nano-Capsid Platforms for Targeted Delivery and Penetration of Macromolecules into Resistant and Metastatic Tumors. Cancers (Basel) 2023; 15:3240. [PMID: 37370850 PMCID: PMC10296971 DOI: 10.3390/cancers15123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Macromolecular therapeutics such as nucleic acids, peptides, and proteins have the potential to overcome treatment barriers for cancer. For example, nucleic acid or peptide biologics may offer an alternative strategy for attacking otherwise undruggable therapeutic targets such as transcription factors and similar oncologic drivers. Delivery of biological therapeutics into tumor cells requires a robust system of cell penetration to access therapeutic targets within the cell interior. A highly effective means of accomplishing this may be borrowed from cell-penetrating pathogens such as viruses. In particular, the cell entry function of the adenovirus penton base capsid protein has been effective at penetrating tumor cells for the intracellular deposition of macromolecular therapies and membrane-impermeable drugs. Here, we provide an overview describing the evolution of tumor-targeted penton-base-derived nano-capsids as a framework for discussing the requirements for overcoming key barriers to macromolecular delivery. The development and pre-clinical testing of these proteins for therapeutic delivery has begun to also uncover the elusive mechanism underlying the membrane-penetrating function of the penton base. An understanding of this mechanism may unlock the potential for macromolecular therapeutics to be effectively delivered into cancer cells and to provide a treatment option for tumors resisting current clinical therapies.
Collapse
Affiliation(s)
| | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Spoorthi Shetty S, Halagali P, Johnson AP, Spandana KMA, Gangadharappa HV. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int J Biol Macromol 2023:125114. [PMID: 37263330 DOI: 10.1016/j.ijbiomac.2023.125114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Diabetes Mellitus is characterized by a hyperglycemic condition which can either be caused by the destruction of the beta cells or by the resistance developed against insulin in the cells. Insulin is a peptide hormone that regulates the metabolism of carbohydrates, proteins, and fats. Type 1 Diabetes Mellitus needs the use of Insulin for efficient management. However invasive methods of administration may lead to reduced adherence by the patients. Hence there is a need for a non-invasive method of administration. Oral Insulin has several merits over the conventional method including patient compliance, and reduced cost, and it also mimics endogenous insulin and hence reaches the liver by the portal vein at a higher concentration and thereby showing improved efficiency. However oral Insulin must pass through several barriers in the gastrointestinal tract. Some strategies that could be utilized to bypass these barriers include the use of permeation enhancers, absorption enhancers, use of suitable polymers, use of suitable carriers, and other agents. Several formulation types have been explored for the oral delivery of Insulin like hydrogels, capsules, tablets, and patches which have been described briefly by the article. A lot of attempts have been made for developing oral insulin delivery however none of them have been commercialized due to numerous shortcomings. Currently, there are several formulations from the companies that are still in the clinical phase, the success or failure of some is yet to be seen in the future.
Collapse
Affiliation(s)
- S Spoorthi Shetty
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - K M Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
28
|
Low HY, Yang CT, Xia B, He T, Lam WWC, Ng DCE. Radiolabeled Liposomes for Nuclear Imaging Probes. Molecules 2023; 28:molecules28093798. [PMID: 37175207 PMCID: PMC10180453 DOI: 10.3390/molecules28093798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Quantitative nuclear imaging techniques are in high demand for various disease diagnostics and cancer theranostics. The non-invasive imaging modality requires radiotracing through the radioactive decay emission of the radionuclide. Current preclinical and clinical radiotracers, so-called nuclear imaging probes, are radioisotope-labeled small molecules. Liposomal radiotracers have been rapidly developing as novel nuclear imaging probes. The physicochemical properties and structural characteristics of liposomes have been elucidated to address their long circulation and stability as radiopharmaceuticals. Various radiolabeling methods for synthesizing radionuclides onto liposomes and synthesis strategies have been summarized to render them biocompatible and enable specific targeting. Through a variety of radionuclide labeling methods, radiolabeled liposomes for use as nuclear imaging probes can be obtained for in vivo biodistribution and specific targeting studies. The advantages of radiolabeled liposomes including their use as potential clinical nuclear imaging probes have been highlighted. This review is a comprehensive overview of all recently published liposomal SPECT and PET imaging probes.
Collapse
Affiliation(s)
- Ho Ying Low
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Winnie Wing Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
29
|
Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WAI, Aljamaan AN, Rahmani AH, Khan AA. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Int J Mol Sci 2023; 24:7052. [PMID: 37108214 PMCID: PMC10139162 DOI: 10.3390/ijms24087052] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
30
|
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023; 196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.
Collapse
Affiliation(s)
- Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Katharina Gaus Light Microscopy Facility, Mark Wainright Analytical Center, UNSW Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Kids Cancer Center, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia.
| |
Collapse
|
31
|
Zhao Z, Zong Q, Li J, Jiang M, Wang K, Yuan Y. Dual stimulus-triggered bioorthogonal nanosystem for spatiotemporally controlled prodrug activation and near-infrared fluorescence imaging. Chem Commun (Camb) 2023; 59:3878-3881. [PMID: 36916644 DOI: 10.1039/d3cc00177f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In this study, we combined low pH and cathepsin B dual-stimulus-triggered delivery carriers with a bioorthogonal reaction-activated prodrug to achieve regulated activation of the prodrug. A workable method for precise tumor therapy and imaging is provided by the bioorthogonal reaction, which activates the prodrug and fluorescent probe.
Collapse
Affiliation(s)
- Zhongyi Zhao
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qingyu Zong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Jun Li
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Kewei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Youyong Yuan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
32
|
Oladipo AO, Lebelo SL, Msagati TAM. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem Biol Interact 2023; 377:110466. [PMID: 37004951 DOI: 10.1016/j.cbi.2023.110466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa.
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering, and Technology, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| |
Collapse
|
33
|
Dai L, Li S, Hao Q, Zhou R, Zhou H, Lei W, Kang H, Wu H, Li Y, Ma X. Low-density lipoprotein: a versatile nanoscale platform for targeted delivery. NANOSCALE ADVANCES 2023; 5:1011-1022. [PMID: 36798503 PMCID: PMC9926902 DOI: 10.1039/d2na00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Low-density lipoprotein (LDL) is a small lipoprotein that plays a vital role in controlling lipid metabolism. LDL has a delicate nanostructure with unique physicochemical properties: superior payload capacity, long residence time in circulation, excellent biocompatibility, smaller size, and natural targeting. In recent decades, the superiority and feasibility of LDL particles as targeted delivery carriers have attracted much attention. In this review, we introduce the structure, composition, advantages, defects, and reconstruction of LDL delivery systems, summarize their research status and progress in targeted diagnosis and therapy, and finally look forward to the clinical application of LDL as an effective delivery vehicle.
Collapse
Affiliation(s)
- Luyao Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Shuaijun Li
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Hui Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Wenxi Lei
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| | - Hao Wu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| |
Collapse
|
34
|
Gaitsch H, Hersh AM, Alomari S, Tyler BM. Dendrimer Technology in Glioma: Functional Design and Potential Applications. Cancers (Basel) 2023; 15:1075. [PMID: 36831418 PMCID: PMC9954563 DOI: 10.3390/cancers15041075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Novel therapeutic and diagnostic methods are sorely needed for gliomas, which contribute yearly to hundreds of thousands of cancer deaths worldwide. Despite the outpouring of research efforts and funding aimed at improving clinical outcomes for patients with glioma, the prognosis for high-grade glioma, and especially glioblastoma, remains dire. One of the greatest obstacles to improving treatment efficacy and destroying cancer cells is the safe delivery of chemotherapeutic drugs and biologics to the tumor site at a high enough dose to be effective. Over the past few decades, a burst of research has leveraged nanotechnology to overcome this obstacle. There has been a renewed interest in adapting previously understudied dendrimer nanocarriers for this task. Dendrimers are small, highly modifiable, branched structures featuring binding sites for a variety of drugs and ligands. Recent studies have demonstrated the potential for dendrimers and dendrimer conjugates to effectively shuttle therapeutic cargo to the correct tumor location, permeate the tumor, and promote apoptosis of tumor cells while minimizing systemic toxicity and damage to surrounding healthy brain tissue. This review provides a primer on the properties of dendrimers; outlines the mechanisms by which they can target delivery of substances to the site of brain pathology; and delves into current trends in the application of dendrimers to drug and gene delivery, and diagnostic imaging, in glioma. Finally, future directions for translating these in vitro and in vivo findings to the clinic are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
35
|
Liu G, An D, Li J, Deng S. Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application. Front Pharmacol 2023; 14:1120251. [PMID: 36817160 PMCID: PMC9930992 DOI: 10.3389/fphar.2023.1120251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Zein, as one of the natural and GRAS proteins in plant, is renewable, nontoxic, biocompatible and biodegradable. Over the past decade, many research efforts have been devoted to zein-based biomaterials for several industrial applications. Combining with research experiences in our research group, the preparation methods, characterizations and pharmaceutical applications of zein-based nanoparticles were summarized in this review. Zein NPs with different particle nanostructures have been prepared by chemical crosslinking, desolvating, dispersing and micromixing strategies. The pharmaceutical applications of zein NPs are mainly focus on the drug delivery. Zein NPs can improve the drug stability, increase the oral bioavailability, control the drug release and enhance the drug targeting, thereby improving the pharmaceutical effect effectively. More efforts are required to analyze the relationship among preparation methods, particle nanostructures and pharmaceutical properties in virtue of quality by design approach, and further promote the scale-up production and clinical application of zein NPs.
Collapse
Affiliation(s)
- Guijin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | | | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
36
|
Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Res Int 2023; 164:112435. [PMID: 36738002 DOI: 10.1016/j.foodres.2022.112435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Selenium nanoparticles (SeNPs) have attracted much recent interest as nutraceuticals, while they face great challenges, such as poor stability and low cellular uptake efficiency. This study introduced a facile approach to synthesizing protamine sulfate (PS) functionalized selenium nanoparticles (PS-SeNPs) by using PS as a surface decorator. The monodisperse spherical PS-SeNPs with a particle size of 130 nm and a ζ-potential of +31 mV were ligated with PS through Se-N, Se-O bonds, and physical adsorption, which exhibits excellent physical stability against pH, temperature, and storage time. The positive surface charge of PS-SeNPs contributed to the enhancement of cellular uptake efficiency by endocytosis, which was 3-times higher than bare SeNPs. Compared to SeNPs (IC50 = 17.675 μg/mL), PS-SeNPs could dramatically inhibit the proliferation of HepG2 cells with an IC50 value of 5.507 μg/mL, as reflected by the induction of apoptosis, S phase arresting, overproduction of intracellular ROS, and depolarization of mitochondria membrane. Overall, these results demonstrated the great potential of PS-SeNPs that can be applied as a functional ingredient in foods and nutraceuticals.
Collapse
|
37
|
Ghosh N, Kundu M, Ghosh S, Das AK, De S, Das J, Sil PC. pH-responsive and targeted delivery of chrysin via folic acid-functionalized mesoporous silica nanocarrier for breast cancer therapy. Int J Pharm 2023; 631:122555. [PMID: 36586636 DOI: 10.1016/j.ijpharm.2022.122555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Cancer is a disease of global importance. In order to mitigate conventional chemotherapy-related side effects, phytochemicals with inherent anticancer efficacy have been opted. However, the use of nanotechnology is essential to enhance the bioavailability and therapeutic efficacy of these phytochemicals. Herein, we have formulated folic acid conjugated polyacrylic acid capped mesoporous silica nanoparticles (∼47.6 nm in diameter) for pH-dependent targeted delivery of chrysin to breast cancer (MCF-7) cells. Chrysin loaded mesoporous silica nanoparticles (Chr- mSiO2@PAA/FA) have been noted to induce apoptosis in MCF-7 cells through oxidative insult and mitochondrial dysfunction with subsequent G1 arrest. Further, in tumor bearing mice, intravenous incorporation of Chr-mSiO2@PAA/FA has been noticed to enhance the anti-neoplastic effects of chrysin via tumor site-specific accumulation. Enhanced cytotoxicity of chrysin contributed towards in vivo tumor regression, restoration of normalized tissue architecture and maintenance of healthy body weight. Besides, no serious systemic toxicity was manifested in response to Chr-mSiO2@PAA/FA administration in vivo. Thus, the study evokes about the anticancer potentiality of chrysin and its increased therapeutic activity via incorporation into folic acid conjugated mesoporous silica nanoparticles, which may hold greater impact in field of future biomedical research.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Samhita De
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
38
|
Algar WR, Szwarczewski A, Massey M. Are We There Yet? Intracellular Sensing with Luminescent Nanoparticles and FRET. Anal Chem 2023; 95:551-559. [PMID: 36595310 DOI: 10.1021/acs.analchem.2c03751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Combinations of luminescent nanoparticles (LNPs) and Förster resonance energy transfer (FRET) offer properties and features that are advantageous for sensing of biomolecular targets and activity. Despite a multitude of designs for LNP-FRET sensors, intracellular sensing applications are underdeveloped. We introduce readers to this field, summarize essential concepts, meta-analyze the literature, and offer a perspective on the bottleneck in LNP-FRET sensor development.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Agnes Szwarczewski
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
39
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
40
|
Mani I, Singh V. Receptor biology: Challenges and opportunities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:337-349. [PMID: 36813364 DOI: 10.1016/bs.pmbts.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor biology provides a great opportunity to understand the ligand-receptor signaling involved in health and disease processes. Receptor endocytosis and signaling play a vital role in health conditions. Receptor-based signaling is the main form of communication between cells and cells with the environment. However, if any irregularities happen during these events, the consequences of pathophysiological conditions occur. Various methods are utilized to know structure, function, and regulation of receptor proteins. Further, live-cell imaging and genetic manipulations have aided in the understanding of receptor internalization, subcellular trafficking, signaling, metabolic degradation, etc. Understanding the genetics, biochemistry, and physiology of receptors and ligands is very helpful to explore various aspects such as prognosis, diagnosis, and treatment of disease. However, there are enormous challenges that exist to explore receptor biology further. This chapter briefly discusses the current challenges and emerging opportunities of receptor biology.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
41
|
Lipid-Nanoparticle-Mediated Delivery of Docetaxel Prodrug for Exploiting Full Potential of Gold Nanoparticles in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14246137. [PMID: 36551622 PMCID: PMC9776798 DOI: 10.3390/cancers14246137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Current chemoradiation therapy suffers from normal tissue toxicity. Thus, we are proposing incorporating gold nanoparticles (GNPs) and docetaxel (DTX), as they have shown very promising synergetic radiosensitization effects. Here, we explored the effect of a DTX prodrug encapsulated in lipid nanoparticles (LNPDTX-P) on GNP uptake in pancreatic cancer models in vitro and in vivo. For the in vitro experiment, a pancreatic cancer cell line, MIA PaCa-2, was cultured and dosed with 1 nM GNPs and 45 nM free DTX or an equivalent dose of LNPDTX-P. For the in vivo experiment, MIA PaCa-2 cells were implanted subcutaneously in NRG mice, and the mice were dosed with 2 mg/kg of GNPs and 6 mg/kg of DTX or an equivalent dose of LNPDTX-P. The results show that LNPDTX-P-treated tumour samples had double the amount GNPs compared to control samples, both in vitro and in vivo. The results are very promising, as LNPDTX-P have superior targeting of tumour tissues compared to free DTX due to their nanosize and their ability to be functionalized. Because of their minimal toxicity to normal tissues, both GNPs and LNPDTX-P could be ideal radiosensitization candidates in radiotherapy and would produce very promising synergistic therapeutic outcomes.
Collapse
|
42
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
43
|
Mandal M, Banerjee I, Mandal M. Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma. Colloids Surf B Biointerfaces 2022; 220:112899. [DOI: 10.1016/j.colsurfb.2022.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
44
|
Pathade V, Nene S, Ratnam S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Emerging insights of peptide-based nanotherapeutics for effective management of rheumatoid arthritis. Life Sci 2022; 312:121257. [PMID: 36462722 DOI: 10.1016/j.lfs.2022.121257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, prevalent, immune-mediated, inflammatory, joint disorder affecting millions of people worldwide. Despite current treatment options, many patients remain unable to achieve remission and suffer from comorbidities. Because of several comorbidities as well as its chronic nature, it diminishes the quality of patients' life and intensifies socioeconomic cargo. Consolidating peptides with immensely effective drug delivery systems has the ability to alleviate adverse effects associated with conventional treatments. Peptides are widely used as targeting moieties for the delivery of nanotherapeutics. The use of novel peptide-based nanotherapeutics may open up new avenues for improving efficacy by promoting drug accumulation in inflamed joints and reducing off-target cytotoxicity. Peptide therapeutics have grabbed significant attention due to their advantages over small drug molecules as well as complex targeting moieties. In light of this, the market for peptide-based medications is growing exponentially. Peptides can provide the versatility required for the successful delivery of drugs due to their structural diversity and their capability to lead drugs at the site of inflammation while maintaining optimum therapeutic efficacy. This comprehensive review aims to provide an enhanced understanding of recent advancements in the arena of peptide-based nanotherapeutics to strengthen targeted delivery for the effective management of rheumatoid arthritis. Additionally, various peptides having therapeutic roles in rheumatoid arthritis are summarized along with regulatory considerations for peptides.
Collapse
Affiliation(s)
- Vrushali Pathade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shreya Ratnam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
45
|
He J, Pang W, Gu B, Lin X, Ye J. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles. NANOSCALE 2022; 14:16902-16917. [PMID: 36342434 DOI: 10.1039/d2nr04293b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The properties of nanoparticle (NP) carriers, such as size, shape and surface state, have been proven to dramatically affect their uptake by tumor cells, thereby influencing and determining the effect of nanomedicine on tumor theranostics. However, the effect of the stiffness of NPs on their cellular internalization remains unclear, especially for circumstances involving active or passive NP targeting. In this work, we constructed eutectic gallium indium liquid metal NPs with the same particle size, shape and surface charge properties but distinct stiffness via tailoring the surface oxidation and silica coating. It has been found that the softer NPs would be endocytosed much slower than their stiffer counterparts in the presence of specific ligand-receptor interaction. Interestingly, once the interaction is eliminated, softer NPs are internalized faster than the stiffer ones. Based on experimental observations and theoretical verification, we demonstrate that this phenomenon is mainly caused by varying degrees of deformation of soft NPs induced by ligand-receptor interactions. Such a finding of the stiffness effect of NPs implies great potential for fundamental biomedical applications, such as the rational design of nanomedicines.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Wen Pang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Bobo Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
46
|
Sun S, Liang HW, Wang H, Zou Q. Light-Triggered Self-Assembly of Peptide Nanoparticles into Nanofibers in Living Cells through Molecular Conformation Changes and H-Bond Interactions. ACS NANO 2022; 16:18978-18989. [PMID: 36354757 DOI: 10.1021/acsnano.2c07895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controlled self-assembly has attracted extensive interest in biological and nanotechnological applications. Enzymatic or biocatalytic triggered self-assembly is widely used for the diagnostic and prognostic marker in different pathologies because of their nanostructures and biological effects. However, it remains a great challenge to control the self-assembly of peptides in living cells with a high degree of spatial and temporal precision. Here we demonstrate a light-triggered platform that enables spatiotemporal control of self-assembly from nanoparticles into nanofibers in living cells through subtle molecular conformational changes and internal H-bonding interactions. The platform contained 3-methylene-2-(quinolin-8-yl) isoindolin-1-one, which acts as the light-controlled unit to disrupt the hydrophilic/lipophilic balance through the change of molecular conformation, and a peptide that can be a faster recombinant to assemble via H-bonding interactions. The process has good biocompatibility because it does not involve waste generation or oxygen consumption; moreover, the assembly rate constant was fast and up to 0.17 min-1. It is applied to the regulation of molecular assembly in living cells. As such, our findings demonstrate that light-triggered controllable assembly can be applied for initiative regulating cellular behaviors in living systems.
Collapse
Affiliation(s)
- Si Sun
- National Engineering Research Center of Immunological Products, Third Military Medical University, Gaotanyan No. 30, Shapingba District, Chongqing, 400038, China
| | - Hong-Wen Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing100190, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Third Military Medical University, Gaotanyan No. 30, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
47
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
48
|
Madhi ZS, Shallan MA, Almaamuri AM, Alhussainy AA, AL- Salih SSS, Raheem AK, Alwan HJ, Jalil AT. Lipids and lipid derivatives for delivery of the CRISPR/Cas9 system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Rotov AY, Firsov ML. Optogenetic Prosthetization of Retinal Bipolar Cells. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Although the experience of optogenetic retinal prosthetics
in animal models dates back to more than 16 years, the first results
obtained on humans have only been reported in the last year. Over this
period, the main challenges of prosthetics became clear and the
approaches to their solution were proposed. In this review, we aim
to present the achievements in the field of optogenetic prosthetization
of retinal bipolar cells with a focus mainly on relatively recent
publications. The review addresses the advantages and disadvantages
of bipolar cell prosthetics as compared to the alternative target,
retinal ganglion cells, and provides a comparative analysis of the
effectiveness of ionotropic light-sensitive proteins (channelrhodopsins)
or metabotropic receptors (rhodopsins) as prosthetic tools.
Collapse
|
50
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|